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Abstract:

Temperature plays an important role in geomechanics as it strongly controls the rheology of the rocks. The
main intrinsic rheological parameters affecting the mechanical behaviour of materials are time, temperature
and pressure, as well as chemical environment (diffusion). Many geomechanical processes connected
with heat and diffusion involving phase-change phenomena lead to solving free boundary problems of the
two-phase Stefan-like type. Therefore mathematical simulations of thermo-mechanical processes play an
important role to better understand the resulting rock behaviour.

In the contribution coupled thermo-mechanical processes based on the theory of contact problems
in linear and non-linear thermo-elasticity will be discussed. The geodynamical as well as geomechanical
processes connected with the construction of the radioactive waste repositories will be also shortly discussed.
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1 Introduction

The heat in the rock massif is transferred by conduction. The thermo-mechanical analyses are very
important in regions where e.g. radioactive waste repositories will be situated. The temperature field
can be determined by solving the relevant form of heat conduction equation and the stress-strain
field by solving the contact problem. Many geomechanical processes connected with heat flow and
diffusion involving phase-change phenomena give rise to free boundary problems for parabolic partial
differential equations of the two-phase Stefan type.

Since the geothermal and geomechanical processes are connected, the mathematical models de-
scribing single geomechanical processes in the upper part of the Earth must be derived from the global
geomechanical model. Therefore we will shortly illustrate the global evolutionary mathematical model
and in more details we will present mathematical models which can be (and were) used for investiga-
tion of plate tectonic and geomechanical models under the presumption that the geological time period
is relatively short and that the invasing plate during the assumed time period moves at a constant
speed or that the geomechanical process can be investigated as a static problem. Since the motion of
the invasing plate is divided into relatively small time steps and the rock properties behave for such
time periods elastically, then the models can be described by the semi-coercive contact problems in
(non-)linear elasticity.

2 Mathematical Problems in Coupled Thermo-Mechanics

We will assume that the geological bodies are of arbitrary shapes and, moreover, are in mutual
contacts. On the Earth boundary the geological bodies are loaded while on the remaining part of
the investigated region we estimate the effect of movement (if it exists) of the invasing geological
body in time. Therefore, as a result, some geological bodies can shift and rotate. Such problems are
represented by semi-coercive contact problems.

Further a semi-coercive contact problem in non-linear thermo-elastic rheology will be formulated
and analysed. For determination of the rheology we develop the N-dimensional stress-strain relation
(N = 2,3) derived from the positive definite strain energy density function W of form W = A} +
A;‘z (e55) + A§‘3 (esj), where A;, Ay, Az are scalar-valued functions of strains e;; and X;, i = 1,2,3
are positive parameters. We will assume that A\; = A, Ay = A3 = 1. The parameter A determines
the degree of non-linearity for the strain dependent anisotropic elasto-plastic coefficients, which are
functions of the displacement vector u and temperature 7. For 0 < A < 1 the parameter A has the
effect of producing a softening stress-strain curve, for A > 1 it has the effect of producing a hardening
strain curve. For A = 1 it produces strain-less elastic curves, where the non-linearity follows from the
anisotropic coefficients depending on the displacement u and temperature 7" only.

For the derivation of the geomechanical model, we first derive the global evolutionary model and
then, on its basis, the local geomechanical models will be derived.

To develop the N-dimensional stress-strain relation (N = 2,3) a positive definite strain energy
density function will be used. Let the strain energy density function W be defined by

W = A} (ei) + Ay (eij) + As(eij) (2.1)

where A;,i = 1,2,3, are scalar-valued functions of the strains e;; and A is a positive parameter
(Fung, 1965). In this paper we will assume that functions A;, A2, A3 are defined as

Ar = ciju(weij(wer(u),  As = Cyjresj(w)en (),
B 1 (0u;  Ouy . _
A3 __Bl](T_TO)elj(u)a elj(u) - 5 <al’3 + 31“@) ) lajakal_la"'aNa (22)

where e;; is a small strain tensor, c;;ji; are elasto-plastic coefficients generally depending on the
displacement vector u =(u;), Cjjr; are viscous coefficients also depending on coordinates x, f3;; are
thermal expanding coefficients depending on the coordinates x. Assume that



Cijkl = Cktij = Cjikls Cijrt = Criij = Ciirts Bij = Bji -
A repeated index implies summation from 1 to N. According to the theory of continuum mechanics
and thermodynamics the stress tensor components are defined by the well-known relation

ow
Hence and using (2.2)
_ 8A (ei ) 6142 (ei ) 8A3 (ei )
S AL 1\%ij J J)
Tij A[Al (elJ )] 86” + 86” + 86”
= 2MA(ei) )M e (Wer () + Cijrrer () — Bij (T — Tp) =
= cm(eg(w) + Cyypep () — Bi (T —To) - (2.4)

The scalar coefficient 2\[4; (e;;)]*~* depends upon the state of strain and can simulate hardening
and softing behaviours of materials. Then

