
Core Functions and Core Divergences of Regular Distributions

Fabián, Zdeněk
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Dostupný z http://www.nusl.cz/ntk/nusl-34032
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Abstract:

On bounded or unbounded intervals of the real line, we introduce classes of regular statistical families,
called Johnson families because they are obtained using generalized Johnson transforms. We study in a
rigorous manner the formerly introduced concept of core function of a distribution from a Johnson family,
which is a modi�cation of the well known score function and which in a one-to-one manner represents the
distribution. Further, we study Johnson parametrized families obtained by Johnson transforms of location
and scale families, where the location is replaced by a new parameter called Johnson location. We show
that Johnson parametrized families contain many important statistical models. One form appropriately
normalized L2 distance of core functions of arbitrary distributions from Johnson families is used to de�ne a
core divergence of distributions. The core divergence of distributions from parametrized Johnson families is
studied as a special case. In a number of examples, we evaluate explicitly the core divergences and compare
them with the Kullback divergences. As a rule, the core divergence almost coincides with the Kullback
divergence when the deviation of parameters is small, and in the cases of heavy-tailed distributions is less
sensitive to deviation of parameters when the deviation is large.
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CORE FUNCTIONS AND CORE DIVERGENCES
OF REGULAR DISTRIBUTIONS

Zden�ek Fabi�an and Igor Vajda

On bounded or unbounded intervals of the real line, we introduce classes of regular statistical families,

called Johnson families because they are obtained using generalized Johnson transforms. We study in a

rigorous manner the formerly introduced concept of core function of a distribution from a Johnson family,

which is a modi�cation of the well known score function and which in a one-to-one manner represents the

distribution. Further, we study Johnson parametrized families obtained by Johnson transforms of location

and scale families, where the location is replaced by a new parameter called Johnson location. We show that

Johnson parametrized families contain many important statistical models. One form appropriately normalized

L2 distance of core functions of arbitrary distributions from Johnson families is used to de�ne a core divergence

of distributions. The core divergence of distributions from parametrized Johnson families is studied as a special

case. In a number of examples, we evaluate explicitly the core divergences and compare them with the Kullback

divergences. As a rule, the core divergence almost coincides with the Kullback divergence when the deviation

of parameters is small, and in the cases of heavy-tailed distributions is less sensitive to deviation of parameters

when the deviation is large.
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1. INTRODUCTION

Let for every open set 0 6= S � R, QS be the class of probability measures (distributions) Q on Borel
sulsets B of the real line R which are regular in the sense that they are absolutely continuous with
respect to the Lebesgue measure � on R, and a version of the density

g =
dQ

d�
(0.1)

is di�erentiable in S and satis�es the relation

g(x) =

(
> 0 for x 2 S

= 0 for x 2 R� S:
(0.2)

In other words, QS is the class of all Lebesgue dominated probability measures Q on R supported by
SQ = S and with well de�ned derivatives

_g(y) =
dg(y)

dy
: S ! R (0.3)

of the respective Lebesgue densities.
Since _g and g are Lebesgue measurable, the Lebesgue integrals

IQ =

Z
S

�
_g

g

�2

dQ =

Z
S

( _g (y))
2

g (y)
dy; Q 2 QS ; (0.4)

are well de�ned, with values in the extended real line interval [0;1]. The expression IQ is a Fisher
information of Q 2 QS .

