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Abstract:

Parallel implementation of iterative agregation/disagregation method with various block smoothers is pro-
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1 Introduction

In past several decades much attention has been devoted to iterative methods for large sparse systems
of linear equations. Krylov subspace methods become very popular, especially for solving the systems
that arise from discretization of partial differential equations. The efficiency of these methods is
dependent on system matrix properties. Although Krylov subspace methods have several limits when
nonsymmetric systems are solved, fast convergence can be achieved if the system matrix is symmetric
and positive definite. There are many libraries where Krylov subspace methods are implemented
taking into account both the theoretical results and the efficiency of the implementation.

Considering this we decided to investigate another approach that is not based on Krylov subspace
methods and a class of matrices that is more general than symmetric and positive definite. Szyld
showed that Schwarz type methods work well for M-matrices; the behaviour is similar to that one that
arises from elliptic equations. The choice of subspace plays a crucial role for domain decomposition
methods. The subspace is determined by geometrical properties in the case of elliptic equations.
We hope that the relevant information can be obtained from the Markov chains that describe the
dependence among the elements.

Many real problems can be described by models based on Markov chains with a huge spaces of
states that lead to the systems with large stochastic matrices. We would like to show that these
systems can be solved quite efficiently when ”domain decomposition techniques with core space” are
implemented on a cluster of workstations.

In this report, based on known theoretical results, the parallel implementation of the iterative
aggregation/dissagregation method with various smoothers is suggested. Formulating the algorithm,
we emphasize on its computational efficiency in the parallel environment.

2 Markov Models

In this section some basic definitions and well-known relations concerning Markov chains and systems
with stochastic matrices are briefly reviewed.

Definition 2.1 A Markov process is a stochastic process which satisfies the memoryless condition
known as Markov property

Prob{X (t) <z | X (to) = z0,..., X (tn) =xn} = Prob{X (t) <z | X (t,) = x,}
for all integers n and for any sequence to,t1,...,t, such that to <t <...<t, <t.

If the departure of the state X (¢) is dependent on parameter ¢, the Markov process is referred to as
non homogeneous. If not, it is referred to as homogeneous. If the state space of the Markov process is
discrete it is called Markov chain. In this case a subset of natural numbers is chosen.

Two types of Markov chains may be identified: discrete time Markov chains (DTMC) and con-
tinuous time Markov chains (CTMC). In the case of CTMC the Markov property causes exponential
distribution of the time which is spent in a fixed state. For DTMC the Markov property causes a
geometrical distribution. In the following we shall focus on DTMC.

DTMC are established by a transient matrix P (k) = (p (k)za) € RV*N whose elements describe

one step transition probabilities in step k. The element p(k);; of the matrix is a probability of
transition from one state to another in k-th time step

p(k),; = Prob{Xps1 = j| X = i} 1)
The probability that the process in n-th step goes from state ¢ to state j is defined by matrix
Pm)™ = (pm))

p(m)) = Prob{Xpin = j| X =i}



For P (m)"™ we can write
Pm)™ =Pm)P(m+1)...P(m+n—1)
For any [ holds the Chapman-Kolmogorov equation
Pm)™ =P m)" Pm+1)"Y .

In case of homogenous DTMC, it means that one step transition matrices do not depend on the step
number, i.e. P (k)= P (I) for any k,[. It allows us to simplify formulas above in the following way

pn) — pn

For a description of the process we can use nonnegative vector z whose elements x; satisfy the
condition Ef\;l z; = 1. Each element mgk) of vector describes probability for the Markov chain to be
in state ¢ in step k.The formula below shows how to calculate the probability vector z("*™ in time

n 4+ m from known vector ("™ in time n
gntm)™ = ()" pm.
This formula can be simplified and the relevant information is than obtained from the equation
el =2TP, tle=1, (2)

where e = (1,...,1)T.The solution of (2) can be interpreted as long term behaviour of the Markov
chain usually called stationary probability vector. Note that the matrix P is stochastic matriz since
pij > 0 for all ¢, and iji]- =1 for all 1.

Stochastic matrices are matrices with special properties. These can be expressed as a consequence
of general Perron-Frobenius theorem, for proof see [4].