Chine(0) = 2X[A; (e3)]} cijra (u) (2.5)

are strain dependent non-linear elastic coefficients. Parameter A determines the degree of non-linearity
for the strain dependent elasto-plastic coefficients ¢}, (u). If A <1 then the parameter A has the effect
of producing a softening stress-strain curve, if A = 1 it produces the strain-less elastic curve where the
non-linear coefficients cj; (1) depend on the displacements u only, while for A > 1 it has the effect of
producing a hardening stress-strain curve. The viscous term with short memory Cjjr (x)es (1) can be
changed by the viscous term with long memory (see e.g. Freudenthal and Geiringer, 1958; Duvaut and

Lions, 1976), i.e. by > C7%, (X)E‘Z—Zekl(u) +f0t bijri(t — T)eg (u)dr for the so-called materials of “rate
m=1

type” or in a simple form by Cjjx (x)eg () + fot bijri (t — T)eg (n)dr. Moreover, phase transition zones
can be also studied. For such a problem the Stefan-like conditions on the phase change boundaries
(see e.g. Nedoma, 1998) must be defined.

The model

S
Let & C RN be a region occupied by a system of elasto-visco-plastic bodies Q¢, so that Q = J Q.

=1
Let Q° have Lipschitz boundaries 9Q2* and assume that 0Q = ' UT, UT. Uy U R, where the

disjoint parts I';, I'y, I'c and 'y are open subsets and the surface measure of R is zero. Moreover, let
[,='T,U %[, and T = 90* N o, k #1,T. = |JT¥.
k.l

Let up, = un;, uy = u —u,n, 7, = T;N;n;, Tt = T — T,0 be normal and tangential components
of displacement and stress vectors u = (u;), 7 = (1), 7 = Tijnj, 1,7 =1,...,N, n = (n;) is the unit
outward normal vector to 0.

Let body forces F € [L?(Q2)]V, surface forces P € [L?(T';)]Y and slip limits g* € [L2(T*)]V be
given. Then the model to be solved represents a contact problem in non-linear thermo-elasto-visco-
plasticity. For the derivation of contact conditions see e.g. Nedoma (1998). Then the global model is
as follows:

Global Model Problem:

Let N = 2(3), s > 2. Find a pair of functions (7', u), scalar function 7" and vector function u, satisfying



or" d oT" o*ut  Omj(ut)
2 LT i ey 2 L — 2 L i i F
g TP PToen () - 5 (”’fm«) Wi P gE = ey, T

ihj=1,...,N,t=1,...,5 in Q" (2.6)
Tl!’j = c;;kl(u‘)ekl(ub) + ijklekl(l.lL) — fj(TL — TOL), ih,h,ki=1... N, v=1,...,s, (2.7)
T:Tl, Tijnj:Pi, Z,]ZI,,N OHF.,-, (28)
oT
Kij—ni =0, u; =" ug;, 4,7=1,...,N on'l,, (2.9)
837]'
oT 9 . 2
T=1T5 (orkijjm—mn;=qo ), uj =" uo;, t=1,...,N, on-T,, (2.10)
837]'
’ or oT ’
TI” = Tl, Hija_mini‘(k) = K/Zja_fljlnz‘(l) on Flgl y (211)
b —ul <0, 7F = 7l =7 <0, (WF —ul)H =0 onTH, (2.12)
if uf —ul =0 then |7f'| < g* onT¥ (2.13)
and
if |78 |< gkl then uf —ul =0, (2.14)
if | 75 |= gk then there exists a function 9 > 0 such that uf — ul = —975" (2.15)

where ¢ is the heat capacity, p*5;;T5e:; (u*') represents the dissipative deformation energy changing
into heat, T, Ty are given temperatures, qo is a given heat flow. On part 'y of boundary 09, representing
the condition of symmetry or the condition for useful limitation of the investigated (namely of 3D) region, we
can use conditions

up, =0, 7 =0, j=1,...,N onTy (2.16)

It is evident that such problems are very difficult for detailed analyses. Therefore, in the next part we will
limit ourselves to simple model problems for which parameter A = 1.

2.1 Coupled Thermo-Mechanical Models

Introduction

In mechanics and geomechanics there is a variety of variational formulations. Variational inequalities physically
describe the principle of virtual work in its inequality form. Such problems are represented by contact problems
with or without friction in linear elasticity, thermo-elasticity, plasticity and thermo-plasticity (see e.g. Necas,
Hlavacek (1981), Haslinger et al. (1996), Hlavacek et al. (1988), Kikuchi, Oden (1988), Panagiotopoulos (1985)
in elasticity and plasticity and Nedoma (1983), (1987), (1994), (1997), (1998) in thermo-elasticity. In Hlavacek,
Nedoma (2001) and Nedoma, Hlavdc¢ek (2001) we analyse generalized semi-coercive contact problems with
friction in static linear and non-linear thermo-elasticity for the case that bodies of arbitrary shapes, being in
a mutual contact, are loaded by external forces.

