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fuzzy logic, model theory, compactness, Löwenheim-Skolem theorem, Lindström theorem

1Support of the grant No. A1030004/00 of the Grant Agency of the Academy of Sciences of the Czech Republic is
acknowledged.



1

1 Introduction

This note is inspired by my discussion with J. Väänänen and should serve for joint research. Recall the
predicate logic BL∀ (basic fuzzy predicate logic) and there stronger logics �L∀, GΠ,Π∀ (�Lukasiewicz,
Gödel and product logic). The corresponding varieties of algebras of truth functions are those of
BL-algebras, MV -algebras, G-algebras and product algebras. One works with linearly ordered BL-
algebras (etc.), i.e. BL-chains, MV -chains etc. The truth value of a formula ϕ is denoted by ‖ϕ‖LM,v,
where L is a BL-algebra, M an L-interpretation of the language and v is as evaluation of free variables
of ϕ.2 A theory T (over one of our logics) is consistent if T �� 0̄; is complete if for each pair ϕ,ψ of
formulas, T � ϕ → ψ of T � ψ → ϕ; is Henkin if for each sentence (∀x)ϕ unprovable in T there is a
constant c such that T �� ϕ(c). This is used for a (traditional) proof of completeness: if C is one of our
logics, T a theory and ϕ a formula then the following are equivalent:

(i) T �C ϕ

(ii) for each C-chain L (i.e. BL-chain, MV -chain, G-chain and Π-chain respectively) and for each
L-model of T, ‖ϕ‖LM = 1. (An L-model being a safe L-interpretation in which all axioms of T
have value 1.)

Standard algebras are algebras on [0, 1] given by continuous t-norms: �L, G,Π have a unique stan-
dard algebra each given by the respective t-norm; standard BL-algebras are just all algebras given
by continuous t-norms. Note that G∀ has standard completeness. (T �G∀ ϕ iff ϕ is true in all
[0, 1]G-models of T ); the other logics not and their set of t-tautologies is not Σ1 (details are known).

2 Witnessing constants

Theorem. For C = BL∀, �L∀,Π∀, G∀, let T be a theory over C such that T �C (∃xϕ(x); let T̂ =
T ∪ {ϕ(c)} where c is a new constant. Then T̂ is a conservative extension of T.

For a proof see [1] 5.4.17; that theorem is formulated for �L∀ but the proof works for any of our
logics.

Theorem. For C being �L or Π, let T be any theory, a c new constant and T̂ = T ∪{(∃x)ϕ(x) → ϕ(c)}.
Then T̂ is a conservative extension T. For BL and G this does not hold.

Hint: Modify the proof of the previous theorem; then you have to use are implication of the form
(ν → (∃x)α) → (∃x)(ν → α) (ν not containing x freely), which is a tautology of �L∀ and Π∀, but not
of G∀, BL∀. See [1] 5.4.31. The counterexample in 5.3.6 for G∀ is easily transformed to a model over
[0, 1]G violating the above statement for G∀ (and hence for BL).

Theorem. Let T be a theory over �L∀, T̂ = T ∪{ϕ(d) → (∀x)ϕ(x)}, where d is a new constant. Then
T̂ is a conservative extension of T. For G,Π, BL this does not hold.

Hint: As in the previous theorem (now needing ((∀x)α → ν) → (∃x)(α → ν). To find counterex-
amples for Π∀ and G∀ use the examples from 5.4.31 and again from 5.3.6.

3 Compactness

Consider the statement: Let T be a theory. If each finite subtheory has a model then T has a model.
Call it First compactness theorem. Below saying “a model” we mean “an L-model for an algebra L”
(BL-algebra, MV -algebra,. . . )

2I also mention RPL∀-rational Pavelka logic, i.e. extension of �L∀ by constants for rational truth values. This system
(or a variant of it) has been extensively studied by Vilém Novák et al., who is developing some model theory of it,
including Herbrand theorem, see [2]
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Theorem. The first compactness theorem is true for all logics BL∀, �L∀, G∀,Π∀.

Hint: This is because having a model is equivalent to being consistent (by [1] 5.2.8, 5.2.9, proving
even more).

First standard compactness theorem is as above, with “standard model” instead of “model” (i.e.
model over a standard algebra of truth values.)

Theorem. The first standard compactness theorem holds for �L∀, G∀ but not for Π∀, BL∀.

Proof: The positive part follows from the fact that each consistent theory over �L∀ or G∀ has a standard
model over this logic – see [1] 5.3.1 for G∀ and 5.4.24 for �L∀.

