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Abstract:

A unilateral contact problem without friction in quasi-coupled thermo-elasticity and with uncertain input
data is analysed. The worst scenario method is used to find the most "dangerous” admissible input data.
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1 Introduction

In this contribution we deal with contact problems without friction (see [4], [5], [6]) in quasi-coupled
thermo-elasticity considering uncertain input data representing extension of problems solved in [5]
and [6]. By uncertain input data we mean physical coefficients, right-hand sides, etc., which cannot be
determined uniquely but only in some intervals determined by the measurements. The reliable solution
is defined as the worst among a set of possible solutions, and the degree of badness is measured by a
criterion-functional (see [1]). The main aim of our contribution will be to find maximal values of this
functional. We prove the solvability of the corresponding maximization (worst scenario) problems.

2 Formulation of the Problem

Let us assume a union €2 of bounded domains Q*, : = 1,..., s, with Lipschitz boundaries 992*, occupied
8§
by elastic bodies such that Q@ = |J Q* C R?. Let the boundary 0Q = US_;0Q" consist of three disjoint
=1
parts I';, T, and T, such that 90 =T, UT,UTL,, T. = JT*, Tk =90* noQ!, 1 <k, 1 < s, for
k.l

k#1,and T';, T, T, denotes the closures in 9.

Let the heat sources W*, the prescribed temperature 77, the body forces F, the surface forces P,
displacements ug, elastic coefficients c;;z;, coefficients of thermal expansion f;; and the reference
temperature Ty be given. Throughout the paper we use the summation convention, i.e. a repeated
index implies summation from 1 to 2. Furthermore, n* = (n¥), i =1,2,1 < k < s, denotes the unit
normal with respect to 0%, n* = —n' on I'*. Assume that ' and C"* are positive definite symmetric
matrix functions,

0< Ky < H;jCiCj|C|72 <K{ <+oo foraa. x€Q' (€R?,
0< C(L) < cgjklfijgkl|£|i2 < Ci <4+ foraa. xE€ QL, £ S R4, gij = fija

where k}, K4, ¢, ¢, are constants independent of x € Q°. Let Ki; € L), W e L2(QY), T} €

H'(Q"), TF =T on JTH, ¢ty € L®(QY), Ff € L2(Q), P € L*(T;), BY; € L>(Q), uf € [H'(Q)].
k.l
We will deal with the following problem:

Problem (P): Find a pair of functions (T, u) satisfying

0 oT* 0 . .
o2 (n;jam) + W' =0, 6—1‘jTij(UL’TL) +F/=0inQ, 1<1<s,i=1,2
(2.1)
mij(u', T") = cjjpen(u’) = Bi;(T" = Tp) inQ', 1< <s,i=1,2 (2.2)
or
Kij=—n; =0, u=up onl,, (2.3)
(%) amJ 13 u
T = Tl, Tij (ll, T)TL] = Pz on F.,— 5 (24)
, or \* or ' n
T =1, (nma—xjn,> — (”’Ja—x]"’> =0 on 91"“, 1<k, 1<s, (2.5)
up —upy <0, 7% <0, (uf —up)ry =0 on [ JTM, 1 <k,1<s, (2.6)
k,l
=—r=0on|JI" 1<kI<s, (2.7)
kil
where e;;(u) = %(ggj + g—g:), ub = ubnk Wl = ulnl = —uknt (no sum over k or 1), uf = (ul),



k — ,k k
Uy = Uy — Uy,

Tl = Tzlgninéﬂ Ttl = (Ttlz) ng = Tzlgn.l] - Tl nl

Since the stress and strain tensors and coefficient of thermal expansion are symmetric then the
entries of any symmetric 3 x 3 matrices {r;;} can be rewritten in the vector notation {7;}, j =1,2,3
and similarly the symmetric matrices {e;;}, {8i;} by vectors {e;}, {8;}. Then (2.2) can be rewritten

as

— v [ Ll 5 — k _ k. k
) U = (U’ti)7 Uy = U; — UM, T = 1,2’ Tp = TN

k l l
i i

Y = ZA;jej(ub) —BUT" —T¢) inQ, 1<1<s, 1<i,j<3, (2.8)
2
where A’ is a symmetric 3 x 3 matrix, A%, € L>®(Q"), v =1,...,s. Since 1;e;; = > Tie; + 213e3, we

can write

cgjkleijekl Z B; i€i€j
i,j=1
where B* is a symmetric 3 x 3 matrix such that B; = A%, fori,j =1,2, Bf; = AL fori=1,2,j =3
and BY; = 2A%; for i,j = 3.
In what follows, we denote