The Model Problem in Non-Linear Rheology

E
Let Q C RY be a region occupied by a system of elastic bodies Q', so that Q = |J Q“. Let Q" have a Lipschitz

=1
boundary 99" and assume that 02 = I’y UT, UT. U R, where the disjoint parts I';, I', and I'. are open
subsets and the surface measure of R is zero. Moreover, let ', =' I', U *I', and % = 0QF N aQ, k # 1,

Kl
r.=yre.
Kl
Let u, = uin;, w4 = u—u,n, 7, = T;jN;N;, T = T — T, be normal and tangential components of
displacement and stress vectors u = (u;), 7 = (1), 71 = Ti;nj, 4,j = 1,..., N, n = (n;) is the unit outward

normal vector to 0X2.

Let body forces F € [L?(Q)]", surface forces P € [L*(T';)]", displacements ug € [W52(Q)]V, slip limits
gkt e [LA(TFH]Y and a temperature 71 = (T11,Ti2) € L*(I; U *T's) be given. Then the model to be solved
represents a contact problem in non-linear thermo-elasticity.

Further, we will investigate the following model problem:



Problem (P): Let N = 2(3), s > 2. Find a pair of functions (7, u), temperature 7' and displacement
vector u, satisfying

19} oT" Orij(u' . .
_8111' <HI:J8$> :QL, % +F1L :0’ L) = 17"'7N; L= 17-"751nQL7 (217)
i J J
TiLj :CZijl(uL)ek'l(uL) _/Ble(TL_T(;)a i7.jak7l: 1;"'7Na L= 17 » S (218)
T = T11(= 0) <OI‘ Kij %ni = 0) , TigNhyy = Pi, i,j = ]., . ,N on F-,— 5 (2.19)
J
orT .
Hij%ni:(], wi =" woi, i,j=1,...,Non'l,, (2.20)
J
8T 2 . 2
T = T12 (OI‘ Iﬁij%ni = qO), U; = U0y ¢ = 1,. . .,N, on Fu ; (2.21)
J
oT oT
Tk = Tl, Iﬁija—xj’ni‘(k) = Iﬁija—xj’ni‘(l) on Flccl 5 (222)
ub —ul <0, =l =<0, Wk W) =00on ¥, (2.23)
if uf —u!, =0 then | e |< gfl on ' and (2.24)
if | e |< gfl thenuf —ul =0, (2.25)
if | Tk |= gfl then there exists a function ¥ > 0 such that uf —ul = -9+, (2.26)
or in a simple friction-less case
' =0onT. (2.27)

As our quasi-coupled problem under investigation is not coupled, both the problems in thermics and non-linear
elasticity can be solved separately and the coupling term %(ﬁfj (T* — Tp)) has the meaning of body forces.
J

Let us introduce the sets of virtual temperatures and displacements and the set of admissible displacements
by

'WVo= {z]z2eW=H(Q) x- - xH(Q), z=TionT. U T},
vV o= {v|ve[H1(Ql)]Nx---x[Hl(Qs)]N, v =uo onl"u},
K = v|v€Vo,vﬁ—UL§00nUFfl ,

k,l

and for detailed analyses the set of all displacements and rotations
R = {v |v e [H Q)Y ei(v) =0 a.e.} ,R=T_R".
For N =3
R ={v]ve [H'(Q))?, v=a'+b" x x},
for N =2

R={v|ve[H Q)] vi =aj —b'z2,va =ab+ bz},
where a‘, b* are arbitrary real vectors for N = 3 or b* is a real scalar for N = 2.
To formulate the variational (weak ) formulation of the above problem (P), we multiply (la) by z — T
and (1b) by v; — u;, integrate over  and use boundary conditions. Then after some modifications we obtain
the following variational problem:

Find a pair of functions (T,u), T €' V, u € K, satisfying

b(T,z—1T)

a(u;ju, v —u)

s(z—T) Vze' Vi, (2.28)

2
> (f,v—u) VWEK, (2.29)

where



- L L L aT 825
BT, 2) = Zb(T,z):/Qmj(x)a—xjamidx,
=1

s(z) = isb(zb) =/9dex (+/F qozds>, I(z) = %b(z,z)—s(z),

a(w;u,v) = > a(w'iu',v) =2/9)\[A(eij(W))]A_ICijkl(W)eij(U)ekz(V)dx,

=1
s

(f,v) = Z(fb,v)z/Fividxﬂ— P;v;ds.
Q -

=1

For the existence of potential energy functional L(v), such that its Gateaux differential

DL(u,v) =a(u;u,v) —(f,v),

the following condition is necessary (see e.g. Gajewski et al. (1974)):

/Dcfjkl(u,w)ekl(u)eij(v)dx:/Dcfjkl(u,v)ekl(u)eij(w)dx Yu,v,w e V.
Q Q

Then we have

1
L(v) = 1/ / a(tvytv,v)dtdx — (f,v).
2JalJo
An equivalent form of (2.28)-(2.29) yields

T € 'W,DI(T,z—T)>0 Vz€'V, (2.30)
u € K, DL(uv—u)>0 VveKkK, (2.31)

where [(z) and L(v) are defined above.

Since the bilinear form b(T,z) is V-elliptic and bounded then the thermal part of the problem can be
analysed as in the classical linear case, which means to minimize an equivalent quadratic functional over the
space of virtual temperatures. The non-linear elastic part of the problem can be solved by the secant modules
method (see e.g. Necas, Hlavdcek (1983), Nedoma (1998)).

