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Abstract:

Analogy is used to treat the system of non-interacting integrate-and-�re neurons as the ideal Fermi gas. It
allows one to obtain the nonlinear gain curve in the form of sigmoid in agreement with biological �ndings.
As the byproduct the gain-threshold mechanism in neurons is presented. Surprisingly enough, this is in
agreement with new biological �ndings, too. Besides, the application of this mechanism to the dynamics
of neurons leads to the non-monotone transfer function.
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1 Introduction

There have been intensive attempts to study and understand more deeply some basic problems in
neuronal systems, during the last years. But one can say a progress seems to be slow and not
adequate to intensity of our interests put in. So far we have not been able to formulate rigorously
some general universal laws like, e.g., in physics also in the �eld of neuroscience. On the other band
the book of Nature is written in the language of mathematics, as Galileo said. It follows one needs to
apply some general ideas on basic problems in this �eld, too. But to do this the method of analogies
seems to be very eÆcient. In words of great mathematician S. Banach: The good mathematicians see
analogies between theorems or theories; the very best see analogies between analogies. (S. Ulam in
the Foreword to Gamov's autobiography.)

In the paper we follow this strategy in applying a general and very powerful method of statistical
mechanics, especially the Boltzmann treatment of entropy, to the system of non-interacting neurons.
Then the analogy between integrate-and-�re neurons as fermions will be exploited in a most general
mathematical sense. It corresponds to the rule of "correct Boltzmann counting" and does not cor-
respond to any physical, resp. biological properties of particles resp. units in the system. It is just
a rule that de�nes the mathematical model [1]. But as we shall see the output of the game will be
mostly rewarding. It allows one to obtain the nonlinear gain curve in the form of sigmoid in very
agreement with biological �ndings [2]. Even more, as a by product we get the gain-threshold func-
tional dependency as the novel quality of biological neurons. Surprisingly enough this is in agreement
with new biological �ndings, too [3].

2 System of non-interacting neurons as an analogy to the ideal Fermi gas

Let us have N free neurons in a sense we do not suppose any learning so far. Then for a case of
intergate-and-�re types of neurons one can proceed in a standard way. If xj ; j = 1; :::; N are inputs
(activities) to the i-th neuron and �i is the bias or threshold of the i-th neuron, one can introduce
the e�ective �eld hi in the form

hi =
X
j

wijxj (2.1)

and the local �eld �i in the form

�i = hi ��i (2.2)

where wij ; i; j = 1; ::; N are called weights between the j-th and i-th neurons. Now in analogy with
Hop�eld [4] one can write down the Hop�eld energy-like function

H = �
1

2

X
i;j 6=i

wijxjyi �
X
i

�iyi (2.3)

where yi; i = 1; :::; N is the output of i-th neuron. But in our case as the neurons can only �re or to
be quiet we have yi = f0; 1g. By other words neurons can be only in two states, active then yi = 1,
or quiet and then yi = 0.

Now one can look on such a system of free neurons as on the ideal neuronal gas in the equilibrium.
With the analogy of statistical mechanics a state of such system is characterized by a set of occupation
numbers fnig, where ni is the number of neurons �ring with the given value of �i in the state under
consideration. If we put ni =< yi >, i.e., the average of yi through the system we have for a total
energy-like quantity E

E =
X
i

ni�i (2.4)

and the total numbers of neurons is
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N =
X
i

ni (2.5)

where in the analogy to Hop�eld

�i = ��i (2.6)

But for integrate-and-�re neurons one can have only ni = f0; 1g in analogy with Fermi ideal gas of
statistical mechanics. Then also Pauli exclusive principle holds and the number of states corresponding
to fnig is gfnig = 1. As we mentioned before every neuron can �re or be quiet.

At this point one can proceed in two di�erent but equivalent ways. The �rst is to exploit the
"correct Boltzmann counting" [1], which is just the rule that de�nes the mathematical model, so also
well applicable to our neuronal system. By calculating the Boltzmann entropy and maximizing the
number of states of our system f �nig, corresponding to the set of occupational numbers fnig for the case
of Fermi-like gas, one gets directly the formula for �ni. This is naturally done under conditions (2.4)
and (2.5). The second way is to use the grand partition function to calculate the mean value of ni
for a Fermi-like neuronal gas. As in what follows we will need the partition function we exploit the
second technique of handling this matter here.

The grand partition function for the Fermi-like gas can be written in the form [1].

