

Fuzzy Logic and Lindström's Theorem

Hájek, Petr 2002 Dostupný z http://www.nusl.cz/ntk/nusl-34034

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL). Datum stažení: 09.05.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Fuzzy logic and Lindström's theorem

Petr Hájek (Draft) Brasília, Brazil August 2001 extended September 2002.

Technical report No. 874

September 2002

Fuzzy logic and Lindström's theorem

Petr Hájek¹ (Draft) Brasília, Brazil August 2001 extended September 2002.

Technical report No. 874

September 2002

Abstract:

The validity/failure of various formulations of compactness, Löwenheim-Skolem theorem and Linström theorem in systems of fuzzy predicate calculus is studied.

Keywords: fuzzy logic, model theory, compactness, Löwenheim-Skolem theorem, Lindström theorem

 $^{^1\}mathrm{Support}$ of the grant No. A1030004/00 of the Grant Agency of the Academy of Sciences of the Czech Republic is acknowledged.

1 Introduction

This note is inspired by my discussion with J. Väänänen and should serve for joint research. Recall the predicate logic $BL \forall$ (basic fuzzy predicate logic) and there stronger logics $L \forall$, $G\Pi$, $\Pi \forall$ (Łukasiewicz, Gödel and product logic). The corresponding varieties of algebras of truth functions are those of BL-algebras, MV-algebras, G-algebras and product algebras. One works with *linearly ordered* BL-algebras (etc.), i.e. BL-chains, MV-chains etc. The truth value of a formula φ is denoted by $\|\varphi\|_{\mathbf{M},v}^{\mathbf{L}}$, where \mathbf{L} is a BL-algebra, \mathbf{M} an \mathbf{L} -interpretation of the language and v is as evaluation of free variables of φ .² A theory T (over one of our logics) is *consistent* if $T \not\models \overline{0}$; is *complete* if for each pair φ, ψ of formulas, $T \vdash \varphi \rightarrow \psi$ of $T \vdash \psi \rightarrow \varphi$; is *Henkin* if for each sentence ($\forall x)\varphi$ unprovable in T there is a constant c such that $T \not\models \varphi(c)$. This is used for a (traditional) proof of completeness: if C is one of our logics, T a theory and φ a formula then the following are equivalent:

- (i) $T \vdash_{\mathcal{C}} \varphi$
- (ii) for each C-chain **L** (i.e. *BL*-chain, *MV*-chain, *G*-chain and Π -chain respectively) and for each **L**-model of T, $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}} = 1$. (An **L**-model being a safe **L**-interpretation in which all axioms of T have value 1.)

Standard algebras are algebras on [0, 1] given by continuous t-norms: L, G, Π have a unique standard algebra each given by the respective t-norm; standard *BL*-algebras are just all algebras given by continuous t-norms. Note that $G \forall$ has standard completeness. $(T \vdash_{G\forall} \varphi \text{ iff } \varphi \text{ is true in all } [0, 1]_G$ -models of T); the other logics not and their set of t-tautologies is not Σ_1 (details are known).

2 Witnessing constants

Theorem. For $\mathcal{C} = BL\forall, E\forall, \Pi\forall, G\forall$, let T be a theory over \mathcal{C} such that $T \vdash_{\mathcal{C}} (\exists x \varphi(x); \text{ let } \hat{T} = T \cup \{\varphi(c)\}$ where c is a new constant. Then \hat{T} is a conservative extension of T.

For a proof see [1] 5.4.17; that theorem is formulated for $L\forall$ but the proof works for any of our logics.

Theorem. For C being L or Π , let T be any theory, a c new constant and $\hat{T} = T \cup \{(\exists x)\varphi(x) \to \varphi(c)\}$. Then \hat{T} is a conservative extension T. For BL and G this does not hold.

Hint: Modify the proof of the previous theorem; then you have to use are implication of the form $(\nu \to (\exists x)\alpha) \to (\exists x)(\nu \to \alpha) \ (\nu \text{ not containing } x \text{ freely})$, which is a tautology of $L\forall$ and $\Pi\forall$, but not of $G\forall, BL\forall$. See [1] 5.4.31. The counterexample in 5.3.6 for $G\forall$ is easily transformed to a model over $[0, 1]_G$ violating the above statement for $G\forall$ (and hence for BL).

Theorem. Let T be a theory over $L\forall$, $\hat{T} = T \cup \{\varphi(d) \rightarrow (\forall x)\varphi(x)\}$, where d is a new constant. Then \hat{T} is a conservative extension of T. For G, Π, BL this does not hold.