The secant modules method consists in solving a sequence of variational inequalities of the form

upp1 € K, a(un;ups1, v —tpqr) > (f,v—u, ), n=12,... (2.32)

where u, is the n—th approximate solution of the problem studied.

Hence the problem studied leads to the solution of a sequence of variational inequalities with variable
coefficients of the semi-coercive type of the form:

Let u, € K, n=1,2,... be such that

a(up;Ups1, Vv —tpq1) > (f,v—u, ) WEK. (2.33)

Numerical approximation of the problem:

Let the domain Q C RV, N = 2(3), be triangulated. Then let the domain Q = Q U 9Q be divided into
a system of m triangles T}, in the 2D case and into a system of m tetrahedra in the 3D case, generating
triangulation 7 such that Q@ = (J Th; and such that two neighbouring triangles have only a vertex or an

i=1
entire side common in the 2D case, and/or that two neighbouring tetrahedra have only a vertex or an entire
edge or an entire face common in the 3D case. Let h = |max (diam T};) and let a family of triangulation {74},
<i<m

h — 04, be regular in the standard sense. We further assume that sets T. ﬂf,, T.N fc, T, NT. coincide with
vertices or edges of T,. Let

Vi {z|z€CQ), z|r,€ Pr, z=Tion T, U °T,,
Vi = {v|velc|",v|re[P]V,v=usonTy, VT, € Tp},



where P, is the space of all linear polynomials, and

Ky, = v|v€Vh,v,’§—vf1 <0on Ul"fl =KnNV,.
k,l
We see that K, is a convex and closed subset of V}, Vh. Then using the FEM-secant modules method the
problem leads to a sequence of approximate problems of variational inequalities with variable coefficients of
the semi-coercive type of the form:

find ufH_l € K;,n=1,2,... such that

a(uZ;uZ+1,v—uZ+1) > (fh,v—uZJrl) Vv e K. (2.34)

The analysis of such problems is parallel to that of the FEM approximation of variational inequalities in

linear elasticity (see e.g. Hlavdcek et al. (1988), Nedoma (1998), Hlavécek, Nedoma (2000)), as the variational

inequality problem (2.34) represents a system of variational inequalities in the theory of linear elasticity where

the elastic coefficients c;jx are replaced by variable coefficients cjjz; = cfjp (uh) = A (es; (ul))cijri(ult).
Similarly as in the linear case it can be found that

| uby —ul 1= 0 for h =0 (2.35)

and for the thermal part of the problem

| T =Ty |i—0 for h—0. (2.36)

The algorithms are modifications of those used for linear heat equation and in the theory of contact
problems in linear elasticity, which have been discussed e.g. in Necas, Hlavacek (1981), Nedoma (1998) and
which is shortly discussed in the next section.

2.2 Coupled Contact-Stefan Models
Introduction

In this part we will study dynamic contact problems in linear elasticity and thermo-elasticity describing

geodynamic problems in RY, N = 2(3). The thermal parts of such problems are described by the so-called

Stefan-like problems. In geomechanic problems such problems represent problems of recrystallization, namely

near the contact boundary and evoked by the deformation of rocks and by the effect of the Coulombian friction.
We will deal with the following problem:

Let Q = |J Q° ¢ RY, N = 2(3), be a smoothly bounded convex domain with boundary 8Q = T, UT,,

=1

', = UT. 'y = T, occupied by colliding bodies Q* with boundaries 9Q* = T4, UTLUT,, TL = |J I,
=1 =1 k,lik#L

Ik = o' n ﬁl, k # . Let the stress-strain relation and the small strain tensor be defined by

1 (0u; Ou; ..
7ij = cijrie () = Bij (T = To), eij = 5 (81‘; + 81,]) , 4,7 =1,2,(3), (2.37)
where 8;; € C'(Q), Bi;; = Bji, is a coefficient of linear thermal expansion, To(x) € H'(Q) is the initial
temperature at ¢ = to, and coefficients of elasticity c;jr € CI(Q) satisfy

Cijkl = Cjikl = Cklij, CijkiCijCkl Z Co€ij€ij, Co = const. > 0, Vei]- = €ji, Vx € Q. (238)

Let p be the density, x the specific heat about which we assume that it is a function of temperature 7'
and pressure p, and function W represents thermal sources. Let T = (to,¢1), let n be the unit outward normal
to I'. = Ul"fl related to Qk, Uy, = u;n; and uy = u—u,n be the normal and tangential components of the
displacement vector u, respectively; let 7, (u) and 7¢(u) be the normal and tangential components of the stress
vector 7(u) = (ri(u)), 7:(u) = 7i;(u)n; and 7+ = T — 7,n, 7i; be the stress tensor and F¥' the coefficient
of Coulombian friction. Using the usual Kirchhoff transformation © = f;(;(x’t) K(x,t,p,€)d€, we have the
following problem:



Problem (P. ): Find a pair of functions (0, u) satisfying

Pc% + pBijOoeij(1) — AO = W for a.e. (x,¢) € A x I, i,j=1,2,(3), (2.39)
%[Cijklekl(u) — Bij(© —O0)] — fi = 0 for ae. (x,t) € 2 x I, i,5,k,1=1,2,(3), (2.40)
J

and the following conditions for all ¢ € T

©=0, nyjn; = P, (x,t) €7, (2.41)

