narodni
N U dlozisté
1 L Sedé
6 literatury

On a Solution of a Generalized Semi-Coercive Contact Problem in Thermo-Elasticity

Nedoma, Jifi
2001

Dostupny z http://www.nusl.cz/ntk/nusl-34023

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 09.05.2021

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .


http://www.nusl.cz/ntk/nusl-34023
http://www.nusl.cz
http://www.nusl.cz

4 Institute of Computer Science
Academy of Sciences of the Czech Republic

On a Solution of a Generalized
Semi-Coercive Contact Problem in
Thermo-Elasticity

Ilvan Hlavacek, Jifi Nedoma
Technical report No. 820

July 2001

Pod Vodarenskou vézi 2, 18207 Prague 8, phone: (4+4202) 66051111, fax: (+4202) 85857 89,
e-mail:nedoma@cs.cas.cz



’ . .
4 Institute of Computer Science
Academy of Sciences of the Czech Republic

On a Solution of a Generalized
Semi-Coercive Contact Problem in
Thermo-Elasticity

Ivan Hlavacek, Jifi Nedoma
Technical report No. 820

July 2001

Abstract:

In the paper the quasi-coupled semi-coercive contact problem in thermoelasticity is investigated. The FEM
analysis of the problem investigated is also analysed.

Keywords:
Semi-coercive contact problem, variational inequality, thermo-elasticity, finite element method



1 Introduction

In this paper we shall deal with the solvability of a generalized semi-coercive contact problem in linear
thermo-elasticity. The problem studied is formulated as the primary variational inequality problem [2],
(3], [4], [8], [10], [14], [16], [17], i.e. in term of displacements, arising from the variational formulation
of the contact problem with friction in thermo-elasticity. We will assume the generalized case of bodies
of arbitrary shapes which are in mutual contacts. On one part of boundary the bodies are loaded
and on the second one they are fixed and therefore, as a result, some of the bodies can shift and
rotate. Numerical approximation of the studied problem represents a nondifferentiable optimization
problem [11].

2 Formulation of the Problem

2.1 The equilibrium and heat equations

Let 0,21, ...,zn be the orthogonal Cartesian coordinate system, where N is the space dimension and

let x = (x1,...,2nx) be a point in this Cartesian system. Let the body, being in an initial stress-

strain state and created by a system of elastic anisotropic or isotropic bodies, occupy a region ().

Let Q be the region in RV, N = 2,3, with a Lipschitz boundary 9Q. Moreover, we shall assume
8§

that Q@ = |J Q. Let the boundary 99 be divided into disjoint parts I';, T';,, ['. and 'y such that

=1
0N =T,Ul',ul'.UlyUR, where the surface measure of R is zero and the parts I';, I, [« and 'y are
open sets in 9. Assume that Lamé coefficients A and p as well as anisotropic elastic coeflicients c;;
and thermal conductivity coefficients &, x;; are bounded functions. Moreover, we will assume that
Al pts Cipgs K Ky € ct (ﬁL) The heat equation and the equilibrium equations for every subdomain
Q¢ of Q) read as follows:

9 L or" L 6Ti'(ub) L ) : L
Do, <nij8mj>+Q =0, 8]7%+Fi =0, i,j=1,...,N, vt =1,...,5 in Q", (2.1)

where F* are body forces and Q' = W' +p'8};Tje;j(u"), where W* are thermal sources, and the term
p'Bi;Tiei;(u') represents the energy dissipated in the bodies occupying €2 in the form of heat and
generated by their deformation, e;;j(u") is the strain rate tensor, where we denote u’ = du/0t. A
repeated index implies summation from 1 to V.

The relation between the displacement vector u =(u;), ¢ = 1,..., N, and the small strain tensor e;;

is defined by

1 /0u; Ou; o
eij:eij(u):§<6$_+am].>, Z,]ZI,...,N. (22)
j i

The relation between the stress and strain tensors is defined by the Hooke’s law (in thermo-elasticity
also known as the Duhamel-Neumann’s law)

7 = cmen(u') = B(T" = Tp), 4,5,k l=1,...,N,1=1,...,s, (2.3)

in the anisotropic case, whereas in the isotropic case

Cijrt = M (OikGj1 + dudjr) + N'0ijori, Bi; — ' 0ij (2.4)

where \‘, p* represent the Lamé coefficients, and f};, v* coefficients of thermal expansion, 7} is the
initial temperature. The coefficients cf;;, form a matrix of the type (N x N x N x N) and satisfy the
symmetry conditions

L . L — L — L
Cijkt = Cjikl = Criij = Cijik (2.5)

and



2
0 < G,(L) S ngkl(x)fijfkl | f |72§ A(L) < 400 for a.e. X € QL, 5 € ]RN 5 gij = gjia (26)

where af), A are constants independent of x € 2" and for the isotropic case af = 2min{p'(x);x € Q'}
and Af = max{2u'(x) + 3\ (x);x € Q'}. The coefficients of thermal expansion satisfy the symmetry
conditions

z%j: JL'i’ hj=1,...,N,t=1,...,5. (27)

The thermal conductivity coefficients Kij satisfy the symmetry condition

Kij =fj on§Y, i, i=1... N, t=1,...,s (2.8)
and
0 < kg < ki (x)GG | C | 2< k! < 400 fora.e.x €, (€ RY, (2.9)

where k{, k} are constants independent of x € *.