=

Wi o= Mo HYQY, fwlw, = [ Y llwtllE e
1<s

W= O HYQOP Dollw = [ DD illie |

1<s i<2
n = 2lz€Wy, z=00nT,, 2F =2 onUF“ ,
V = {vlveW,v=0onl,}, K= v|v€V,vfl—v£L§00nUFkl
k.l

Definition 1.  'We say that the pair of functions 7' and u is a weak solution of problem (P), if T —T; €
Vl )

b(T,z)=s(z) VzeVp, (2.9)
u—uy € K,
a(u,v—u)>S(v-uT) VWweu +K, (2.10)

where

b(T,2) = Z/Q 3 ZZ g; Z/LWL tdx (2.11)
a(u,v) = Z/ ZB”e Yej(v)dx, (2.12)

t,j=1

S(v,T) = Z/F de+/ Pvlds—z T' — T})vidx. (2.13)



Remark 1. In S(v,T) we insert the weak solution T of (2.9). Moreover, we assume that ug satisfies
uk —ub, =0 on U Tk (2.14)
k,l
3  Worst Scenario Method for Uncertain Input Data
Let us assume that the input data

A:{BLalq'LaFiLawbaﬁéapia’U/OiaTlaL: 17"'78}

are uncertain, and belong to some sets of admissible data, i.e.

. . Ft . ¢
A€Uyye B eUB, keUr, FreUS weeUly', gt eu?,

a

PeUl uyeUYN, Ty eUL.

We will assume that all the bodies (2 are piecewise homogeneous, so that partitions of 0" exist
such that

o = Uﬁ;,Q;-HQL:®fOI“j;ék,1§LSS, (3.1)
j=1
le_kl

i = (JT,, T nrk = o for q # p, Vk,1. (3.2)
g=1

Let the data B*, k*, F*, W*, 3" be piecewise constant with respect to the corresponding partition-
ing (3.1) and let us denote

r,=T,noN, t=1,...,s and TL. =T, NN, 1t <s. (3.3)

Further, we define the sets of admissible matrices:

UB = {3 x 3 symmetric matrices B* : Bl (j) < By, = const. < Bi.(j),

ot
J

j<rik=1,...,3} (3.4)

where B*(j) and B (7) are given 3 x 3 symmetric matrices, ¢ = 1,...,s, and let there exist positive
constants c'z(j) such that

i (5B + TG0 ) = (58 6) - B'0)) = ebi)
forj=1,...,r" 1=1,...,s, (3.5)

where Amin and p denotes the minimal eigenvalue and the spectral radius, respectively,

® = {2 x 2 symmetric matrices &' : 4 (j) < Kiklo., = const. < Fi(j),

j<rik<2} (3.6)

where £'(j) and ®*(j) are given 2 x 2 symmetric matrices, j = 1,...,7", t = 1,...,s, and let there
exist positive constants ¢i3(j) such that



i (50 + 7)) = 0 (FEG) - £0)) =) Pri < igs, @)

where Amin and p denotes the minimal eigenvalue and the spectral radius, respectively. If (3.4)
and (3.5) are satisfied, then the matrices B‘(j) = Bfq, are positive definite for any B € UEB,
J

t =1,...,5s and any j < r* (see [8]) and the matrices k*(j) = Kig. are positive definite for any
2
NLEU;;,LSS,]'STL.
Furthermore, we define