To show that the first standard compactness theorem fails for Π∀, consider the theory T with one
binary predicate ≺ and one unary predicate P. The axioms say:

≺ is a crisp linear order without a largest element
(crispness expressed by (∀x, y)(x ≺ y ∨ ¬(x ≺ y))),
¬(∀x)P (x),¬(∃x)¬P (x) (this says that all values

of P (x) are positive and their infimum is 0),
x ≺ y → (P (x) → Pn(y)) for n = 1, 2 . . .
(Pn(y) is P (y)& . . . &P (y) – n times)

Clearly this theory has no standard model: assume M is such a model, and take a, b ∈ M with
‖b ≺ a‖ = 1 and 0 < ‖P (a)‖ < ‖P (b)‖ < 1. Then take an n such that ‖P (b)‖n < ‖P (a)‖ – we see
that for this n the axiom schema is not 1-true.

But T does have a non-standard model over a product chain given by a non-archimedean group. Let
G be the group whose elements are infinite sequences of positive rationals equal to 1 for all but finitely
many members with coordinatewise multiplication and inverse lexicographic order ({an}n < {bn}n

iff for the last n where they differ, an < bn).3 The unit {1} has all element equal 1; G− consists of
{an}n whose last element differing from 1 is less than 1. Let A be the product chain with the field
G−∪{0} where 0 is the least element and the zero element. Now let M be the set of negative integers,
let < be its standard order and for −m ∈ M (m positive integer) let ‖P (−m)‖ = (1m−1, 1

2 , 1∞)
(the m-th element is 1

2 , all other are 1). Now if −m1 < −m2, thus m1 > m2 and each n > 0,
(1m1−1, 1

2 , 1∞) < (1m2−1, 1
2n , 1∞), thus ‖P (−m1) → Pn(−m2)‖ = 1. And for each g ∈ G− there is an

m such that (1m−1, 1
2 , 1∞) < g, thus in A, inf ‖P (−m)‖ = 0. �

The second compactness theorem says: If ϕ is true in all models of T then for some finite T0 ⊆ T,
ϕ is true in all models of T0. Analogously, we formulate the second standard compactness theorem.

Theorem. The second compactness theorem is true for all our logics. The second standard compact-
ness theorem is true for G∀, fails for �L∀ as well as for Π∀.

Proof: The former statement is obvious by (general) completeness theorem. Validity of the standard
version for G∀ follows from standard completeness of G∀; for the failure of the standard version for �L∀
cf. [1] 3.2.14. (This example is for propositional logic but is trivially made to an example in predicate
logic understanding each propositional variable p as an atomic formula P (c), p unary, c a constant.)

For Π we may reproduce that example using the interpretation of �Lukasiewicz logic in product
logic (cf. [1] 4.1.14–4.1.18). Let us give the definitions: b, p, q are propositional variables; ¬bϕ is
ϕ → b, ϕ �b ψ is ¬b(¬bϕ&¬bψ). Axioms of T are:

¬¬b, b → p,¬bp → q, nbp → q,

where 1bp is p, (n+1)bp is nbp�b p. Similarly as in [1] 3.2.14, q is true in each model of T but for each
finite T0 ⊆ T you find a model of T in which the value of q is less than 1. �

3The algebraist would say that this is just an example of a lineary ordered abelian group with infinitely many convex
subgroups.



3

4 Löwenheim–Skolem

Löwenheim-Skolem theorem for classical logic says that if a theory has a model then it has an (at most)
countable model (assumed is that the language is at most countable; we assume this throughout.) For
our logic we have the following:

Theorem. Let Γ be BL or its schematic extension (�L,Π, G, . . .), let T be a theory. If T has a model
over a Γ-algebra L then it has countable model over an at most countable Γ-chain L′.

Proof: It follows from the fact that T has a model over the chain LT̂ when T̂ is a complete Henkin
extension of T and the domain of the model is formed by countably many constants of the language
of T̂ . �

If T has a model over an algebra L (uncountable), can we conclude that it has a countable model
over the same algebra L? We give a partial answer.

Theorem. Let T have a model M over a BL-chain L and assume that L has a countable dense
subset. Then T has a countable model over L.

Proof: First observe that we may assume that the set of values ‖ϕ‖M of all sentences is dense in L. (If it
is not, expand the language by a unary predicate P and constants di; and expand M choosing (di)M ∈
M arbitrarily (one–one) and letting ‖P (di)‖M run over the dense subset.) We shall further expand M
by adding “witnessing constants”. Put M0 = M; given Mn, in the language Ln extending the language
of M0 by countably many constants, add a new set of countably many constants cn,0, cn,1, . . . and for
each sentence (∀x)χ(x) of the language Ln with ‖(∀x)χ(x)‖Mn

< 1 find a ∈ M with ‖χ(a)‖Mn
= 1

and interpret one of the new constants by a. M̂ is the union of all the Mn’s – an expansion of M by
countably many constants. Now put T̂ = Th(M̂); T̂ is complete and Henkin (since L is a chain, for
each pair ϕ,ψ of sentences either ‖ϕ‖M̂ ≤ ‖ψ‖M̂ or ‖ψ‖M̂ ≤ ‖ϕ‖M̂ – this gives completeness).