2.2 Boundary conditions

We shall consider the condition of heat flux and of loading on the part I'; of the boundary in the form

or
nij%ni =q (: 0), TijNy = Pi on FT . (210)

Let the boundary I', = 'I', U 2T,. Let us assume that a portion of the examined body is fixed
at a certain boundary which will be denoted by 'T',. Let us denote the outward unit normal to the
boundary 99 by n = (n;). We thus have e.g. the conditions

oT
Kij g1 = ¢ (=0), u; ='ug; (=0) on'Ty,. (2.11)

Furthermore, we can assume that the temperature and the displacement vector are given at the
boundary 2T,

T=T,u; = 2up; (0), i=1,...,N, on’T,. (2.12)

From Egs (2.1), (2.3) and (2.10) it follows that the effect of a change of temperature due to the
deformation is equivalent to the replacement of mass forces by forces F; — %(ﬂij (T — Tp)) and of
surface loading by surface forces P; + f3;;(T" — To)n;.

Assume that the elastic body occupying the region 2 consists of s bodies Q, 1 =1,...,s, so that

8§
Q= | Q, and let several neighbouring bodies, say Q* and Q', are in a mutual contact. Denote the
=1
common contact boundary between both bodies 2% and Q! before deformation by '*. Let t = (¢;)
be the unit tangential vector to the contact boundary I'*'. Further, denote by 7; = 7;;n; the stress
vector, its normal and tangential components by 7, = 7n; = 1;;n;n;, T+ = T — 7,0, and the normal
and tangential components of displacement vector by u, = u;n; and u; = u — u,n. Denote by uF,
u', T* T' (indices k,! correspond with the neighbouring bodies in contact) the displacements and
the temperatures in the neighbouring bodies. All these quantities are functions of spatial coordinates.
Then on the contact boundaries I'* the condition of non-penetration

uk (x) —ul (x) <0 onT¥ (2.13)

holds.
For the contact forces, due to the law of action and reaction, we find

r* (x) = —7 (x) = Tk (X),Tf (x) = —Té(X) = Tfl (x). (2.14)



Since the normal components of contact forces cannot be positive, i.e. cannot be tensile forces,
then

™(x) = -7l (x) = 7" (x) <0 onTH . (2.15)

During the deformation of the bodies they are in contact or they are not in contact. If they are
not in contact, then uf —u! < 0, and the contact forces are equal to zero, i.e. 78 = —7! = 7# = 0. If
the bodies are in contact, i.e. u¥ —ul = 0, then there may exist non zero contact forces 7F = —7! =

n
T < 0. These cases are included in the following condition

(ufl(x) — uln(x))T,’fl (x) =0 on Ffl . (2.16)

Further, if both bodies are in contact, then on the contact boundary the Coulombian type of
friction acts. The frictional forces g* acting on the contact boundary T'*! are, in their absolute value,
proportional to the normal stress component, where the coefficient of proportionality is the coefficient
of Coulombian friction F* (x), i.e.

g (x) = F'(x) [ 7' (%) | - (2.17)

Due to the acting and frictional forces we have the following cases:

If the absolute value of tangential forces 7F!(x) is less than the frictional forces g*!, then the

frictional forces preclude the mutual shifts of both bodies being in contact. If the tangential forces 75
are equal in their absolute value to the frictional forces, so that are no forces which can preclude the
mutual, i.e. bilateral, motion of both elastic bodies. Thus the contact points change their position
in the direction opposite to that in which the tangential stress component acts. These conditions are

described by the following conditions:

if ub —ul =0 then | 7V (x) |< g¥(x) (2.18)
if | 78 (x) |< gM(x) then uf(x) —ul(x) =0, (2.19)

which means that the friction forces are sufficient to preclude the mutual shifting between the assumed
bodies and

if | 7K (x)|= gk then there exists a function ¥ > 0 such that uf(x) — ul(x) = -9 (x), (2.20)

which means that the friction forces are not sufficient to preclude the mutual-bilateral shifting of both
assumed elastic bodies. This shift acts in an opposite direction to the acting tangential forces.