We are interested in special subfamilies PS � QS called Johnson families. They are de�ned for ar-
bitrary intervals S = (a; b) � R by the \parent family" QR using the family 	S = f =  x0 : x0 2 Sg
of Johnson functions, where each  x0 : S ! R is an increasing one-to-one mapping de�ned for all
x 2 S by the formula
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 x0 (x) =

8>>>>><
>>>>>:

sinh�1(x� x0) if (a; b) = R

ln x� a
x0 � a if �1 < a < b =1

ln
(x� a) (b� x0)
(b� x) (x0 � a)

if �1 < a < b <1

ln b� x0
b� x

if �1 = a < b <1:

(0.5)

The Johnson functions are nothing but the reversed Johnson transformations  �1 =  �1
x0 , x0 2 S1,

which are increasing one-to-one mappings R! S de�ned for all y 2 R by the formula

 �1
x0 (y) =

8>>>><
>>>>:

x0 + sinh y if (a; b) = R

(x0 � a)ey if �1 < a < b =1
a (b� x0) + b(x0 � a)ey

b� x0 + (x0 � a)ey
if �1 < a < b <1

(b� x0)e
y if �1 = a < b <1:

(0.6)

(see Johnson (1949), Johnson and Kotz (1970) and a generalization in Fabi�an (1997)).

De�nition 1 A Johnson family PS is for every S = (a; b) � R de�ned by

PS = fP = Q : Q 2 QR;  2 	Sg (0.7)

where Q (B) = Q( (B)) and  (B) = f (x) : x 2 Bg for every Borel subset B � S.

The Johnson families PS are supported by S and they are regular in the sense that the Lebesgue
densities f of P 2 PS are positive and di�erentiable on S (see Proposition 1 in Section 2).

If Q = QR (a \parent family") then the ratio

sQ = � _g=g (0.8)

is the well known score function of Q supported by S = R.
Recently, Fabi�an (2001) introduced the core functions TP of distributions P 2 PS on arbitrary

supports S = (a; b) � R by the formula

TP = sQ( ) (0.9)

where  2 	S is the Johnson function and Q = P �1 2 QR. The core functions sP �1( ) di�er from
the score functions sQ. Fabi�an (2001) demonstrated that the point estimation in some parametrized
subfamilies of PS based on the core functions leads to robust versions of the estimation based on the
score functions with acceptable levels of asymptotic ineÆciencies. We show that such subfamilies of
PS include many important models of mathematical statistics. This motivates our deeper interest in
the Johnson families and their parametrized subfamilies, and in the related core functions.

In Section 2 we study more rigorously the concept of core function. In particular, for P 2 PS; S 6= R
we study the pairs  2 	S and Q 2 QR satisfying the relation P = Q considered in (0.7) and prove
that (0.9) de�nes TP unambiguously in the sense that it does not depend on the particular choice of the
pair  and Q. We also prove rigorously that the core functions TP are related in a one-to-one manner
to the score functions sP of Johnson distributions P 2 PS and, consequently, to the distributions
themselves. This justi�es the terminology \core function of P".

In Section 3 we introduce a core divergence D(P1; P2) of distributions P1; P2 2 PS and study
its basic properties. In a number of examples we evaluate the core divergence and the well known
Kullback divergence of distributions. In some of them we compare these two divergences and analyze
di�erences between them from the point of view of statistical applications.

2. CORE FUNCTION

The �rst proposition summarizes for references later some properties of the Johnson families in-
troduced by De�nition 1.
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Proposition 1 For every S = (a; b) � R, the Johnson family PS is a subset of the regular family

QS . For every P 2 PS there exist Q 2 QR with a di�erentiable density g on R, and a Johnson

function  =  x0 from 	S , such that the density f = dP=d� satis�es the relation

f(x) = g( (x)) _ (x); x 2 S; (0.10)

where

_ (x) =
d

dx
 (x) =

8>>>>>>><
>>>>>>>:

1p
1+x2

if (a; b) = R

1
x� a if �1 < a < b =1

(b� a)
(x� a) (b� x)

if �1 < a < b <1

1
b� x

if �1 = a < b <1

(0.11)

is the derivative of  =  x0 on S which is independent of x0 2 S. The density (0.10) is di�erentiable

on S too, with the derivative

_f(x) =
df(x)

dx
= _g( (x))( _ (x))2 + g( (x)) � (x); x 2 S; (0.12)

where _g is the derivative of g on R and

� (x) =
d2 (x)

dx2
=

8>>>><
>>>>:

