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1 Introduction

Feedforward networks are mostly simulated on classical computers; for such simulations, one of the
limiting factors is the number n of hidden units . Jones [9] has obtained insight into the reason that
some high-dimensional tasks can be performed eÆciently by neural networks with a moderate number
of hidden units. He constructed incremental approximants with rates of convergence of the order of
O(n� 1

2 ). The same estimates had earlier been proved by Maurey using a probabilistic argument (see
Pisier [18] and also Barron [2]). Barron [2] improved Jones's [9] upper bound and applied it to neural
networks. Using a weighted Fourier transform, he described sets of multivariable functions that can
be approximated by perceptron networks having n hidden units within an accuracy of the order of
O(n� 1

2 ). Such bounds are sometimes called \dimension-independent" as they do not depend on the
number of variables. However, such a term can be misleading, as sets of multivariable functions to
which such estimates apply become more and more constrained as the number of variables increases.

The Maurey-Jones-Barron upper bound is quite general, as it applies to nonlinear approximation
of the variable-basis type, i.e., approximation by linear combinations of n-tuples of elements of a given
set of basis functions. This approximation scheme has been widely investigated (see, e.g., DeVore
and Temlyakov [?] and the references therein): it includes splines with free nodes, trigonometric
polynomials with free frequencies, sums of wavelets and feedforward neural networks.

Several authors have further improved or extended these dimension-independent bounds. An
extension to Lp-spaces, with p 2 (1;1), has been derived by Darken et al. [3] (with a rate of

approximation of the order of O(n� 1
q ), where q = max(p; p

p�1 )), and an extension to L1-spaces has

been obtained by Barron [1], Girosi [7], Gurvits and Koiran [8], Makovoz [16] and K�urkov�a, Savick�y
and Hlav�a�ckov�a [14].

Makovoz [15] improved Maurey's probabilistic argument by combining it with a concept from
metric entropy theory, which he also used to show that in the case of Lipschitz sigmoidal perceptron
networks, the upper bound cannot be improved to O(n��) for � > 1

2 +
1
d , where d is the number of

variables of the functions to be approximated. A similar tightness result for perceptron networks was
earlier obtained by Barron [1], who used a more complicated proof technique. For the special case of
orthonormal variable-basis, Mhaskar and Micchelli [17], K�urkov�a, Savick�y and Hlav�a�ckov�a [14] and
K�urkov�a and Sanguineti [13] have derived tight improvements of Maurey-Jones-Barron's bound.

In this paper, we extend tightness results derived by Barron [1] and Makovoz [15] for approximation
by convex combinations of functions computable by sigmoidal perceptrons to combinations of more
general basis functions satisfying certain conditions, that are ful�lled by standard neural-network
hidden units. These conditions are de�ned in terms of (i) polynomial growth of the number of sets of
a given diameter needed to cover such basis and (ii) suÆcient \capacity" of the basis, in the sense that
its convex hull has an orthogonal subset that for each positive integer k contains at least kd functions
with norms greater or equal to 1

k . The proofs of our results, which are only sketched here, are given
in [?].

2 Approximation by neural networks and by variable-basis functions

Approximation by feedforward neural networks can be studied in a more general context of approx-
imation by variable-basis functions. In this approximation scheme, elements of a real normed linear
space (X; k:k) are approximated by linear combinations of at most n elements of a given subset G.
The set of such combinations is denoted by spannG = fPn

i=1 wigi;wi 2 R; gi 2 Gg; it is equal to
the union of n-dimensional subspaces generated by all n-tuples of elements of G. G can represent the
set of functions computable by hidden units in neural networks. Such units compute functions of the
form � : Rp �Rd ! R, where R denotes the set of real numbers, � corresponds to the type of unit,
and p and d to the dimension of a parameter space and an input space, resp.. The set of input/output
functions of a network with a single linear output unit and n hidden units computing the function
� is equal to spannG�, where G� = f�(a; �); a 2 Rpg. Also multilayer networks with a single linear
output unit and n units in the last hidden layer belong to this approximation scheme; they compute
functions from spannG with G depending on the number of units in the previous hidden layers.
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Recall that a perceptron with an activation function  : R ! R computes functions of the form
�((v; b);x) =  (v �x+b) : Rd+1�Rd ! R, where v 2 Rd is an input weight vector and b 2 R is a bias.
By Pd( ) = ff : [0; 1]d ! R; f(x) =  (v�x+b);v 2 Rd; b 2 Rg we denote the set of functions on [0; 1]d
computable by  -perceptrons. The most common activation functions are sigmoidals, i.e., functions
� : R ! [0; 1] such that limt!�1 �(t) = 0 and limt!1 �(t) = 1; the discontinuous sigmoidal de�ned
as #(t) = 0 for t < 0 and #(t) = 1 for t � 0 is called the Heaviside function. A function � : R ! R is
Lipschitz if there exists M > 0 such that j�(t)� �(t0)j �M jt� t0j for all t; t0 2 R.

