
Radial Basis Function Neural Networks with Example Weights and LMS Linear
Regression Weight Settings

Jiřina, Marcel
2001

Dostupný z http://www.nusl.cz/ntk/nusl-34021

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 08.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-34021
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Radial Basis Function Neural
Network with Example Weights and
LMS Linear Regression Weight
Setting

M. Ji�rina

Technical report No. 848

November, 2001

Pod Vod�arenskou v�e�z�� 2, 182 07 Prague 8, phone: (+420)6605 3350, fax: (+4202) 85857 89,
e-mail:marcel@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Radial Basis Function Neural
Network with Example Weights and
LMS Linear Regression Weight
Setting

M. Ji�rina

Technical report No. 848

November, 2001

Abstract:

This report solves the problem, which arises in tasks where the importance or weight of individual learning
examples is not equal and is known in advance. A single hidden layer RBF neural net is described which
allows considering di�erent example weights in the learning process. This is made in two ways. First, when
computing settings of centers by cluster analysis, the distance of learning examples or centers is de�ned
so, that it is the larger, the smaller is the weight of one or another example. The second, we use weighted
LMS linear regression technique for setting of connection weights of connections from centers in the hidden
layer to the output neuron or neurons.

Keywords:
RBF neural network, weight of learning examples, weighted linear regression, weighted distance of
examples.

Radial Basis Function Neural Network with Example Weights and LMS Linear
Regression Weight Setting.

Abstract

This report solves the problem, which arises in tasks where the importance or weight of
individual learning examples is not equal and is known in advance. A single hidden layer
RBF neural net is described which allows considering different example weights in the
learning process. This is made in two ways. First, when computing settings of centers by
cluster analysis, the distance of learning examples or centers is defined so, that it is the larger,
the smaller is the weight of one or another example. The second, we use weighted LMS linear
regression technique for setting of connection weights of connections from centers in the
hidden layer to the output neuron or neurons.

Keywords

RBF neural network, weight of learning examples, weighted linear regression, weighted
distance of examples.

Contents

1. Introduction ... 2

2. Basic features of RBF NN... 2

3. RBF NN Learning.. 4

Basic steps.. 4

Distance using example weights ... 5

Linear regression with weights .. 6

4. A short program handbook.. 6

The learning program RBF-LRNW.exe.. 7

The RBF function approximator RBF-TSTW.exe .. 7

5. Results.. 8

6. Conclusions .. 8

References .. 8

Acknowledgment

This work was supported by the Ministry of Education of the Czech Republic under Project
No. LN00B096.

Radial Basis Function Neural Network with Example Weights

1. Introduction

One of problems which can be encountered with neural network learnning is the fact, that not
all examples presented have the same weight with respect to their influence or significance in
the learning set. This problem can be found in some problems with nonequal but known
(measurable) quality of data or where the significance is given by some variable known in
advance. In particle physics this variable can be so called effective crossection of a particle
corresponding to particular example in the learning data set [8]. Moreover, in the testing
phase one prefers to have the results more reliable for examples with high weight than for
examples with lesser one. We then differentiate between connection weight (i.e. transfer
ability of a connection) and the example weight, i.e. significance of a given example or
sample of the training set.

This of different example significance, i.e. weight, can be relatively easily solved by
presenting the examples with higher weight more often than the others. It supposes large
amount of learning iterations to make it possible. In systems based on some kind of
optimization such an approach has a limited use. In the RBF network we use linear regression
for optimization instead of iterative process. The example weights are included in regression
equations as well as into centers selection by cluster analysis.

The program is written in ANSI C++ for use under DOS/Windows as well as under
UNIX/Linux environment without any modification. Under DOS/Windows environment it
was written under Pacific C system [6] and Borland C++ system [7].

This type of neural network was used for comparison of GMDH and NNSU abilities with
“standard” type of neural network. Some results and comparisons are shown.

2. Basic features of RBF NN

Radial basis function neural networks are well known in literature and they are also a part of
different tools and application programs [1], [2], [3].