©=0,u=0, (x,t) €., (2.42)

0" =0', 90/dn|x) = 00/0n|q), (x,t) €| T, (2.43)
ki

ub —ul <0, == -1 <o, T,’fl(uﬁ - ufl) =0, (2.44)

if u* —u!, =0 then |‘rfl < gfl and (2.45)

if |74 < g* then uf —ul =0,

if |74 = g then 3\ > 0 such that uf —ul = —A7}' on U,

Let R™(t) be the phase change boundaries of two different phases at time. These boundaries divide the
domain Q into domains Q% and Q7. On R™(t) the following conditions are given

03 =07 = 0%, 00/0z,v|s —00/dz,v|T = —p" L™v,", (2.46)
where OF is the temperature of the phase transition, ©%F, ©" are the temperatures of solid and recrystalized
phases at the phase change boundary R™(t), v™ is the unit normal to R™(¢) pointing towards Q¢', v;" is the
speed of R™(t) along v™, and L™ is the latent heat, c&', ¢, p&, pT' are specific heats and densities in both
phases and p& = p7* = p™ on R™(t). Moreover, the initial condition

@(X,to) = Go(x) (2.47)
is given.
In a similar way, as can be found in the variational inequality approach in enthalpy formulation, we define
a generalized enthalpy H(©) as the subdifferential of the functional ®(©) as

1 m _m m 1 m _m m myrm m
B(0) = 5pLcL (O = OR)} + 5pEcd (0 - OF)” +p" L™ (0 — OF)+, (2.48)

ie. 0P(.) : R — R is represented by a monotonically increasing multi-valued function of temperature with
a jump discontinuity of the phase change temperature ©%. Then (2.39), (2.41), (2.42), (2.43), (2.46), (2.47)
yield

QH(O)

T + pBijOoeij (ll) =AO+ W, (X, t) eEQxIT, (249)
O(x,t) =0, on I, UT;, V¢, (2.50)
H(x,to) = Ho(x). (2.51)

It can be shown that pB;;Ooe;; (1) € L*(Q) (1 = u; = 22) and 52 (B:;(© —©0)) € L*(Q) have the meaning of
J
thermal sources and body forces (see Nedoma (1987), (1998)). Let us define the space of virtual temperatures

and displacements and the set of admissible displacements by

W = {z2lz€ H'(Q), z=00nT, UT,},
V = {vlvelH')]Y,v=00onT,},
K = v|v€V,v,’i—vL§00n U Tk

k0 k£l

Multiplying (2.49) by w — ©: and (2.40) by v; — us¢, integrating over 2, using the Green theorem and the
boundary conditions and integrating over time, we obtain the following variational problem (we denote by

f=f=24)



Problem (P.): Find ©, O, € L*(I; H' (), u € L*(I; K), u; € L*(I; H'(Q)) satisfying

/t [(H(O0),w — ©0) + b(T, w — ©4) + j(w) — j(O)dr > / (W,w — ©)dr - / pBii@oei; (i) (w — Ou)dr,
VYw € L*(I; H'(Q)), t € (to,t1), (2.52)

/ a0, v = ) + g (V) — jgn ()] dr >

fl v — uie)dx + Pi(vi —uie)ds + i_(ﬂij(@ —0o) ) (vi —ug)dx| dr =
I, o \07;

S(v —w)dr Vv e L™(I;K), t € (to,t1) (2.53)
to
and
O(x,t0) = Oo(x), (2.54)
where W — pi;Ooe;; (1) € L*(I; L*(Q)), (u,v) = [,uvdx, P; € L2(I L* (T, )) gf’( ) € L°°(F’§l), g >0
a.e. on M fi e L*(I;L*(Q)), b(©,w) = Jo, grad © grad wdx iz) = [, ®( (Q,w fn Wwdx —
fQ pBijOoei; (W)wdx = s(w), a(u,v) = fﬂ cijrieij(u)ep (v)dx, S(v fn flvzdx—f-fF Pvldx—f-fn By ﬁw)@—

©0)) v, jon (V) = [y 9EIvE = vilds.

The above formulations represent parabolic and elliptic (with time ¢ as a parameter) variational inequalities
where the first inequality is a parabolic variational inequality of the second order introduced and discussed by
Duvaut, Lions (1972), Brezis (1972) and Barbu (1976), and the second one is an elliptic variational inequality
with time as a parameter obtained from the variational formulation of contact problems (Nedoma (1998)).
Under certain assumptions there exists a unique pair of weak solutions (0, u) of problem (P,s).

Numerical Solution
Let us put %(t@) = k=Y (H(O" ) — H(O")), O" = O(x,nk), then Eq. (2.49) yields

H(O") — kAO™ ! + kpfijOoeij(uf’) = H(O") + kW,

where Wl = 1 fézﬂ)k W(r)dr, uf = k= (u" —u" ).