� =
1X

N=0

zN
X
fnig

e
��
P

N

i=1
�ini (2.7)

where conditions (2.4) and (2.5) hold and fnig = f0; 1g. Here

z = e�� (2.8)

is so called fugacity and � is the chemical potential. Besides for the ideal gas � = 1
kT , where k is

Boltzmann constant and T is an absolute temperature. We will specify the analogical meaning of
these parameters for our neuronal gas later on. Now, the summation of N can be done as summation
of ni independently, so (2.7) can be written in the form

� =
Y
i

X
ni

�
ze���i

�ni
=
Y
i

(1 + ze���i) (2.9)

So we are prepared to get a �rst interesting result. Under above conditions and along lines of our
analogy we have for a mean value of occupation numbers, or the number of �ring neurons [1]

ni = �
1

�

@

@�i
ln� =

ze���i

1 + ze���i
=

1

1 + e+�(�i��)
(2.10)

By a comparison with the experimental biological �ndings

< yi >=
1

1 + e���i
=

1

1 + e��(hi��i)
(2.11)

we �nd the analogical meaning of parameters as follows

� = �

hi = ��i (2.12)

�i = ��

With this in mind one can look on (2.10) as on sigmoidal transfer function.
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3 The equation of state and the gain-threshold dependency derivation for

neurons

To proceed further one can use the equation of state for the Fermi-like neuronal gas [1]

pV

kT
= ln� =

X
i

ln(1 + ze���i) (3.1)

where variables p; V; T have a meaning of analogy to their thermodynamic-like interpretation. It will
be explain later more explicitely. Besides (3.1) one has the self-consistency condition

N = y
@

@z
ln� =

X
i

ze���i

1 + ze���i
(3.2)

By introducing a speci�c volume per neuron

v =
V

N
(3.3)

and using techniques of statistical mechanics ( [1]) we get from (3.1) and (3.2)

p

kT
=

1

L3
f5=2(z) (3.4)

1

v
=

1

L3
f3=2(z) (3.5)

where L, the thermal length, is

L =

s
2��h2

mkT
(3.6)

and

f5=2(z) =
1X
j=1

(�1)j+1zj

j5=2
(3.7)

f3=2(z) = z �
@

@z
f5=2(z) =

1X
j=1

(�1)j+1zj

j3=2
(3.8)

Let us note that the absolute temperature T here is not factual temperature, e.g., in our brain but
one can take it as an analogy of appropriate "noise" temperature which plays the important role in
neuronal systems [5]. It will be speci�ed later on.

In the case of very small z or by other words for the high temperature (noise) limit (see (2.8)) we
have from (3.5) and (3.8) to the �rst order of z

L3

v
�= z: (3.9)

After a substitution of (2.8) and (3.6) and using the analogy (2.12) we get by a simple rearangement

� =
v2=3

A
e�

2
3

�
kT � k1e

�k2� (3.10)

where

k1 =
v2=3

A
;A = const (3.11)

and
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k2 =
2

3

q
(�Vi)2

(3.12)

where [5]
�Vi = Vi � V i, Vi is action potential on the i-the neuron.

V i =
X
j

V ij = p
X
j

wijxj(t� �ij) (3.13)

is a mean value of action potential;
�ij - is a time delay of refractory period for a synapse between i-th and j-th neurons. Commonly is

taken p
:
= 0:6 [5]. In this case (�Vi)2 then presents local synaptic noise.

Besides this natural analogy and the meaning of synapse noise temperature in the parameter k2 in
(24) the dependency of � upon � in (22) is even of more interest here. Let us try to analyze this result
in more details now. On the one hand the variables �;� are main characteristics of any sigmoidal
transfer function for neurons. Namely, the � is called the bias or threshold and shifts the sigmoid
along the horizontal axis and the � is the steepness of sigmoid and can play the important role in the
stability vs. instability of neuronal dynamics. On the other hand these two cardinal parameters of
sigmoidal transfer function have also a biological meaning. Namely, the � is connected to a sensitivity
and can play the role in describing the attention and motivations [6]. And the �, the sigmoid slope
is connected to the excitability, e.g., it decreases under anesthesia and increases with arousal [2].
There have been many direct or indirect indications for a possible functional dependency of � upon
� [6], [7], [8]. One of the authors (L. A.) was even able to show by analyzing experimental results
of Miyashita [9] and their modeling by Amit [8] that the functional dependence of gain (�) upon
threshold (�) is of exponential form. Our independent and rigorous derivation of that dependency of
� upon � here is of very support of that result.

It is fascinating to mention here that the similar functional dependency between gain (�) and
threshold (�) of sigmoidal transfer function was harvested as the by product by one of the authors
(L. A.) in deriving the conditions for chaotic dynamics in single neurons [3].

It has been known for some time the sigmoid slope can play the important role in computational
capabilities, e.g., in the pattern formation and recognition in the olfactory bulb [10], in the number of
local minima in the system with �xed point attractors [4], and so on [11]. So it is only natural to await
that taking into account the � � � dependency, or the gain-threshold mechanism of (3.10) will also
have the profound e�ect upon computational capabilities of such neurons. This was demonstrated by
one of authors [12] building up neural networks of such neurons. A more detailed analysis of possible
consequences of gain-threshold dependency (3.10) upon computational capabilities of neurons, e.g., a
generation of bursts in �ring neurons as an intermittent way to chaotic dynamics of neurons, will be
published elsewhere [13].

But for a concretness in the next section we give a short account of how the exploitation of gain-
threshold dependency can lead immediately to getting the non-monotone transfer function dynamics
in such neurons. Details of derivation and consequences will be published by one of the authors (L. A.)
elsewhere.

