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Abstract:

The unilateral dorsal root section of sensory nerves is used as the dea�erentation pain model to study the
single neurons dynamics of the medial thalamic nuclei of laboratory rats. It is argued that the dynamic
description by means of time mappings of interspike intervals of �ring neurons is more appropriate as the
standard stochastic description in the form of �ring rates. Then new approach based on the chaodynamic
methods is applied to analyze possible di�erences in the neuronal dynamics between normal and dea�erented
rats. It is found there are principal di�erences in the neuronal dynamics detected here by various patterns of
the reconstructed chaotic attractors. In the control rats the �ring patterns of single neuron are represented
in the form of homogenous attractors, in dea�erented rats in the form of non-homogenous attractor
patterns with the some structure. Besides one can distinguish by this method also di�erences in the
neuronal dynamics of single neurons of dea�erented animals with the typical automutilative behaviour
indicating painful states and cases without a pain. The perspective of this method is a possible prediction of
pathological changes of the activity of appropriate single neurons dynamics. As the method of chaodynamics
is universal a potential exploitation is not only in the case of nociception, but also in other pathologies of
brain, like epilepsy, depression, psychosis.
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1 Introduction

Pain is a complex experience that involves not only the transduction of noxious environmental stimuli,
but also cognitive and emotional processing by the brain (Julius & Basbaum, 2001). This makes a
pain very complex phenomenon. And in spite of very exciting time in the �eld of pain research,
when major advances are occurring at almost every level of analysis, from the transduction of noxious
stimulus in a primary a�erent neuron to the impact of such stimulus on cortical circuitry, the general
paradigm of pain is still missing. A progress has been made in identifying cortical loci that process
pain massages, but far greater advances have been made in understanding the molecular mechanisms
whereby primary sensory neurons detect pain-producing stimuli, a process referred to as nociception.
In this sense major advances in the development, cellular, and molecular biology and integrative
neurosciences can be also related to the neurobiology of pain (Dubner & Gold, 1999).

These insights have arisen predominantly from the analysis of sensory systems in mammals, as
well as of studies of invertebrates. Electrophysiological studies have, in fact, shown the existence of
primary sensory neurons that can be excited by noxious stimuli. So in this respect, acute pain can
be regarded as a sensory modality much like vision or olfaction. But pain is unique among sensory
modalities in that electrophysiological recordings of single primary sensory �bres have been made in
awake humans allowing simultaneous measurement of psychophysical responses when regions of the
head and body are stimulated. Fibres that innervate such regions arise from cell bodies in trigeminal
and dorsal root ganglia (DRG), respectively. But we are not going into details of the pain pathways
here.

Instead, the main goal of the paper is to analyze a role of time in neuronal processing in general
and in a pain, in special. But it is rather surprising this problem in general has been attached only
recently (Hop�eld, 1996; Koch, 1997; Rieke, at al. 1997; Rao & Sejnowski, 2001). Our dynamic
treatment of pain is as far as we know even the �rst attempt in this direction.

Concerning the role of time in neuronal processing there are two main aspects to the issue. First,
the relationship between a timing of an event in the external world, i.e., stimulus and the timing of the
representation of that stimulus at the level of �ring neuron. Second, an accuracy and importance of the
relative timing of spikes among two or more neurons (Koch, 1997). Here, our concern will be mainly
concentrated on the �rst aspect, i.e., the extent to which the exact temporal arrangements of spikes
of �ring neurons matter for the neuronal information processing in the case of normal physiological
conditions and in the case of pathological situations with a pain.

To make such analysis possible we do use the model of dea�erentation pain (Campbell, et al.,
1999). Details are given in section 2. Besides the reasons to exploit single neuron dynamics for this
purpose are speci�ed, too (see the section 3). Then it is argued that a single neuron with the sigmoidal
transfer function can behave chaotically (Andrey, 1998).