�
_ (x)

�2
x _ (x) (a; b) = R�

_ (x)
�2
�

2x _ (x)
(x� a) (b� x)

if �1 < a < b <1�
_ (x)

�2
otherwise:

(0.13)

Proof. By de�nition, P = Q for some Q 2 QR and  2 	S: Since  is strictly monotone and
continuous on S, the image  (B) of a Lebesgue null set B � S is a Lebesgue null set. Therefore
any P 2 PS is absolutely continuous with respect to the Lebesgue measure and its density f satis�es
(0.10). The formula (0.11) is easily veri�ed and implies _ > 0 on S, and even

min
x2S

_ (x) = _ ((a+ b)=2) =
4(b� a)

(a+ b)2
> 0 (0.14)

if �1 < a < b < 1. Consequently, f is positive on S. Since the di�erentiability of f and formulas
(0.12) and (0.13) are obvious, one can conclude that P belongs to QS. This completes the proof. 2

In the next proposition, and in the sequel, we denote by B + c translations of subsets B � R by
constants c 2 R, i.e.

B + c = fy + c : y 2 Bg:

Proposition 2 Let P 2 PS where S = (a; b) � R. For every x0 2 S there exists unique Q = Qx0

in PR with the property P = Qx0 x0 where  x0 is the Johnson function corresponding to x0. If

P = Qx0 x0 then P = Qx1 x1 for some x1 2 S if and only if every Borel set B � R satis�es the

relation

Qx1 (B) = Qx0(B + c); (0.15)

where
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c =

8>>>>>>><
>>>>>>>:

sinh�1(x� x0) if (a; b) = R

ln x1 � a
x0 � a if �1 < a < b =1

ln
(b� x0) (x1 � a)
(x0 � a) (b� x1)

if �1 < a < b <1

ln b� x0
b� x1

if �1 = a < b <1:

(0.16)

Proof. By De�nition 1, for P under consideration there exist x0 2 S and Qx0 2 PR with the
property P = Qx0 x0 . The equality Qx1 x1 = Qx0 x0 for any given x1 2 S is equivalent to

Qx1 = Qx0( x0 
�1
x1 )

As is easy to verify from (0.5) and (0.6), the composed mapping  x0 
�1
x1 is a translation on the real

line by the constant c given by (0.16),

 x0 
�1
x1 (x) = x+ c; x 2 R:

Therefore P = Qx1 x1 if and only if (0.15) holds for c given by (0.16). This proves the second
assertion. The second assertion implies that for every x1 2 S (including x1 = x0) there exists unique
Qx1 (namely, the c�translated version of Qx0 , de�ned by (0.15)) such that P = Qx1 x1 , which proves
the �rst assertion. 2

Proposition 3 Consider P 2 PS with a Lebesgue density f . Then the score function sP (x) =

�d(ln f(x))=dx on the support S of P is given by the formula

sP = � _ 
_g( )

g( )
�

� 
_ 
; (0.17)

where  is any Johnson function from 	S , g is the Lebesgue density of Q = P �1 2 PR, and _g, _ , � 

are the derivatives introduced above. The ratio

TP = �
_g( )

g( )
(0.18)

does not depend on the particular choice of  2 	S , i.e. if P = Qx0 x0 = Qx1 x1 for di�erent

x0; x1 2 S then, for every x 2 S,

_gx0( x0(x))

gx0( x0(x))
=

_gx1( x1(x))

gx1( x1(x))
: (0.19)

Further, if �1 < a < b < 1 then the ratio � = _ in decomposition (0.17) is a score function of a

probability distribution supported by S = (a; b), namely

�
� (x)
_ (x)

= sPa;b(x) =
b+ a� 2x

(x � a)(b� x)
; x 2 (a; b); (0.20)

where Pa;b is absolutely continuous on the support (a; b) with the Lebesgue density

fa;b(x) =
6(x� a)(b� x)