4 The non-monotone transfer function from the gain-threshold mechanism

In attempts to increase associative memories and to improve their dynamics the arti�cial construction
of more complicated transfer functions instead of sigmoidal one has been used. Namely the so called
non-monotone transfer function for the case of associative memory was proposed in [14]. It is then
argued by numerical experiments that many problems of the conventional model with the sigmoidal
transfer function are overcome by this improved dynamics. As mentioned by the Morita [14] who was
the �rst to introduce such dynamics, to study the associative memory with non-monotone dynamics
is important not only for practical purposes but also for understanding dynamical properties of as-
sociative neural networks. There have been many papers published on dynamics of neural networks
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with non monotone transfer function neurons. We are not going to technical details on this litera-
ture here. Instead we sketch a derivation of such non-monotone transfer function dynamics from our
gain-threshold functional dependence (3.10).

Let us take (11) in the form

f(�) =
1

1 + e���
(4.1)

for the transfer function of given neuron, when we dropped out the index i for the i-th neuron here.
Now we apply the dependence � = �(�) of (3.10). Taking into account the expression for the local
�eld � in the form (2.2) we have from (4.1)

f(�) =
1

1 + e�k1�e
�k2(h��)

(4.2)

To proceed further one can apply repeatedaly the technique of Taylor series and other elementary
calculations (details will be published elsewhere) after some long and dubious procedures one arrives
at the expression for the �rst approximation form of transfer function (4.1)

f(�) =
1

2
+
A

4
�

�
1 +D� +

k2

2
C�2

�
=

=
1

2
+
A

4
C�

 
� +

D

2C
+

r
D2

4C2
� C

! 
� +

D

2C
�

r
D2

4C2
� C

!

(4.3)

where

C = (B + k2 +Bk2)
k2

2

D =
B

2
+ k2

A = k21e
�2k2h

B = k22e
�k2h (4.4)

Not going to technical details here we just mention the transfer function (4.2) contains the cubic
nonlinearity which is typical for non-monotone transfer functions so far constructed. See, e.g. [15].

It is worth to stress here that we get the non-monotone transfer function (4.3) not by arti�cial, in
a sense teleological construction, as has been done so far, but as a consequence of taking into account
the gain-threshold mechanism we discovered here. It means the non-monotone transfer function for
neurons can have its substantiation in the biology of neuronal systems as such. We can also deduce
of (4.3) that the dynamics of such neurons can be rather complex. But this would shed a new light
on the very problem of neural coding just to mention one of possible consequences of gain-threshold
dependency (3.10). Well, here we again meet a �ne point of exploiting that singular methodology of
looking for analogies among analogies as was mention at the beginning.

5 Conclusions

The system of non-interacting integrate-and-�re neurons was treated as the analogy to the ideal
Fermi gas. By this we have been able to obtain the nonlinear gain curve in the form of sigmoid, as one
supposed from biology [10]. As at by product we surprisingly arrived at the gain-threshold dependence
in the form of exponential relationship (3.10) between the steepness of such sigmoidal transfer function
and its threshold. But this functional dependence has also the support in biology [7], [8]. Finally, the
application of such gain-threshold mechanism leads backwards to the non-monotone transfer function
as the �rst approximation of complicated neuronal dynamics.
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Let us stress here that above mentioned results were obtained for the "ideal gas" approximation
of non-interacting neurons. For such the case the neuronal system is in equilibrium. So this naturally
means that such system cannot learn anything. But we know that in reality, neuronal systems as
parts of brain, have this distinguished property that they can learn. So the question is if it would be
not possible to proceed further in our previous analogies to bring the learning into the game. Well, it
seems, the answer is aÆrmative. Here we only shortly mention the basic idea (a detailed treatment
will be published elsewhere).

For the sake of simplicity one can take thresholds �i as parameters with weights wij �xed to 1.
Then we have the e�ective �elds hi in the form of (2.1). Now the point is that one can get a time
dependent dynamics via the weights wij in the hi. But the developing of weights wij in time is the
so called neuronal plasticity or by other words we call it the learning. Now one can suppose that at
each stage of such learning process, one calls these processes epoches, the system is allowed to come
to equilibrium. And, of course, at each step the (3.10) is satis�ed. We know, for this to hold, the
"noise temperature" must be suÆciently high. But it means that interactions are negligible. However,
in reality, one is taking into account instantenous values of outputs yi; i = 1; :::; N after they came
to equilibrium, in computing the hi ! the yi. So, in a sense, one can speak about an application
of analogy of mean �eld theory in the realization of such learning process. Beside, as we have time
dependent e�ective �elds hi; i = 1; :::; N here, one can think about the possible application of time
dependent Landau-Ginzburg theory, or of a kind of generalized Landau theory. This approach seems
to be very promising as it leads to the more rigorous treatment of dynamics of learning process, and
so on. But this is another story we will not go to details here but it will be published soon. To this
end we have demonstrated that the celebrated method "analogies of analogies" can be very fruitful
even in computational neuroscience.

The part of this work was started at the Institute of Theoretical Physics, Academia Sinica, Beijing.
The authors gratufully thank Hao Bai-lin for the exceptional time and hospitality. L. A. was supported
by the grant GA CR 309/99/0049.
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