On the contact boundary between the elastic bodies we shall assume that the temperatures and
heat flow are continuous, i.e.

oT oT
Tk — Tl .. N = K ——— s Fkl X 2.21
i) = Kii goonije) on Le (2.21)
When F* = 0 then g* = 0 and then 7} = —7! = 0, and we speak about the case of contact

problems without friction. In the caseif s = 1, i.e. if the second body is approximated by an absolutely
rigid material and the frictional forces are equal to zero, then Eqs (2.13), (2.15), (2.16) reduce to

Up <0, 7, <0, upm7m =0. (2.22)

In some problems the conditions of symmetry

Un =0, 7; =0, j=1,...,N (2.23)

can be used on the axis (or plane) of symmetry I'y.

The amplitude of the Coulombian coefficient, of friction is not known, but for the existence of a
solution it can be estimated (see [4], [8], [9], [12], for the elastic case and [14], [16] for thermo-elastic
case) e.g. for the isotropic case by



’ 1

I F& oo < (/X +20))3 (2.24)

where A and p are the Lamé coefficients. We see that the coefficient of friction depends on the material
properties only.

The problem investigated will be coercive if TY, # ) for all © = 1,...,s and semi-coercive if at

least one part of I';, = U [¢, say [V, is empty. The problem is coupled due to the coupling terms
=1

M (Bi;(T* = Ty)) following from Eqs (2.1),(2.3) and p*S;;Tje;;(u"’) in Eq. (2.1). In the case if the
term p*B;;Tjeq; (u"') is omitted, then we speak about the quasi-coupled model problem.

3 Classical Formulation of the Model Problem

Let @ = |J Q Cc RV, N = 2,3, be a union of domains with Lipschitz boundaries 912, occupied by

=1
bodies about which we assume to be elastic. Let the boundary 052 consist of parts I',, 'y, ['¢, Tg, 9Q =
[, UT,Ulr.UTyUR, where T'. = | T¥ represents the boundary between bodies being in contact, and
kI
R is a set of zero surface measure. Moreover, we denote the displacement vector by u = (uy,...,un).
Let F €[L2(Q)]Y, P €[L*(T,)]"V, and ug € [C(T',)]V. Next we shall deal with the following problem:

Problem (P): Find a pair of function (T, u), a scalar function 7" and a vector function u, satisfying

a aTL L L L L L 67—7;(“”) L
8_%<zja >+W +p ijTOeij(ul):Ov 8]737]'+Fi:0
h,j=1,...,N, t=1,...,5 in Q" (3.1)
7 = ciimen(u') = B (T = Tg), 4,4,k l=1,...,N, t=1,...,s, (3.2)
oT
nija—ni:q(: 0), Tijnj:Pi, i,jzl,...,N onl. (33)
T
n--a—Tn:q(:O) w; =" ug; (=0) i,5=1 N on'l (3.4)
z]awi 7 ) 7 0% ) )t u» .
T=T (=0), u;=>up; (#0), i=1,...,N, on’T,, (3.5)
: oT oT . :
T =1, ﬁija—”ﬂ(k) = Kijg—mi@) GJ = 1,...,N onTH (3.6)
Z
upy (%) — iy (x )<0 T (x) = =7, (x) = 7 (x) <0,
(s (%) = up, (x )) 7y (x) =0 on T (3.7)
if ub —ul = 0then | 7F(x) |< g¥'(x) on T, (3.8)
if | T (x) |< g*(x) then uf(x) —ul(x) =0, (3.9)
if | 7H(x) |= g*! then there exists a function 9 > 0 such that
uf (x) —ul(x) = - (x), (3.10)
u, =0, ; =0, j=1,...,N onIy (3.11)

where the last condition (i.e. Eq. (3.11)) is suitable for numerical computation as it represents the
condition of symmetry. As we see above the problem is coupled due to the coupling terms M (Bt (TL

Ty)) following from Eqs (3.1), (3.2) and p*S};Tje;;(u"') in Eq. (3.1) and is quasi-coupled if the term

p' Bt Tei;(u") in Eq. (3.1) is neglected. The problem is coercive if all /T # ) and semi-coercive for

2 s .
I, =0 or if at least one part of T, = |J |J ‘T, say '™, is empty.
j=1l:=1



Definition 3.1 A pair of functions (T',u') is called a classical solution of the problem (P), if
T € C*(Q) N CHQY), u € [C2HO)N N[CHO)Y and satisfy Eqs (3.1), (3.2) in every point of €,
boundary conditions (5.3)-(5.6) in every point of T or ‘T, or 2T, respectively, contact conditions
and conditions of the Coulombian law of friction (3.7)-(3.10) on Uy T* and conditions (3.11) on Ty.

4 Variational (Weak) Solution of the Problem

In the following we shall consider the 2D semi-coercive case with the conditions (3.7)-(3.10) on UT*,
k # 1 and (3.11) on I'y. The generalization to the 3D cases is possible and not so difficult.