To solve the Stefan part of the problem, the formulation in the form of a generalized non-linear
boundary value problem discussed in Barbu (1976) and Glowinski (1979) will be used.

This differential equation is discontinuous, as © passes through ©%, and hence, together with
the above boundary conditions, it represents a free boundary problem. For simplicity reasons we
put © = O u=u"tl, Q = H(O") + kW™ + aOpf, a® + 0%(0) = H(O) + aOg, where
0 < o < min(pFcd, piiel), oz = pitef* — a, @ = S or L, respectively. Then we have to solve the
following problem:

a® — kEAO + 0®(0) + kpOofijeij(ur) » Q(x) a.e. x €Q, t fixed., (2.55)
© =0a.e. x€00. (2.56)

Let us define the space of virtual temperatures as

YW = {z]z € H*(Q),2 = 0 on 0Q},

and the space of virtual displacements V' and the set of admissible displacement K as above. Then
the variational (weak) formulation of the problem is the following:

Find a pair of functions (©,u), ©® €' V, u € K, such that



(0,2 — 0) +kb(0©,2 — 0) +j(2) —j(O©) > s(z—0) Vz €'V, (2.57)
a(u,v—u) + jon(v) — jgn(u) > S(v—-u) ¥ve K, (2.58)
where s(z) = (Q, z) — (kpOoBijeij(u), z) or in an equivalent form:
find (©,u), ©® €' V, u € K such that
1(0) <I(z) V2 €'V, (2.59)
L(u)<L(v) WeK. (2.60)

Problem (2.57) is equivalent to that of finding ® €' V' such that [(©) = inlfv{l(z) = ta(z,2)+
zeE

+kb(z,2)+j(2z)—s(z)}. The main difficulty represents the non-differentiable functional j(v). Since j(v)

can be approximated as jg, (v) = sup [y pf gk (v — vl)ds, where u*! are Lagrangian multipliers
Hri €A °
and A = {pF € L2(TH) || p*' |< 1 ae. on UTK'}, then inf L(v) = inf sup L(v, ), where L(v,p) is
veK veK WEA

a Lagrangian defined by L(v, u) = Lo(v) + [ jpu ' gk (vF — vi)ds, Lo(v) = a(v,v) — S(v).

For the finite element approximation we will assume that N = 2 and that Q is polygonal. Let
domain Q be covered by a finite number of triangles 7', forming a triangulation 7}, and let the end
points T, NT,,T, NT.,T.NT, coincide with the vertices of T),. Let hg > 0 and let us assume that a
family of triangulations {75}, 0 < h < hy, is regular. Let us define the spaces of finite elements

Wi = {zlz€C(Q), 2|z, € P, z=00n09Q, VL), € Ty},
Vi = {vlvelCQ), v|r, € [P]’, v=0onTy, VT, € Tn},

where P; is the space of all linear polynomials,

K ={v|veV, v¥ —v,, <0on UT*}

n

be the finite element approximation of the set of admissible displacements. Let us denote by || - ||x,~
the norm in [H*(Q)]V, k, N being integers.
A pair of functions (0, uy) is the finite element approximation of the problem if

a(Opn, 2z — Op) + kb(Op, 2z, — Op) + j7(zn) —7(O) > s(zn — Op) Vzy et Vi, (2.61)
a(up, vy —uy) +jgn(vh) — jgn(llh) > S(vp —up) Vv € K (2.62)
or in an equivalent form in which we will assume that nodes of triangulation 7}, lying on the contact

boundary UT*¥! are coincided with the nodes consistent with the boundary of supp g* in UT* (in
general these systems of points need not coincide, see Hlavacek et al. (1988)):

find O €! V}, and a saddle point (uy, ) € Kp, x Ay such that

In(Or) < ln(zn) VYzn €' Vi, (2.63)
Ly(up, An) < Lp(an, pn) < La(Vaspin)  Y(Vay ptn) € Kin X Ag, (2.64)

where Lp (v, ppn) represents the finite element approximation of the Lagrangian L(v,u) and A, =
U{uy |ug! € L*(TE,), |ug'| < 1ae. on UDY}.

The algorithm of the problem is equivalent to that of finding (O, uy), O € Vi, u, € K}, such
that



1,(®r) = min {lh(z) = %a(z,z)h +1/2kbp(z,2) + jn(z) — s(z)h} , (2.65)

zelV,

veKy, HEAR

Li(wy) = min sup {L<v,u>=Lo<v>+ / ot vi)ds}. (2.66)

Numerically (2.65) leads at every time level to minimizing the functional I, (z) = $27Bz —d”z +

®(z), where B = al + kBy, By represents the FE approximation of by(.,.), ®(z) = > (®(z;)), dT
i=1
corresponds to thermal sources, one part of which is generated by the dissipative thermal energy. Let

(zi)™_, be the basis of space 'V},. Then every element of 1V}, can be found as a linear combination
of the basis {z;}, similarly for © and ). Then, in the usual way, we obtain a non-linear system of
algebraic equations Bz —d+ 0®(z) = 0, where 0®(z) = M H(z) is the subdifferential of the functional
B(2), 09 (2) = (09(21),...,09(z,)), M = { [, zizjdx}zjzl. Then, if the matrix M and B are positive
definite, the functional {;, has a Gateaux derivative and is monotone on R"™. Then the functional I” is
uniformly convex on R"™ and, therefore, a minimizer of the Stefan part of the problem exists.

