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Abstract:

In the paper a contact problem in non-linear thermo-elastic rheology is studied. A problem of unilateral
contact between bodies in non-linear thermo-elasticity firstly leads to a generalization of non-linear stress-
strain relation. The stress-strain relation is derived from a positive definite strain energy density function.
The weak solution is defined on the basis of a variational inequality. Then the secant modules method
is used. We prove the convergence of the secant modules method to the exact solution. The problem
analysed corresponds with model problems of mechanics, geomechanics, biomechanics and technology.
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1 Introduction

In mechanics, geomechanics, biomechanics as well as in technological practice there is a variety of
variational formulations. Thus variational inequalities physically describe the principle of virtual work
in its inequality form. Such problems are represented by contact problems with or without friction in
linear elasticity, thermo-elasticity, plasticity and thermo-plasticity, see e.g. [4], [5], [6], [8], [10], [11], [20]
in elasticity and plasticity and [13], [14], [15], [16], [17] in thermo-elasticity and thermo-plasticity and
[19] in non-linear elasticity. In [9] we analyse a generalized semi-coercive contact problem with friction
arising in static linear thermo-elasticity for the case that bodies of arbitrary shapes, being in a mutual
contact, are loaded by external forces.

In the present paper a semi-coercive contact problem in non-linear thermo-elastic rheology is
formulated and then analysed. We develop the N-dimensional stress-strain relation (N = 2, 3) derived
from a positive definite strain energy density function W of the form W = A*(e;;), where A4 is a
scalar-valued function of the strains e;; and A is a positive parameter. The parameter A determines
the degree of non-linearity for the strain dependent anisotropic elastic coefficients, which are functions
of the displacement vector u. For 0 < A < 1 the parameter A has the effect of producing a softening
stress-strain curve, for A > 1 has the effect of producing a hardening strain curve. For A = 1 it
produces the strain-less elastic curves, where the non-linearity stems from the anisotropic coefficients
depending on the displacement u only.

2 Formulation of the Problem

To develop the N-dimensional stress-strain relation (N = 2, 3) a positive definite strain energy density
function will be used. Let the strain energy density function W be defined by
W = Ak(eij) , (21)

where A is a scalar-valued function of the strains e;; and A is a positive parameter [1], [2], [19]. In
this paper we shall assume that the function A is defined as

1 (0u; = Ou, .
A= cijkl(u)eij(u)ekl(u)) eij(u) = 5 (8; + 81;]> ) Z:])kal = ]-7 e 'N> (22)
j i

where c;;; are elastic coefficients generally depending on the displacement vector u =(u;) and e;; are
the components of the small strain tensor. Assume that

Cijkl = Cklij = Cjikl -

A repeated index implies summation from 1 to N. According to the theory of continuum mechanics
and thermodynamics the stress tensor components are defined by the well-known relation

ow
Tij = —aeij (23)
Hence and using (2.2)
_ 0A €ij o %
iy = AP 23 (e P e e = eiju(en (2.4
ij

The scalar coefficient 2A\[A(e;;)]*~" depends upon the state of strain and can simulate hardening and
softing behaviours of materials and

i (w) = 2X[A(ei)1M eijui () (2.5)

are strain dependent non-linear elastic coefficients. The parameter \ determines the degree of non-
linearity for the strain dependent elastic coefficients ¢, (u). If A < 1 then the parameter A has the
effect of producing a softening stress-strain curve, if A = 1 it produces the strain-less elastic curve,



where the non-linearity of the coefficients c7;, (u) depends on the displacements u only, while for
A > 1 it has the effect of producing a hardening stress-strain curve.

Let Q C RY be a region occupied by a system of elastic bodies Q*, so that Q = U?_,Q*. Let
have Lipschitz boundaries 02 and assume that 0 = I'; UT, UT'. UR, where the disjoint parts [';,T",,
and T, are open subsets and the surface measure of R is zero. Moreover, let ', = 'T', U 2T, and
Flgl =900k N 8Ql, k#I, fc = UkJFICd.