Let Q C RY, N = 2 be a union of domains, occupied by a body, with a Lipschitz boundaries 8¢,
consisting of four parts I';, Ty, T, Tp, 00 =T, UT, UT. Uy UR, all defined above. Let x = (x;),
i = 1,2, be the Cartesian co-ordinates and let n = (n;), t = (¢;) = (—n2,n1) be the outward normal
and tangential vectors to 9S2. Let us look for the temperature T € H'() and the displacement vector
u=(u;) € W(Q) =[H"(Q)]?, where H'(Q) is the Sobolev space in the usual sense. Let e;;(u), 7;(u)
be the small strain tensor and the stress tensor, respectively, Top = Tp(x) the initial temperature at
which the bodies are in an initial strain and stress state, ﬂfj (x) € C! (ﬁb) the coefficient of thermal
expansion, satisfying (2.7) and p* = p‘(x) € C(0) the density. Let W € L%(Q), F; € L%(2) be the
heat sources and components of the body forces and ¢j;,, k;; € C 1(Q") the coefficients of elasticity and
of heat conductivity, respectively, satisfying the usual symmetry conditions and the usual ellipticity
and continuity conditions, i.e. Eqs (2.5), (2.6), (2.8) and (2.9). Let g*' € L?(I'*) be given slip limits.

Since the problem (P) is static the dissipative term p*A};Tie;;(u") can be omitted, so that we
shall investigate the 2D quasi-coupled problem. We shall assume that (we adopt the same notation)
F} = F} — %( (T = 1T5)) € L2(QY), Q' € L?(QY), qo € L3(T';) is the heat flow, P; € L*(T,),

uo; € H2(Ty), Ty € L2(T';), Ty € H*(R). Let us denote by (.,.) the scalar product in [L2(€)]2, by
(.,.) the scalar product in [L*(T'.)]?, by || . ||x the norm in [H*(2)]?, k being an integer, where H*(Q)
denotes the Sobolev space in the usual sense. Let us denote by

Wo = {z]ze 'W=HYQ") x---x H(Q%), z=00n U *T',},

W o= {z]z€ 'W,z=Tyon U °T,},

Vo = {v|veWwW=[H"(QHY]? x---x[H(Q*)]?, v=0on 'T',U >T, v, =00n Ty}
V = {v|veW,v=uyon'l,U 'y, v, =00nTy}

the spaces and sets of virtual temperatures and virtual displacements, respectively, and by

K={v|veV,vk vl <0on LJI"CCZ
k.l

the set of all admissible displacements, which for ug = 0 is a convex cone with vertex at the origin.
As our quasi-coupled problem investigated is indeed not coupled, then both the problems in ther-
il

mics and elasticity can be solved separately (see [14]) and the additional term ﬁj( 1 (T —1T5)) has

a meaning of body forces. Since we assume that }; € C* @Q"), T*, T¢ € H'(QY), then B (T —Tp) €
H'(Q') and therefore 52 (8L (T — Ty)) € L* ().

Oxj

Definition 4.1 By a variational (weak) solution of the problem (P) we mean a pair of functions
(T,u), T € 'V, ue K, such that

BT,z —T)

a(u,v—u)+(gfl,|vf—vi|—|uf—ui |>

s(z—T) Vze 'V, (4.1)
S(v—u) VveK,

where for T,z € H'(Q), u,v € W we put



2
P oT 0z
BT,2) = Zb(T,z):/Qnij(x)a—mja—midx,
=1
2

s(z) = ;sb(zb) :/Qdex—l-/FT qozds ,
2

a(u,v) = Za‘(u,v):/Qcijkleij(u)ekl(v)dx,

=1

2
S(v) = ZSL(VL):/QFividX-i—/F P;ds,
=1

Gy (¥) =/ GBI vE vl [ ds = (g, vE — L ).
Ukt
Kk,

The problem (4.1)-(4.2) is equivalent to the following variational formulation:
Find a pair of functions (T,u), T € 'V, u € K, such that

(T) < I(z) Vze 'V, (4.3)
L(uw) < L(v) WEeK, (4.4)
where 1(z), L(v) are defined by
U(2) = 3b(z,2) = 5(2), L(¥) = Lo(¥) +Gon(¥), Lo(v) = 3a(v,¥) = S(v)

It can be proved that any classical solution of the problem (P) is a weak solution and conversely,
if the weak solution is smooth enough, it represents a classical solution.