Theorem 2.1 (Perron-Frobenius) Let P is a square nonnegative irreducible matriz of order n > 1.
Then its spectral radius p(P) is a positive simple eigenvalue of matriz P with positive eigenvector. No
other eigenvalue of P has a nonnegative eigenvector.

The following lemma is a straightforward consequence of Perron-Frobenius theorem for stochastic
matrices.

Lemma 2.1 Spectral radius of stochastic matriz is always 1.
Let us express the equations (2) as follows

Az =0, tle=1, (3)
where A = (I — P)T and I is the identity matrix.

From Perron-Frobenius theorem we conclude that for an irreducible stochastic matrix the solution of
(2) always exists and it is unique. The equivalence of equations (3) and (2) ensures that the solution
of (3) also exists and (if P is irreducible) is unique. Since 1 is a simple eigenvalue of matrix P, matrix
A is singular with rank n — 1.

3  Numerical methods for stochastic matrices

In this section we overview methods that can be used for solving system (2) with stochastic irreducible
matrix P as well as the methods that can be applied to the system (3) with a singular matrix A.
Widely used methods as direct methods or Krylov subspace methods are only briefly mentioned
with respect to their application for the system (2); point iterative methods for both (2) and (3)
are considered as a special case of block iterative methods. The main attention is devoted to the
aggregation/disaggregetion method and its part — block iterative methods. These algorithms are
discussed in more details.



3.1 Direct methods

Direct methods, such as Gauss elimination and LU (LDU) decomposition can be applied to solve (3).
Note that they are implemented in a special way since the coefficient matrix is singular and the system
is homogeneous. If we consider irreducible Markov chain, then the coefficient matrix A is irreducible
and it has one-dimensional null space. The implementation of direct methods that handles singularity
makes use of this fact.

3.2 Krylov subspace methods

The class of Krylov subspace methods involves both the algorithms that generate the approximation
to the eigenvalue problem as well as these ones that solve system of linear equations with nonsingular
coefficient matrix. The use of Krylov subspace methods for the system (3) with singular matrix A is
a slight modification of standard implementation, for details see[13].

3.3 Block iterative methods

In this section, block formulation of iterative methods such as power method, Jacobi method and
Gauss-Seidel method are presented. They are simple modifications of point iterative methods. Block
formulation allows us to make use of parallel implementation. First, we shall state the theorem that
justifies the use of block iterative methods for the system (2), proof of the theorem can be found for
example in [4].

Theorem 3.1 Let PT is a stochastic irreducible acyclic matriz of order n with rank(PT) =n — 1.
Then limy_, o (PT)* = ev”, where e = (1,...,1)T, vTe =1 and Pv = v.

Note that the theorem can be applied even when the matrix P is not acyclic. Denote P =1/2(I+P)
and suppose that P is irreducible and Pv = v for some nonnegative vector v. Then P is irreducible
and acyclic matrix and Pv = v is satisfied.

3.3.1 Block power method

Block power method is based on (point) power method that is well known as a method for determining
the eigenvector corresponding to a dominant eigenvalue of a matrix.
In order to describe the block power method let us denote a partitioning of the matrix P as follows

Py Py Py
Py P Pon
Pnl Pn2 Pnn
where n is a number of block rows/columns. The vector z = (X1,...,X,,) is partitioned in the same

way. We consider only such splitting which ensures that the diagonal blocks are square matrices. The
algorithm that describes the block power method is very simple and can be expressed as follows.

Algorithm 1 Block power method

XY arbitrary such that X° >0 and ), X? =1
for k=1,2,...until X* is accurate enough do

for i=1,...,ndo
" N k—1
sz = Zj:l PiJ'Xj
end for
end for

The convergence of block power method is satisfied due to theorem 3.1.



3.3.2 Block Jacobi method

Jacobi method generates the approximation to the solution of the nonhomegeneous system with non-
singular coefficient matrix. Jacobi method converges if the spectral radius of the iteration matrix is
less than one. Let us express the matrix A from (3) as A = D — (L +U), where the matrices D, L and
U represent diagonal, strictly lower-triangular and strictly upper-triangular parts of A, respectively.
The iterative matrix for Jacobi method is D~'(L + U). This matrix is nonnegative and note that
the solution of the homogeneous system of linear equations (3) is equivalent to the solution of the
eigenvalue equation D~*(L+U)z = z. The assumptions of Perron-Frobenius theorem are fulfilled and
the existence and uniqueness of the solution are assured. If the matrix A is acyclic then the spectral
radius p(D~'(L+U) < 1 and the Jacobi method with X° > 0 converges. Compare with theorem 3.1.