Numerically (2.66) leads to numerical approximation of a saddle point. By an approximate saddle
point is meant a point (u,,Ar) € K x A C K x A of a Lagrangian L on Kj X Ap, if a saddle
point (us,A) € K x A exists and if L(ugp, pn) < L(usp, A\n) < L(v, Ap) holds for all pairs of functions
(vh, 1) € K x A. For a numerical solution of this problem the Uzawa’s or Arrow-Hurwicz’s algorithms
can be used.

In the case of the Uzawa’s algorithm we assume that A\ € A be given (A} = 0). Let A} € A be

known. Then we find up; € Kj by néun {LO + furkl AR gkl (vE — vﬁ)ds} and then find )\2""1,191 =

PO pigh((uk))e — (ub;)e), where P is a projection P : L*(T*) — A and 0 < p1 < p; <
p2, p1, p2 are sufficiently small numbers following from the convergence theorem of Uzawa’s algorithm
(Ekeland,Temam (1976)). In every step of Uzawa’s algorithm we minimize

min {LO ) + fUFM AL ghl(vh — vé)ds}, which is equivalent to the problem of finding the minimum
veKy

of the quadratic functional f(w) =3w’Cw — bTw with linear constraints Aw < d. Matrix C is
positive (semi-)definite stiffness matrix, generated by 1a(v,v),b is the vector of body and surface

forces as well as of the friction forces furkl /\Zkl [(vk —v!)ds and of an approximation of the thermal
stresses [, 52 35 (Bij (O™ — ©g))dx at the n-th time level. Matrix A(m x n) is the matrix of constraints
J

generated by the condition of non-penetration uf —u!, < 0 on T* and therefore d = 0. For more
details see e.g. Nedoma (1998), Kestidnek et al. (1997).

2.3  Conclusion

To construct a model of structures under the influence of critical conditions, like the high level ra-
diactive waste repository, we must take into account the influence of global tectonics onto the local
area, where the critical structures will be built as well as the influence of the resulting local geome-
chanic processes on the critical structure. Therefore, the main object will be a reconstruction of the
geometry and geological structures of the global and local areas investigated as well as geodynamical
and geomechanical processes taking place in these areas. To construct a model of global tectonics
we have great difficulties with determination of the contact boundaries (deep faults, contact bound-
aries between the collided plates and blocks) and the geological structure of the investigated region
as individual geologists have the different opinions of the studied problem. For such reason we com-
pile all results attained by different specialists that we critically adapt and supply by recognitions of
standpoints of simulation of geomechanic and geodynamic processes. Without any knowledge of a
solution of an inverse contact-Stefan-like problem which, at present, represents an open mathematical
problem our considerations based on the present knowledge are based on heuristic techniques only.
Thus the models are based on the deep seismic sounding profiles, on the maps of the lower boundary
of the lithoshpere, on the seismological observations, namely on detailed knowledge of the depths
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of earthquake foci, on the geothermal and geomechanical studies in the investigated region, on the
analyses of thermal, gravity and other anomalies, on other geological and geophysical observations,
experience with geophysical syntheses, on all knowledge about the topic and then compile all the
found information together with the experience with construction of the previous models and results
of inverse problems (if they exist as inverse coupled contact-Stefan-like problems represent an open
mathematical problem). As a result we obtain modified maps of the lower boundary of the lithosphere
as well as the geological structure of the investigated region. To construct a model of the local area
we will progress in a similar way, i.e. it means to obtain maximum information about the local re-
gion. Moreover, we will use the results obtained from the previous steps representing the influences of
global tectonics on the local area, like the distribution of the geothermal field, phase transition zones,
fields of displacements, velocitities, stresses, analyses of thermal, gravity, and other anomalies. It is
evident that the physical data obtained as well as the contact boundaries (deep faults, lower bound-
aries of the lithospheric plates, boundaries between geological blocks), the body and surface forces,
thermal sources, etc. are uncertain. Thus mathematical models involve physical and geometrical data
which cannot be determined uniquely but only in some intervals deteremined by the accuracy of our
knowledge discussed above. For such problems the stochastic approach can be used (e.g. Holden et
al. (1996)) or the method of reliable solution which is of a deterministic type (see Chleboun in the
proceedings of the conference).

The methodology discussed in the previous subsections has been tested on a simple model problem
assuming that the coefficients c;ji; depend only on the coordinates only and A = 1 and representing
the obducting lithospheric plate (from the famous Grow’s model of the Central Aleutians) being
in collision with absolutely rigid foundations. Fig. 1 presents principal stresses at time ¢~10° yrs
in 10° Nm~2. On the contact boundaries the bulged-out areas, corresponding to the condition of
penetration (2.44) of Section 2.2 (i.e. the distribution of normal component of displacement vector),
are illustrated. In next figures, representing a simple version of the geological structure of the region
studied, the distribution of the temperature (in °K) (see Fig. 2) and the principal stresses in the
global region, evoked by the thermal stresses («—— — extension, —<— — compression) also owing to an
effect of the dissipative deformation energy changing into a heat (see Fig. 1b), are presented. Since
the coefficient of thermal conductivity x depends on the pressure, the phase-change free boundary
is indicated. The model problem discussed shows the possible way for investigations global tectonic
effects operating on the local region where the critical structure will be situated.