To prove the existence and uniqueness of the variational (weak) solution we introduce the set of
all rigid displacements and rotations

s L L L L L L L L L L L L
P=m_P", P'={v [ v"'=(vi,v3),0] =aj —b'as,v5 =a5+ bz},

where at € RY, b* € R', i = 1,2, . = 1,...,s, are arbitrary and the set of bilateral admissible rigid
displacements

Po={veKNP|vePR = -veR}=4veP, =PNV|vf—v, =00n | JIV
k.l

Lemma 4.1 Let Q C R?, u’ € [HY(Q")]?. Then
eij(u’) =0, Vi,j=1,2 <= uj=aj—>bry, up=a5+bux, (4.5)
where af , a5, b* are real constants.
The proof is parallel to that of [13].
Lemma 4.2 Let T, #0, . =1,...,s. Then
Py =PnVy ={0},
i.e. only the zero function lies in the intersection P N Vj.

For the proof see [13],p. 91.



Lemma 4.3 Since e;;(v) =0 Vv € P, Vi, j, then

a(u,v)=0 YveP. (4.6)
Moreover, if w € W, e;;(w) = 0 Vi, j, then w € P.
For the proof see [5].

Lemma 4.4 Let there exist a weak solution of the problem (P). Then

S(w) < jgn(w) Vw € KNP, ie. / Fiwidx+/ Piwids—/ gfl | wf—wé |ds <0 VYwe KNP.
Q r U Tk

k,l

.

(4.7)
Proof. Since the problem is quasi-coupled, it is sufficient to investigate the elastic part of the problem
only. Since the weak solution u satisfies
a(u,v—u) = S(v—u) +jg(v) —jg(u) >0 VvekK,
then putting v=u+w,v—-—u=w € KNP, we find that v € K and
alu,u+w—u) - S(u+w—u)+ jm(u+w)—jg(u) >0.

Hence

, , k !
> (grluf —up | = v —vi )= (g, [ uf —ui | — | (utw)y — (utw) )=

= (g | uy —up | — | (0 —u}) + (W —wi) |).

a(u,w) — S(w)

Due to Lemma 4.3 and since | a+b |[<|a | + | b|,i.e. | a+b| — | a |<| b ], then S(w) < (gM, |[wk—wl|),
which completes the proof.

Remark 4.1 The Eq. (4.7) represents the condition of the total equilibrium and is the necessary
condition for the existence of the solution.

Lemma 4.5 Any classical solution of the problem (P) is a weak solution. On the other hand, if the
weak solution is smooth enough, it is a classical solution.

The proof is a modification of that of [4], [8], [16].
Theorem 4.1 Assume that

Py ={0}, PN K # {0} (4.8)

and

S(w) < jgn(w) we PnK\{0}. (4.9)

Then L is coercive on K and there exists a weak solution of the problem (P). If

| S(W) |> jgn(w) Vw e Py\{0} (4.10)

then the solution is unique. If

| S(w) |< jgn(w) Vw e Py

then for any two solutions u, u*

w=u"—uc Py, S(W) :jgn(U*) - jgn(u) (4-11)
holds.



Proof. It suffices to consider the elastic part of the problem (7). We shall use a slight generalization
of Theorem 1.4 of [13], Chapter 13.
Let | u | be a seminorm in a Hilbert space H with a norm ||u||. Let us define a subspace

R={ueH||ul|=0}.
Assume that dimR < oo and

cillull <[ u | +[[Hnul] < cofful| Vue H, (4.12)

where IIyz denotes the orthogonal projection to *R.
Let K be a closed convex subset of H containing the origin and K NR # {0}. Let 3: H — R! be
a penalty functional whose Gateaux differential satisfies

DA(tu,v) =tDB(u,v) VteR', t>0, u,ve H,

and let B(u) <0Vue€ H,
fu) =0<=ueckK,
Let f be a linear continuous functional on H and j : H — R! a continuous functional such that
j(v) >0, jtv) =tj(v) VteR', t>0, veH.
Assume that
flw) <j(w) Ywe KNR\{0}.

Then there exist positive constants ¢y, ¢z such that

|u|? +8(u) +j(u) - f(u) > ciflu] —c2 Yue H .M (4.13)
Let usset H=V,R =Py = PNV,

1
1 R 1
|v|=|zalv,v)| ,j=Jgm, =S, B(v)=< Z/ (v —ovl)*]?ds.
2 24 Jru
In order to verify (4.12), we use the Korn’s inequality and the decomposition

V — Q © PV .
Thus we obtain for all v € V' the inequality

IVI[* = vl + [[xn|* < ¢ [ Tov [* +[[Hpy I = c | v [ +]|Tpy |17,

where also Lemma 4.3 has been used. The right-hand side of (4.12) is obvious.
Now (4.13) implies

1
Sa(v,¥) +jgn(v) = S¥) > eilvl -2 W E K,

so that the functional L is coercive on the set K. Since L is convex and continuous on H, it is weakly
lower semi-continuous and the existence of a solution follows.
Next, let u, u* be two solutions of the variational inequality. We may write

a(u, u”—u) + jgn(u*) = jgn(u)

a(u®,u—u*) + jgn(u) - jgn(U*)

vV v

Summing these inequalities, we obtain



a(u—u*,u* —u) >0,
so that denoting w = u* — u, we have a(w,w) < 0. As a consequence w € Py follows.
Next, we have u* = u + w,
L(u) = L(u+w)

and

Jgn(u) = =S(W) + jgn(u+w) (4.14)

follows by inserting a(u + w,u + w) = a(u, u). Arguing like in the proof of Lemma 4.4, we obtain

| Jgn (0 + W) = jgn(u) |< Jgn(W).