But as such systems are in general ergodic the dynamic description by means of time mappings
of interspike intervals of �ring neurons is more adequate as the standard stochastic description in the
form of �ring rates. The argumentation for the dynamic description in the case of painful states is
given in section 4. The experimental setting for the study of dea�erentation pain in the laboratory
rats is sketched in section 5. Besides, the chaodynamic methods used to analyze possible di�erences
in the neuronal dynamics between normal and dea�erented rats are described in this section, too. In
the next section the obtained experimental results are analyzed by such chaodynamic methods and
some universality of dynamics of single neurons of dea�erented rats with the typical automutilative
behaviour indicating painful states and cases without the pain is obtained. It seems the painful states
can be indicated or materialized in the changing of dynamic neural coding in the adequate single
neurons �rings of spikes. This is summarized in section 7. Finally in the Conclusions (section 8)
some perspective applications of the method of chaodynamics in other pathologies of brain are shortly
mentioned, too.

2 Dea�erentation pain

Pain usually results from the continual stimulation of nociceptors, producing continual transmission
in nociceptors pathways. This process is referred to as nociceptive pain (Campbell, et al., 1999).
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Dea�erentation pain is then the causative lesion which a�ects the peripheral nervous system. As
a model for dea�erentation pain the cervical dorsal root rhizotomy in rats has been used in recent
years. Also unilateral dorsal root section in rats is then used as the model of central pain (Basbaum &
Jessel, 2000). During the dea�erentation of dorsal roots of sensory nerves, the syndrome of changing
sensitivity is developed. It starts by licking, scratching and biting and is �nished by the automutilating
behaviour. This is considered to have a close relation to the pain originating in central structures
because there are no more inputs available from the peripheral nerves after dea�erentation. These
characteristics are very important as they will allow us to specify cases of dea�erented rats with the
pain and those with no painful behaviour.

Now, principal questions can arise. Namely, what are changes one can observe after the unilateral
rhizotomy of dorsal roots is realized? At what levels? So the natural question is to ask also what is a
role the pain can play in qualitative or even quantitative changes in the measured thalamic neuronal
dynamics. Or put it in an opposite way, how is the pain materialized in the neuronal dynamics or
by other words, what is a code for the pain if there is one, at all? As will be shown in the paper to
detect such di�erences in the neuronal dynamics of normal and pathological situations with a pain it
will be suÆcient to exploit a single neuron dynamics representation. Well, this brings some troubles
on the technical part of analysis - the measurement on single neurons, but it is much more eÆcient
and convenient on the theoretical side of analysis. In this connection it is worth to mention that
neurons are very complicated, nonlinear systems. So the description and analysis of single neurons is
in principle much easier as for groups of neurons. There are other reasons to accept the strategy of
single neurons dynamics representation and experimental realizations.

3 Single neuron dynamics representation

All primary sensory nociceptors make synaptic connections with neurons in the grey matter (dorsal
horn) of the spinal cord. Subsets of dorsal horn neurons, in turn, project axons and transmit pain
massages to higher brain centers, including the reticular formation, thalamus, and ultimately the
cerebral cortex (Basbaum & Jessel, 2000).

But we can use the important result obtained already by Adrian (1926). It tells that individual
sensory neurons produce stereotyped action potentials (AP), or spikes. The mechanism is that in-
coming stimuli either produce such APs, which then propagate long distances along the cell's axon,
or they do not. There are no intermediate signaling mechanisms. This means that a single neuron
can provide information to the brain through the arrival times of the spikes. Here we realize the old
wisdom that one can anytime learn something of classics. Because it is precisely the case as recent
work shows that the sequence of APs from single neurons provide an eÆcient representation of even
complex dynamic inputs (Eichenbaum, 1993; Wallis, et al. 2001; Fairhall, et al. 2001). One can say
this is one of two extreme views on information coding in the cortex in general. One view we just
present here espouses a systematic organization imposed of a hierarchy of "�lters" or "detectors" that
encode stimulus features and complex events by the activity of single neurons as mentioned above.
For a completness one should note that the contrasting view espouses a fully distributed represen-
tation that encodes each item by distinct spatio-temporal activity patterns of homogenous arrays of
neurons (Eichenbaum, 1993). Let us add here that in principle these opposing views may in fact be
reconcilable in the real brain. But we are not going to details here. Instead we will concentrate on the
�rst view, i.e., we decide for a single neuron representation, contrary to an ensamble or population
coding in our treatment. Alas, it must be say here that such the idea is in fact not new one. As was
stated by Palm (1986): The idea of representation of relevant propositions about the outside world in
single neurons has been the basis for a leading experimental paradigm in neurophysiology from 1950's
up to present days. As a con�rmation of that, see, e.g., Mc Kenna, et al. (1992).