(b� a)3
; x 2 (a; b): (0.21)

The equality (0.20) remains valid also for �1 = a < b < 1 or �1 < a < b = 1 if the function

sPa;b(x) is extended by continuity to a = �1 or b =1, respectively.
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Proof. The decomposition (0.17) follows directly from formulas (0.10) and (0.12) for f and _f by
taking the ratio sP = � _f=f . The second assertion (0.19) follows from the fact that if c is de�ned by
(0.16) then

 x1(x) =  x0(x)� c; x 2 S;

and that, by (0.15),

gx1(x) = gx0(x+ c); x 2 S:

Indeed, then for every x 2 S also _gx1(x) = _gx0(x + c) so that

_gx1( x1(x))

g( x1(x))
=

_gx1( x0(x)� c)

gx1( x0(x)� c)
=

_gx0( x0(x))

gx0( x0(x))
:

The third assertion (0.20) follows from formulas (0.11) and (0.13) for _ (x) and � (x), and from the
easily veri�able fact that the function fa;b de�ned by (0.21) is a probability density on the bounded
interval S = (a; b). If this interval is unbounded below or above then the validity of (0.20) for

lim
a!�1

sPa;b or lim
b!1

sPa;b

follows again from formulas (0.11) and (0.13). 2

Note that the distributions P�1;b or Pa;1 �guring in the continuous extensions of sPa;b to a = �1
or b =1 cannot be de�ned by a similar extension of the density (0.21).

If P 2 PR then the score function on R is

sP = �
_f

f
; (0.22)

where f is the Lebesgue density of P . If P 2 PS where S = (a; b) � R then Proposition 3 guarantees
a canonical decomposition

sP = _ TP + sPa;b (0.23)

of the score function on the support S where _ ; TP and sPa;b are given by (0.11), (0.18) and (0.20)

(with the corresponding limits if a = �1 or b =1). We see from (0.11) and (0.20) that _ and sPa;b
depend only on the support S and not on the density f of P de�ned on this support. Thus a complete
information about the score function sP is contained in the function TP . This leads to the following
de�nition.

De�nition 2 The core function of P 2 PS , S � R, is de�ned on the support interval S by formula

TP = �
_g( )

g( )
(0.24)

where g is the Lebesgue density of Q = P �1 on R and  is an arbitrary Johnson function de�ned

by (0.5).

Remark 1. Obviously, the de�nition (0.24) agrees with the more concise form used in (0.9).
If P 2 PS then, as said above, TP speci�es in a simple one-to-one manner the score function sP
for all Johnson distributions P 2 PS , S � R. Since the score function sP (x) = �d(ln f(x))=dx,
x 2 S, uniquely speci�es the Lebesgue density f of any Johnson distribution P 2 PS , S � R, the
interpretation of TP as a core function of Johnson distribution P 2 PS in De�nition 2 is fully justi�ed
for all S � R.

In the following proposition we study the second moments EP (TP )
2 of the core functions of Johnson

distributions. This proposition refers to the Fisher information de�ned by (0.4).
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Proposition 4 For all Johnson distributions P 2 PS , S � R

EP (TP )
2 = IQ

where IQ is the Fisher information of the parent distribution Q = P �1 for arbitrary Johnson function

 2 	S.

Proof. If P 2 PS then P = Q ;Q 2 QR and

EP (TP )
2 =

Z
S

�
_g( )

g( )

�2

dP =

Z
R

�
_g( )

g( )

�2

d(Q ) =

Z
R

�
_g

g

�2

dQ;

where the last equality follows from the substitution rule in Lebesgue integrals. 2

In Table 1 are listed some Johnson distributions P de�ned by their densities f(x) for S = (0;1)
and S = (0; 1), densities of their parent distributions and corresponding core functions.

Table 1. Johnson distributions P = Q x0 2 PS ; S 6= R, with densities f(x),
parent densities g = dQ=d� and corresponding core functions TQ; TP .