US = {f € L°(Q) : F4(j) < fiay = const. < Fy(j), j <r'}, (3.8)
for i <2, < s, where F;(j) and F;(j) are given constants;
UJZL ={w e L*(Q) : W'(j) < wjg: = const. < WL(j), j<ri}, (3.9)
for 1 < s, where W'(j) and W' (j) are given constants;
UL ={T € L>°(T;) : T, (1) < Tjr. = const. <T1(1), v < s}, (3.10)
where T, (1) and T (1) are given constants;
Uyt ={u € L*(Ty) : ug;(1) < ujp. = const. < (), t < s}, (3.11)
where w;(¢) and @p;(¢), i = 1,2, are given constants;
Ul ={P e L>*({T,): P,(1) < pr. = const. < Py(1), v < s}, (3.12)
where P;(1) and P;(1), i = 1,2, are given constants;
UL = {be L®() : .(j) < bja; = const. < Bi(j), j <r'}, (3.13)

for i <3, 1 <'s, where 8(j) and B;(j) are given constants.
Finally, we define the set of admissible data by

L

_ BL " Fl WL
Uwr = Ti<sUsy x MicsUgy X Mi<si<oUg g X Mi<sUgq X

i P; i T
X M i<z Uy X MicaUbs X My U x Mg, UlE (3.14)

Further, instead of b(T, 2), a(u,v), s(z), S(v,T) we will write b(A4; T, z), a(A;u,v), s(4; z), S(4;v,T)
for any A € Uygq.
The next results are parallel to those of [3] for the general case with friction.

Lemma 1. There exist positive constants ¢;, i = 0,1,...,5 independent of A € U,q, such that
b(4;2,2) > collzll Yz e, (3.15)
b(A;z,9) < allzllwillyllwe Vz,y € Wi, (3.16)
a(4;v,v) > eV} YveV, (3.17)
la(A;v,w)| < ellvilwlwllw Vv,weW, (3.18)
[s(4;2)] < ecllzlo VzeEV, (3.19)
1S(4;v, )] < es(l[vllo.e + IVllo.r, +[IT = Tollo.cllvlw) Vv,weW. (3.20)



Proposition 1. There exists a unique weak solution (T'(A),u(A)) of the problem (P) for any A € Uyq4.
Moreover, [|T(A)|lw, < ¢, where ¢ is independent of A.

To find the most “dangerous” input data A in the set U,q4, we will introduce a criterion, i.e. defined
a functional, which depends on the solution (T'(A),u(A)) of the problem (P). Such criteria can be as
follows:

Let G, C U 94, r=1,...,7, be subdomains adjacent to the boundaries 9Q2*. Then we define

1<s
@, (T) = max o, (T') = max | (meass GT)_I/ Tdx| ; (3.21)
r<7 r<7 | Q. ]
let GI. C Ty, r <7 and
®5(T) = max ), (T) = max | (meas; G.)™* / Tds| ; (3.22)
r<7r r< e
and
®3(u) = max x,(u) = max |:(m93452 Gr)_l/ uini(Xr)dx] ; (3.23)
r<r r<7r G,

where n(X,) is the unit outward normal at a fixed point X, € 0Q' NG, (if G, C Q) to the boundary
o0N;

®4(u) = max x,(u) = max l(measl G;)*l/ uini(X,,)ds] ; (3.24)

r<r Q’

where G}, = |J 9Q*\I',,. Since the weak solution u(A4) of our problem (2.10) depends on T'(A4), then
1<s

u(A) =u(A;T(A)) and instead of ®;(u) we write ®;(A4;u,T). Thus we may define

O5(A;u,T) = m<a,3(wr(A;u,T) = max [(meaS2 Gr)_l/ IZ(1(A;u, T))dx} ; (3.25)
r<7r r<r Q.
1
3 2
here Ir(r) = | > 777[)) is the intensity of shear stress, where 77 = 7;; — $741.6;; and 7(4;u,T)
i,j=1

is defined by (2.2). Finally, we may choose

r<r

Og(A;u,T) = mggcur(A;u,T) = max [(measz Gr)_l/ (—mn (45, T))ds] ; (3.26)
rsSr Gr

where GG, is a small subdomain adjacent to I..
Now we formulate the worst scenario problems as follows:

find
0i _ ) F
A" = arg max ®,(T(A), i=1,2 (3.27)
and
A% = arg max ®;(u(A),T(A)), i=3,4,56, (3.28)
A€U,q

where (T (A),u(A)) is weak solution of the problem (P).