In our case the RBF neural net has three layers - one input layer, hidden layer, and output
layer, see Fig. 1.

inputs x x x x x

outputs y y y

hidden
layer

center
coordinates

C
jl

weights
l

ij

Fig. 1 Single hidden layer RBF neural network.

The neurons in hidden layer have RBF transfer function. There are n inputs, m outputs and k
hidden neurons. Each neuron of the hidden layer is connected to all inputs and all neurons in
the hidden layer is connected to the output neuron or neurons in case of several outputs. RBF
NN belong to feed-forward neural networks as in recall phase the signal simply goes one way
from inputs to outputs.

Let x=(x1, x2, ... xn) be vector of inputs,

y=(y1, y2, ... ym) be vector of outputs.

The input-output transformation is given by equations

yi=
∑

=

k

j 1
ij f(sj, ||x-Cj||), i=1, 2, .. m, (1)

where ij are output layer weights, Cj=(Cj1, Cj2, ... Cjk) is a center of RBF function, sj is a
parameter of particular RBF function expressing how broad the RBF function is, and f is a
radial basis function as follows. In our case we use (s = sj, x = ||x-Cj||) - see Fig. 1

Gaussian RBF f = exp(-(x/s)2)

Spline RBF
1

1
log4

1

2
2 +

+

=

ss

x
x

f

Bell function RBF
224 sx

s
f

+
=

 .

&RPSDULVRQ RI GLIIHUHQW 5%) IXQFWLRQV

�

���

���

���

���

�

���

�� �� �� � � � �

*DXVV

%HOO

6SOLQH

Fig. 2 Different RBF functions.

3. RBF NN Learning

Basic steps

Learning of RBF NN consist of three steps:

1. Stating of centers Cj for all hidden neurons. There are two methods, random selection
from the learning set, and k-means [1] (Jancey [9]) method of cluster analysis. We do not
describe them in detail.

2. Stating of RBF function broadness parameter sj (or simply s above). The broadness
parameter sj is an average distance of q nearest neighbours from the centre Cj.

• Concretely, initially set sj = 0. For each hidden neuron do the following:

• To get q nearest neighbours compute for all samples in the training set the D=||wij-
xik||.

• If (D>) then there is a different sample than particular center Cj.

• If the sample is already a member of the set of q nearest neighbours then ommit it, else
add D to sj. Finally sj is equal to sum of distances of center Cj to q nearest neighbours
from the learning set. In the end set sj=sj/q to get average which is considered as
broadness parameter of RBF function with the center Cj.

1. Computation of weights ij

• either by iterative adaptation, ie. by standard often used procedure: For it we use
simple iterative procedure controlled by learning parameter :

• ijr =(ijr-1) + (dj - yj)sj

• where dj is a desired value of output No. j and yj is RBF NN response to one
sample from the learning set. At the same time a cumulated error is evaluated
according to formula

• error(r)=error(r-1) + |dj-yj|.

• The process is stopped if accumulated error reaches a given limit or there was
performed a given number of iterations. Of course, the process one can stop manually;
in any case the result of learning can be as RBF NN file.

• or by linear regression: The iterative optimization procedure for weights ij of one
output neuron can be substituted with least squares minimization by linear regression
using well known general formula (XtX)-1Xtd, where t denotes transposition, d=(d1,
d2, ... dk)t is column vector of desired values of the learning set, and X is matrix of
hiddden neurons outputs (columns) for all samples (rows) of the learning set. This
approach would eliminate influence of learning parameter on speed of learning and is
explained in detail in corresponding chapter.

Distance using example weights

Positions of RBF centers can be chosen either by random selection or by cluster analysis.

If the number of centers m is given (or already selected) then in the first case one simply
chooses m different patterns, examples from the learning set. To consider example weights the
procedure can take into account the example weights so that the examples of higher weight
have larger probability to be chosen as a centre of RBF.