Rates of approximation of functions from a set Y by functions from a set M can be studied in
terms of the worst-case error formalized by the concept of deviation of Y from M and de�ned as
Æ(Y;M) = Æ(Y;M; (X; k:k)) = supf2Y kf �Mk = supf2Y infg2M kf � gk: To formulate estimates of
deviation from spannG we need to introduce a few more concepts and notations. If G is a subset of
(X; k:k) and c 2 R, then we de�ne cG = fc g; g 2 Gg and G(c) = fwg; g 2 G;w 2 R& jwj � cg. The
closure of G is denoted by cl G and de�ned as cl G = ff 2 X ; (8" > 0)(9g 2 G)(kf � gk < ")g. G
is dense in (X; k:k) if cl G = X . The convex hull of G, denoted by conv G, is the set of all convex
combinations of its elements, i.e., conv G = fPn

i=1 aigi; ai 2 [0; 1];
Pn

i=1 ai = 1; gi 2 G;n 2 N+g.
convnG denotes the set of all convex combinations of n elements of G, i.e., convnG = fPn

i=1 aigi; ai 2
[0; 1];

Pn
i=1 ai = 1; gi 2 Gg. Br(x; k:k) denotes the ball of radius r with respect to the norm k:k centered

at x 2 X , i.e., Br(x; k:k) = fy 2 X ; ky � xk � rg. We write shortly Br(k:k) instead of Br(0; k:k).
The following estimate is a version of Jones' result as improved by Barron [2] and also of earlier

result of Maurey. Recall that a Hilbert space is a normed linear space with the norm induced by an
inner product.

Theorem 2.1 Let (X; k:k) be a Hilbert space, b a positive real number, G a subset of X such that for
every g 2 G kgk � b, and let f 2 cl conv G. Then, for every positive integer n, kf � convnGk �q

b2�kfk2
n :

In the following, we shall sometimes refer to Theorem 2.1 and to its bound as Maurey-Jones-
Barron's theorem and bound, resp. As convnG � spannG, the upper bound from Theorem 2.1 also
applies to rates of approximation by spannG. However, when G is not closed up to multiplication by
scalars, conv G is a proper subset of spanG, and hence also cl conv G is a proper subset of cl spanG.
Thus density of spanG in (X; k:k) does not guarantee that Theorem 2.1 can be applied to all elements
of X . As convnG(c) � spannG(c) = spannG for any c 2 R, by replacing the set G by G(c) = fwg;w 2
R; jwj � c; g 2 Gg we can apply Theorem 2.1 to all elements of [c2R+

cl conv G(c). This approach
can be mathematically formulated in terms of a norm tailored to a set G (in particular, to sets G�

corresponding to various computational units � in neural networks). Let (X; k:k) be a normed linear
space and G be its subset, then G-variation (variation with respect to G) denoted by k:kG is de�ned
as the Minkowski functional of the set cl conv G(1) = cl conv(G [ �G), i.e.,

kfkG = inffc 2 R+; f 2 cl conv G(c)g:
G-variation has been introduced by K�urkov�a [11] as an extension of Barron's [1] concept of variation
with respect to half-spaces (more precisely, variation with respect to characteristic functions of half-
spaces) corresponding to perceptrons with Heaviside activation function. For functions of one variable,
variation with respect to half-spaces coincides, up to a constant, with the notion of total variation
studied in integration theory; for G orthonormal, it is equal to the l1-norm with respect to G (see
[13]). The following theorem is a corollary of Theorem 2.1 formulated in terms of G-variation (see
[11]). Recall that for any G, the unit ball in G-variation is equal to cl conv(G [ �G).
Theorem 2.2 Let (X; k:k) be a Hilbert space and G be its subset. Then, for every f 2 X and every
positive integer n, Æ(B1(k:kG); spannG) � sGp

n
; where sG = supg2G kgk.