Inserting from (4.14), we arrive at

| S(w) |< jgn(w). (4.15)
Now (4.10) yields that w = 0 and the uniqueness follows. The rest of the theorem is a consequence

of (4.14).

Remark 4.2 An example, satisfying Py = {0} and PN K # {0} is on Fig. 1, where s = 2. Let Ty be
parallel with the x1-axis. (Note that u, = 0 is prescribed on I'y). Then

PV:PﬂV:{V:(’Ul,’Ug)|V1:0,U%:a,,1)§:0},

where a € R is arbitrary. If

vf:/ Ffdx+/ Pids
Q2 I,

denotes the component of a resultant of external forces, then

S(w) = aV?, Jjm =la |G,
where w € Py and G = [, 1% | no | ds.
The condition (4.9) is equivalent to Vi > —G, since PNK C Py with arbitrary a <0 and (4.10) is
equivalent to | Vi |> G. Combining these conditions, we conclude that if Vi > G, there exists a unique

solution. If —G < V? < G, there exzists at least one solution. Any two solutions u and u* differ by a
“shift” w = u* —u € Py and its “value” is

a= D7 [ aPui —uit =l f as.

provided V¥ #0. If V} =0, the “value” of the “shift” is arbitrary.

5 Finite Element Solution of the Problem

Let the domain Q C RV be a bounded domain and let it be approximated by a polygonal (for N = 2)

or polyhedral (for N = 3) domain ). Let the domain Qj be “triangulated”, i.e. the domain

Qn = Qp U 0Qy, is divided into a system of m triangles T}, in the 2D case and into a system of
_ m

m tetrahedra T}, in the 3D case, generating a triangulation 7, such that Q, = |J Th, and such
i=1

that two neighbouring triangles have only a vertex or an entire side common in the 2D case, and

that two neighbouring tertrahedra have only a vertex or an entire edge or an entire face common in

the 3D case. Denote by h = max (diam T},;) the maximal side of the triangle T}, in the 2D case

i<m

and/or the maximal edge of the tetrahedron in the 3D case in 7;. Let pr. denote the radius of the



maximal circle (for 2D case) or maximal ball (for 3D case), inscribed in the simplex Tj,. A family of
triangulation {75}, 0 < h < hp < 00, is said to be regular if there exists a constant ¥9 > 0 independent
of h and such that h/pr, < ¥y for all h € (0,hg). We will assume that the sets T, N\ T',, T, N T,
T.N Fg, T.N fT, T.N fg, T, NTy coincide with the vertices or edges of T, .

Let R; € Q, be an arbitrary interior vertex of the triangulation 7,. Generally the basis function wﬁl
(where w! is a scalar or vector function) is defined to be a function linear on each element T}, € Tp
and taking the values w! (R;) = &;; at the vertices of the triangulation, where 4;; is the Kronecker
symbol. The function wfl represents a pyramid of height 1 with its vertex above the point R; and
with its support (supp w}z) consisting of those triangles or tetrahedra which have the vertex R; in
common. The basis function has small support since diam(supp w}b) < 2h and the parameter h — 0.
Further, for simplicity, we shall discuss the 2D case only.

Let us assume that N = 2. Let 'V}, and V}, be the spaces of linear finite elements, i.e. the spaces
of continuous scalar and/or vector functions in Qy,, piecewise linear over Ty, i.e

Wy = {ze0@) % xC@)N V| 2y, €PVTL €Ta},
Vi = {velC@P x-x[C@)PNV | v, € [PPVTh, € Ta)
and
Kp={veV,|vh—vF <0on UTH} =KnV,.
Definition 5.1 A pair of functions (Th,uy), Tn € Vi, uy € Ky, is said to be a finite element

approximation of the problem (P), if

1(2) Vze W, (5.1)
L(V) Vv € Ky, .

INIA

To find an a priori estimate for the error of the solution (T}, — T*,u; — u*), a modification of the
Falk’s technique (see e.g. [15]) will be used. Since the problem is quasi-coupled the method will be
based on the following lemma.