Let u, = wn;,u; = u—u,n,7, = T;n;n;, Tt = T — T,0 be normal and tangential components
of displacement and stress vectors u =(u;), T = (73), 77 = Ti;n;, 4,j = 1,..,N,n = (n;) is the unit
outward normal vector to 9.

Let body forces F € [L2(Q)]V, surface forces P € [L*(T';)]" and heat sources W € L?({2) be given.
Then the model to be solved represents a contact problem in non-linear thermo-elasticity.

3 Weak Solution of the Non-Linear Problem
In the next we shall investigate the following model problem:

Problem (P): Let N =2(3),s > 2. Find a pair of functions (7', u), a scalar function 7' and a vector
function u, satisfying

0 . oT" . aTij(UL) .o .

- y = — 4+ F' = =1,...,N,v1=1,... 95 1
oz, (ﬁ” &rj) we, oz, +F'=0, i,j=1,...,N,t=1,...,5sin Q", (3.1)
;= chiwen(u’) = BT =T5), i,5,k,l=1,....,N,v=1,...,5, (3.2)

T
Iilja—nz - 0; Tijn; = Pi: Z:] - ]_,...,NOI’I FT’ (33)

6mj

T
m’ja—ni = 0, uj="ug;, 4,j=1,...,Non'l,, (3.4)

6mj
T = Ty,u; =>ug, i=1,...,N, on’T,, (3.5)

oT oT
koo il _ kl
T = T, Fij g il = Hija—inq(z) onI'C", (3.6)
up(x) —up(x) < 0,75 (%) = —74(x) =73 (%) <0, (3.7)
(up (%) = ug, ()7 (x) = 0 on TF'

™ (x) = OonTH. (3.8)

Both the problems in thermics and non-linear elasticity can be solved separately and the coupling
term M (B;(T* —T5))has a meaning of the body forces. Since we assume that 3;; € Cr @Y, T, Tt €

H'(Q), then B(T* — Ty) € H* (') and therefore W( (T —Tp)) € L*(Q). In what follows, we
set FiL =F; - %( fj(TL = 1T5))-

Let us introduce the sets of virtual temperatures and displacements and the set of admissible
displacements by

W = {z]ze 'W=H'(Q) x---x H'(Q%),z=T; on U °T',},
Vo = {v|ve[HY QYN x - x [H(Q)N,v=00nT,},
K = {v|v€Vg,Uf;—v£LSOonUk,lI‘fl},

and the set of all displacements and rotations

R ={v|ve[H Q)" e;j(v)=0ae. }, R=1°_,R".

For N =3 R' = {v|v € [H(Q)]?,v = a'+b'xx},
for N=2R' ={v|ve[H Q) v =a} —bazy,vs =al +ba},
where a*, b’ are arbitrary real vectors for N = 3 or b* any real scalar for N = 2.



We see that K is a convex cone and it can be shown that K is a closed convex subset of V. Let
Py =V N R and let Vy = Py & Qo be the orthogonal decomposition of V.

To formulate the variational (weak ) formulation of the above problem (P), we multiply (3.1a)
by z — T and (3.1b) by v; — u;, integrate over Q and use boundary conditions. Then after some
modifications we obtain the following variational problem (P), :

Find a pair of functions (7,u),T € 'V,u € K, satisfying

BT,z —T)

a(u;u, v —u)

s(z—T) Vz e 'V, (3.9)
(f,v—u) VWwe K, (3.10)

where

=
—~
~

N
~—

I

° oT 0z
L L Ly i - = ,
Lglb(l ,z)—/m](x) ’ idx

s(z) = Zs%zﬁ:/g@zdx%—/ﬂ qozds ,

=1

) = 3h(z2) — (),

a(wju,v) = ZG(WL;HL,V)=2/9A[A(eij(w))]x_lcijkl(W)eij(u)ekz(v)dx,

Z(fL,V) = / Fi"’UidX +/ Pivids -
Q r

=1 ks

(f,v)