Thus all functions from the unit ball in G�-variation can be approximated within
sG�p
n

by �-

networks with n hidden units independently on the number d of variables. However, with increasing
number of variables, the condition of being in the unit ball in G�-variation becomes more and more
constraining (see [14] for examples of functions with variations depending exponentially on d).
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3 Covering numbers

Recall that for " > 0, the "-covering number of a subset K of a normed linear space (X; k:k) is de�ned
as cov"K = cov"(K; k:k) = minfn 2 N+ ;K � [ni=1B"(xi; k:k); xi 2 Kg if the set over which the
minimum is taken is nonempty, otherwise cov"(K) = +1. The "-metric entropy of K is de�ned as
H"(K) = log2 cov"K.

The n-covering diameter ofK is de�ned as diamn(K) = inff" 2 R+ ;K � [ni=1B"(xi; k:k)g. When
the covering sets are open or closed balls of radius "

2 , then diamn(K) is the n-th entropy number �n(K)
(see [4, p.7]).

A subset fx1; : : : ; xmg of K is called "-distinguishable if for each distinct pair xi; xj of its elements,
kxi � xjk > ". The "-packing number of K, pack"K, is de�ned as the maximal cardinality of an
"-distinguishable subset of K. The "-capacity of K is de�ned as C"(K) = log2 pack"K.

It follows directly from the de�nitions and the triangle inequality that pack2"(K) � cov"(K) �
pack"(K). Obviously, the same relationships hold between H"(K) and C"(K).

The following lemma gives an elementary estimate of covering numbers of balls in a norm on Rn.

Lemma 3.1 Let n be a positive integer, k:k be a norm on Rn and " > 0, then
�
1
"

�n � cov"B1(k:k) ��
2
"

�n
:

Proof. Let vol denotes the Euclidean volume in Rn. For every " > 0, we have vol(B"(k:k)) =
"n vol(B1(k:k)). It follows from It follows directly from the de�nitions that cov"B1(k:k) vol(B"(k:k)) �
vol(B1(k:k)) and pack2"B1(k:k) vol(B"(k:k)) � vol(B1(k:k)). Hence, pack2"B1(k:k) � "�n � cov"B1(k:k):
Since pack2"K � cov"K � pack"K we have cov"B1(k:k) � pack"B1(k:k) �

�
2
"

�n � cov "
2
B1(k:k); and

hence
�
1
"

�n � cov"B1(k:k) �
�
2
"

�n
: 2

Lemma 3.2 Let (X; k:k) be a Hilbert space, G its subset and sG = supg2G kgk. Then, for every
" > 0,
(i) cov"(1+sG)(convnG; k:k) � (cov" (G; k:k))n cov"(B1(k:kln

1
); k:kln

1
);

(ii) cov"(1+sG)(convnG) � (cov"G)
n
�
2
"

�n
;

(iii) cov"(G [ �G) � 2cov"G.

Proof. (i) Let B be an "-net in B1(k:kln
1
) with respect to ln1 and A be an "-net in G with respect to the

norm k:k. Let C be a subset of convnG formed by all expressions
Pn

i=1 bi gi, where (g1; : : : ; gn) 2 Gn

and (b1; : : : ; bn) 2 B. We have cardC = (cardA)n cardB. Since kPn
i=1 bi gi �

Pn
i=1

�bi �gik �
kPn

i=1 bi gi �
Pn

i=1 bi �gik+ kPn
i=1 bi �gi �

Pn
i=1

�bi �gik = kPn
i=1 bi (gi � �gi)k+ kPn

i=1 (bi � �bi) �gik �Pn
i=1 jbij "+

Pn
i=1 jbi��bij kgik � "+ " sG = "(1+ sG), C is an "(1+ sG)-net in convnG with respect

to k:k.
(ii) follows directly from (i).
(iii) If C in an "-net in G, then �C in an "-net in �G and hence C [ �C is an "-net in G [ �G. 2

4 Quasiorthogonal dimension

The cube f�1; 1gm is called the Hamming cube. Let h denotes a metric on f�1; 1gm de�ned as the
the number of coordinates at which two vectors di�er; usually called the Hamming metric, it is just
the l1-norm.