The other way for RBF centers selection is a cluster analysis. We use k-means [1] (Jancey [9])
algorithm with fixed in advance given number of clusters. Essential notion for cluster analysis
is notion of distance. We try to consider different example weights by method very similar to
gravitation law or Coulumb’s law

2
21

r

mm
cF =

 ,

where F is force, r distance of two bodies, and m1, m2 their masses or electric charges in case
of Couloumb's law, c is a constant. Let us recompute the distance to value R correponding to
bodies with unit mass or charge

22
21 1

R
c

r

mm
c =

 .

From it follows

21mm

r
R =

 .

We use this formula for computation sample distance if sample weights are given. In that case
m1, m2 are sample weights. These weights need not be normalized and then we use form

21mm

m
rR =

.

m denotes mean value of all example weights and which becomes R = r for all weights equal.

Linear regression with weights

The weights of connections from the hidden layer to the output neuron one can very
effectively adapt using mean square error minimization by linear regression. At the same
time, it is possible to take into account the example weights as mentioned above.

This is only to remind standard linear regression with weights of individual cases, examples
or rows of data matrix.

Let data be given in form of individual examples each in one row:

x11 x12 ... x1n w1 d1

x21 x22 ... x2n w2 d2

.........

xk1 xk2 ... xkn wk dk

total k examples be given. xij (i = 1, 2, ... n) are input values, dj the desired output and wj the
example weight. The matrix above can be written in form

X2Wd.

For least squares linear approximation with coefficients b = (b0, b1, ... bn) let us construct a
matrix X = 1X2 , where 1 denotes one column of 1's more left from the matrix X2 (to include
a constant) and then standard solution without considering weights is

dXXXb tt 1)(−=

and with weights

dXXXb tt ˆ)ˆ(1−= ,

where X̂ denotes matrix X with all elements in each row multiplied by corresponding
example weight wi . Of course the equations above are not solved using matrix inversion but
as a system of linear equations.

4. A short program handbook

The progrm consist of two parts, part for learning neural network, in fact for generting of
learned RBF NN as a file, and a part for usage of the learned RBF NN as a function
approximator according to eq. (1). The both programs are controlled by command line
parameters.

The learning program RBF-LRNW.exe

Usage: RBF-LRNW.exe <learning set file name> <No. of inputs> <No. of outputs>
[parameters]

where

<learning set file name> in this file each column represents one input variable, each row is

one learning example. The file should contain already normalized
data but there is an option alowing to use nonnormalized data as
well,

<No. of inputs> Number of first n columns representing input variables,

<No. of outputs> Number of next m columns representing output variables,

[parameters] Need not be used, then implicit values are used;

 s=xxx Number of neurons in the hidden layer (impl. s=15);

 f=g|s|b|z Transfer function - Gaussian, Spline, Bell (b or z) (impl. f=g);

 q=xxx No. of nearest neighbours for broadness computation q<s (impl.
q=1);

 i=xxx | r=xxx

 i=0 | r=0

No. of iterations or maximal error (impl. i=1000); when needed
early, hit any key to break iterations; if parameter a is set the net
will be saved in a file even if manual break occurs; when linear
regression is used no manual break is possible;

Noniterative computation using LINEAR REGRESSION;

 n=t|f Normalize the learning data (True|False) to zero mean and unit
dispersion (impl. n=f);

 e=xxx Learning parameter (eta) (impl. e=0.01);

 p=xxx Show results of iterations after each xxx steps (impl. p=100, max.
5000)

 z Do not stop when displaying current results;

 c=n|s Selection of centers: randomly without repetition(n) from the
learning set file, cluster analysis of the learning set file (s) (impl.
c=n)

 a=NNname.net Save the resulting neural net to the file NNname.net (impl. don’t
save).

Initially the weights lambda are set to random values <-0.1;0.1>.

The RBF function approximator RBF-TSTW.exe

Usage: RBF-TSTW.exe <RBF net file name> <testing set file name> [parameters]

<RBF net file name> is name of already learned RBF neural net;

<testing set file name> Each column of this file represents one input variable, each row is one
example; number of inputs is given by neural net file and they
correspond to first n columns of the testing set file. In the testing set
file may follow next m columns corresponding to output values.