For the existence of a potential energy functional L(v), such that its Gateaux differential
DL(w,v) = a(w;u,v) - (£,v),
the following condition is necessary (see e.g. Gajewski et al. (1974) [3]):
/QDcfjkl (u, w)ex (u)e;j(v)dx = /QDcfjkl (w,v)er(u)e;j(w)dx  Yu,v,weV.
Then we have

L(v) = % /Q /0 altvity.v)didx — (£.9)

or in an equivalent form

Te 'V,DI(T,z—T)>0 Vze 'V, (3.11)
u€e K,DL(u,v—u) >0 VWWeK, (3.12)

where [(z) and L(v) are defined above.

4 Secant Modules Method

The thermal part of the problem can be analysed as in [9], [17]. The non-linear elastic problem can
be solved by the secant modules method (see e.g. [12], [16], [17]).



The secant modules method consists in solving a sequence of variational inequalities of the
form
w4 € K,a(uy;u,,,v—u,, ) >F,v-u,.,), n=12... (4.1)

where u,, is the n-th approximate solution of the problem studied.

Hence the problem studied leads to the solution of a sequence of variational inequalities with
variable coefficients of the semi-coercive type of the form:

Let u, € K,n=1,2,... be such that

a(u,;u, ,v—u,, ) > f,v-u,,,) VWek. (4.2)

Let us assume that the bilinear form a(w;u,v) is symmetric in u, v and such that

a(wi;u,u) > c¢ol|lul]?,co =const. >0, (4.3)
la(w;w,v) [ < e flullfvil, 4.4
there exists a functional £ such that
a(uyju,v) = DL(u,v), (4.5)
1 1
§a(u;v,v) - §a(u; w,u)—L(v)+L(u) > 0 (4.6)

and that £ has the second Gateaux differential D2L(w;u,v), the mapping w — D2L(w;u,v) is
continuous on every segment and that

D?L(w;u,u) > c || ul|?,c = const. >0 (4.7)

holds. Assume that £(v), DL(v,w), D?L(v;w,y) and a(w;v,v) are independent of an addition of
P € R in all variables. Let

a(wp;v,z) = a(w;v,z) Vv,z e Vyif w, > w.

Moreover, for f € Vj

(f,p) <0Vp € RNK\{0} and (f,p) #0 Vp € RNV;\{0} (4.8)

hold, where (f, p) is defined above. Assume that the only element p € RNK such that also —p € RNK
isp=0.
As a result we have the following theorem

Theorem 1 Let (4.3), (4.-4), (4.6), (4.7) be satisfied for u,v,w € Qo, and let (4.5), (4.8) hold. Then

(i) the functionals
L(v) = £(v) = (£,v), w(0) = Sa(viu,w) — (f,w) (19)

are coercive and weakly lower semi-continuous in K.
(ii) the problem to find u € K such that
DL(u,v—u)> (f,v—u) VWe K (4.10)

has a unique solution.
The problem to find u,y1 € K



(iii) foru, € K, n=1,2,..., such that

a(un; un+17V - un+1) Z (f7V - un+1) Vv € K7 (411)
has a unique solution and
nh—>Holo Mou,=Igu, (4.12)

where Ilg denotes the projection of Vi, onto Qo.
If klim u,, = w, then w is the solution of (4.10).
— 00

Proof The coerciveness of L follows from the fact that
Lw) 2ol vl -, WeEK, (4.13)
where ¢, ¢; are positive constants (see e.g. [12], Lemma 2.1). Hence