A Hadamard matrix of order m is a set of pairwise orthogonal vectors in the Hamming cube
f�1; 1gm with a particular ordering. It is well-known that, except for m = 1 and m = 2, a Hadamard
matrix can only exist when m is divisible by 4 and this condition is believed to be suÆcient. Kainen
and K�urkov�a [10] have generalized the concept of Hadamard matrix by allowing a certain tolerance in
the orthogonality condition. For " 2 [0; 1], they have de�ned an "-Hadamard matrix of order m as an
ordered set of vectors in f�1; 1gm with all inner products of any two distinct rows in absolute value
less than or equal to m".

Let R(";m) denote the maximal number of rows of an "-Hadamard matrix of order m. Since the
absolute value of the inner product of a pair of vectors in f�1; 1gm is equal to an integer between 0 and
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m, it follows that R(";m) = R( b"cm ;m) for each " 2 [0; 1]. When " = k
m , then ju � vj � k. It is easy to

check that, for each two distinct vectors u;v in an "-Hadamard matrix of order m, h(u;v) � m( 1�"2 ).

When " = k
m , then h(u;v) � m�k

2 .
The following lemma gives a lower bound on certain covering numbers of the unit ball in variation

with respect to an orthogonal set.

Lemma 4.1 Let (X; k:k) be a Hilbert space, A be its orthogonal subset such that cardA = m and
ming2A kgk = a. Then for each integer k such that 1 � k < m, covÆkB1(k:kA) � R

�
k
m ;m

�
, where

Æk =
a
m

q
dm�k2 e.

Proof. Let A = fg1; : : : ; gmg and let Mk be a k
m -Hadamard matrix of order m with R

�
k
m ;m

�
rows.

We shall show that the set A(Mk) = f 1
m

Pm
i=1 uigi;u 2 Mkg is 2Æk = 2a

m

q
dm�k2 e-separated. For

any two distinct vectors u;v 2 Mk, we have h(u;v) � m�k
2 . Thus the cardinality of the set I

of indices, representing the coordinates where u and v di�er, satis�es dm�k2 e � card I � bm�k2 c.
Hence k 1

m

Pm
i=1(ui � vi)gik = 2

mk
P

i2I gik � 2a
m

q
dm�k2 e. Finally, cardA(Mk) = R

�
k
m ;m

�
and

A(Mk) � B1(k:kA), imply that covÆk (B1(k:kA)) � R
�
k
m ;m

�
. 2

Lemma 4.1 gives a lower bound on certain covering numbers of balls in variation with respect to
an orthogonal set. For a smaller value of Æk, a similar lower bound on covÆkB1(k:kA) can be obtained
even if the orthogonality condition on the set A is relaxed to "-nearly orthogonality.

A subset A = fg1; : : : :gmg of a Hilbert space (X; k:k) is called "-nearly orthogonal if
Pm

j=1; j 6=i jgi �
gj j � "; i = 1; : : :m:

Hech-Nielsen introduced the concept of quasiortogonality. For " 2 (0; 1), two vectors u;v 2 Rn are
called "-quasiorthogonal if ju �vj � "kuk kvk. If A = fg1; : : : ; gmg is a set of pairwise "-quasiorthogonal
vectors in Rn, then A is (m� 1)"-nearly orthogonal (as

P
i6=j jgi � gj j � (m� 1)").

Lemma 4.2 Let (X; k:k) be a Hilbert space, A be its "-nearly orthogonal subset such that cardA = m
and ming2A kgk = a, and let " � p

a. Then for each integer k such that 1 � k < m, covÆk (B1(k:kA)) �
R
�
k
m ;m

�
, where Æk =

p
ja2�"j
m

q
dm�k2 e.