Name f(x); x 2 (0;1) g(y); y 2 R Name TQ(y) TP (x)

Lognormal 1p
2�x

e�
1
2 ln2 x 1p

2�
e�

1
2y

2

Normal y lnx

Exponential e�x eye�e
y

Gumbel ey � 1 x� 1

Extr. v. II 1
x2 e

�1=x e�ye�e
�y

Extr. v. I 1� e�y 1� 1=x

Wald-type 1
Kxe

� 1
2 (x+1=x) 1

K e
� cosh y no name sinh y 1

2 (x � 1=x)

Log-logistic 1
(x+1)2

ey

(ey+1)2 Logistic ey�1
ey+1

x�1
x+1

Beta-prime 1
B

x��1

(x+1)�+�
1
B

e�y

(ey+1)�+�
no name �ey��

ey+1
�x��
x+1

Gamma(�; ) �

�(�)x
��1e�x �

�(�)e
�ye�e

y

no name �ey �  �x� 

Johnson
10;1(x)p
2�x(1�x)e

� 1
2 ln2 x

1�x 1p
2�
e�

1
2y

2

Normal y ln x
1�x

Beta(�; �)
10;1(x)
B x��1(1� x)��1 1

B
e�y

(ey+1)�+�
no name �ey��

ey+1 (� + �)x� �

Here K = 2K0(1) and B = B(�; �), where K�(u) is the Bessel function of the third
kind and B(u; v) is the beta function.

3. JOHNSON LOCATION

In this section we describe a method leading to parametrized families P � PS of Johnson distri-
butions. We show that these families include many important parametric statistical models such as
lognormal, Weibull and gamma distributions and therefore they play an important role in statistical
applications. Distributions from these families will be used in the next section.

If Q 2 PR then it is well known that the automorphisms [�; �]: R ! R de�ned for (�; �) 2
R� (0;1) by

[�; �] (y) = �+ �y; y 2 R (0.25)

specify a location and scale family Q = fQ�;� = Q [�; �]
�1

: (�; �) 2 R� (0;1)g. The distribution Q
is a parent of Q and it holds Q � PR and

g�;�(y) =
dQ�;�
d�

(y) =
1

�
g

�
y � �

�

�
; y 2 R; (0.26)

for the Lebesgue parent density g = dQ=d�.
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De�nition 3 De�ne for (�; �) 2 S � (0;1) one-to-one mappings f�; �g : S ! R by

f�; �g =  (�) + � (x); x 2 S: (0.27)

Then for any P 2 PS the mapping (0.27) de�nes a Johnson location and scale family

P =
n
P�;� = P f�; �g

�1
: (�; �) 2 S � (0;1)

o
(0.28)

The distribution P is a parent of P and the parameter � 2 S is a Johnson location.

Proposition 5 All distributions P�;� from the above de�ned Johnson location and scale family

P satisfy the relation

P�;� = Q (�);� ; (0.29)

where  2 	S is a Johnson function and Q (�);� is the element of the location and scale family Q with

the parent Q = P �1. It holds P � PS and the Lebesgue densities f�;� = dP�;�=d� of distributions

P�;� 2 P are given by formulas

f�;�(x) =
1

�
g

�
 (x) �  (�)

�

�
_ (x); x 2 S; (0.30)

for the density g = dQ=d�.

Proof. Let P = Q for some  2 	S. It is easy to verify from (0.25) and (0.27) that [ (�); �]�1 =

 
�
f�; �g�1

�
. Therefore P�;� = Q

�
 f�); �g�1

�
= Q [ (�); �]

�1
= Q (�);�, which proves (0.29). The

inclusion P � PS follows from the relation P�;� = Q (�);� , where Q (�);� 2 PR by the de�nition of
the Johnson class PS in De�nition 1. Relation (0.30) follows from equality P�;� = Q (�);� and from
the fact that

g (�);�(y) =
1

�
g

�
y �  (�)

