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Datum staženı́: 08.07.2024
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Abstract:

A unilateral contact problem without friction in quasi-coupled thermo-elasticity and with uncertain input
data is analysed. The worst scenario method is used to �nd the most "dangerous" admissible input data.
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1 Introduction

In this contribution we deal with contact problems without friction (see [4], [5], [6]) in quasi-coupled
thermo-elasticity considering uncertain input data representing extension of problems solved in [5]
and [6]. By uncertain input data we mean physical coeÆcients, right-hand sides, etc., which cannot be
determined uniquely but only in some intervals determined by the measurements. The reliable solution
is de�ned as the worst among a set of possible solutions, and the degree of badness is measured by a
criterion-functional (see [1]). The main aim of our contribution will be to �nd maximal values of this
functional. We prove the solvability of the corresponding maximization (worst scenario) problems.

2 Formulation of the Problem

Let us assume a union 
 of bounded domains 
�, � = 1; : : : ; s, with Lipschitz boundaries @
�, occupied

by elastic bodies such that 
 =
sS

�=1


� � R2. Let the boundary @
 = [s�=1@

� consist of three disjoint

parts �� , �u and �c, such that @
 = �� [ �u [ �c, �c =
S
k;l

�kl, �kl = @
k \ @
l, 1 � k, l � s, for

k 6= l, and �� , �u, �c denotes the closures in @
.
Let the heat sources W �, the prescribed temperature T1, the body forces F, the surface forces P,

displacements u0, elastic coeÆcients cijkl, coeÆcients of thermal expansion �ij and the reference
temperature T0 be given. Throughout the paper we use the summation convention, i.e. a repeated
index implies summation from 1 to 2. Furthermore, nk = (nki ), i = 1; 2; 1 � k � s, denotes the unit
normal with respect to @
k, nk = �nl on �kl. Assume that �� and C� are positive de�nite symmetric
matrix functions,

0 < ��0 � ��ij�i�j j�j
�2 � ��1 < +1 for a:a: x 2 
�; � 2 R2 ;

0 < c�0 � c�ijkl�ij�klj�j
�2 � c�1 < +1 for a:a: x 2 
�; � 2 R4; �ij = �ij ;

where ��0, �
�
1, c

�
0, c

�
1 are constants independent of x 2 
�. Let ��ij 2 L1(
�), W � 2 L2(
�), T �

1 2

H1(
�), T k
1 = T l

1 on
S
k;l

�kl, c�ijkl 2 L
1(
�), F �

i 2 L
2(
�), Pi 2 L

2(�� ), �
�
ij 2 L

1(
�), u�0 2 [H1(
�)]2.

We will deal with the following problem:

Problem (P): Find a pair of functions (T;u) satisfying

@

@xi

�
��ij

@T �

@xj

�
+W � = 0;

@

@xj
�ij(u

�; T �) + F �
i = 0 in 
�; 1 � � � s; i = 1; 2

(2.1)

�ij(u
�; T �) = c�ijklekl(u

�)� ��ij(T
� � T �

0) in 
�; 1 � � � s; i = 1; 2 (2.2)

�ij
@T

@xj
ni = 0; u = u0 on �u ; (2.3)

T = T1; �ij(u; T )nj = Pi on �� ; (2.4)

T k = T l;

�
�ij

@T

@xj
ni

�k
�

�
�ij

@T

@xj
ni

�l
= 0 on

[
k;l

�kl; 1 � k; l � s ; (2.5)

ukn � ukn � 0; �kn � 0; (ukn � ukn)�
k
n = 0 on

[
k;l

�kl; 1 � k; l � s ; (2.6)

�kt = �� lt = 0 on
[
k;l

�kl; 1 � k; l � s ; (2.7)

where eij(u) =
1

2
( @ui
@xj

+
@uj
@xi

), ukn = uki n
k
i , u

l
n = ulin

l
i = �uki n

k
i (no sum over k or l), ukt = (ukti),
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ukti = uki � uknn
k
i , u

l
t = (ulti), u

l
ti = uli � ulnn

l
i, i = 1; 2, �kn = �kijn

k
i n

k
j , �

k
t = (�kti), �

k
ti = �kijn

k
j � �knn

k
i ,

� ln = � lijn
l
in

l
j , �

l
t = (� lti), �

l
ti = � lijn

l
j � � lnn

l
i.