4 Dynamic vs. stochastic description - the case of pain

In the preparation for an appropriate strategy to describe pain by means of speci�c properties of
spontaneous neuronal dynamics we have argued so far that the single neurons representation is of
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possible use. Now it is known neurons can operate in distinct ways, depending on the duration of the
interval T� over which they e�ectively summate incoming synaptic potentials (K�onig, et al., 1996).
According to this rule one can make the following classi�cation. If this T� is greater than the mean
interspike interval (ISI) of �ring neurons, by other words, if changes in single presynaptic APs are
very small (�Vi � 1) then summation acts in such a way that �ring should depend mostly upon
the averaged frequences � of long trains of incoming pulses (single presynaptic APs), not on their
exact timing. Here we have the �ring rates model and one speaks about so called stochastic paradigm
with an ad hoc Poissonian distributions, and so on (Rieke, et al., 1997). So far this has been mainly
(or even only) accepted scenario (Stowell, 1996). If just opposite is true, i.e., T� is shorter as the
mean ISI then neurons act essentially as coincidence detectors with the analogy to the syn�re chains
model of Abeles (1982). Besides there exists another mode of neuronal dynamics in the form of bursts
(Lisman, 1997) which is diÆcult to classify according to the T� of above analysis. But such bursts
may play the role in pain (Vacul��n, et al. 2000; Radhakrishnan, et al., 1999).

Now, it is interesting to note that the question Abeles asked (Abeles, 1982) about the role of the
cortical neuron should be "integrator or coincidence detector" has not been answered fully yet. But it
is well possible that the question is ill-posed one. Then it seems natural to ask what is a generator of
spikes? Is it not possible to make a reconstruction of such neuronal dynamics? From a very general
point of view one could think about a stochastic source of ad hoc random process of �ring spikes.
And one has a classic stochastic paradigm of coding as mentioned above (Rieke, et al., 1997). This
approach is very popular till present days. On the other band with the advent and progress of chaos
theory one has been tempting to exploit it in the qualitatively new approach to the coding problem.
The point is that the source of spontaneously �ring spikes would be of dynamic nature possessing a
chaotic dynamics. Then one speaks about temporal or dynamic encoding (Judd & Aihara, 1992). But
it was proved both experimentally (Aihara, 1995) and also analytically (Andrey, 1998) that even single
neurons can really behave chaotically. So one can use methods of chaodynamics (Andrey, 1986) to
analyze further such spontaneous �ring of neurons. Before going to apply such methods to characterize
experimentally recorded spontaneous neuronal activity of single neurons of medial thalamic nuclei in
the laboratory rats it should be stressed here that this new angle of view of dynamic approach is very
useful. It allows to unify the above presented classi�cation of �ring patterns into one picture. In this
sense one can comprehend two above mentioned cases as a developed chaos for the �ring rates model
an a low chaos for other case. The bursting �ring of spikes can be then considered as the intermittent
chaos. Let us note we do not take into account the problem of synaptic noise here. This is very
complicated matter, still open and we will mention about it later on in the discussion (Faure & Korn,
1997).

So far we have argued that the role of chaos may be very important in neural systems (Freeman,
2000; Rabinovich & Abarbanel, 1998; Andrey,1998). As was said before this fact is in agreement with
the idea of temporal coding. That is very interesting as it is natural to take into account the timing
between spikes as the changes of amplitudes of �ring spikes are negligible. That is very speci�c feature
of spikes. But because one can suppose that the dynamics of �ring neurons is chaotic then according
to ergodicity of such systems it is equivalent for a description of information processing in such systems
to use, e.g., the dynamic changes of spike amplitudes or equivalently time mappings of inter-spikes
intervals (ISI) between �ring spikes of experimental recordings on single neurons of laboratory rats.
But this is nothing else as the temporal coding or by other words the use of AP timing for stimulus
representation (Hop�eld, 1995; Koch, 1997; Aihara, 1995).

