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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: (+4202) 6605 3520, fax: (+4202) 865 85 789,
e-mail:jiri.wiedermann@cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

Relativistic Computers and
Non-Uniform Complexity Theory1
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1 Introduction

A number of phenomena in science have lead to an increased interest in models of computation that
are more powerful than classical Turing machines. The phenomena range from evolving systems in
biology to non-classical time-models in (theoretical) physics. Whereas these contexts lead to many new
questions, it is of interest to study the computational theory of these phenomena in relation to classical
complexity theory and its ramifications. In this paper we explore the computational limits and features
of the so-called ‘relativistic computers’ that were recently proposed by Etesi and Németi [7], a kind of
computers based on considerations from general relativity theory.

Relativistic computers will be seen to belong to the category of machine models whose powers
transcend those of classical Turing machines and thus go beyond the range of the Church-Turing the-
sis. Models of computation that do not obey the Church-Turing thesis have been investigated since
Turing’s times (cf. [14]). The existence of such models in the realm of mathematics is already sufficient
reason for their investigation. For example, Turing machines with oracles [16] and Turing machines
with a restricted type of oracles known as advice [12] are at the heart of relativised and non-uniform
computational complexity theory, respectively (cf. [1, 9]).

In newer studies, there is an increasing number of models that are justified by some physical
reality in which they exist or could exist. Among the recent examples are the evolving interactive
systems, which model the adaptive and potentially infinite computing behavior of Internet-like networks
and of other ‘living systems’, real or artificial [20]. The model has been shown to possess ‘super-Turing’
computational power (cf. [17], [18]), and illustrates that realistic instances of computational systems
can be identified that have this property. Further examples and related studies appear in e.g. [3, 4, 19].

Independently of this, the quest for computing beyond Turing machine limits has gained interest
in theoretical physics. Namely, it has been shown that certain relativistic space-times theories license
the idea of observing the infinity of certain discrete processes in finite physical time [7]. It is speculated
that a similar phenomenon could occur in the realm of quantum computing as well [5]. From the
viewpoint of computability theory the resulting relativistic computers can be seen as Turing machines
with a suitable oracle, but it is the fact that these computers are based on apparently realistic ‘thought
experiments’ and also the nature of these experiments that gives them a special status. The consequences
of this observation for the foundations of computing have begun to occupy philosophers and physicists
([7],[10]), and recently mathematicians and logicians have begun to investigate even more general models
of infinite-time computations [8].

In this paper we aim to appraise the power of infinite computations as realized by relativistic
computing from the viewpoint of relativised and non-uniform computing. In this sense this paper
complements the study in [7] where only some consequences for computability theory are discussed.
Here we extend the results of [7], after defining a suitable model of relativistic Turing machines in
Section 2. We observe that relativistic computing has precisely the power of recognizing the Δ2−sets of
the Arithmetical Hierarchy [14]. If the underlying physical theory is accepted, this would lift the barrier
of recursiveness ‘in nature’ to the Δ2−level, i.e. without violating any feasible thought experiments in
general relativity theory. In Section 3 we give a complexity-theoretic characterization of relativistic
computing in terms of a far simpler model from computational complexity theory: Turing machines
with advice. We prove that under mild assumptions, S(n)-space bounded relativistic Turing machines
are equivalent to ‘classical’ Turing machines with S(n)-bounded advice, with the further proviso that the
advice is relativistically S(n)-space bounded computable. Given the physical background, the required
number of relativistic phases of computing is a crucial resource. We show that any language that is
relativistically recognizable within S(n)-space, can be recognized by a S(n)-space bounded relativistic
Turing machine that needs at most 2 relativistic phases.

We emphasize that relativistic computing models are only claimed by certain theories in con-
temporary theoretical physics. The validity of the model has not been experimentally verified.
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2 Relativistic and Other Computational Models

Our main goal is to compare the infinite computations performed by relativistic computers [7] with
those performed in finite time by Turing machines with advice. In this section we describe the formal
models of computations involved and give some basic constructions, cross-pointing to known concepts
in recursion theory.

2.1 Relativistic Turing machines

Recent research in theoretical physics suggests that in certain relativistic space-times, viz. in Malament-
Hogarth space-times, it may be possible for a computer to receive the answer to a yes or no question
from an infinite, i.e. arbitrarily long computation in finite proper time (cf. [6, 7, 10]). Our first goal is
to cast relativistic computations in the precise framework of Turing machines with oracles [14].