Now let Mω be the set of interpretations of all constants. It is a countable subset of M and the
restriction of M̂ to Mω is the derived model Mω. To see this show by induction on the complexity
of a sentence ϕ that ‖ϕ‖Mω

= ‖ϕ‖M̂, for the induction step for quantifier modifying [1] 5.2.6(2). We
show ‖(∀x)ϕ(x)‖M̂ = infc ‖ϕ(c)‖M̂ = infc ‖ϕ(c)‖Mω

.
Clearly, ‖(∀x)ϕ(x)‖M̂ ≤ ‖ϕ(c)‖M̂ for each c. Assume it is not the greatest lower bound, i.e. for

some u ∈ L, ‖(∀x)ϕ(x)‖M̂ < u < ‖ϕ(c)‖M̂ for all c. The element u may be taken from the dense subset,
i.e. we have a sentence χ with ‖χ‖M̂ = u and ‖χ → (∀x)ϕ(x)‖M̂ < 1. Hence ‖(∀x)(χ → ϕ(x)‖M̂ < 1
and consequently for some c0, ‖χ → ϕ(c0)‖M̂ < 1, i.e. u > ‖ϕ(c0)‖M̂ – a contradiction. �

Corollary 1 (Standard Löwenheim-Skolem.) Let ∗ be a continuous t-norm and [0, 1]∗ the corre-
sponding t-algebra. If T has a model over [0, 1]∗ then it has a countable model over [0, 1]∗.

5 Lindström theorem

To formulate a general version of Lindström’s theorem, let us agree that abstract logic has a set of
sentences, class of models and a function saying for each sentence and each model if the sentence is
true in a model or not (truth evaluation). Thus e.g. for BL∀ sentences are closed formulas, models are
pairs (L,M) where L is a BL-chain and M is an L-safe; the truth evaluation decides if ‖ϕ‖LM = 1 or
�= 1. Having an abstract logic, the (first) compactness theorem makes sense; and if the models of the
logic have the form (L,M) where L is an algebra and L an L-interpretation of a predicate language
then Löwenheim–Skolem makes sense.

Now the Lindström theorem (see [3] for careful presentation of Lindström’s theorem) for a logic
C says: If an abstract logic D extending C (with the same models as C) satisfies compactness and
Löwenheim–Skolem theorem then D is equivalent to C, i.e. for each sentence ϕ of D there is a
sentence ψ of C such that for each model M, ϕ is D-true in M iff ψ is C-true in M.
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Theorem. Lindström theorem fails for C being BL∀, �L∀, G∀,Π∀ with their general semantics.

Proof: As we have seen C satisfies both forms of the conpactness theorem as well as Löwenheim-
Skolem theorem. Let D be extension of C by Baaz’s connective Δ, which in each chain L satisfies
Δ(1) = 1,Δ(x) = 0 for x < 0. D has the same models (L,M) as C but is not a sublogic of C. To see this
consider the formula ϕ : ¬ΔP (g) where P is a unary predicate and g is a constant. Clearly, ‖ϕ‖LM = 1
iff ‖P (g)‖LM < 1 and to evaluate P (g) one needs just the one-element submodel of M consisting of
the interpretation of g. In each such one-element model each C formula reduces to a quantifier-free
formula in a notion way; thus if ϕ were C-definable it would be definable by a propositional formula
with one propositional atom. But one can easily show that Δ(x) is not definable in the propositional
logic underlying C. (For �L use the fact that the connectives of �L are continuous; for G and Π use the
fact that the mapping sending 0 to 0 and every positive is to 1 is a homomorphism of the algebra of
truth functions.

It remains to show that the logic D (extension of C by the Δ-connective) satisfies compactness
and Löwenheim-Skolem. But this needs only routine checking of the proofs of these theorems for C
(taking into account the formulation of the deduction theorem for the logic with D – see [1] 2.4.14)
and notice that they work also for predicate calculus. �

Remark. It makes little sense to ask on validity of Lindström theorem for our logics with standard
semantics since only Gödel logic G∀ satisfies both standard compactness theorems. For this logic our
costruction shows the failure of Lindström theorem also in the case of standard semantics.
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