At this point we arrive to the main problem of the paper. Experimentally observed recording of
APs arrival times of nerve cells resulting from spontaneous activity of single neurons are analyzed by
methods of chaodynamics (Rokyta, et al., 2001) for physiological normal and pathological states with
a pain. But the analysis of real cases will be made in the next sections.

5 Materials and Methods

To study the dynamics of neurons of thalamus and cerebral cortex of experimental rats in normal
physiological states and in the pain, experimental recordings of spontaneous unit activity, or action
potential (AP) of �ring neurons, have been exploited. After surgical operations and standard anes-
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thezitation the spontaneous discharges of single axon ending in the injured site were recorded in the
standard way by microelectrodes. Then discharges are input to an A/D converter and on-line recorded
by a computer with an adequate sampling frequency. After a standard �ltration of noise and making a
surrogate data analysis one gets spontaneously recorded AP trains of spikes in the form of time series
data. At this point one could follow the standard or now almost classic way of analyzing the spikes
dynamics, namely by constructing histograms, Fourier analysis or studying averages �ring frequency
rates. This approach is based on the stochastic paradigm, when it is assumed that a �ring of spikes
is an ad hoc random process (see, e.g., Rieke, et al. 1997).

But with an advent of deterministic chaos, qualitatively new possibilities to analyze time series
data have arrived. So (recently) one can analyze above mentioned experimental data of spikes �ring
single neurons by methods of chaodynamics (Andrey, 1986). To do this one needs to suppose that
another scenario, namely the dynamic paradigm with the pulse or temporal view upon neuronal �ring
is going to play an important role. In such case the arrival times of individual APs can encode the
signi�cant information. So instead of averaged �ring rates a timing between spikes plays the role of
dynamic parameter. Besides then is a good reason to assume single neurons have a strong potentiality
to behave chaotically (Andrey, 1998; Judd, Aihara 1993). But in general one can say chaos is irregular
in time and can have structure in phase space (Abarbanel, 1996). And precisely this is the case here.

So we are in a position to apply some chaodynamics methods to analyze our experimental data
now. As amplitudes of spikes do not change so much, in an excellent agreement with what was said
before, to analyze the dynamics of neuronal activity one would exploit a time dynamics of APs trains
of �ring spikes. More precisely we will use time intervals between spikes as the new time mapping to
characterize the dynamics of �ring neurons. We can do this in a rigorous way because of ergodicity of
chaotic systems. Besides, such time mapping is nothing else as well known interspike intervals (ISI)
description. To proceed we do extract ISIs from the above preprocessed experimental data of APs
trains or spikes in the standard way. In this way we do get a new time series that can be thought of
as a sequence of observations Sn = s(xn) performed with some measurement function s(.). Now, any
real system can be modeled by an adequate dynamical system. Since the usually scalar sequence Sn,
in our case just ISIs, in itself does not properly represent the commonly multidimensional phase space
of the dynamical system one has to employ some techniques to unfold the multidimensional structure
using the available data (Abarbanel 1996, Schreiber 1999). To make a phase space reconstruction the
method of delays is often used. Vectors in a new space, the embedding space, are formed from time
delayed values of the scalar data:

Yn = (Sn�(m�1)� ; Sn�(m�2)� ; ; Sn) (5.1)

The number m of elements is called the embedding dimension, the time � is referred to as the
delay or lag. Embedding theorems by Takens and Sauer (Schreiber, 1999) guarantee that if the
sequence Sn does indeed consist of scalar measurement of the state of dynamical system, then under
above mentioned conditions, the time delay embedding provides a one-to-one image of the original
set fxng, provided m is large enough. There is a large literature on the "optimal" choice of the
embedding parameters m and � . It turns out, however, that what constitutes the optimal choice
largely depends on the application. The reconstruction is the important tool for the visual inspection
of data. Commonly, two dimensional projections of three - dimensional renderings are enough to
catch the point and can even be used to guess a good choice of the delay time for higher dimensional
embeddings. Concerning this matter we can also say that a time delay must be some multiple of
the sampling time since we only have data at those times. Besides we want the time delay � to be
large enough that Sn and Sn+� to be rather independent but not so large that they are completely
independent in statistical sense. We tried di�erent values of time delayes in our reconstructions.