Proof. Analogously as in the proof of Lemma 4.1 we derive that the set A(Mk) = f 1
m

Pm
i=1 uigi;u 2

Mkg is 2Æk =
2
p
ja2�"j
m

q
dm�k2 e-separated. A lower bound on k 1

m

Pm
i=1(ui � vi)gik is calculated as

follows: Let xi =
1

2
p
r
(ui � vi); i 2 I . Then xi = � 1p

r
, and k 1

m

Pm
i=1(ui � vi)gik = 1

mk
P

i2I gik =
2
p
r

m kPr
i=1 xi gik; where r = card I . Moreover, kPr

i xi gik2 = jPr
i=1

Pr
j=1 xi xj dij j, where dij =

xi xj . Since
Pr

i=1 x
2
i = 1, it is suÆcient to estimate from below the function f(x1; : : : ; xr) =

jPr
i=1

Pr
j=1 xi xj dij j on the unit sphere of Rr. Let DI be a matrix de�ned by DI ij = dij . Then

f(x1; : : : ; xr) � 2
p
r

m

pj�min(DI)j, where �min(DI) denotes the minimun eigenvalue ofDI . As �min(DI)j �
jmingi2A kgik2�

P
i2I; i6=j jgi�gj jj � ja2�"j, we get 1

mk
Pm

i=1(ui�vi)gik �
2
p
rja2�"j
m � 2

p
ja2�"j
m

q�
m�k
2

�
:

2

Combining Lemma 4.1 with a lower bound on R
�
k
m ;m

�
we get a lower bound on "-covering

number of balls in G-variation containing an orthogonal subset for " de�ned in terms of the cardinality
of such an orthogonal subset and the minimum of norms of its elements. The proof of the next
lemma is based on the exponentional growth of quasiorthogonal dimension studied in [10]. H(p) =
p log(p) + (1� p) log(1� p) denotes the entropy function.

Lemma 4.3 Let (X; k:k) be a Hilbert space, G;A be its subsets such that A � B1(k:kG), A is a set
of m orthogonal elements and minh2A khk = a.
Then cov a

2
p
m
B1(k:kG) � 2bm, where b = H( 14 ).

Proof. By [10, Theorem 3.4] for every positive integer m and k 2 f1; : : : ;m � 1g, R � km ;m
� �

2m�1

B(�m;k;m) , where �m;k = dm�k�22 e and B(�;m) =
P�

i=0

�
m
i

�
is a partial sum of binomials.
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As �m; km
= d m

2
�2
2 e < m

2 we can use the estimate B(�;m) � 2mH( �m ), that is valid for � < m
2

(see [6]).

Thus, R
�
k
m ;m

� � 2m�1

B(�m;k;m) � 2m�12
�mH

 
�
m; k

m
m

!
= 2

m

"
1�H

 
�
m; k

m
m

!#
�1
.

As the entropy function increasing and �m; km
= dm�k�22 e = dm�k2 �1e � m�k

2 , we get R
�
k
m ;m

� �
2mH(m�k2m ). Setting k = bm2 c we have H

�
m�k
2m

�
= H

�
m�bm

2
c

2m

�
� H

�
1
4

�
.

By Lemma 4.1, covÆk (B1(k:kA)) � R
�
k
m ;m

� � 2mH( 14 ) = 2bm, where b = H( 14 ). 2

5 Tightness of the bound O(n�
1
2 ) on variable-basis approximation

To disprove for certain sets G the possibility of an improvement of Maurey-Jones-Barron's upper
bound beyond O(n�( 12+ 1

d )), we shall assume that such an improvement is possible and derive a con-
tradiction by considering its consequences on the growth of certain covering numbers of the unit ball
in G-variation.

We shall apply Lemma 4.3 to a ball containing a sequence of subsets with increasing cardinality,
that contain orthogonal elements with norms that do not vanish \too quickly". More precisely, for a
positive integer d (corresponding, in the following, to the number of variables of functions inX), we call
a subset A of a normed linear space (X; k:k) not quickly vanishing with respect to d if A = [k2N+

Ak,
where, for each k 2 N+, cardAk � kd and for each h 2 Ak, khk � 1

k (see [12]).
Recall that for f; g : N+ ! N+, g(n) � O(f(n)) if there exists c 2 R+ such that for all but

�nitely many n 2 N+, g(n) � c f(n). Makovoz [15] proved that when � is a Lipschitz sigmoidal, then

the rate of the order of O(n� 1
2 ) in approximation of elements of the unit ball in Pd(�)-variation by

convn(Pd(�) [ �Pd(�)), that is guaranteed by Maurey-Jones-Barron's theorem, cannot be improved
to O(n��) for � > 1

2 +
1
d . Our main theorem extends this Makovoz's result to sets G of functions

of d variables that have covering numbers depending only polynomially on the number of variables d
and for which the unit ball in G-variation contains an orthogonal subset that is not quickly vanishing
with respect to d.