Since the stress and strain tensors and coeÆcient of thermal expansion are symmetric then the
entries of any symmetric 3� 3 matrices f�ijg can be rewritten in the vector notation f�jg, j = 1; 2; 3
and similarly the symmetric matrices feijg, f�ijg by vectors fejg, f�jg. Then (2.2) can be rewritten
as

�i(u
�; T �) =

3X
j=1

A�
ijej(u

�)� ��i (T
� � T �

0) in 
�; 1 � � � s; 1 � i; j � 3; (2.8)

where A� is a symmetric 3� 3 matrix, A�
ik 2 L

1(
�), � = 1; : : : ; s. Since �ijeij =
2P

i=1

�iei + 2�3e3, we

can write

c�ijkleijekl =
3X

i;j=1

B�
ijeiej ;

where B� is a symmetric 3�3 matrix such that B�
ij = A�

ij for i; j = 1; 2, B�
ij =

3

2
A�
ij for i = 1; 2, j = 3

and B�
ij = 2A�

ij for i; j = 3.
In what follows, we denote

W1 = us�=1H
1(
�); kwkW1

=

0
@X

��s

kw�k21;
�

1
A

1

2

;

W = us�=1[H
1(
�)]2; kvkW =

0
@X

��s

X
i�2

kv�ik
2

1;
�

1
A

1

2

;

V1 =

8<
:zjz 2 W1; z = 0 on �� ; z

k = zl on
[
k;l

�kl

9=
; ;

V = fvjv 2W; v = 0 on �ug ; K =

8<
:vjv 2 V; vkn � vln � 0 on

[
k;l

�kl

9=
; :

De�nition 1. We say that the pair of functions T and u is a weak solution of problem (P), if T �T1 2
V1,

b(T; z) = s(z) 8z 2 V1 ; (2.9)

u� u0 2 K ;

a(u;v � u) � S(v � u; T ) 8v 2 u0 +K ; (2.10)

where

b(T; z) =

sX
�=1

Z

�

��ij
@T �

@xi

@z�

@xj
dx; s(z) =

sX
�=1

Z

�

W �z�dx ; (2.11)

a(u;v) =

sX
�=1

Z

�

3X
i;j=1

B�
ijei(u

�)ej(v
�)dx ; (2.12)

S(v; T ) =

sX
�=1

Z

�

F �
i v

�
idx+

Z
��

Pivids�

sX
�=1

Z

�

��i (T
� � T �

0)v
�
idx : (2.13)
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Remark 1. In S(v; T ) we insert the weak solution T of (2.9). Moreover, we assume that u0 satis�es

uk0n � ul0n = 0 on
[
k;l

�kl : (2.14)

3 Worst Scenario Method for Uncertain Input Data

Let us assume that the input data

A = fB�; ��; F �
i ;W

�; ��i ; Pi; u0i; T1; � = 1; : : : ; sg

are uncertain, and belong to some sets of admissible data, i.e.

A 2 Uad , B� 2 UB�

ad ; �
� 2 U��

ad ; F
�
i 2 U

F �
i

ad ; W
� 2 UW �

ad ; �
�
i 2 U

��i
ad ;

P 2 UPi
ad ; u0i 2 U

u0i
ad ; T1 2 U

T1
ad :

We will assume that all the bodies 
� are piecewise homogeneous, so that partitions of 

�
exist

such that



�

=

r�[
j=1



�

j ; 

�
j \
�

k = � for j 6= k; 1 � � � s ; (3.1)

�kl =

Qkl[
q=1

�
kl

q ; �
kl
q \ �klp = � for q 6= p; 8k; l : (3.2)