Block Jacobi method is a generalization of point Jacobi method. Let us consider block partitioning
of matrix A such that diagonal blocks are square matrices whose dimension can vary. Vector X
represents the corresponding partitioning of the vector z. Using this notation and supposing that the
matrix A consists of n x n blocks, the system (3) can be rewritten using the block formulation as
follows.

Dy U -+ Uiy X1
Lyi Dy -+ Uz X2 - 0
Lnl Ln2 o Dnn Xn

Based on this notation the pseudocode of block Jacobi algorithm is described by algorithm 2.

Algorithm 2 Block Jacobi algorithm
for i1 =1,...,ndo
Dj; = liu,
l; is lower triangular matrix with ones on its diagonal
u; is upper triangular matrix.

end for

XY arbitrary such that X° >0 and ), X? =1

for k=1,2,...until X* is accurate enough do
for i=1,...,ndo

VE = (N2 L X+ 2 U XY
XF = (Liu;)1YF is solved using back substitution
end for
end for

3.3.3 Block Gauss-Seidel method

Gauss-Seidel method could be seen as a slight modification of Jacobi method. If we consider the same
splitting of the matrix A as for Jacobi method, e.g. A = D — (L + U) then the iterative matrix is
(D — L)7'U and this matrix is nonnegative. The equivalence of Gauss-Seidel method with power
method can be shown in the same way as for Jacobi method. Its convergence is also assured according
theorem 3.1 supposing that A is an acyclic matrix.

Using the notation introduced in the previous subsection we have algorithm 3 for block Gauss-
Seidel algorithm.

Remark

1. Convergence for block iterative methods is a consequence of the convergence of the point iter-
ative methods. The matrix properties that ensure the convergence are preserved when block
formulation is used.



Algorithm 3 Block Gauss-Seidel algorithm
for i=1,....,ndo
Dy; = liu;
l; is lower triangular matrix with ones on its diagonal
u; is upper triangular matrix.
end for
XY arbitrary such that X% >0 and ", X? =1
for k=1,2,...until X* is accurate enough do
for i=1,...,ndo
Vi = (02 L XF + Y0, U X
XF = (l;u;)7'Y} is solved using back substitution
end for

end for

2. Note that if the Jacobi/Gauss-Seidel matrix is a cyclic matrix than convergence of methods is
not, assured since the spectral radius is one.

3.4 Aggregation/disaggregation algorithm

Now we address some effective method for computing stationary probability vectors. We analyze
aggregation/disaggregation methods, which show very good behaviour, especially in the case of large
Markov chains. It is well known ( see [9],[13]) that such type of method is extremely good in the case
of irreducible, but nearly completely decomposable matrices. But even if matrix is only irreducible,
the method is very useful.
The aggregation/disaggregation algorithm is expressed by following few steps.

We shall define mapping g : 1,...,N —— 1,...,n, which maps the indices to aggregation groups.
Using g we define communication operators: the restriction R and prolongation operator S(z).

(Rx), = Z zj, zeRN

g9(j)=i
(S(z)z), =2 T for x>0
i 9(3) (Rw)g(i)
For nonzero elements of R and S (z) we can write
Rygipi =1 (4)
T

S(@)igi) = T — (5)
9() ™ ( Rl‘)g @)
The fact that steps 2 and 3 of the algorithm 4 are sensible is formulated in the following lemma
that is proved in [9].

Lemma 3.1 If P is an irreducible stochastic matriz and x is a positive vector than B(x) defined in
step 2 of the algorithm /4 is also irreducible stochastic matrix.

One can think about SPV algorithm 4 as a kind of two grids method. The steps 2,3,4 represent
coarse grid correction, step 5 is smoothing, with operator 7' as a smoother.
Theorem below, which is proved in [9], states the local convergence of algorithm 4.

Theorem 3.2 Let P is an irreducible stochastic matriz, let g be a mapping which defines aggregation,
let M,K be a splitting which defines both smoother T and matriz Y. Then algorithm /4 is locally
convergent for any parameters s, t .