Informally, a relativistic Turing machine (RTM) is a kind of multitape deterministic Turing
machine with a separate read-only input and, in the case of transducers, a write-only output tape.
That is, we will consider RTMs both as language recognizers and as transducers, computing partial
functions that map finite strings of input symbols to similar strings of output symbols. A RTM has a
number of special, distinguished states that allow the implementation of relativistic phases of computing.
More formally, a RTM is a seven-tuple R = (Σ, Q, δ, q0, qF , qR, S) where Σ is a finite alphabet, Q is
a finite set of states, δ is a standard (deterministic) transition function, q0, qF , and qR ∈ Q are the
distinguished initial, final and relativistic states, respectively, and S ⊂ Q − {q0, qF , qR} is the set of
signal states. Set S consists of a distinguished, so-called no-signal state qN , and one or more yes-signal
states qY .

A relativistic computation by a RTM R proceeds as follows, modeling the features described in
[7]. On a finite input w, R starts its computations as a standard Turing machine in state q0. It reads
symbols from the input tape, prints symbols to the output tape, rewrites the working tapes, enters new
states from Q− S − {qR}, etcetera, and continues in the ‘classical’ way of computing until it enters its
relativistic state qR. At this moment R starts a relativistic phase in its computation. R now proceeds like
an oracle Turing machine that executes an oracle call, with noted differences in the way the ‘relativistic
call’ is elaborated and in the way information is extracted from a single call. Informally, entering qR is
like spawning a copy of the computation and asking: starting from the current instantaneous description
and continuing computing in accordance with my transition function, will my copy ever generate a yes-
answer? If so, then a yes-state ∈ S is entered after finite time, with the state corresponding to the
specific yes-signal which was emitted. (In [7] the finite moment is referred to as a ‘Malament-Hogarth
event’.) Otherwise, i.e. if no yes-signal is reached by the time of the Malament-Hogarth event, the
no-signal state qN is entered.

In normal relativistic mode the spawning process just waits (‘observes’) until a signal state is
entered. All data on the machine’s tape remain as they were when entering qR, and also the heads
retain their previous positions. As soon as a signal-state is reached, necessarily after finite time, the
present relativistic phase ends, even though the infinite computation that was spawned may still be
continuing. In extended mode the spawning process can observe a finite number of yes-signals from the
computation, counting signals in a buffer of finite size and going from yes-signal state to yes-signal state
until either the buffer is full or it ‘sees’ by the time of the Malament-Hogarth event that no further
yes-signals will come (in which case it will transfer to qN ). In either case the relativistic phase ends
and R resumes its computation from whatever signal-state it reached. R cannot switch to relativistic
phases during a relativistic phase.

The description is only complete if it is specified when and what yes-signal is to be generated
during a relativistic phase, from a given finite set of possibilities. Following [7] we assume that a yes-
signal is triggered whenever some observable property P holds for the (instantaneous description of the)
computation. It means that R must be augmented with a mechanism for checking P in a relativistic
phase, i.e. during the spawned computation as it goes to infinity. We allow the mechanism to output
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signals from a finite set of different yes-answers, corresponding to the different signal-states. In [7]
the simple case with P = ‘halting′ is considered, which only needs an easy program. The resulting
mechanism will be termed a relativistic oracle for P .

After a RTM has resumed its classical mode of computation, it can switch to a relativistic phase
again (i.e. when qR is entered again). Thus, a computation of a RTM alternates between classical and
relativistic phases of computing. A classical phase begins in a state from Q − {qR} and ends in qR or
qF . A relativistic phase begins in state qR and ends in a signal state ∈ S and, in extended mode, with a
value in a buffer of finite size. A RTM can halt only in state qF . If it works as a transducer, the result
of the machine’s computation is written on its output tape. We claim:

Postulate A Relativistic computations are faithfully modeled by computations of ordinary Turing ma-
chines using relativistic oracles in normal or extended mode.

In [7], [21] the underlying assumptions are explained, viz. the observability of spawned infinite processes
in finite physical time. Formally, our analysis shows that relativistic oracles are just oracles for ‘even-
tually P ’ except when extended mode is used. The latter mode was not explicitly distinguished in [7]
but will be important.