Let the data B�, ��, F�, W �, �� be piecewise constant with respect to the corresponding partition-
ing (3.1) and let us denote

��u = �u \ @

�; � = 1; : : : ; s and ��� = �� \ @


�; � � s : (3.3)

Further, we de�ne the sets of admissible matrices:

UB�

ad = f3� 3 symmetric matrices B� : B�
ik(j) � B�

ikj
�
j

= const: � B
�

ik(j);

j � r�; i; k = 1; : : : ; 3g (3.4)

where B�(j) and B
�
(j) are given 3 � 3 symmetric matrices, � = 1; : : : ; s; and let there exist positive

constants c�B(j) such that

�min

�
1

2
(B�(j) +B

�
(j))

�
� �

�
1

2
(B

�
(j)�B�(j))

�
� c�B(j)

for j = 1; : : : ; r�; � = 1; : : : ; s ; (3.5)

where �min and � denotes the minimal eigenvalue and the spectral radius, respectively,

U��

ad = f2� 2 symmetric matrices �� : ��ik(j) � ��ikj
�
j

= const: � ��ik(j);

j � r�; i; k � 2g (3.6)

where ��(j) and ��(j) are given 2 � 2 symmetric matrices, j = 1; : : : ; r�, � = 1; : : : ; s, and let there
exist positive constants c�B(j) such that
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�min

�
1

2
(��(j) + ��(j))

�
� �

�
1

2
(��(j)� ��(j))

�
� c��(j) for j � r�; � � s ; (3.7)

where �min and � denotes the minimal eigenvalue and the spectral radius, respectively. If (3.4)
and (3.5) are satis�ed, then the matrices B�(j) � B�

j
�
j
are positive de�nite for any B� 2 UB�

ad ,

� = 1; : : : ; s and any j � r� (see [8]) and the matrices ��(j) = ��j
�
j
are positive de�nite for any

�� 2 U��

ad , � � s, j � r�.
Furthermore, we de�ne

U
F �
i

ad = ff 2 L1(
) : F �
i(j) � fj
�

j
= const: � F

�

i(j); j � r�g ; (3.8)

for i � 2, � � s, where F �
i(j) and F

�

i(j) are given constants;

UW �

ad = fw 2 L1(
) : W �(j) � wj
�
j
= const: �W

�
(j); j � r�g ; (3.9)

for � � s, where W �(j) and W
�
(j) are given constants;

UT1
ad = fT 2 L1(�� ) : T 1

(�) � Tj��� = const: � T 1(�); � � sg ; (3.10)

where T 1(�) and T 1(�) are given constants;

Uu0i
ad = fu 2 L1(�u) : u0i(�) � uj��u = const: � u0i(�); � � sg ; (3.11)

where u0i(�) and u0i(�), i = 1; 2, are given constants;

UPi
ad = fP 2 L1(�� ) : P i(�) � pj��� = const: � P i(�); � � sg ; (3.12)

where P i(�) and P i(�), i = 1; 2, are given constants;

U
��i
ad = fb 2 L1(
) : ��

i
(j) � bj
�

j
= const: � �

�

i(j); j � r�g ; (3.13)

for i � 3, � � s, where ��
i
(j) and �

�

i(j) are given constants.
Finally, we de�ne the set of admissible data by

Uad = u��sU
B�

ad �u��sU
��

ad � u��s;i�2U
F �
i

ad �u��sU
W �

ad �

�u��s;i�2 U
��i
ad � ui�2U

Pi
ad �ui�2U

u0i
ad �u��sU

T1
ad : (3.14)

Further, instead of b(T; z), a(u;v), s(z), S(v; T ) we will write b(A;T; z), a(A;u;v), s(A; z), S(A;v; T )
for any A 2 Uad.

The next results are parallel to those of [3] for the general case with friction.