L
im i ﬁ >co>0.
veK |v[soe || V|

Due to the definition of £(v), the functional L is convex and G-differentiable and therefore, it is
weakly lower semi-continuous. Hence the existence of the solution of (4.10), due to the coerciveness
and weakly lower semi-continuity follows immediately. Similarly

w(u) = %a(v;u,u) —(f,u) > [|ul| —c3 Vue K (4.14)

is valid uniformly with respect to v. By a similar way we prove the existence of the solution of (4.11).
To prove the uniqueness of the solution of (4.10) we assume that u' and u? are two solutions of (4.10).
Then u? = u! +p, p € R, ul+p € K and (f,p) = 0 holds. By assumption (4.8b) we obtain p = 0
and the uniqueness. Similarly we prove the uniqueness of a solution of (4.11). Let us denote by Ilg
the projector of V5 onto Qg. Now we shall prove the convergence of (4.12) for n — co. According
to the previous results, inserting v = 0 in (4.11) and using (4.3), (4.14), then there exists a sequence
{u,,} such that

|, [|[<e Vn. (4.15)
We have

¢ || Houpt1 — Houy, [|< a(up; U, — Up, Upy1—Uy) . (4.16)

After some modification and the convergence of L(u,) we have

lim || Igu,+1 — Hou, ||=0. (4.17)

n—o0

Then after some modifications and using (4.15), (4.16) we obtain

1
3¢ | ou, —Mgu|> < DL(uy,u,—u) — DL(u,u,—u) = a(uy;u,,u,—u) — DL(u,u,—u) <
< DL(u,u, ;—uy) +a(up;u, 0, —0,41) + a(uy;u, —u,4,u0,—u) = 0.

Let there exist a subsequence u,, — u*, k— oo. Then

a(uy, —1;u,,v—-—u, )>f,v-u,) VWwekK, (4.18)

ng?

hence

a(unkfl;U*av - U*) > (f,V - U*) +6nk(v))6nk(v) —0.

Since



a(uy,_1;u”, v —u") =a(uy, +u,,_1 —up,;u",v—u*) =a(u,, +Hou,, 1 —Igu,,;u*,v—-u)
then using (4.17) and the fact that a(w,;v,z) = a(w;v,z) Vv,z € V, if w,, - w, we find that

a(up, _1;u”,v—u") = a(u*;u*,v—-u*) = DL(u",v —u").

Hence u* is the solution of (4.10), and u*= u,which completes the proof.

5 Numerical Approximation of the Problem

Let the domain Q C RV, N = 2(3), be triangulated. Then we divide Q = Q U dQ into a system
of m triangles T}, in the 2D case and into a system of m tetrahedra in the 3D case, generating a
triangulation 7y, such that Q = U™ T}; and such that two neighbouring triangles have only a vertex
or an entire side common in the 2D case, and/or that two neighbouring tetrahedra have only a vertex

or an entire edge or an entire face common in the 3D case. Let h =  max (diamT};) and let a family
<i<m

of triangulation {7n},h — 04, be regular in the standard sense. We further assume that the sets
r,nr,, r,nr., I'y NT. coincide with vertices or edges of 7. Let

Vi ={v|ve[CON,v|ne[P]Y,v=0 on T, VT, € Tp},

where P; is the space of all linear polynomials, and

Kp={v|veVyvt v, <0on Uy, T"} = K nV,.

We see that K, is a convex and closed subset of Vj, Vh. Then using the FEM-secant modules
method the problem leads to a sequence of approximate problems of variational inequalities with
variable coefficients of the semi-coercive type of the form:
find u? , € Ky, n=1,2,... such that

a(ulsul, v—ul ) > v—ul,) VWEK,. (5.1)

The analysis of such problems is parallel to that of FEM approximation of variational inequalities
in linear elasticity (see e.g. in [7], [9], [17]), as the variational inequality problem (5.1) represents a
system of linear variational inequalities in the theory of elasticity, where the elastic coefficients c;jp
are replaced by variable coefficients ¢y, = ¢y (up) = MM (ej;(ult))cijpa (ut). Similarly as in the
linear case using the well-known Falk’s lemma we obtain

| Wopr—u?y 1= 0 for h—0. (5.2)

The algorithms are modifications of those used in the theory of contact problems in linear elasticity,
which have been discussed e.g. in [17], [18].
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