It is not entirely clear whether repeated relativistic phases of computation during the same
computation of a RTM are physically feasible. The analysis in [7] does not seem to prevent it. In
[21] the possibility of performing several (even an infinite number) of relativistic computational phases
during a single computation is allowed. Extended relativistic mode will prove to be a highly effective
intermediate. In general one should keep the number of relativistic oracle calls as low as possible,
considering the physical justification. Bounding the number of oracle queries for arbitrary oracles is a
well-studied issue in complexity theory (cf. [2]), which thus finds an interesting new motivation here.

2.2 Relativistic Computation

To assess the computational power of RTMs we assume some familiarity with the classes Σi(i ≥ 0) and
Πi(i ≥ 0) of the so-called Arithmetical Hierarchy in recursion theory, with Δi = Σi ∩Πi for every i ≥ 0
(cf. [14]). Recall that Σ1 = ‘the recursively enumerable sets’ and Δ1 = ‘the recursive sets’.

From a functional point of view the model of RTMs was considered in [7] under the name
of relativistic computer. Using an obvious connection to classical TM-computations with the Halting
Problem as oracle, it was proved in [7] that relativistic computers can decide all languages in Σ1 and can
recursively enumerate all languages in Σ2, thus showing that relativistic computers go beyond the range
of the Church-Turing thesis. The following observation can be made (modulo encodings), improving on
[7].

Theorem 1 Relativistic Turing machines (thus: relativistic computers) recognize precisely the Δ2−sets
of the Arithmetical Hierarchy.

Proof: First we observe that extended relativistic mode can be simulated by iterating calls in normal
relativistic mode, using a carefully tuned procedure in which the computation in a relativistic phase is
traced from yes-answer to yes-answer (and the original instantaneous description is re-instated whenever
the end of the simulation of the phase in extended mode is reached). The remainder of the argument
parallels Post’s theorem for Δ2−sets (see[14]). Let A be recognized by a RTM R, with R necessarily
always halting. Without loss of generality R works in normal relativistic mode. Now a recursive
predicate F (x, y, w) can be designed such that w ∈ A ⇔ ∃x∀yF (x, y, w), as follows. Use the ∃x to
delineate a finite computation by R, extending finitely into those relativistic phases that are called and
lead to a yes-signal up to the point that a yes-signal is generated, and use the ∀y to express that in
this computation the relativistic phases that are called and do not lead to a yes-signal indeed do not
generate such a signal in all steps to infinity. This shows that A ∈ Σ2. At the same time we have
A ∈ Σ2 as A is relativistically recognizable as well, hence A ∈ Π2. Thus A ∈ Δ2.
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Now let A ∈ Δ2. It means that there are recursive predicates F and G such that w ∈ A ⇔
∃x∀yF (x, y, w) and w ∈ A ⇔ ∃x∀yG(x, y, w). Now w ∈ A can be decided by a RTM R that enumer-
ates the possible values of x = 0, 1, . . . and checks for each value in two relativistic phases whether
∀yF (x, y, w) or ∀yG(x, y, w). For some x, hence in finite time, one of the two must signal yes. �

In the model of RTMs as we described it, we abstracted from the underlying physical relativistic
computational system and concentrate on the formal mechanism for invoking the relativistic phases
of computing and for getting ‘signals’ from it in finite time. This makes it possible to study the
effect of relativistic computations in bounded (memory-)space, very much like the complexity of oracle
computations was studied.

For a RTM we define its space complexity S(n) as usual, i.e. as the maximum number of memory-
cells used on inputs of length n, taken over all inputs of length n. In this bound, the length of the
rewritten part of the output tape is also included. However, the space consumed by the spawned process
in a relativistic phase of computation is not counted in the space-complexity. Note that this space may
be infinite. If only O(1) extra cells are needed in addition to the input, we say that the machine operates
within constant extra space. There seems to be no justification for defining the time complexity of a
RTM.

To illustrate the power of RTMs we present two RTMs in detail that recognize specific undecidable
languages. The ideas of the constructions will be used later. Let K be the set of all strings w that are
descriptions of Turing machines (denoted by 〈w〉) that accept their own description. It is well-known
that K is not recursive, i.e. K ∈ Σ1 \ Π1 [15].