Lemma 1. There exist positive constants ci, i = 0; 1; : : : ; 5 independent of A 2 Uad, such that

b(A; z; z) � c0kzk
2

W 1 8z 2 V1 ; (3.15)

jb(A; z; y)j � c1kzkW 1kykW 1 8z; y 2W1 ; (3.16)

a(A;v;v) � c2kvk
2

W 8v 2 V ; (3.17)

ja(A;v;w)j � c3kvkW kwkW 8v;w 2W ; (3.18)

js(A; z)j � c4kzk0;
 8z 2 V1 ; (3.19)

jS(A;v; T )j � c5(kvk0;
 + kvk0;�� + kT � T0k0;
kvkW ) 8v;w 2 W : (3.20)
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Proposition 1. There exists a unique weak solution (T (A);u(A)) of the problem (P) for any A 2 Uad.
Moreover, kT (A)kW1

� c, where c is independent of A.
To �nd the most \dangerous" input data A in the set Uad, we will introduce a criterion, i.e. de�ned

a functional, which depends on the solution (T (A);u(A)) of the problem (P). Such criteria can be as
follows:

Let Gr �
S
��s


�, r = 1; : : : ; r, be subdomains adjacent to the boundaries @
�. Then we de�ne

�1(T ) = max
r�r

'r(T ) = max
r�r

�
(meas2 Gr)

�1

Z
Gr

Tdx

�
; (3.21)

let G0r � �u, r � r and

�2(T ) = max
r�r

 r(T ) = max
r�r

"
(meas1 G

0
r)
�1

Z
G0

r

Tds

#
; (3.22)

and

�3(u) = max
r�r

�r(u) = max
r�r

�
(meas2 Gr)

�1

Z
Gr

uini(Xr)dx

�
; (3.23)

where n(Xr) is the unit outward normal at a �xed point Xr 2 @

�\@Gr (if Gr � 
�) to the boundary

@
�;

�4(u) = max
r�r

�0r(u) = max
r�r

"
(meas1 G

0
r)
�1

Z
G0

r

uini(Xr)ds

#
; (3.24)

where G0r =
S
��s

@
�n�u. Since the weak solution u(A) of our problem (2.10) depends on T (A), then

u(A) = u(A;T (A)) and instead of �i(u) we write �i(A;u;T ). Thus we may de�ne

�5(A;u; T ) = max
r�r

!r(A;u; T ) = max
r�r

�
(meas2 Gr)

�1

Z
Gr

I22 (�(A;u; T ))dx

�
; (3.25)

here I2(�) =

 
3P

i;j=1

�Dij �
D
ij

! 1

2

is the intensity of shear stress, where �Dij = �ij �
1

3
�kkÆij and �(A;u; T )

is de�ned by (2.2). Finally, we may choose

�6(A;u; T ) = max
r�r

�r(A;u; T ) = max
r�r

�
(meas2 Gr)

�1

Z
Gr

(��n(A;u; T ))ds

�
; (3.26)

where Gr is a small subdomain adjacent to �c.
Now we formulate the worst scenario problems as follows:

�nd

A0i = arg max
A2Uad

�i(T (A)); i = 1; 2 (3.27)

and

A0i = arg max
A2Uad

�i(u(A); T (A)); i = 3; 4; 5; 6 ; (3.28)

where (T (A);u(A)) is weak solution of the problem (P).
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4 Stability of Weak Solutions

To prove the solvability of worst scenario problems (3.27), (3.28), we have to study the mapping
A 7! T (A), A 7! u(A; T (A)). We introduce the decomposition of A 2 Uad as A = fA0; A00g, where

A0 = fu��s uj�r� �
�(j);u��s uj�r� W

�(j);u��sT
�
1g ; A

0 2 Rp1 ; p1 = 4
X
��s

r� + s ;

and

A00 = fu��s uj�r� B
�(j);u��s uj�r� F

�(j);u��sP
�;u��su

�
0;u��s uj�r� �

�(j)g ;