4 Stability of Weak Solutions

To prove the solvability of worst scenario problems (3.27), (3.28), we have to study the mapping
A—T(A), A~ u(A,T(A)). We introduce the decomposition of A € U,q as A = {A’, A"}, where

A" = {Mics Mj<re K°(5), Muss Myjcre WH(5), MicsTi}, A’ € RP, pr =4 '+,
1<s
and

A" = {Ni<s Nj<r BY(5), Mics Mi<m F(5), Mi<s P, Micsug, Mocs Mi<e B°(5) Y

AII

m

RP>, py = Zr 9+ 2(1+2s)].
1<s

We are going to show the continuity of the mappings A’ T(A’) A u(A T(A))for A eU!, =

L<SU dXI_lL<5Uad XU ad and A" e U"d = |_|L<SUad X|_|L<S l<2Uad X|_|L<S l<2Uad X|_|z<2Uad ><|_|z<2U' 5
respectively. Since the problem discussed is quasi-coupled, we will prove the following theorems and
lemma:

Theorem 1. Let A’ € U!,, A, - A’ in RP* as n — co. Then
T(A) —»T(A) inW;.
Sketch of the proof: Since

. o?
b(A;z,2) > <L<ISII;I<1’I"LC > Z/ |grad z*'" dx , (4.1)

1<s

for T, := T(A})) we obtain ||T,||lw, < ¢ for all n. Then a T' € W; and a subsequence {T),} C {T,,}
exist such that

T =T weakly in Wy . (4.2)

By definition

b(Ay; Ty 2) = s(Aj52) V2 € Vi, Vm. (4.3)

Since

|b(Al; Ty z) — b(A5T,2)| = 0, as m — oo,
|s(Al;2) —b(A';2)] -0, as m — oo,

we prove that

b(Al; Ty, z) = b(A;T,2) as m — oo, (4.4)
(A'm, z) = s(A52) as m — oo. (4.5)
Then we pass to the limit with m — oo in (4.3). Using (4.4), (4.5) we prove that T = T'(A’') is a

weak solution of thermal part of the problem. Since it is unique, the whole sequence {T},} tends T'(A’)
weakly in W;.

I:I

Remark 2. It can be proved that T, — T converges also strongly in Wj.



Lemma 2. If A” € Uyq, A — A" in RP2, and u,, — u weakly in W, then

a(Ap;up,v) — a(A";u,v) Vv eW, (4.6)
S(Apun,T) — S(A"u,T) VI'eWr. (4.7)

Sketch of the proof: The proof follows from the fact that

la(Al;up,v) —a(A";u,v)] — 0 forn — oo,
|S(A":a,, T) — S(A";u,T)| — 0 forn— oco.

Theorem 2. Let A, € Uyq, Ay — Ain U = RP2. Then

u(4,) »>u(d4) nW. (4.8)
Sketch of the proof: Let us denote u,, := u(4,), u := u(4), ug, := ug(4,), uo = ug(4), T, :=
T(A,), T :=T(A). Inserting u := up+w(4), w(A) € K, u,, := ugp,+w,(4), w,(4) € K, v :=up+w
or v := ug, + w, w € K into the variational inequality (2.10), we obtain
G(An§ Wp, W — Wn) > S(Any W — Wp, Tn) - a(An; Uop, W — Wn) . (49)
Hence, putting w =0, using Lemma 1, Theorem 1, definition of U,'}*, after some modifications we find
that
collwnllfy < erllwnllw + cs -
As a consequence, w,, are bounded in W and there exists a subsequence {w;} and a function w € W
such that
wp = w weaklyin W, ask — co. (4.10)

