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Abstract:

The basic fuzzy logic BL is extended by two unary connectives L,U (lower, upper) whose standard
semantics is, given a continuous ¢-norm, the function assigning to each = € [0, 1] the biggest idempotent
< z (least idempotent > z). An axiom system is presented and shown complete with respect to the
corresponding class of algebras. But the set of tautologies for a fixed continuous ¢-norm may have an
arbitrarily high degree of unsolvability.
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1 Introduction.

The reader is assumed to know the basic fuzzy propositional logic BL (see [4]). It is strongly complete
w. r. t. all BL-algebras: a theory T proves ¢ over BL iff er,(¢) = 1y, for each (linearly ordered) BL-
algebra L and each L-evaluation e of propositional variables which is an L-model of T' (i.e. er,(a) = 1y,
for each axiom a € T'). Moreover, it is standardly complete (see [2]): BL F ¢ iff e.(p) = 1 for each
(BL-algebra on [0, 1] given by a) continuous ¢-norm * (i is a x-tautology). For particular continuous ¢-
norm x (Lukasiewicz, Godel, product t-norm) we have standard completeness w. r. t. a corresponding
extension of BL (see [4]). Continuous ¢-norms non-isomorphic to any of the three just named are non-
trivial ordinal sums of copies of them (Mostert-Shields, see again [4] or elsewhere). Each such ¢-norm
determines its set of tautologies; for some of them we know a complete axiomatization. Hanikova [9]
has a complete axiomatization of L ® G; Agliano and Montagna [1] have results immediately implying
that tautologies of * are completely axiomatized by BL (without any additional axiom) iff * is an
ordered sum of infinitely many summands among which L occurs infinitely many times and also as
the least summand. Hanikova [9] also shows that if m # n then any sum of n summands II has a set
of tautologies different from the set of tautologies of any sum of m summands II. In more details, she
shows that there is a formula which is a *-tautology iff * is a sum of < k summands II (k¥ > 1) but
there is no formula which would be a * tautology iff * is a sum of > k summands II). Several problems
remain open, in particular: is there a continuous t-norm whose set of tautologies is not decidable
(recursive)? We can only give a positive answer (and say much more) for a language extended by two
new natural unary connectives.

A hedge is a mapping by [0, 1] into itself; it can be taken to be a truth function of a new unary
connective. Clearly, negation is given by a hedge. We shall work with non-decreasing hedges (truth
modifiers). One such famous hedge is Baaz’s A where Al =1 and Az = 0 for z < 1 (Ap may be
read “p is absolutely true”). BLa is the extension of BL by axioms Al — A5 (see [4]); it is strongly
complete w. r. t. BLa-algebras (linearly ordered BLa-algebras). Checking [2] it is easy to show that
BLA is standardly complete w. r. t. continuous ¢-norms with the above-described semantics of A
(A1=1,Az =0 0. w.). Recall also a hedge for Gidel logic studied in [7] and hedges for “very true”
are studied (over BL) in [6].

Let % be a given continuous t-norm. Recall that = € [0,1] is an idempotent (of %) if z xz =
x. Trivial idempotents are 0 and 1. Thanks to continuity, for each = € [0,1] there is a uniquely
determined element I(z) € [0,1] which is the largest idempotent < 2 and a uniquely determined
element u(z) € [0,1] which is the least idempotent > z. (If z is itself an idempotent then obviously
I(x) = z = u(x).) Now u and [ are non-decreasing hedges; the corresponding connectives will be
denoted by L,U. Clearly, Ly may be read as “p is very true” and Uy as “@ more or less true”; the
reader may find it more or less natural. We present a logic BL;U, show its completeness and standard
completeness and show that for each X C N there is a continuous t-norm Tx whose set, of tautologies
Taut(Tx) (in the language of BLy, is least as much unsolvable as X is; hence Taut(Tx) can have
arbitrarily high degree of unsolvability.
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2 The logics BLj,.

The language of BL;, is that of BL extended by three modalities A, L, U. Standard semantics, given
by any continuous ¢t-norm, was described above. First we find some tautologies.
Lemma. For each continuous t-norm, the following formulas are tautologies:



(LUL) Lo — p,p—=Up

(LU2) Lo = (Lp&Lyp),Up = (Up&Up)

(LU3)  A(lp = )& (¥ = (&) & (¢ = Up)) = (¢ = Uyp)
A(Lp = )&(p = (&y))&(h = ¢)) = (¢ = L)

(K) L =) = (Le = L), U(e = ¢) = (Up = Ut)

(LU4)  L(p&y)) = (Lp&Li)), Ulpdeyy) = (Up&Uy)

(LU5)  L(p Ap) = (Lo A L), U(p Ap) = (Up AU)

(LU6)  L(p V) = (LeV L), U(e Vi) = Up VUP)

Proof by easy checking. Note that LU1 — LU3 just say that for x = e(p),l(x) is the biggest
idempotent < z and u(x) is the least idempotent > z.

(K): If Iz < ly then (lz = ly) = 1 and hence I[(z = y) = (lz = ly) = 1. Assume Iz > ly; then
x >y, lr = ly = ly (lz,ly being idempotents, see [5],) and z = y = y (z,y being separated by an
idempotent), thus I(z = y) = ly and e(z = y) = (lz = ly) = 1.

(LU4): Assume z < y without loss of generality. Then lz < ly,loxly =z, zxy > xxx > lvxle =
lx > l(x xy), hence [(x xy) = Lz by (LU3), thus I(z xy) = lx * ly.