A00 2 Rp2 ; p2 =

0
@X

��s

r�

1
A [9 + 2(1 + 2s)] :

We are going to show the continuity of the mappings A0 7! T (A0), A 7! u(A; T (A0)) for A0 2 U 0ad =

u��sU
��

ad�u��sU
W �

ad �U
T �
1

ad and A00 2 U 00ad = u��sU
B�

ad �u��s;i�2U
F �
i

ad �u��s;i�2U
��i
ad�ui�2U

Pi
ad�ui�2U

u0i
ad ,

respectively. Since the problem discussed is quasi-coupled, we will prove the following theorems and
lemma:

Theorem 1. Let A0 2 U 0ad, A
0
n ! A0 in Rp1 as n!1. Then

T (A0n)! T (A) inW1 :

Sketch of the proof: Since

b(A; z; z) �

�
min

��s;j�r�
c��(j)

�X
��s

Z

�

j grad z�j
2

dx ; (4.1)

for Tn := T (A0n) we obtain kTnkW1
� c for all n. Then a T 2 W1 and a subsequence fTmg � fTng

exist such that

Tm * T weakly inW1 : (4.2)

By de�nition

b(A0m;Tm; z) = s(A0m; z) 8z 2 V1; 8m: (4.3)

Since

jb(A0m;Tm; z)� b(A0;T; z)j ! 0 ; as m!1 ;

js(A0m; z)� b(A0; z)j ! 0 ; as m!1 ;

we prove that

b(A0m;Tm; z)! b(A0;T; z) as m!1 ; (4.4)

s(A0m; z)! s(A0; z) as m!1 : (4.5)

Then we pass to the limit with m ! 1 in (4.3). Using (4.4), (4.5) we prove that T = T (A0) is a
weak solution of thermal part of the problem. Since it is unique, the whole sequence fTng tends T (A

0)
weakly in W1. �

Remark 2. It can be proved that Tm ! T converges also strongly in W1.

6



Lemma 2. If A00n 2 Uad, A
00
n ! A00 in Rp2 , and un ! u weakly in W , then

a(A00n;un;v) ! a(A00;u;v) 8v 2 W ; (4.6)

S(A00n;un; T ) ! S(A00;u; T ) 8T 2W1 : (4.7)

Sketch of the proof: The proof follows from the fact that

ja(A00n;un;v)� a(A00;u;v)j ! 0 for n!1 ;

jS(A00n;un; T )� S(A00;u; T )j ! 0 for n!1 :

�

Theorem 2. Let An 2 Uad, An ! A in U � Rp2 . Then

u(An)! u(A) inW : (4.8)

Sketch of the proof: Let us denote un := u(An), u := u(A), u0n := u0(An), u0 := u0(A), Tn :=
T (An), T := T (A). Inserting u := u0+w(A), w(A) 2 K, un := u0n+wn(A), wn(A) 2 K, v := u0+w
or v := u0n +w, w 2 K into the variational inequality (2.10), we obtain

a(An;wn;w �wn) � S(An;w �wn; Tn)� a(An;u0n;w�wn) : (4.9)

Hence, putting w =0, using Lemma 1, Theorem 1, de�nition of Uu0i
ad , after some modi�cations we �nd

that

c0kwnk
2

W � c7kwnkW + c8 :

As a consequence, wn are bounded in W and there exists a subsequence fwkg and a function ! 2W
such that

wk * ! weakly in W; as k !1 : (4.10)

It can be shown that ! = w(A). Thus, since ! 2 K and since a(Ak ;wk �!; wk �!) � 0, after some
modi�cation and using Lemma 2, we obtain lim inf a(Ak ;wk;wk � !) � lim a(Ak ;!;wk � !) = 0.
Inserting w := ! into (4.9) we arrive at

a(Ak ;wk; ! � wk) � S(Ak;! � wk ; Tk)� a(Ak;u0k; ! � wk)

and

lim sup a(Ak ;wk;wk �!) � lim supS(Ak;wk �!; Tk) + lim sup a(Ak;u0k;! �wk) :