Acknowledgement:

This research was supported by the grant COPERNICUS-HIPERGEOS II-KIT No. 977006 and the
grant of the Ministry of Education, Youth and Sports of the Czech Republic No OK-407.

11



Bibliography

[1] V.Barbu (1976). Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff,
Leyden.

[2] H.Brezis (1971). Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear
Partial Differential Equations. In: E.H.Zarantonello (Ed.), Contribution to Nonlinear Functional
Analysis, Academic Press, New York, 1971, 101-156.

[3] G.Duvaut,J.L.Lions (1976). Inequalities in Mechanics and Physics. Springer Vlg., Berlin, Heidel-
berg, New York.

[4] Ekeland I.,Temam R. (1976) Convex Analysis and Variational Problems. North-Holland Publ.
Co., Amsterdam, Oxford.

[5] Freudenthal, A.M., Geiringer, H. (1958). The Mathematical Theories of the Inelastic Contin-
uum. Handbuch der Physik-Encyclopedia of Physics, VII. Elasticity and Plasticity, Springer Vlg.,
Berlin, Gottingen, Heidelberg.

[6] Fung, Y.C. (1965). Generalized Hooke’s Law. Foundations of Solid Mechanics. Prentice-Hall, N.J.

[7] Gajewski, H., Groger, K, Zacharias,K. (1974). Nichtlineare Operatorgleichungen und Operatordif-
ferentialgleichungen. Academie-Verlag, Berlin.

[8] R.Glowinski, (1979). Finite elements and variational inequalities. In: J.R. Whiteman (Ed.), The
Mathematics of Finite Elements and Applications III, Academic Press, New York, 135-171.

[9] Haslinger, J., Hlavdcek, I., Necas, J. (1996). Numerical Methods for Unilateral Problems in Solid
Mechanics. In: Handbook of Numerical Analysis. Vol.IV, Elsevier Science, Amsterdam, 313-486.

[10] Hlavacek, I., Haslinger, J., Necas, J., Lovisek, J. (1988). Solution of Variational Inequalities in
Mechanics. Springer Vlg., New York.

[11] Hlavécek, I., Nedoma (2000). On a solution of a generalized semi-coercive contact problem in
thermo-elasticity (submitted to Computer Methods in Applied Mechanics and Engineering).

[12] Holden, H, @Oksendal, B., Ubge, J., Zhang, T. (1996). Stochastic Partial Differential Equations.
Birkh&user, Boston, Basel, Berlin.

[13] Kestidnek Z., Dvordk J., Nedoma J., Iterative Solvers for Coupled Contact-Stefan-like Prob-
lems.In: World Congress on Scientific Computation, Modelling and Applied Mathematics. Pro-
ceedings. (Ed.: Sydow Achim) Vol.: 3. Computational Physics, Chemistry and Biology. - Berlin,
Wissenschaft & Technik 1997, pp.467-471

[14] Kikuchi,N., Oden, J.T. (1988). Contact Problems in Elasticity: A Study of Variational Inequali-
ties and Finite Element Methods. STAM, Philadelphia.

[15] Necas, J., Hlavacek, I. (1981). Mathematical Theory of Elastic and Elasto-Plastic Bodies: An
Introduction. Elsevier, Amsterdam.

[16] Necas, J., Hlavacek, I. (1983). Solution of Signorini’s contact problem in the deformation theory
of plasticity by secant modules method. Apl.Mat. 28(3),199-214.

12



[17] Nedoma, J. (1983). On one type of Signorini problem without friction in linear thermo-elasticity.
Apl.Mat. 28(6), 393-407.

[18] Nedoma, J. (1987). On the Signorini problem with friction in linear thermo-elasticity. The quasi-
coupled 2D-case. Apl. Mat. 32(3),186-199.

[19] Nedoma, J. (1994). Finite element analysis of contact problems in thermo-elasticity. The semi-
coercive case. J.Comput.Appl.Math. 50,411-423.

[20] Nedoma, J. (1997). Finite element approximation of a coupled contact-Stefan-like problem arising
from the time discretization in deformation theory of thermo-plasticity. J.Comput.Appl.Math.
82,313-334.

[21] Nedoma, J. (1998). Numerical Modelling in Applied Geodynamics. John Wiley&Sons, Chichester,
New York, Weinheim, Brisbane, Singapore, Toronto.

[22] Nedoma,J., Hlavicek,I. (2001). Solution of a semi-coercive contact problem in a non-linear
thermo-elastic rheology (submitted to Computer Methods in Applied Mechanics and Engineer-

ing).

[23] Panagiotopoulos, P.D. (1985). Inequality Problems in Mechanics and Applications. Convex and
Non-Convex Energy Functions. Birkhduser, Boston, Basel, Stuttgart.

13