Hint: As in the previous theorem (now needing $((\forall x)\alpha \to \nu) \to (\exists x)(\alpha \to \nu)$). To find counterexamples for $\Pi \forall$ and $G \forall$ use the examples from 5.4.31 and again from 5.3.6.

3 Compactness

Consider the statement: Let T be a theory. If each finite subtheory has a model then T has a model. Call it First compactness theorem. Below saying "a model" we mean "an **L**-model for an algebra **L**" (BL-algebra, MV-algebra,...)

²I also mention $RPL\forall$ -rational Pavelka logic, i.e. extension of $L\forall$ by constants for rational truth values. This system (or a variant of it) has been extensively studied by Vilém Novák et al., who is developing some model theory of it, including Herbrand theorem, see [2]

Theorem. The first compactness theorem is true for all logics $BL\forall, L\forall, G\forall, \Pi\forall$.

Hint: This is because having a model is equivalent to being consistent (by [1] 5.2.8, 5.2.9, proving even more).

First *standard* compactness theorem is as above, with "standard model" instead of "model" (i.e. model over a standard algebra of truth values.)

Theorem. The first standard compactness theorem holds for $\mathbb{H}, G \forall$ but not for $\Pi \forall, BL \forall$.

Proof: The positive part follows from the fact that each consistent theory over $\mathbb{E}\forall$ or $G\forall$ has a standard model over this logic – see [1] 5.3.1 for $G\forall$ and 5.4.24 for $\mathbb{E}\forall$.

To show that the first standard compactness theorem fails for $\Pi \forall$, consider the theory T with one binary predicate \prec and one unary predicate P. The axioms say:

≺ is a crisp linear order without a largest element (crispness expressed by $(\forall x, y)(x \prec y \lor \neg(x \prec y)))$, $\neg(\forall x)P(x), \neg(\exists x)\neg P(x)$ (this says that all values of P(x) are positive and their infimum is 0), $x \prec y \rightarrow (P(x) \rightarrow P^n(y))$ for n = 1, 2... $(P^n(y) \text{ is } P(y)\& \dots \& P(y) - n \text{ times})$

Clearly this theory has no standard model: assume **M** is such a model, and take $a, b \in M$ with $||b \prec a|| = 1$ and 0 < ||P(a)|| < ||P(b)|| < 1. Then take an n such that $||P(b)||^n < ||P(a)||$ – we see that for this n the axiom schema is not 1-true.

But T does have a non-standard model over a product chain given by a non-archimedean group. Let G be the group whose elements are infinite sequences of positive rationals equal to 1 for all but finitely many members with coordinatewise multiplication and inverse lexicographic order $(\{a_n\}_n < \{b_n\}_n)$ iff for the last n where they differ, $a_n < b_n$.³ The unit $\{1\}$ has all element equal 1; G_- consists of $\{a_n\}_n$ whose last element differing from 1 is less than 1. Let \mathbf{A} be the product chain with the field $G_- \cup \{0\}$ where 0 is the least element and the zero element. Now let M be the set of negative integers, let < be its standard order and for $-m \in M$ (m positive integer) let $||P(-m)|| = (1^{m-1}, \frac{1}{2}, 1^{\infty})$ (the m-th element is $\frac{1}{2}$, all other are 1). Now if $-m_1 < -m_2$, thus $m_1 > m_2$ and each n > 0, $(1^{m_1-1}, \frac{1}{2}, 1^{\infty}) < (1^{m_2-1}, \frac{1}{2^n}, 1^{\infty})$, thus $||P(-m_1) \to P^n(-m_2)|| = 1$. And for each $g \in G_-$ there is an m such that $(1^{m-1}, \frac{1}{2}, 1^{\infty}) < g$, thus in \mathbf{A} , inf ||P(-m)|| = 0.

The second compactness theorem says: If φ is true in all models of T then for some finite $T_0 \subseteq T$, φ is true in all models of T_0 . Analogously, we formulate the second standard compactness theorem.

Theorem. The second compactness theorem is true for all our logics. The second standard compactness theorem is true for $G\forall$, fails for $E\forall$ as well as for $\Pi\forall$.

Proof: The former statement is obvious by (general) completeness theorem. Validity of the standard version for $G \forall$ follows from standard completeness of $G \forall$; for the failure of the standard version for $L \forall$ cf. [1] 3.2.14. (This example is for propositional logic but is trivially made to an example in predicate logic understanding each propositional variable p as an atomic formula P(c), p unary, c a constant.)