Theorem 5.1 Let (X; k:k) be a Hilbert space of functions of d variables and G be its bounded subset
satisfying the following conditions:

(i) there exists a polynomial p(d) and b 2 R+ such that, for every " > 0, cov"(G) � b
�
1
"

�p(d)
;

(ii) there exists r 2 R+ for which Br(k:kG) contains a set of orthogonal elements which is not quickly
vanishing with respect to d.
Then Æ(B1(k:kG); convn(G [ �G)) � O(n��) implies � � 1

2 +
1
d .

Proof. Assume that there exists � > 1
2 +

1
d such that, for all but �nitely many n 2 N+, Æ(B1(k:kG),

convn(G [ �G)) � c
n� . Set Æ = 2c

n� . We shall derive a contradiction by comparing an upper bound
on covÆB1(k:kG) (obtained from the assumption (i) and this hypothetical upper bound) with a lower
bound on the same covering number (obtained from the assumption (ii) and Lemma 4.3). With-
out loss of generality assume sG = 1. By the triangle inequality, Lemma 3.2 and the assumption
(i), we get covÆB1(k:kG) � covÆ=2convn(G [ �G) � (2covÆ=4G)

n( 8Æ )
n � an4n(2+p(d))Æ�n(1+p(d)) =

a(n; d)n�n(1+p(d)), where a(n; d) = an4n(2+p(d))(2c)�n(1+p(d)). On the other hand, using the assump-
tion (ii) set for each positive integer k, Ar;k = 1

rAk. We have Ar;k � B1(k:kG) and by Lemma 4.3,

cov"kB1(k:kG) � cov"kB1(k:kAr;k
) � 2bk

d

, where b = H( 14 ) and "k = 1
2rkd=2+1

. If k � �k = n�

4cr

2
d+2 ,

then Æ � "k. So for �k an integer, set k = �k. Then we get covÆB1(k:kG) � cov"kB1(k:kG) � 2bk
d �

2cdn
�

1=2+1=d
, where cd = b

�
1
4cr

� 1
1=2+1=d , which gives for large n a contradiction. If �k is not integer, set

k = b�kc � �k � 1 � �k
2 for �k � 2, and get a contradiction in a similar way. 2

Since both assumptions of Theorem 5.1 are satis�ed by sets of functions computable by perceptrons
with Lipschitz sigmoidal activation, we get the following corollary.
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Corollary 5.2 Let d, n be positive integers and let � : R ! R be a Lipschitz sigmoidal function.
Then in (L2([0; 1]d); k:k2),
Æ(B1(k:kPd(�)); spann(Pd(�) [ �Pd(�)) � O(n��) implies � � 1

2 +
1
d .

Proof. It is suÆcient to check that both conditions (i) and (ii) from Theorem 5.1 are satis�ed by
Pd(�). For the condition (i), see [15, Lemma 2]. The condition (ii) is guaranteed by the following
construction from [12]: set Ad = [k2N+

Ad;k, where Ad;k = fhv;v 2 f1; : : : ; kgdg � (L2([0; 1]d); k:k2),
with hv(x) = cv cos(2�v � x) : [0; 1]d ! R, cv = d=(

p
2dPd

j=1 vke), and v = (v1; : : : ; vd). It is shown
in [12] that for any positive integer d, Ad � Bd=

p
8(k:kPd(�)) and that A = [d2N+

Ad is orthogonal not
quickly vanishing with respect to d. 2

6 Discussion

We have stated conditions that prevent an improvement of Maurey-Jones-Barron's upper bound to
O(n��), for � > 1

2 +
1
d . As sets of functions computable by Lipschitz sigmoidal perceptrons satisfy

these conditions, it follows that one cannot improve the upper bound on the approximation rate for
one-hidden-layer networks with such perceptrons when the sum of the absolute values of the output
weights is kept below a certain �xed bound. It is an open problem whether Theorem 5.1 can be
generalized to approximation by linear instead of convex combinations (a special case of this problem
concerning one-hidden layer perceptron networks with a Lipschitz sigmoidal activation function and
unconstrained output weights was stated by Makovoz in [15]).

Better rates than O(n�( 12+ 1
d )) might be achievable using networks with more than one hidden

layer since for some of such networks, sets of basis functions might be are much larger than in teh case
of one-hidden-layer networks, and thus they might not satisfy condition (i) on polynomial growth of
covering numbers.
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