Proposition 1 There is a RTM R of constant extra space complexity that recognizes K. In fact, all
languages of Σ1 ∪ Π1 can be relativistically recognized in constant extra space and using at most one
relativistic phase.

Proof: Let R be a universal TM capable of simulating machines described on its input. R will have
two signal states: the halting signal state qH and the no-halting signal state qN . R first reads its entire
input. After reaching the end of it, it enters a relativistic state qR in which R will start to simulate
machine 〈w〉 on w. At the end of the phase, R either enters state qH or qN . In the former state R accepts
w, whereas in the latter case it rejects it. The correctness of R follows directly from the operational
semantics of RTMs after entering the signal states. Clearly R works in constant extra space. A similar
argument holds for all sets in Σ1 ∪ Π1. �

The next proposition shows a more complicated RTM that recognizes a language by means of
exponentially many relativistic sub-computations. However, far fewer phases will be seen to suffice as
well. The language we consider is Ka = {w|MAX(w)}, where MAX(w) holds if and only if w satisfies
the following condition: w ∈ K and, if |w| = n, then the running time of 〈w〉 on w is the maximum one
from among all such running times of machines with description length n.

Proposition 2 There is a RTM T of constant extra space complexity that recognizes language Ka. In
fact, T needs at most two relativistic phases in normal mode, or at most one in extended mode.

Proof: The idea is to design a RTM T that operates as follows, on any input w of length n. First it
checks whether w ∈ K and if so, it systematically generates, in lexicographic order, all descriptions v
of TMs of length n. Doing so, T tries to determine those descriptions v that belong to K and satisfy
MAX(v). If a v is found that satisfies w = v then T accepts; otherwise T rejects.

The construction in Proposition 1 shows that an RTM can easily decide whether a string of
length n is a member of K. Assume that T has found two strings, u and v, from K. Now T must
decide which of the two machines whose encoding is represented by u and v, has the longer running
time. T can classically decide this by alternately simulating one step of each machine, to see which of
the two machines halts sooner. However, in some cases this can consume an enormous amount of space
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which surely cannot in general be bounded by e.g. a polynomial in n. Therefore, for this particular task
we design a relativistic strategy for machine T . We equip T with two halting signal states, q1 and q2.
Entering q1 will signal that the halting state of machine 〈u〉 is reached whereas entering q2 will signal
that the halting state of 〈u〉 is reached. Now, all that T has to do, having remembered both u and
v, is to enter relativistic state qR and spawn the alternating simulation of both machines 〈u〉 and 〈v〉
described above into the relativistic phase. When the phase ends, T can tell by the state it is in which
of the two simulated machines will run longer. It is now easy to construct a RTM T that recognizes
Ka, using linear space.

A RTM T that recognizes Ka in constant extra space can be obtained as follows. After determin-
ing that w ∈ K, one can relegate the entire search for (the existence of) a string u ∈ K of length n for
which 〈u〉 runs longer on u than 〈w〉 on w to a relativistic phase. Note that this would require only two
relativistic phases. By setting a buffer value of 2, the process can be carried out in extended mode in one
phase as follows. Carry out the computations of 〈w〉 on w and of all 〈u〉 on u simultaneously. Whenever
the computation on some u ends before the computation on w, cancel the simulation on u. When the
computation on w ends, emit the first yes-signal and proceed with the remaining simulations. The first
one that now halts will emit a yes-signal as well, but no further yes-signals are emitted after this. (By the
bound on the buffer the relativistic phase ends in fact when a second yes-signal is reached.) T can now
decide whether w ∈ Ka by just looking at the buffer value when it returns from the relativistic phase. �

2.3 Non-uniform computations

We will compare RTMs with Turing machines with advice (TM/A’s) (cf. [1, 9, 12]), to establish the
link with non-uniform complexity theory. A TM/A is a classical Turing machine enhanced by an advice
function. An advice function is a function f : Z+ → Σ∗. For given n, f(n) is called the advice for length
n. An advice is called S(n)-bounded if for all n, the length of f(n) is bounded by S(n).