At this point we are prepared to determine some other characteristics of dynamics of �ring single
neurons such as Lyapunov exponents, fractal diamensions or Kolmogov-Sinai entropy. But the point
is here that it is technically rather diÆcult to get adequate long experimental recordings of �ring
neurons in vivo.

Nevertheless the application of the above described reconstruction techniques to the time recordings
of �ring neurons of normal states of experimental rats and to states after dea�erentation allows for
surprising possibility to classify such states in a di�erent way as was done so far by using only "classical
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methods" as histograms, Fourier transforms of spectra, and so. The details will be described in the
Discussion (section 7).

We have used the software package for the methods of chaodynamics worked out as M-tool-boxes
under MATLAB at the Institute of Computer Science, Prague and partly also TISEAN Package of
Max Planch Institute for Physics of Complex Systems, Dresden.

6 Experimental data of single neurons �ring recordings and chaodynamic

analysis of results

To analyze the thalamic neuronal dynamics in physiological and pathological states of pain after a
dea�erentation the male Wistar rats weighing 280 to 400 g were used. The same anaesthesia for both
the dea�erentation and the proper recordings was used. The section of left dorsal roots proximal to the
spinal ganglion to prevent the development of neuron was executed on cervical dorsal roots C5 to C8.
Then dorsal rhizotomy was made completely on C5-Th1. After the operation the animals were kept
separately in individual cages and were continuously observed. During and after the dea�erentation
of dorsal roots of sensory nerves, the syndrome of changing sensitivity is developed at some animals.It
starts by licking, scratching and biting and is �nished by the automutilating behaviour (Albe-Fessard
& Rampin, 1991). Immediately after an onset of such autotomy behaviour the extra cellular single
unit recording was performed. For more technical details see Vacul��n, et al. (2000). On-line recordings
of measured data of spontaneous unit neuronal activity (APs �ring) of nuclei in the medial thalamus
(Central lateralis (CL) and parafascicularis (pF)) were performed. The data were digitalized in a
standard way.

At this stage we are prepared to use the experimental data to study possible di�erences in the
dynamics of appropriate thalamic neurons in normal and pathological states after the dea�erentation.
But in accordance with what has been said above one can classify laboratory rats we used into three
groups: the group I - rats with the above dea�erentation and the autotomy behaviour (18 neurons);
group II - rats with the dea�erentation without such automutilating behaviour (10 neurons) and �nally
group III - control animals without any dea�erentation and of course without a pain (4 neurons). But
this is in a sense only a subjective classi�cation, especially that of after dea�erentation states.

So to proceed further the dynamics of single neuron �rings should be analyzed in a possibly
rigorous way. To this end we know from the considerations of section 4, the dynamic treatment is
more appropriate here. To be more precise for the dynamic description one needs interspike intervals
(ISI) time mappings as was mentioned in the previous section 5. Such ISI maps were extracted from
original recordings of neuronal unit activity in anaesthetised (Narkamon + Xylazin) rats. This was
done for all 32 neurons recordings of APs �rings. Details will be published elsewhere (Rokyta, et al.,
2001).

So under above assumptions we are prepared to apply some chaodynamic methods to analyze
further our experimental data now. The goal is to look for possible qualitative or even quantitative
di�erences in thalamic neuronal dynamics of single neurons of laboratory rats with and without
dea�erentation. We will follow the way of a phase space reconstruction of dynamics, or by other
words, the underlying strange attractors by the method of delays as was described in the section 5.