Lemma 5.1 Let | .| be the semi-norm defined by

| v |°= /019; eij(v)ei;(v)dx. (5.3)

L

Then it holds

a(u—up,u—uy) <
{a(up —u,v, —u) +a(u,v—uy) +a(u,v, —u) + jgu(vr) = jgn(u) + jgn(v) —
—Jgn(un) + S(a—vu) + S(uap —v)} (5.4)

Co|u—llh |2

for any v € K, vy, € Ky, cg = const. > 0.

Proof. The proof follows from the conditions

a(u,v —u) + (g, | v = vi | = [uf —ui |) = S(v —u)

a(un, v —up) + (g | (Ve = (Vi)e | = | (wi)e — (up)e ) = S(vi — up)

VveK,

>0
>0 Vv, € Kp, .

Adding these inequalities, adding and subtracting the term a(u,up) — a(up,u) to the resulting in-
equality and performing some modifications, then we obtain
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a(u—up,u—u,) < aluy,—u,v, —u)+a(w,v—up) +alu,v, —u)—S(v—-uy)—Svy—u)+
+ign (Vi) = Jgn(0) + jgn (V) — Jgn(un) .
Hence (5.4) follows immediately.

Corollary 5.1 Let K;, C K. Then substituting v = uy, in (5.4) we have

| u—uy |< c{a(up,—u,v,—u)+a(u, vh—u)+jgn(vh)—jgn(u)—S(vh—u)}% Vvy, € Ky, ¢ = const. > 0.
(5.5)

Theorem 5.1 Let OQ and its parts Ty, Ty, T, Ty be piecewise polygonal. Let T* € H?(Q'), u* €
[H2(Q)]%, 0 =1,...,s, be the solutions of (4.3)-(4.4) and such that the stress components 7;;(u") €
HY(QY),i,5=1,2,1=1,...,5, 7F € L), uk® ¢ H2(T.NTkY) holds for any of the boundary 052,
gt e L°(T*). Let 'V}, ¢ 'V, K;, C K and let the changes uf —ul, < 0 — uk —ul, = 0 and

n n
uf —ul =0 = uf —ul #£0 occur at finately many points of |JTE! only. Then
k.l

IT=Tuli=0(),  |u—uw|=O0h). (5.6)

Proof. Since the problem is quasi-coupled we will analyze both parts of the problem separately ([14], [16]).
For the second part of the problem the technique of the proof is based on a generalization of results
of [4], [7], [14], [16].

(i) Thermal part of the problem: Assume that T3 = 0. The approximate solution T}, € 1V}
minimizes the functional [(z) over 'V}, ie. I(T}) = mllg I(z). Since b(T,z) = s(z) for any
z€*Vh

z € V4, then b(T,T) = s(T) and therefore [(2) — I(T) = m{r‘l/ 16(T — 2,T — z). Moreover,
ze h

1
in 1(z) = I(T) = min =b(T —2,T —
in (2) —U(T) nin, (T -2T-2),

so that

WT — Ty, T —Th) <b(T —2,T — 2) Vze V.
But the bilinear form b(T, z) is continuous on H'(QY) x H*(Q!) x --- x H(Q%) x H'(Q*) and

bounded, i.e. | b(T*, z) |< M‘||T||||2]| VT, z € H' ("), M* = const. independent of T,z and
for all ¢, and V-elliptic, i.e. b(z,2) > ¢||z]|> Vz € 'V, ¢ = const. > 0, then we obtain

IT = Thlls < (M/e)2||T — 2| Vze v, (5.7)

The interpolation theorem yields (see [1])

|z — 2|1 < ee M1 h™, if z € H"H(Q), (5.8)

where 27! is a piecewise polynomial function of n-th degree on every triangle of the given trian-
gulation 7. Further, we shall assume that n = 1.

Let us put z = Ty, 2 = T}t € 'V, that is the function which on every triangle of the
given triangulation is equal to the polynomial interpolating of the exact solution T'. Then (5.7)
and (5.8) yield

1T — Tulls < (M/c)2ch = O(h),

which completes the thermal part of the proof.
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(ii) Elastic part of the problem:
Using Corollary 5.1 we will estimate (5.5). This estimate can be applied, provided the solution
u is sufficiently regular. Green’s theorem implies

a(u,v), — ) = S(vi, — ) + jyu(Va) — jgn(u / (cijrren (W) (vh = w)idx +
/ Tijnj (v —u);ds — / Pi(vi, —u)ids —
oQ Ir
AE w)idx + jgn(Vh) — jyn(u) =

= / C”MGM( ))(Vh - ll)idX +
/ Tijni (v, —u);ds —l—/ Tiin;(vy —u)ds +

T u

+/ lenj h_u) dS—/ Pi(Vh—u)idS—
Ukl T
/ W)idX + o (V1) — o (W) =
= / Tijnj (Vh - u)ids + jgn(vh) - jgn(u) =
Uk
= / Tn(w)(vy, —u),ds + / Ti(u)(vy —u)ds +
UTkl Ukt
+jgn(vh) - jgn(u) Z 0> VVh S Kh;

since

—aimj(cijklem(u)) =F, i=1,2, ae.inQ.