A TM/A operating on an input of size n, is allowed to call the value of its advice function only
once during the computation, and it can call it only for the particular n. To realize an advice-call, a
TM/A is equipped with a separate advice tape (that is initially empty) and a distinguished advice state.
By entering the advice state at time t the value of f(n) will appear on the advice tape in a single step
at time (t + 1). The mechanism of advice is very powerful and can provide a TM/A with highly non-
recursive ‘assistance’. Without further constraints, advice functions are as powerful as arbitrary oracles.
We will be interested in advice functions whose values are bounded in length by some (computable)
functions of n. Let TM/poly be the class of languages recognized by TM/A’s with polynomially-bounded
advice (cf. [1, 9, 12]). To prepare for a later construction, we show that K ∈ TM/poly (cf. Proposition
1).

Proposition 3 There is a TM/A A with a linearly bounded advice function f that recognizes the
language K and halts on all inputs.

Proof: Define the advice function f as follows: f(n) = u if and only if |u| = n, and u is the lexico-
graphically first string that satisfies MAX(u) (the predicate MAX was defined before the statement of
Proposition 2). A default value should be used in case no u with |u| = n of the required property exists.
Clearly, f is linearly bounded. On input w of length n, A works as follows. First, it checks whether w
is the encoding of some Turing machine M. If so, then A calls its advice to get f(n) = u. Then A makes
use of the idea we already saw in the proof of Proposition 2: A starts to alternate between simulating
one step of M on u, and one step of 〈w〉 on w. Clearly, the simulation of 〈u〉 must terminate, and if
it terminates earlier than the simulation of M then, thanks to the truth of MAX(u), A can infer that
M on w will never stop. Then A rejects w and halts. Otherwise, if the simulation of 〈w〉 halts sooner
than the simulation of 〈u〉, A accepts w and halts. �
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Note that all three previous propositions are related: we have a (non-recursive) language K
recognized both by a RTM (Proposition 1) and by a TM/A (Proposition 3). Moreover, the advice
function used by the TM/A is computable by a RTM (Proposition 2). In the next section we show that
this is not a coincidence.

3 Relativistic computing vs. non-uniform computing

Now we can formulate the main result, relating infinite relativistic and non-uniform finite computations.
Let P be an arbitrary observable, i.e. recursive property (e.g. ‘halting’), and let RelSPACE(P, S) be the
family of S(n)−bounded advice functions that are S(n)−space bounded computable by an RTM on
input of any length−n string using the relativistic oracle for P (in normal mode). We will prove that
space-bounded RTMs, i.e. Turing machines with relativistic oracles, are equivalent to Turing machines
with advice, assuming the latter take their advices from a suitable family. Assume that S(n) is space-
constructible, and let � be a marker symbol.

Lemma 1 Let language L be recognized by a S(n)−space bounded RTM. Then there is a function
f ∈ RelSPACE(P, S) such that L′ = {w�f(|w|)|w ∈ L} is recognizable by a linear-space bounded RTM
that needs at most two relativistic phases on every input.

Proof: Let L be recognized by some S(n)−space bounded RTM R. First we note that R can be
assumed to always halt on every input, by the classical fact that one could prevent it from cycling using
a S(n)−space counter otherwise. To construct f , consider how R acts on inputs w with |w| = n and try
to eliminate the need for ‘infinite time’ relativistic phases. The idea is to let f provide an upper bound
on the length of all relativistic phases in R’s computations on inputs of length n that eventually lead to
a yes-signal and thus end by R’s entering into the corresponding yes-signal state. We do this by letting
f(n) = 0xn, where xn is an instantaneous description of R that triggers the longest relativistic phase of
this kind of all such ID’s of length ≤ S(n). To let this be well-defined, we let xn be the lexicographically
smallest ID with this property and take f(n) = ε if no ID of this kind exists. If R could get a purported
value x of f(|w|) from somewhere on input w, it might act as follows: verify that x = f(|w|) in one
relativistic phase, and run a classical simulation of R in another, replacing every call to the relativistic
oracle by a direct computation dovetailed with the simulation of R on x while continuously checking P
(and drawing the obvious conclusion if no yes-signal has been reached by the time the run on x ends).