Let us denote �ring times of given neuron as ti; i = 1; 2; :::. From the �ring times ti, the interspike
intervals (ISIs) are de�ned naturally, as

Si = ti+1 � ti; i = 1; 2; ::: (6.1)

So one can use the series fSig of ISI's to reconstruct the attractor. In other words, there is one-
to-one correspondence between m-tuples of ISI's and attractor states, which associates each vector
(Si; Si�1; ; :::; Si�m+1) of ISI's with the corresponding point x(Si) on the attractor, as was described
in the section 5. We have performed such reconstructions for ISI's time mappings for all 32 neurons
measured. But here we only present the most typical cases for the above mentioned three groups of
tested animals. The more detailed analysis also from the biological angle of view will be published
elsewhere (Rokyta, et al., 2001).
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Fig. 1 shows the extracted ISIs time mapping of single neuron �ring spike trains (we do not
show here) for the dea�erented old animal with automutilative behaviour of group I rats. Then the
reconstructed chaotic attractor of the time series of Fig. 1 with the delay 2�(k = 2) is shown in the
Fig. 2. In comparison with Fig. 10 where the same is done for ISIs mappings in the case of recordings
of single neurons �rings spike trains of the control animal without any dea�erentation of group III, one
can see principal di�erences indicating the di�erent neuronal dynamics of neurons of medial thalamic
nuclei. It should be mention that all recordings were performed on single neurons from the same loci
of the brain of experimental rats. While in control animals without the dea�erentation the chaotic
attractor is rather homogenous in the structure, in the dea�erented animals the reconstructed attractor
is more dense occupating the smaller space with the typical shape of triangle with the concave edge.

Surprisingly enough in the case of young animals with the dea�erentation and the mutilative
behaviour we get the very di�erent dynamics of single neurons �rings represented by a speci�c shape
and structure of reconstructed chaotic attractor of adequate ISIs time series. This can be recognized
at the Fig. 4. The shape of attractor in this case is very di�erent both from the case of control animals
(Fig. 10) but also from the previous case of old animals from the same group I. Here the attractor is
also endowed with the some substructure in comparison to the previous case of old animals (Fig. 2).
We did not plan to make special experimentations on young animals and this exciting result was
obtained in a sense as the byproduct (see Rokyta, et al. (2001)). So we do intend to make more
measurements on young animals to con�rm this important �nding.

Now in the case of single neurons �ring spike trains for the dea�erented animals without auto-
mutilative behaviour the reconstructed chaotic attractors show Figs. 6 and 8 for the young and old
animals, respectively. The �rst of all we do not observe such impressive di�erences in the shape
and structure of reconstructed chaotic attractors between young and old animals as in the case of
dea�erentation with the mutilation (Figs. 2 and 4). Instead the attractors have similar topology for
young and old rats here. But the shape is di�erent as those of reconstructed attractors of dea�erented
old animals with the automutilative properties, namely here (Figs. 6 and 8) we have the attractors
with the convex shape. By oter words the curvature of attractors in the case of dea�erentation with
and without the automutilative behaviour is just opposite. This is very interesting problem not only
biologically but also from the dynamical point of view. But we do not have any answer yet. Besides
by the more detailed inspection of Figs. 6 and 8 one can �nd out even the di�erences in the space and
the geometry of attractors in the case of young animals (Fig. 6) and the old ones (Fig. 8). At this
point one need to exploit other invariants of chaodynamics. We do intend to make a further analysis
in this direction (Andrey, 2001).

Here we again �nd out the principal di�erences in the neuronal dynamics of single neurons for the
case of dea�erented rats without the automutilative behaviour (group II) represented by reconstructed
attractors (Figs. 6 and 8) in comparison to the control animals (group III) with the attractor of Fig. 10.

As mentioned above we presented here only typical cases of reconstructed dynamics of single neu-
rons �ring spikes by means of reconstruction of adequate chaotic attractors of ISIs mappings extracted
from recordings of single neuron �rings of medial thalamic nuclei of laboratory rats. We considered
three groups of such animals: the dea�erented rats with the mutilative behaviour (18 neurons) -
group I; the dea�erented rats without the automutilation (10 neurons) - group II; and �nally control
animals without any injure and pain (4 neurons) - group III. The more detailed analysis with the
stress upon biology of the above analyzed �ndings as well as the detailed description of experimental
settings with the speci�cation of measured loci and the recording technique used will be published
elsewhere (Rokyta, et al., 2001).