Algorithm 4 SPV(P,TY)

Require: Let P be irreducible stochastic matrix, g define aggregation, 1 > 0 is initial vector.

Require: Let P= (I+PT) /2, A= I—P=M-K. Define T = (M‘lK)t and Y = (ﬁ)sfor t>1
and s > 1, 1 = Tx1. Let € > 0 is final tolerance.

Step 1 Set k=1
Step 2 Construct

B(zy) = RY S(ax) (6)

Step 3 Solve B (xy) 21, = 2k, elz, =1
Step 4 Set vg41 = S (xk) 21
Step 5 Compute and normalize zp1 = TVp41
if ||z — xga1|| > € then

k=k+1, go to Step 2
else

Stop
end if

We will be interested mainly in three types of smoother.

1. simple power method M =1 K=P
2. Block Jacobi method — known as Vantilborg method M;; = A;; when g (i) = g (j)

3. Block Gauss-Seidel mehod — known as Koury-McAllister-Stewart method M;; = A;; when g (i) >
9(j)-

First of them is, of course, the slowest. But in many situations one may not be able to get matrix P
elementwise. For example, when we analyze Stochastic Automata Networks, P is formed as a sum of
tensor products. In such situations, the first smoother can be the only one, which is computable.

4 Parallel implementation

The formulation of aggregation/disaggregation algorithm with any type of the block smoothers allows
its parallel implementation. It turns out that the efficiency of the computation is dependent on the
implementation of smoothers since the main amount of work is done in them. Load balancing can be
treated by many ways. One possible way is to create enough groups and then to distribute average
amount of work to each processor. Using this approach, one should face the problem, that aggregation
groups can be dictated by the problem and the convergence rate can be decreased by artificial changing
of them. Nevertheless some strategies should be found.

4.1 Parallel performance of the aggregation/disaggregation algorithm

Our purpose is to implement the algorithm 4 with smoothers described by algorithms 1, 2, 3 in a
parallel environment. Roughly speaking, the agreggation/disaggregation algorithm consists of three
main parts. First of them can be described as a construction of the matrix B(x) and it corresponds
with step 2 of the algorithm 4. In the second part, a normalized solution of the homogeneous system
with the coefficient matrix B(xy) is searched and the transformed vector is computed using prolon-
gation operator (step 3,4) . In the third part (step 5), a particular smoother T' — generated by any of
block iterative algorithms — is used to generate new approximation xjyi.

Our implementation is based on the block partitioning of the system coefficient matrix A according
to the aggregation groups. Namely, if g(i) = g(i +1) = ... = g(i + k) = j for i € {1,...,N},
j €{1,...,n} then the j-th block row/column consists of i, . .. ,i+k (point) rows/columns of matrix A.
Block rows of the matrix are distributed among processors. From the point of view of parallelization,
the first part of the algorithm 4 seems to be a bottleneck since a communication among processors



is necessary for computation of matrix B(zy). The second part of the algorithm is accomplished
using only one processor. Note that the matrix B(xy) is typically of a ”small” dimension under the
condition that n << N. The third part of the algorithm — that can be itself an iteration process —
includes the biggest amount of arithmetic operations. On the other hand, block approach allows
parallel implementation of step 5 of the algorithm 4.

4.2 Tools

The first part and the third one of the algorithm 4 are treated using parallel tools. Let us suppose that
the matrix is distributed among m processors. In order to compute the matrix B(xy) data from m — 1
processors are gathered on one processor. Standard MPI functions that provide communication among
processors and exchanging data are used. The coarse operation of the third part of the algorithm 4
is a sparse matrix vector multiplication in he parallel environment. Functions from Aztec library are
called in this step. Aztec library is also used when block iterative methods such as power, Jacobi and
Gauss-Seidel are implemented in parallel way.

4.3 Data structure — DVBR format

The matrices are handled using standard efficient sparse schemes. We need such a sparse scheme that
is suitable for parallel computations and it is both flexible and standard. Considering our purposes
we finally decided for distributed varying block row (DVBR) format, that is the generalization of the
VBR format, for details see [14, 1] . This format is based on a block partitioning of the sparse matrix.
The blocks can be easily distributed over the nodes of cluster as it is shown on figure 1.

processor 1

processor 2

processor 3

Figure 1: Schema of block structure of matrix. Diagonal blocks are grey, the others are black.
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