Following this idea, we design a RTM R′ to recognize L′ as follows. On receiving its input,
R′ checks whether it is of the form w�x. It then proceeds to check that x = f(|w|) as follows. The
strategy is similar to the strategy used in Proposition 2. Note that the computation in any relativistic
phase is fully determined by the ID of R at the beginning of this phase, and every ID that triggers a
relativistic phase will be bounded in length by S(n), with n = |w|. R′ first checks whether x triggers
a relativistic phase of R that leads to a yes-signal, by actually performing the relativistic phase if it is
triggered (‘phase 1’). If x passes this test, R′ starts up a second relativistic phase (‘phase 2’) in which it
constructs (the value of) S(n), enumerates all ID’s y �= x of length ≤ S(n) that R could admit on any
input of length n (and that trigger a relativistic phase), starts a simulation of R on x and on all y’s, and
alternately carries out one step in each of the simulations. Whenever a computation on an ID y �= x
ends (i.e. reaches a yes-signal) while the computation on x is still going on, the simulation on y ends and
is removed (and the yes-signal is not sent). If no simulation on any y �= x survives before the simulation
on x reaches its yes-signal, the simulation process is sent into an infinite loop (without generating a
yes-signal ever). If some simulations on ID’s y �= x have survived by the time the simulation on x
reaches its yes-signal, the simulation on x ends and is removed (and the yes-signal is not sent) and the
simulation on the remaining ID’s y �= x is continued. Whenever one of these remaining simulations
reaches a yes-signal, this yes-signal is actually sent. Clearly the outcome of this relativistic phase will
tell R′ whether x is an ID that triggers the longest relativistic phase that leads to a yes-signal. The
given argument is easily modified to include the check that x actually is the lexicographically smallest
with this property. So far no more than linear space was used (i.e. linear in |w�x|).
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Assuming x = f(|w|), R′ can now begin the actual recognition process of the string w. In
principle R′ could avoid all relativistic phases in the simulation of R, because it can bound how far
it must go into any such phase in a classical simulation before knowing whether a yes-signal will be
reached or not: R′ can simply interleave the simulation with the simulation of R on x and use the latter
as a yardstick. If no yes-signal is reached before the end of the yardstick, it knows that a yes-signal
will never be reached and that it can proceed to qN . To avoid the space-count for this, R′ relegates
the recognition process to a relativistic phase (‘phase 3’): in this phase it simulates R on w, using (the
computation on) x as the yardstick to do a finite classical simulation of every relativistic phase which
R would otherwise have to carry out, and emitting a yes-signal if and when the simulation thus carried
out actually lead to the recognition that w ∈ L. Observe that phase 3 always halts, because R is always
halting. This implies that R′ can combine phases 1 and 3 into one: a transfer to qN will now mean
that either x �∈ K, or x ∈ K and either w �∈ L or the computation wasn’t long enough to reach the
conclusion that w ∈ L, i.e. x �= f(|w|). Thus, altogether R′ needs only two relativistic phases.

Finally, observe that the function f is computable by an RTM in space S(n) on any input of
length n, by very much the same argument as employed above. A RTM R′′ for it will first construct
S(n) space and then use it to enumerate every candidate ID y explicitly, testing for each y whether it
qualifies (like we did for x in phase 1) and running a contest between y’s that qualify as in the proof of
Proposition 2. This can easily be carried out within space S(n). Once the winning string xn has been
found (or no string was found to qualify), the value of f(n) can be output. �

By a further argument one can show that the language L′ can be recognized using at most one relativistic
phase in extended mode (but using S(n) space).

We can now prove the main result. In the result we assume that the Turing machines with advice
can check property P effectively, either as a subroutine or as an oracle. Recall that functions in the set
RelSPACE(P, S) are always S(n)−bounded.

Theorem 2 The following are equivalent, for any language L:

(i) L is recognized by a S(n)−space bounded RTM.

(ii) L is recognized by a TM/A that uses an advice function ∈ RelSPACE(P, S).

Proof:
(i) → (ii) Let L be recognized by a S(n)−space bounded RTM R. By Lemma 1 there exists a

function f ∈ RelSPACE(P, S) such that L′ = {w�f(|w|)|w ∈ L} is recognizable by a (linear-space) RTM
R′ that uses at most three relativistic phases. Consider the particular RTM R′ that was constructed
in Lemma 1 and design a Turing machine T with advice f as follows. On input w of length n, T
immediately calls its advice and lays out the string w�f(|w|). T now prepares to simulate R′. Clearly it
can skip phases 1 and 2 of R′ and move straight to phase 3. T now carries out the simulation in phase
3 in an entirely classical way just like it was specified for R′, using the yardstick idea to ‘finitize’ the
relativistic phases of R. T accepts if and only if the computation leads a yes-signal.