7 Pain's characteristics and discussions

We have attempted to apply methods of chaodynamics to reconstruct underlying chaotic attractors of
single neurons interspike intervals series recorded from experiment. Let us mention here that similar
attempts have been made recently, in investigating the role of chaos in neural systems but not all of
them used single neurons recordings (Rabinovich & Abarbanel, 1998; Di Mascio, et al., 1999; Stoop,
et al., 2000). But to our knowledge this study is the �rst one in applying the chaodynamics to the
dynamic treatment of pain in the qualitative manner by means of reconstruction of underlying chaotic
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Figure 6.1: Extracted interspike intervals of single neurons �ring spike trains for the dea�erented old
animal with automutilative behaviour of Group I.
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Figure 6.2: Reconstructed chaotic attractor of interspike intervals of single neurons �ring spike trains
for the dea�erented old animal with automutilative behaviour of Group I.
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Figure 6.3: Extracted interspike intervals of single neurons �ring spike trains for the dea�erented
young animal with automutilative behaviour of Group I.
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Figure 6.4: Reconstructed chaotic attractor of interspike intervals of single neurons �ring spike trains
for the dea�erented young animal with automutilative behaviour of Group I.
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Figure 6.5: Extracted interspike intervals of single neurons �ring spike trains for the dea�erented
young animal without automutilative behaviour of Group II.
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Figure 6.6: Reconstructed chaotic attractor of interspike intervals of single neurons �ring spike trains
for the dea�erented young animal without automutilative behaviour of Group II.
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Figure 6.7: Extracted interspike intervals of single neurons �ring spike trains for the dea�erented old
animal without automutilative behaviour of Group II.

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

ISI(n)

IS
I(

n+
k)

Figure 6.8: Reconstructed chaotic attractor of interspike intervals of single neurons �ring spike trains
for the dea�erented old animal without automutilative behaviour of Group II.
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Figure 6.9: Extracted interspike intervals of single neurons �ring spike trains for the control animal
of Group III.
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Figure 6.10: Reconstructed chaotic attractor of interspike intervals of single neurons �ring spike trains
for the control animal of Group III.
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strange attractors. From the above section where experimental data were treated in this way one can
deduce that the pain is represented by the neuronal dynamics with in a sense reduced the chaoticity of
underlying time mappings of ISIs. This seems to be in agreement with previous �ndings for the similar
phenomenon in other brain pathologies, e.g., in the case of epilepsy (Lehnertz, 1999) or Alzheimer
patients (Jelles, et al., 1999). But one must be a little careful as the EEG recordings are analyzed
there. N.B., the application of chaodynamics to such macroscopic, in a sense, thousands of parallely
�ring neurons, EEG recordings, is very disputable.

In fact one can be even critical to ad hoc applications of methods of chaodynamics to analyzing
EEG recordings. The reason for this is apparent if one realizes that the dynamics of single �ring
neurons can be very complex, and as was shown even chaotic. Then the point is that it is almost
impossible to predict something about behaviour of interacting chaotic oscillators, in general. And in
concrete, e.g., the calculation of dynamical dimensions of particular EEGs need not necessarily lead
to direct conclusions about the underlying dynamics. In other words, there are too many factors in
such game which can inuence even the quality of behaviour of such systems we know almost nothing
about.

In this context our strategy to study the spontaneous single neurons activity of the medial thalamus
nuclei of laboratory rats seems to be based on �xed grounds. Also the method of chaodynamics
used seems to be very reasonable. From the results obtained in such way one can deduce many
consequences going in the opposite direction, from the reconstructed strange chaotic attractors back
to the possible dynamic mechanisms of nociception representation (or realization) in the brain, e.g.,
by speci�c changes of adequate neural codings for the realization of pain (Rokyta, et al., 2001a). But
this is another story and it will require a lot of pains and e�ort that open problems still prevailing
would be surmounted.