In virtue of Corollary 5.1 we have

1
2

lu—uy < cofa(up, —u, vy, —u) +a(u,v, —u) = S(vy —u) + jgn(ve) —jgn(0)}2, VveK,.
The bilinear form a(.,.) is bounded, so that

a(up —u,v, —u) < M|u, —ul||v,—u].

Since for every v € [C'(Q)]? N K the linear interpolate over 7y, vir € K, and since the last inequality
is valid for any arbitrary v, € Ky, it is valid also for v, = ups. As ab < 1ea® 4+ 5-b%, a,b € RY, € > 0,
then applying the interpolation theorem we obtain

1 1 1
a(up, —u, vy, —u) < §5M |up —u |? +2_5M | v —u |?< §5M | up —u |* +ce th2|lull3.

To estimate the integrals

L T | = T (0 — vp)n — (upy — up,)ds
kl
kil yr
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and

g (Ut ) = [ ok = v - - ulas,
k,l yrk

kel

we assume that ['. = |J ¥ = | (U F’gf) , where ['*! approximate piecewise linearly the boundary I'*.
I AN
Let us put v, = uy; in what follows.

To estimate the integral J; (Uflzl) we distinguish the following cases:

(i) uk(x) —ul(x) <0,x€ ffﬁ: since (uf —ul )7 =0, then J; (f];l) =0,
(ii) uk(x) —ul(x) =0 Vx € T Since then also (u%;),, — (ul;), = 0, we have J; (Fle) =0.
(iii) T* contains precisely one point of the change u¥ (x) — ul,(x) < 0 — uk(x) — ul (x) = 0. Then

=kl o o 5
| Ji(Te) < 1 (3))n = (' () — (g (%) = G| o oo /F’“’ | 7' | ds < cyih?

ci

holds by virtue of the assumptions and the interpolation theory. As the case (iii) may occur at
finite number of subintervals T'*! only, we conclude that

—kl
| J1(Te) IS eah?.
To estimate the integral Jg(Uffé ) we distinguish the following cases:

(i) uf(x) — ul(x) > 0 for x € T*: It holds

I UTE | + 2 L UTE | + (V) = Ggn(u) > 0,

kL kL
=kl .
and gkl | uf —ul | +7F (uf —ul) =0 a.e. on JI¥. Hence gk = —7 ae. on |JT, . Putting
k.l k.l
— k Ly, — (ub — ul k l kI
vy, = ugy, then (uf; —ub;) = (uf —ul)ps, where (uf; —ul ;)i (R;), R; € UTE ) R, are the

. . . : : —kl
points of the triangulation on Uy I'*. Then (uf —ul);; > 0 on UT,; and

{=g8'(uf —a))rr — (uf —up)] + gt [(uf —u})pr — (uf —u})]}ds =0.

kl

ci»

4

(ii) uf(x) —ul(x) = 0 for x € T¥: since (uf —ul)rr = 0 on UT,;, then

/pk,{Tf’(u)[(Uf —uw)rr — (uf —up)] +g¢'[| (uf —up)pr |+ [ uf —up[J}ds =0.
U ct

(iii) uf(x) —ul(x) < 0for x € I'*: Asuf —ul < 0on € I'* then | uf —ul |= —(uf — u}) and
k

—kl .
(uf —ul)rr <0. Thus g* = 75" a.e. on T,;. Putting v, = urs, then

ﬂl{gﬁl[(uf —uy)rr — (uf —wp)] + g8 [~ (uf —up)pr + (uf —uj)]}ds = 0.
urr

ci
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(iv) uf(x) — ul(x) = 0 changes to uf(x) — ul(x) # 0 for x € I'*: Let v;, = urs, then, since
we [Whe (TP, 7 € [LX(UT)P, gt € LX(UTY), (uf —u)) € [Wh(UL,)) and 7§ €
[L°°(UT")]?. Then

/_M{Tfl(u)[(Uf —uy)rr — (uf —up)] + ¢ (uf —up)rr | — |y — g [J}ds

U

<ot = )r = o = ey [ (7)) < ot
“rJur;
Thus

{rt' (W)[(uf —up)rr — (uf —wy)lds + jgn(urr) = jon(w)| < c;h”.

Using (5.5) and the above estimates then

Nf=

1
|u—uy |< o {55 |u—uy |? +e7 h2||lull3 + csh® + cth} ,
and (5.6) follows, choosing e sufficiently small.
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