�

�
; y 2 R

(see (0.26) for g = dQ=d�). 2

Remark 2. The last proposition implies that f�;� is the density of P if (and only if) (�; �) =
( �1(0); 1). This is a neutral element of the group S � (0;1) under the associative multiplication

(�; �)(~� ; ~�) = ( �1 [ (�) + � (~� )] ; �~�)

with the inverse element (�; �)�1 =
�
 �1(� (�)=�); 1=�

�
. This group structure of S does not de�ne

the equivariance structure on the family P in the common sense considered e.g. in Chapter 7 of Zaks
(1971).

Proposition 6 The core functions TP� ;� of distributions P�;� with density f�;� from the above

de�ned Johnson location and scale family P are given by formula

TP� ;� (x) = �
_g
�
 (x)� (�)

�

�
g
�
 (x)� (�)

�

� = TQ

�
 (x)�  (�)

�

�
; x 2 S; (0.31)

where Q and g are the same as in the previous proposition. Moreover, a relation between the eÆcient

score @
@� ln f�;�(x) and the core function (0.31) is

@

@�
ln f�;�(x) =

1

�
_ (�) TP�;� (x):

7



Proof. The �rst part is clear from (0.29) and from De�nition 2. Put u =  (x)� (�)
� . Since

@

@�
ln f�;�(x) =

1

f�;�(x)

df�;�(x)

du

@u

@�

and f�;�(x) =
1
�g(u)

_ (x) by (0.30), and @u
@� = 1

�
_ (�); it holds by (0.31) that

@

@�
ln f�;�(x) =

1

�
_ (�)TQ(u) =

1

�
_ (�)TP�;� (x):

2

In Table 2 are listed densities and core functions of some Johnson location and scale families and
their parents.

Proposition 6 shows the signi�cance of the core function for statistical inference. The core function
is the inner part of the eÆcient score for the Johnson location parameter and appears to be the most
important characteristic of distributions P 2 PS : As is shown below, it also provides an interesting
characterization of divergence in parametric families which is analogous but often simpler than the
Kullback divergence.

Table 2. Johnson families P�;� with densities f�;�(x), parent densities f(x) and
corresponding core functions TP and TP�;� . The scale � is reparametrized by

� = 1=�.

Name f�;�(x); x 2 (0;1) f(x); x 2 (0;1) TP TP�;�

Lognormal �p
2�x

e�
1
2 log2( x

�
)� 1p

2�x
e�

1
2 ln2 x lnx ln(x� )

�

Weibull �
x (

x
� )
�e�(x

�
)� 1

xxe
�x x� 1 (x� )

� � 1

Extr. v. II �
x (

x
� )
��e�( x

�
)�� 1

x2 e
�1=x 1� 1=x 1� (x� )

��

Wald-type 1
Kxe

� 1
2 [(

x
�
)�+( x

�
)�� ] 1

Kxe
� 1

2 (x+1=x) 1
2 (x � 1=x) 1

2 [(
x
� )
� � (x� )

�� ]

Log-logistic �
x

( x
�
)�

(1+( x
�
)�)2

1
(x+1)2

x�1
x+1

( x
�
)��1

( x
�
)�+1

Gamma(�) ���

�(�)x (
x
� )
��e��(

x
�
)� ��

�(�)x
��1e��x �(x� 1) �

�
(x� )

� � 1
�

Formulas for the Gamma(�) distribution follows from the relation

Gamma(�; ) = �

�(�)x
��1e��x = ��

�(�)x

�
x
�

��
e��

x
� = Gamma(�)

where � = =�.

4. CORE DIVERGENCE

By Remark 1 in the previous section, the core functions TP characterize in a one-to-one manner all
distributions P 2 PS ; S = (a; b) � R. Therefore any measure of divergence (dissimilarity, or distance
if the metric axioms hold) in the space TS = fTP : P 2 PSg will serve as a measure of divergence in
the space PS itself.