For Π we may reproduce that example using the interpretation of Łukasiewicz logic in product logic (cf. [1] 4.1.14–4.1.18). Let us give the definitions: b, p, q are propositional variables; $\neg_b \varphi$ is $\varphi \rightarrow b, \varphi \leq_b \psi$ is $\neg_b (\neg_b \varphi \& \neg_b \psi)$. Axioms of T are:

 $\neg \neg b, b \to p, \neg_b p \to q, n_b p \to q,$

where $1_b p$ is p, $(n+1)_b p$ is $n_b p \, \leq_b p$. Similarly as in [1] 3.2.14, q is true in each model of T but for each finite $T_0 \subseteq T$ you find a model of T in which the value of q is less than 1.

 $^{^{3}}$ The algebraist would say that this is just an example of a lineary ordered abelian group with infinitely many convex subgroups.

4 Löwenheim–Skolem

Löwenheim-Skolem theorem for classical logic says that if a theory has a model then it has an (at most) countable model (assumed is that the language is at most countable; we assume this throughout.) For our logic we have the following:

Theorem. Let Γ be BL or its schematic extension $(\mathbf{L}, \Pi, G, \ldots)$, let T be a theory. If T has a model over a Γ -algebra \mathbf{L} then it has countable model over an at most countable Γ -chain \mathbf{L}' .

Proof: It follows from the fact that T has a model over the chain $L_{\hat{T}}$ when \hat{T} is a complete Henkin extension of T and the domain of the model is formed by countably many constants of the language of \hat{T} .

If T has a model over an algebra \mathbf{L} (uncountable), can we conclude that it has a countable model over the same algebra \mathbf{L} ? We give a partial answer.

Theorem. Let T have a model M over a BL-chain L and assume that L has a countable dense subset. Then T has a countable model over L.

Proof: First observe that we may assume that the set of values $\|\varphi\|_{\mathbf{M}}$ of all sentences is dense in \mathbf{L} . (If it is not, expand the language by a unary predicate P and constants d_i ; and expand \mathbf{M} choosing $(d_i)_{\mathbf{M}} \in M$ arbitrarily (one-one) and letting $\|P(d_i)\|_{\mathbf{M}}$ run over the dense subset.) We shall further expand \mathbf{M} by adding "witnessing constants". Put $\mathbf{M}_0 = \mathbf{M}$; given \mathbf{M}_n , in the language L_n extending the language of \mathbf{M}_0 by countably many constants, add a new set of countably many constants $c_{n,0}, c_{n,1}, \ldots$ and for each sentence $(\forall x)\chi(x)$ of the language L_n with $\|(\forall x)\chi(x)\|_{\mathbf{M}_n} < 1$ find $a \in M$ with $\|\chi(a)\|_{\mathbf{M}_n} = 1$ and interpret one of the new constants by a. $\hat{\mathbf{M}}$ is the union of all the \mathbf{M}_n 's – an expansion of \mathbf{M} by countably many constants. Now put $\hat{T} = Th(\hat{\mathbf{M}})$; \hat{T} is complete and Henkin (since \mathbf{L} is a chain, for each pair φ, ψ of sentences either $\|\varphi\|_{\hat{\mathbf{M}}} \leq \|\psi\|_{\hat{\mathbf{M}}}$ or $\|\psi\|_{\hat{\mathbf{M}}} \leq \|\varphi\|_{\hat{\mathbf{M}}}$ – this gives completeness).

Now let M_{ω} be the set of interpretations of all constants. It is a countable subset of M and the restriction of $\hat{\mathbf{M}}$ to M_{ω} is the derived model \mathbf{M}_{ω} . To see this show by induction on the complexity of a sentence φ that $\|\varphi\|_{\mathbf{M}_{\omega}} = \|\varphi\|_{\hat{\mathbf{M}}}$, for the induction step for quantifier modifying [1] 5.2.6(2). We show $\|(\forall x)\varphi(x)\|_{\hat{\mathbf{M}}} = \inf_{c} \|\varphi(c)\|_{\hat{\mathbf{M}}} = \inf_{c} \|\varphi(c)\|_{\mathbf{M}_{\omega}}$. Clearly, $\|(\forall x)\varphi(x)\|_{\hat{\mathbf{M}}} \leq \|\varphi(c)\|_{\hat{\mathbf{M}}}$ for each c. Assume it is not the greatest lower bound, i.e. for