It can be shown that w = w(A4). Thus, since w € K and since a(Ag; Wi — w, wy, — w) > 0, after some
modification and using Lemma 2, we obtain liminf a(Ag; wg, wj, — w) > lima(Ag; w,w; — w) = 0.
Inserting w := w into (4.9) we arrive at

a(Ap; wi,w —wg) > S(Ag;w — wi, Tr) — a(Ag; ok, w — wy)

and

lim sup a(Ag; Wi, Wi — w) < limsup S(Ag; Wi — w, Tk) + lim sup a(Ag; o, w — Wy, .
For any A € U,q4, T € Wy we can show that lim S(Ag; wiy —w,Ti) = 0 and lima(Ag; wg, Wi —w) =
0 as limsup a(Ag; Wi, w, — w) < 0, from which it follows that lim a(Ag; wg, wr — w) = 0. It can be
shown that |a(Ag; Wi, w — wg) — a(4;w, w — w)| — 0; then
lima(Ag; wi,w —wy) = a(4; w, w — w)
and since |S(Ag;w — wy, Tx) — S(A;w —w,T)| = 0, then
lim S(Ap;w —wg, Tg) = S(A;w —w,T).

Moreover, we have |a(Ag; w — Wy, ugr) — a(A; w — w, ugx)| = 0, where Lemma 1, Lemma 2 and the
convergence Ug; — Up in W were used. Thus

lima(Ag; w — wg,uor) = a(4;w —w,up) -



Passing to the limit with & — oo, we obtain

a(A;w,w—w) > S(A;w —w,T) —a(d;w —w,up) . (4.11)

Since the variational inequality (2.10) has a unique solution, w = w(A) follows from (4.11) and
moreover, whole sequence {w(A4,)} tends to w(A4) weakly in W.
Furthermore, the strong convergence can also be proved.

5 Existence of a Solution of the Worst Scenario Problem

To prove the existence of a solution of the worst scenario problem, we will use the following lemma.

Lemma 3.

(i) Let ®,(T), i = 1,2, be defined by (3.21), (3.22) and let T, = T in W1, as n — oo. Then

lim ®;(T,) = &;(T), i=1,2. (5.1)

n—o0

(ii) Let ®;(u), i = 3,4, be defined by (3.23), (3.24) and let u, = u in W, as n — co. Then

lim ®;(u,) = &;(u), i=34. (5.2)
n—oo
(iii) Let ®;(A;u,T), i = 5,6, be defined by (3.25), (3.26) and let A, - Ain U, A,, € Upg, u, > u
in W and T,, - T in L?*(Q2), as n — oo. Then

lim ®;(A,,u,,T,) =®;(4,u,T), i=5,6 (5.3)

n— o0
The proof is a modification of that of [3].

As the main result of the paper we present the following theorem:

Theorem 3. There exists at least one solution of the worst scenario problems (3.27), (3.28),i =1,...6.
The proof is a modification of that of [3].

6 Conclusion

Mathematical models connected with the safety of construction and of operation of the radioactive
waste repositories involve input data (thermal conductivity and elastic coefficients, body and surface
forces, thermal sources, coefficients of thermal expansion, boundary values, coefficient of friction on
contact boundaries, etc.) which cannot be determined uniquely, but only in some intervals, given by
the accuracy of measurements and the approximate solutions of identification problems. The notation
“reliable solution” denotes the worst case among a set of possible solutions where the degree of badness
is measured by a criterion functional. For the safety of the radioactive waste repositories we seek the
maximal value of this functional, which depends on the solution of the mathematical model. Then for
the computations of such problems (some mean values of temperatures, displacements, intensity of
shear stresses, principal stresses, stress tensor components, normal and tangential components of the
displacement or stress vector on the contact boundaries, etc.) we have to formulate a corresponding
maximization (worst scenario) problem. Then methods and algorithms known from ”optimal design”
can be used.

To construct a model of structures under the influence of critical conditions the influence of global
tectonics onto a local area, where the critical structure is built as well as the influence of the resulting
local geomechanical processes on a critical structure must be taken into account ([6]). Problems of
this kind with uncertain input data are problems with high level radioactive waste repositories. In the



case of the high level radioactive waste repositories the effects of geodynamical processes in the sense
of plate tectonics must be taken into consideration, namely in regions near tectonic areas (e.g. the
Japan island arc, the Central and South Europe, etc), but also in the platform regions (as in Sweden,
Canada, etc.). Another example is represented by modelling an interaction between a tunnel wall and
a rock massif in the radioactive waste repository tunnels or by modelling of a tunnel crossing by an
active deep fault(s), respectively.
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