The most natural of the distances between measurable functions TP ; T ~P de�ned on S is the common
L2-norm k TP � T ~P k= (

R
S
(TP � T ~P )

2d�)1=2 where the integral is taken with respect to a measure
� de�ned on Borel subsets of S. To achieve a better comparability with the asymmetric Kullback
divergence

K(P; ~P ) =

Z
S

ln(dP=d ~P ) dP; P; ~P 2 P ;

we propose to take � = P and to normalize the resulting norm by k TP k= (
R
S
T 2
P dP )1=2 = (IP )

1=2,
where IP is the Fisher information of P , see Proposition 3 above. This motivates the following
de�nition, as well as the fact that, in order to avoid unde�ned expressions, we restrict ourselves to
the subspaces

P0
S = fP 2 PS : 0 < IP <1g and TS = fTP : P 2 P0

Sg: (0.32)
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De�nition 4 For every S = (a; b) � R, the core divergence D(P; ~P ) of ordered pairs P; ~P of

distributions from P0
S is de�ned as a divergence of the corresponding core functions TP ; T ~P 2 TS ,

namely

D(P; ~P ) =
1

2IP

Z
S

(TP � T ~P )
2dP: (0.33)

Remark 3. Since
R
(TP � T ~P )

2 dP may be in�nite when P 6= ~P , the core divergence takes on in
general the values from the extended real line interval [0;1].

The following proposition simpli�es evaluation of the core divergence. It also implies (cf. Proposi-
tion 8 and its Corollary below) that the core divergence is a squared distance in the important Johnson
location families with �xed scales.

Proposition 7 If S = (a; b) 6= R then for every P; ~P 2 P0
S and  2 	S it holds

D(P; ~P ) = D(Q; ~Q); (0.34)

where Q; ~Q are elements of P0
R de�ned by Q = P �1 and ~Q = ~P �1.

Proof. By Proposition 4, IP = IQ for Q = P �1. If ~Q = ~P �1 then (0.24) implies that
TP = TQ( ) and T ~P = T ~Q( ). Therefore, by the substitution rule for integrals,Z

S

(TP � T ~P )
2dP =

Z
S

(TQ( )� T ~Q( ))
2 dQ =

Z
R

(TQ � T ~Q)
2 dQ

which completes the proof. 2

In the following assertion we consider the location and scale families Q and P with respective
parents Q and P de�ned in Section 3.

Proposition 8 If Q 2 P0
R and Q is the location and scale family with parent Q, then Q � P0

R

and for every Q�;� and Q~�;~� from Q

D(Q�;� ; Q~�;~�) =
1

2IQ

Z
R

�
TQ(y)� TQ(

�

~�
y +

�� ~�

~�
)

�2

dQ(y): (0.35)

If S 6= R, and P = Q �1 for some P 2 P0
S ; Q � P0

R and  2 	S, and if P is the Johnson location

and scale family with parent P , then P � P0
S and for every P�;� and P~�;~� from P

D(P�;�; P~�;~�) =
1

2IQ

Z
S

�
TQ(y)� TQ(

�

~�
y +

 (�) �  (~� )

~�
)

�2

dQ(y) (0.36)

Proof. We shall prove (0.36). Proof of (0.35) is simpler. Fix arbitrary (�; �) and (~� ; ~�) from
S � (0;1). By (0.29) and Proposition 7,

D(P�;� ; P~�;~�) = D(Q (�);�; Q (~�);~�)

=
1

2IQ

Z
R

(TQ (�);� � TQ (~�);~� )
2 dQ (�);�:

The assumption Q 2 P0
R together with Proposition 3 implies that IP = IQ is �nite and nonzero.