Clearly, $\|(\forall x)\varphi(x)\|_{\hat{\mathbf{M}}} \leq \|\varphi(c)\|_{\hat{\mathbf{M}}}$ for each c. Assume it is not the greatest lower bound, i.e. for some $u \in L$, $\|(\forall x)\varphi(x)\|_{\hat{\mathbf{M}}} < u < \|\varphi(c)\|_{\hat{\mathbf{M}}}$ for all c. The element u may be taken from the dense subset, i.e. we have a sentence χ with $\|\chi\|_{\hat{\mathbf{M}}} = u$ and $\|\chi \to (\forall x)\varphi(x)\|_{\hat{\mathbf{M}}} < 1$. Hence $\|(\forall x)(\chi \to \varphi(x)\|_{\hat{\mathbf{M}}} < 1$ and consequently for some c_0 , $\|\chi \to \varphi(c_0)\|_{\hat{\mathbf{M}}} < 1$, i.e. $u > \|\varphi(c_0)\|_{\hat{\mathbf{M}}} - a$ contradiction. \Box

Corollary 1 (Standard Löwenheim-Skolem.) Let * be a continuous *t*-norm and $[0,1]_*$ the corresponding *t*-algebra. If *T* has a model over $[0,1]_*$ then it has a countable model over $[0,1]_*$.

5 Lindström theorem

To formulate a general version of Lindström's theorem, let us agree that *abstract logic* has a set of *sentences*, class of *models* and a function saying for each sentence and each model if the sentence is true in a model or not *(truth evaluation)*. Thus e.g. for $BL\forall$ sentences are closed formulas, models are pairs (\mathbf{L}, \mathbf{M}) where \mathbf{L} is a BL-chain and \mathbf{M} is an \mathbf{L} -safe; the truth evaluation decides if $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}} = 1$ or $\neq 1$. Having an abstract logic, the (first) compactness theorem makes sense; and if the models of the logic have the form (\mathbf{L}, \mathbf{M}) where \mathbf{L} is an algebra and \mathbf{L} an \mathbf{L} -interpretation of a predicate language then Löwenheim–Skolem makes sense.

Now the Lindström theorem (see [3] for careful presentation of Lindström's theorem) for a logic C says: If an abstract logic D extending C (with the same models as C) satisfies compactness and Löwenheim–Skolem theorem then D is equivalent to C, i.e. for each sentence φ of D there is a sentence ψ of C such that for each model \mathcal{M}, φ is D-true in \mathcal{M} iff ψ is C-true in \mathcal{M} .

Theorem. Lindström theorem fails for \mathcal{C} being $BL\forall, L\forall, G\forall, \Pi\forall$ with their general semantics.

Proof: As we have seen C satisfies both forms of the conpactness theorem as well as Löwenheim-Skolem theorem. Let \mathcal{D} be extension of C by Baaz's connective Δ , which in each chain \mathbf{L} satisfies $\Delta(1) = 1, \Delta(x) = 0$ for x < 0. \mathcal{D} has the same models (\mathbf{L}, \mathbf{M}) as C but is not a sublogic of C. To see this consider the formula $\varphi : \neg \Delta P(g)$ where P is a unary predicate and g is a constant. Clearly, $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}} = 1$ iff $\|P(g)\|_{\mathbf{M}}^{\mathbf{L}} < 1$ and to evaluate P(g) one needs just the one-element submodel of \mathbf{M} consisting of the interpretation of g. In each such one-element model each C formula reduces to a quantifier-free formula in a notion way; thus if φ were C-definable it would be definable by a propositional formula with one propositional atom. But one can easily show that $\Delta(x)$ is not definable in the propositional logic underlying C. (For \mathbf{L} use the fact that the connectives of \mathbf{L} are continuous; for G and Π use the fact that the mapping sending 0 to 0 and every positive is to 1 is a homomorphism of the algebra of truth functions.

It remains to show that the logic \mathcal{D} (extension of \mathcal{C} by the Δ -connective) satisfies compactness and Löwenheim-Skolem. But this needs only routine checking of the proofs of these theorems for \mathcal{C} (taking into account the formulation of the deduction theorem for the logic with \mathcal{D} – see [1] 2.4.14) and notice that they work also for predicate calculus.

Remark. It makes little sense to ask on validity of Lindström theorem for our logics with standard semantics since only Gödel logic $G \forall$ satisfies both standard compactness theorems. For this logic our costruction shows the failure of Lindström theorem also in the case of standard semantics.

Bibliography

- [1] HÁJEK P.: Metamathematics of fuzzy logic, Kluwer, 1998.
- [2] NOVÁK V., PERFILIEVA I., MOČKOŘ J.: Mathematical principles of fuzzy logic, Kluwer, 2000.
- [3] EBBINGHAUS H. D., FLUM J., THOMAS W.: Mathematical logic, Springer-Verlag, 1984.