For any A 2 Uad, T 2W1 we can show that limS(Ak;wk�!; Tk) = 0 and lim a(Ak;wk;wk�!) =
0 as lim sup a(Ak;wk;wk � !) � 0, from which it follows that lim a(Ak ;wk;wk � !) = 0. It can be
shown that ja(Ak;wk;w�wk)� a(A;!;w �!)j ! 0; then

lim a(Ak;wk; w � wk) = a(A;!;w � !)

and since jS(Ak;w �wk; Tk)� S(A;w �!; T )j ! 0, then

limS(Ak ;w � wk; Tk) = S(A;w � !; T ) :

Moreover, we have ja(Ak ;w �wk;u0k) � a(A;w � !;u0k)j ! 0, where Lemma 1, Lemma 2 and the
convergence u0k ! u0 in W were used. Thus

lim a(Ak;w �wk;u0k) = a(A;w �!;u0) :

7



Passing to the limit with k !1, we obtain

a(A;!;w �!) � S(A;w �!; T )� a(A;w �!; u0) : (4.11)

Since the variational inequality (2.10) has a unique solution, ! = w(A) follows from (4.11) and
moreover, whole sequence fw(An)g tends to w(A) weakly in W .

Furthermore, the strong convergence can also be proved.

5 Existence of a Solution of the Worst Scenario Problem

To prove the existence of a solution of the worst scenario problem, we will use the following lemma.

Lemma 3.

(i) Let �i(T ), i = 1; 2, be de�ned by (3.21), (3.22) and let Tn ! T in W1, as n!1. Then

lim
n!1

�i(Tn) = �i(T ); i = 1; 2 : (5.1)

(ii) Let �i(u), i = 3; 4; be de�ned by (3.23), (3.24) and let un ! u in W , as n!1. Then

lim
n!1

�i(un) = �i(u); i = 3; 4 : (5.2)

(iii) Let �i(A;u;T), i = 5; 6, be de�ned by (3.25), (3.26) and let An ! A in U , An 2 Uad, un ! u
in W and Tn ! T in L2(
), as n!1. Then

lim
n!1

�i(An;un; Tn) = �i(A;u; T ); i = 5; 6 (5.3)

The proof is a modi�cation of that of [3].

As the main result of the paper we present the following theorem:

Theorem 3. There exists at least one solution of the worst scenario problems (3.27), (3.28), i = 1; : : : 6.
The proof is a modi�cation of that of [3].

6 Conclusion

Mathematical models connected with the safety of construction and of operation of the radioactive
waste repositories involve input data (thermal conductivity and elastic coeÆcients, body and surface
forces, thermal sources, coeÆcients of thermal expansion, boundary values, coeÆcient of friction on
contact boundaries, etc.) which cannot be determined uniquely, but only in some intervals, given by
the accuracy of measurements and the approximate solutions of identi�cation problems. The notation
\reliable solution" denotes the worst case among a set of possible solutions where the degree of badness
is measured by a criterion functional. For the safety of the radioactive waste repositories we seek the
maximal value of this functional, which depends on the solution of the mathematical model. Then for
the computations of such problems (some mean values of temperatures, displacements, intensity of
shear stresses, principal stresses, stress tensor components, normal and tangential components of the
displacement or stress vector on the contact boundaries, etc.) we have to formulate a corresponding
maximization (worst scenario) problem. Then methods and algorithms known from "optimal design"
can be used.

To construct a model of structures under the inuence of critical conditions the inuence of global
tectonics onto a local area, where the critical structure is built as well as the inuence of the resulting
local geomechanical processes on a critical structure must be taken into account ([6]). Problems of
this kind with uncertain input data are problems with high level radioactive waste repositories. In the
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case of the high level radioactive waste repositories the e�ects of geodynamical processes in the sense
of plate tectonics must be taken into consideration, namely in regions near tectonic areas (e.g. the
Japan island arc, the Central and South Europe, etc), but also in the platform regions (as in Sweden,
Canada, etc.). Another example is represented by modelling an interaction between a tunnel wall and
a rock massif in the radioactive waste repository tunnels or by modelling of a tunnel crossing by an
active deep fault(s), respectively.
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