(LU5-6) — similar.

Definition. The logic BLy,, is the extension of BLa by LU1 — LU3 (i.e. the deduction rules are
modus ponens and A-generalization). A BL;,-algebra is an expansion L of a BLa-algebra by two
unary operations [, u making (LU1 — LU3) to L-tautologies.

Strong completeness. Let T be a theory over BL, and ¢ a formula. Then the following are
equivalent:

(i) TFar,, »
(ii) For each BLy,-algebra L, p is true in each L-model of T.
(iii) The same for each linearly ordered BL;,-algebra.

Lemma. BLy, proves (K) and (LU4-LUG).

Proof. Due to the completeness ot is enough to verify that (K), (LU4-LUG6) are L-tautologies for
each BLj,-chain. Verify easily that the above proof for continuous ¢-norms works also for BL — en-
chains.

Proof by checking the proof of strong completeness of BLA .

Concerning standard completeness one has to be careful. Analysing the proof of standard com-
pleteness of BL in [2] one can show that BLa has standard completeness. The following facts are
relevant:

(i) If L is a linearly ordered BLa-algebra (a BLa-chain) then Al = 1 and Az = 0 otherwise (since
Ap V =Agp is a tautology).

(ii) Each BLa-chain is a subalgebra of its saturation. Thus if L is a BLa-chain such that er,(p) < 1
you may assume L saturated and produce a continuous t-norm x and an evaluation €' such that
e, (p) < 1 in full analogy to the proof of standard completeness of BL. Now for BL;, we have (i)
but we do not have (ii): use the well-known example of L @& II with the inner idempotent removed.
Then for each non-extremal element [(xz) = 0 and u(z) = 1, but this is not the case in the saturation
(which is E®II). Thus we have to eliminate algebras like this, finding an axiom guaranteeing that the
interval between [(z) and u(x) is either a MV -algebra or a product algebra. This can be done using
a variant of the axiom (L,II, G) of [3]:

Lemma [3]. A BL-chain is an MV-chain, G-chain or II-chain iff the identity

(z=zxy)= (z=0)UyU[z=zxz)N(y=y*y)) =1

is valid in it.

i ilI‘his leads us to the following axiom. (LU!)

[A((Ly = Lp)&(Up = U))&(p = (p&1))] =

= [((p=Lo) V¥ =Uy) V (¢ = (p&e)) A = (&ei)))].



Observe that if a BL;,-chain makes (LU!) to a tautology then each interval [I(z), u(z)] is an MV -
chain, G-chain or II-chain, thus it is itself saturated or is a subalgebra of its saturation and the usual
construction works. We have proved:

Theorem. Let BL}, be the extension of BL;, by the axiom (LU!). The logic BL}, has standard
completeness: a formula is provable in BL;U iff it is a tautology w. r. t. each continuous t-norm.

3 Undecidability of x-tautologies.

Theorem. There is a recursive sequence {®,|n € N} of formulas of BL;,, and a system {Tx|X C N}
of continuous ¢-norms such that for each n € N and X C N,

®,, is a T'x-tautology iff n € X.

Consequently, if the degree of unsolvability of X is deg(X) and the degree of unsolvability of T'x-
tautologies is deg(TAUT (Tx)) then deg(X) < degT AUT (Tx) (e.g. if X is not arithmetical the
TAUT(Tx) is not arithmetical). Moreover, if X # Y then TAUT (Tx) # TAUT (Ty).

Proof. If i € X let Lx,; =1II,ifi ¢ X let Lx; = L; let Tx = &2,Lx,;. We construct a formula
U, such that ¥y is T'x-satisfiable iff k-th summand of Tx is Lukasiewicz. Then you may take & to
be “AV; k € X iff Ly, = II iff ¥}, is not T'x-satisfiable iff “AW;, is a T'x-tautology.

Take the following formula for ¥y, :

K k-1
Lgi =0& )\ ~A((Lgi = Ugi)& N\ (Ugi = Lais)&[((gr = Lar) = ]
i=1 i=1

The formula is true iff the value z of ¢y, is a non-extremal element in the k-th summand whose negation
with respect to the summand is # (non-extremal fixed point of the negation).

Remark. (1) One can write a formula ®, saying that if (the value of) g is an internal element
of the k-th summand then its double negation with respect to the summand equals to the value of g
(thus ((qx — Lqr) — Lqr) = qx). It can be used instead of the @y in the preceding proof.
(2) One can produce an extension of BLiu which is complete for L ¢ II. The axioms say: there are
at most two components; non-extremal elements of the first component satisfy double negation; non-
extremal elements of the second satisfy IT1,II2 relative to the component. (In this context note that
Montagna’s appears to offer a recursive axiomatization of each ordered sum of finitely many copies of
Lukasiewicz (without any use of A) and product just in the language of BL. His approach is uniform,
even if complicated.)
(3) For each formula ¢ (of BL, BLa, BL;,) one may produce (in non-deterministic polynomial time)
a quantifier-free formula ¢* of the language of real algebra such that ¢ is satisfiable over L @ II iff for
at least one halting run of the non-deterministic algorithm with the input ¢, ¢* is satisfiable in the
field of real numbers. Similarly for each finite ordinal sum. Thus for each finite ordinal sum the set
of satisfiable formulas as well as the set of tautologies is PSPACE. (cf. [8]).
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