(ii) → (i) Let L be recognized by a TM/A T using an advice f ∈ RelSPACE(P, S). Design a
RTM R for L as follows. On input w, R first computes the string f(n) = f(|w|) in space S(n). It then
triggers a relativistic phase in which it does the entire simulation of T , having the advice-value available
whenever T calls for it. The relativistic phase triggers a yes-signal when T accepts. When R observes
the result and enters into a yes-state, it accepts w. Clearly R recognizes L and does so in space S(n).
�

In the theorem we can assume without loss of generality that the machines involved in (i) and
(ii) halt on all inputs. Specializing the result to the case considered in [7], let P = ‘halting′ and let
RelPSPACE =

⋃
k RelSPACE(P, nk). Let RTM-PSPACE denote the class of languages recognizable by

RTMs in polynomial space.
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Corollary 1 The following are equivalent, for any language L:

(i) L is recognized by a polynomial-space bounded RTM.

(ii) L is recognized by a TM/A that uses an advice function ∈ RelPSPACE.

Consequently, RTM-PSPACE⊆ TM/poly.

Using well-known facts from non-uniform computational complexity (cf. [1])it follows that com-
putations by RTMs are as powerful as computations of infinite families of (finite) non-uniform circuits
whose size grows faster than any recursive function. A further observation can be made that shows the
‘physical’ efficiency of relativistic phases in extended mode.

Theorem 3 If a language L is recognized by a S(n)−space bounded RTM, then it can be recognized by
a S(n)−space bounded RTM that needs at most two relativistic phases, one in extended mode and one
in normal mode.

Proof: Let L be recognized by a S(n)−space bounded RTM R. By Theorem 2, L can be recognized by
a TM/A T , using the advice function f ∈ RelSPACE(P, S) constructed in the proof of Lemma 1. But a
RTM can compute f(n) as follows. Using one relativistic phase in extended mode, the RTM can count
the number of ID’s y of length ≤ S(n) that trigger a relativistic phase that actually leads to a yes-signal
(‘halts’). Once it knows this number, R can determine in a completely classical dovetail which of the
computations on these ID’s actually halt and what the lexicographically smallest y is that leads to the
longest halting computation among them. (This ‘census approach’ is well-known in complexity theory,
cf. [9].) This shows that L can be recognized by a RTM R that computes like T and computes the advice
value when it is needed, using at most one relativistic phase in extended mode for this purpose and
no other relativistic calls. In order to achieve the bounded space complexity, let R relegate the entire
(classical) simulation of T to a relativistic phase in normal mode. In this way R remains relativistically
S(n)−space bounded and recognizes L by means of at most two relativistic phases. �

4 Conclusion

Using arguments from general relativity theory, Etesi and Németi [7] have argued that the Church-
Turing thesis may be physically untenable. They have shown that relativistic computers can be thought
of that can recognize non-recursive languages. We have formalized the model of relativistic computing
and characterized its potential precisely from the viewpoint of computability theory. We also proved
a bridging result that links the infinite computations of (space-bounded) relativistic TMs to finite
computations by TMs with powerful advice functions.

The result, proving a kind of duality between infinite relativistic and non-uniform finite computa-
tions, follows from basic complexity-theoretic considerations and should be of interest for the appraisal
of relativistic computing in the context of (theoretical) physics or philosophy. The result can be seen
as a further evidence for the emerging central role of non-uniform computation models in capturing
the information processing capabilities in natural systems, as formulated in [17]. The result comple-
ments the existing set of examples of such kinds of models, including evolutionary interactive systems,
the Internet, artificial living systems, social systems, and amorphous computing systems (cf. [18]), by
systems operating by the principles of general relativity theory. Undoubtedly the result, suggesting a
kind of duality between infinite and non-uniform finite computations, is also interesting in the context
of (theoretical) physics or philosophy.

8



Bibliography
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Pacholski, P. Ružička (Eds.), SOFSEM’01: Theory and Practice of Informatics, 28th Conference
on Current Trends in Theory and Practice of Informatics, Lecture Notes in Computer Science Vol.
2234, Springer-Verlag, Berlin, 2001, pp. 90–109.

[19] P. Wegner: Why interaction is more powerful than algorithms, C. ACM 40, (1997) 315-351.

[20] J. Wiedermann, J. van Leeuwen: Emergence of super-Turing computing power in artificial living
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