[Parameters] (mandatory if corresponding values are in the data file)

t=xxx number of outputs; if there are output values in the testing set file this
parameter is mandatory, otherwise it is not used.

w in the data file are given the example weights (mandatory if these
values are in the testing set file)

Output of this program is file results.res containig the same number of data rows as the testing
set file. In results.res after columns of original testing set file (including optionally weights
and desired output values) follows mark => and then the output values generated by RBF
NN.

5. Results

The approach used in the RBF method and program presented tries to diminish the largest
disadvantage of RBF as well as backpropgation algorithm in necessity to estimate properly
the learning parameter, to choose most suitable RBF function, and choose size of
neighbourhood by stating number of its members q. From these prameters the learning
parameter is most essential for speed of learning. This disadvantage is solved by excluding
parameters of iterative procedure by using linear regression (no parameters to set) and by
standardized settings. The nonstandard settings are only for user’s experimentation and to
keep some compatibility with possibilities of standard approaches.

We found that for standard and double arithmetics it is possible to use up to 120-150 hidden
neurons before numerical problem in linear regression occurs. As to learnind data size, 15000
items of 23 input values (inputs) caused no problems.

6. Future plans

Future modification of this program will use other kinds of RBF function more, or even not
exactly RBF functions, namely functions mentioned e.g. in [10].

There exist lot of other variants and modifications of RBF neural networks, namely a version
with iterative adaptation of centers and weights at the same time [1]. The method cited does
not accounts different sample weights and we hope to develop its variant with sample
weights.

A rather different approach are the growing networks reminding GMDH neural network
principle [4]. The building a neural network starts with a single neuron and according to error
evaluation new neuron is connected and learned without modification of settings of already
existing neurons [11].

As to the problem of overtraining, it may occur but it can be solved the same way as in
GMDH [4], [5] method - by splitting learning set to training and to evaluating part.

References

[1] Schwenker, F., Kestler, H. A., Palm, G.: A Comparison of LVQ and RBF Networks for
Classification and Data Clustering. 6th Microcomputer School, Neural Networks Theory and
Application, Brno, Czech Republic, CCB, s.r.o., 1994, pp. 233-238.

[2] Orr, M. J. L.: Introduction to Radial Basis Function Networks. April 1996,
http://www.anc.ed.ac.uk/~mjo/intro/intro.html

[3] NeuralWorks Professional II/PLUS, NeuralWare, Inc., Pittsburgh, Penn., USA, 1991

[4] Ivakhnenko, A.G.: Polynomial Theory of Complex Systems. IEEE Trans. on System, Man
and Cybernetics, SMC-1(1971), No. 4, pp. 364-378

[5] Tamura, H., Kondo, T.: Heuristics free group method data handling algorithm of general
optimal partial polynomials with application to air pollution prediction. Int. J. Systems Sci.,
vol 11 (1980), No. 9, pp. 1095-1111.

[6] Pacific C Programmers Development Environment for MS-DOS V7.51, Freeware
Version. (C) 1984-2000 HI-TECH Software. PO Box 103, Alderley QLD 4051 Australia,
hitech@htsoft.com, http://www.htsoft.com, ftp.htsoft.com.

[7] Borland C++, Borland International, Inc.

[8] ATLAS Technical Proposal for a General-Purpose pp Experiment at the Large Hadron
Collider at CERN. CERN/LHCC/94-43, LHCC/P2, 15 December 1994.

[9] Lukasová, A., Šarmanová, J.: Cluster analysis methods (in Czech), SNTL Praha, 1985.

[10] Sosík, P.: RBF Networks with Quasi-interpolating Functions. 6th Microcomputer School,
Neural Networks Theory and Application, Brno, Czech Republic, CCB, s.r.o., 1994, pp. 151-
157.

[11] Esposito, A., Marinaro, M., Oricchio, D., Sarpeta, S.: Approximation of Continuous and
Discontinuous Mappings by a Growing Neural RBF-based Algorithm. Neural networks
(Pergamon Press) vol. 13 (2000), pp. 651-665.

**

*