8 Conclusions

This article is the �rst attempt to study the dea�erentation pain executed by the unilateral dorsal
root section of sensory nerves of laboratory rats as the dynamic process by means of time mappings
of interspike intervals of single neurons �rings recordings. The new approach based on chaodynamic
methods is applied to analyze possible di�erences in such neuronal dynamics of normal and dea�er-
ented rats with and without automutilative behaviour. It is found there are principal di�erences in the
neuronal dynamics of such states detected here by various but typical and almost universal patterns
of the reconstructed chaotic attractors of measured ISIs of �ring single neurons. Besides we have some
preliminary results indicating there are some speci�c features distinguishing the thalamic neuronal
dynamics of young and adult animals. But to make some de�nite conclusions the more experiments
are needed. We do plan to follow this direction of very exciting �ndings closely related to the problem
of developmental issues for a coming time.

The method used seems to be perspective as it can provide a possible prediction and classi�cation
of pathological changes of the appropriate single neurons dynamics in a very general sense. By other
words, as the method of chaodynamics used here is universal the potential exploitation is not only in
the case of nociception, but also in other pathologies of brain, like epilepsy, depression, psychosis. Alas,
here again the experimental recordings of single neurons �ring spikes trains are strongly recommended.

And in the opposite direction, from such detected changes of underlying dynamics one can deduce
some plausible consequences in the form of new views and solutions to the well known old problems
and paradigms. Concretely here, the new formulation of dynamic neural coding which is not in the
contradiction with the existing classical dogma of stochastic coding (in the form of �ring rates) but
rather it is complementary to it, is possible.

Appendix

In this appendix we give the analytic proof that the sigmoidal form of transfer function is important
and suÆcient condition for a single neuron to have the chaotic behaviour.

To do this we use the generalized McCulloch-Pitts neuron model (McCulloch &Pitts, 1943) in
which instead of the unit step function the sigmoidal transfer function will be exploited (Andrey,
1991). Then we have for a given single-node neuron dynamics
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y(tn+1) = �[h(tn+1)��] (8.1)

h(tn+1) =

NX

i=1

wixi(tn) (8.2)

where

�(�) =
1

1 + e���
(8.3)

Here xi(tn) is the action potential (AP) or the spike of the i-th neuron at time tn; i = 1; :::; N ,
adding up potential to the given neuron. By other words it is the presynaptic potential; wi are weights
between presynaptic neurons and the given neuron; h is the local �eld; � is the axon hillock threshold
or bias; � is the sigmoidal transfer function with the slope � and y(tn+1) is the output or the �ring
spike of given neuron at the time tn+1. For simplicity we put �(tn) = h(tn)��, and call it the e�ective
�eld.

Now, let us suppose, the interspike intervals (ISI) de�ned in (2) are very small. So one can perform
the Taylor expansion of (3)

y(tn+1) = y(tn) +
dy

d�
d� = y(tn) +

dy

d�
�
d�

dt
��nt+ ::: (8.4)

where �nt = tn+1 � tn = sn; i = 1; 2; :::. Now we can use the nice property of sigmoid (5), namely

d�

d�
= ��(1 � �) (8.5)

After substituting from (7) for dy

d�
into (6) as well as for d�

dt
of (3) and (4) and neglecting higher

terms (�nt)
k; k � 2 we get

y(tn+1) = y(tn) + 4ay(tn)(1� y(tn)) (8.6)

where

a =
�

4
(�(tn+1)� �(tn))

�(tn+1) =

NX

i=1

wixi(tn)��: (8.7)

Introducing the substitution

z(tn+1) = 4ay(tn+1)�
1 + 4a

2
(8.8)

into (8)we get �nally

z(tn+1) = c� z2(tn) (8.9)

where

c = 4a2 �
1

2
(8.10)

is the parameter of the obtained logistic equation (11) and the a is given by (9).
But it is well known (Schuster, 1984) that the logistic equation (11) possesses the chaotic behaviour

for some values of parameter c > ccrit, where for (11) ccrit
:
= 1:8284.

So we have shown that the �ring of single neurons with the sigmoidal transfer function contains
inherently deterministic chaos. (The more detailed analysis with the discussion of the possible bi-
ological meaning of the parameter a given by (9) as well as that of logistic equation (11) with the
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parameter c depending upon other characteristic properties of the given neuronal dynamics process
will be published elsewhere (Andrey, 2001).
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