Further, (0.31) and (0.26) imply the relation

TQ (�);� (u) = �
_g(u� (�)� )

g(u� (�)� )
= TQ

�
u�  (�)

�

�
; u 2 R; (0.37)
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so that it suÆces to apply in the last integral the substitution y = (u �  (�))=� to get the desired
equality (0.35). 2

In Tables 3-5, we compare formulas of Kullback divergences and core divergences in some Johnson
families. In these tables, C is the Euler constant,  (u) = �0(u)=�(u) is the psi function, and for the
Bessel function of the third kind K�(u) it holds � = K2(1)=K0(1)� 1

:
= 2:68, C1 =

1
2K1(1)=K0(1)

:
=

0:72; C2 = K2(1)=(4K0(1)�)
:
= 0:34; C3 = 1=2�

:
= 0:174;.

Table 3. Kullback divergences and core divergences in some Johnson families from Table 2,
reparametrized by ! = �=~� = ~�=� and  = (�=~� )1=~� .

Name K(P�;�; P~�;~�) D(P�;� ; P~�;~�)

Lognormal 1
2 [� ln!2 + (ln )2 + !2 � 1] 1

2 [(ln )
2 + (! � 1)2]

Weibull �(! + 1)� ln(!) + (! � 1)C � 1 2�(2!)� �(! + 2) + 1

Extr. v. II 1
�(! + 1)� ln !

 + (! � 1)C � 1 1
2�(2!)�

1
�(! + 2) + 1

By Proposition 7, if Q�;� = P�;� 
�1 where � =  �1(�), it holds

D(Q�;� ; Q~�;~�) = D(P�;�; P~�;~�). In the case of the normal distribution, for example, one can use the
formulas for the lognormal distribution with ln  = (�� ~�)=~�.

Table 4. Similar as in Table 4 for the special case � = ~� = 1 and also di�erent Johnson families.

Name K(P�;1; P~�;1) D(P�;1; P~�;1)

Lognormal 1
2 (ln )

2 1
2 (ln )

2

Weibull  � ln  � 1 ( � 1)2

Wald-type 4C1( + 1= � 2) C2[( � 1)2 + (1� 1=)2]

+C3( + 1= � 2)=

Log-logistic ( + 1) ln =( � 1)� 2 2[( � 1)(2 + 10 + 1)

�6( + 1) ln ]=( � 1)3

Gamma(�) �~� ln ~�� (~�� �)[ (�) � ln�]

+� ln�+ ln �(~�)
�(�)

�~� ln  + ~� � � 1
2

h
~�2

�2 ( � 1)2�+ ( ~�� � 1)2
i

Table 5. Kullback divergences and core divergences in some special cases of gamma and beta
distributions.

Name K(P�; P~�) D(P�; P~�)

Gamma(�) �~� ln ~�+ � ln�

(� = 1) �(~�� �)[ (�) � ln�� 1] 1
2 (

~�
� � 1)2

Beta (�; 1) ~�
� � ln ~�

� � 1 �
�+1

�
~�
� � 1

�2
Beta (�; �) � ln �(2~�)

�(2�) + 2 ln �(~�)
�(�)

+2j~�� �j( (2�)�  (�)) 1
2 (~�� �)2
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Comparison of Kullback (K) and core (D) divergences for logistic distributions with di�erent
location parameters is given in Fig.1. Similar comparison for Weibull (exponential) distributions with
di�erent Johnson locations is given in Fig.2. This �gures are typical in the sense that for small
deviation of parameters both divergences almost coincide, but they di�er in the sensitivity to large
deviations of the parameters. Figure 1 illustrates that for distributions with heavy tails, the core
divergence is much less sensitive to large deviations of the parameters than the Kullback divergence.
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(TEXT TO FIGURES)

Fig. 1. K(Q�;� ; Q�̂;�) (dotted line) and D(Q�;�; Q�̂;�) (full line) of logistic distributions as func-
tions of  = exp((�� �̂)=�).

Fig. 2. K(Q�;�; Q�̂;�) (dotted line) and D(Q�;� ; Q�̂;�) (full line) of extreme value II distributions

as functions of  = (1=�̂)1=�.
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