
On the Super-Turing Computational Power of Non-Uniform Families of Neuromata

Wiedermann, Jiřı́
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Abstract:

It is shown that the computational power of non-uniform infinite families of (discrete) neural nets read-
ing their inputs sequentially (so-called neuromata), of polynomial size, equals to PSPACE/poly, and of
logarithmic size to LOGSPACE/log. Thus, such families posses super-Turing computational power. From
computational complexity point of view the above mentioned results rank the respective families of neuro-
mata among the most powerful computational devices known today.
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1 Introduction

The term ‘neuromata’ (a shorthand of ‘neural automata’) was introduced by Š́ıma and Wiedermann
[5]. Neuromata differ from standard neural nets both in their functionality and in the way they receive
their input. While standard discrete neural nets are usually considered as devices computing values of
a Boolean function of a fixed number of input variables that are read by a net in parallel, neuromata
act as recognizers of languages that read the respective words sequentially, via a single input neuron.
Due to this fact a neuromaton can process input sequences of arbitrary, even of infinite, length. In [8]
it was shown that neuromata also posses learning abilities.

The computational power and efficiency of a single neuromaton was studied in depth in [5]. One
of the respective main results was that while the computational power of a single neuromaton equals
to that of a finite automaton (and hence both recognize regular languages), the descriptional power
of neuromata is much larger. There are instances of regular languages whose recognition requires
exponentially larger finite automata as compared to the size of the respective neuromata. Thus, one
can say that neuromata present a much more economical tool than finite automata for performing the
respective tasks.

In this paper we will extend the studies initiated in [5]. We will study the power and efficiency of
infinite families of neuromata. This is a standard approach in complexity theory allowing characteri-
zation of computational power of finite devices that are not capable to process inputs of arbitrary size.
For the first time this approach has been used for determination of computational power of circuits
whose size was bounded w.r.t. to the number of their inputs [3]. The respective results established
the foundations of so–called non–uniform computational complexity theory. A similar framework has
been also used for investigation of computational power of families of (discrete) neural nets of various
kinds (for a recent overview, cf. [4]). A number of related results in neurocomputing also concerns the
power of analog neural nets (cf. [2]) or of neuroidal nets [8]). Thus, a similar study of neuromata will
complement these results. In our case, the problem is that the standard approach to infinite families
cannot be applied directly since neuromata are not restricted to processing of fixed-size inputs. To
overcame this problem the paper makes use of a recent idea from [7] that enables creating of infi-
nite families also from devices (such as neuromata) that are capable to process inputs of arbitrary
size. Thanks to this idea we will be able to characterize the computational power of neuromata in
a novel way. As compared to families of recurrent neural networks the main result essentially shows
that a different input convention of neuromata (that makes them functionally equivalent to finite
automata) does not lead to degradation of computing power of the respective families which is equal
to PSPACE/poly (for neuromata of polynomial size).

The structure of the underlying paper is as follows. In Section 2 we will briefly recall basic notions
used in the sequel. We will start by reminding the definition of neuromata and we will proceed to
the definition of infinite families of neuromata and of the languages recognized by such families. The
main notions from non-uniform complexity theory are also mentioned. The main result characterizing
the computational power of polynomially bounded families of neuromata will be given in Section 3.
The proof of the respective result is constructive, giving direct simulation between neuromata and
Turing machines with advice. Here also the consequences of our results and their comparison with
other related results will be given. The merit of the respective results will be discussed in Section 4.

2 Preliminaries

Basically, a neuromaton is a restricted kind of a discrete recurrent (cyclic) neural net. We will give
here merely an informal definition of a neuromaton. For a complete definition, see [5].

A neuromaton is a finite network of neurons. The topology of the network can be seen as a directed
graph whose nodes are neurons and whose edges are directed connection among neurons. To each node
and edge an integer number is assigned called the threshold and the weight, respectively. Each neuron
is a discrete threshold unit that can be in an active or passive state. Signals are being sent along
the directed edges. If an active neuron ni sends a signal to its neighboring neuron nj with threshold
tj along the corresponding directed edge (ni, nj) with weight wi,j , then neuron ni contributes to the
excitation of nj with the value wi,j . If the sum of excitations of a neuron nj from all its neighbors
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(called a total excitation) achieves or exceeds the threshold value tj then we say that nj fires, i.e. it
becomes active and sends a signal to its neighbors along its outgoing edges. If the total excitation of
nj remained bellow the threshold value nj remains passive — no signal is sent.

There are two distinguished neurons to which no edges are entering, called the input neuron and
the terminal neuron. There also is an other distinguished neuron called output neuron whose activity
signals the acceptance of the input stream.

The computation of a neuromaton is defined as follows. Prior to the beginning of the computation,
all neurons are set into prescribes states (passive or active ones). The terminal and the output neuron
is set to the passive state. Then the computation begins. All neurons work synchronously. Let
x1, x2, x3 . . . , xn be the finite sequence of Boolean inputs called the input stream. Then, at time
t = 1, 2, 3 . . . , n the input neuron is set to the active state if and only if xt = 1; otherwise it is set
to the passive state. Each neuron computes its total excitation and depending on this value and
the respective threshold the neuron enters the active state, or not. In such a way the computation
proceeds until at time t = n the input is exhausted. At that time the terminal neuron becomes active
and remains so until the end of the computation. The computation then continues in the way as
described before. If at some time t ≥ n the output neurons fires the input stream is accepted and the
computation halts.

The language recognized by a neuromaton N is the set of finite input streams accepted by N . The
size of N is given by the number of its neurons.

In [5] it was shown that to each regular language R described by a regular expression of length
m there is a neuromaton of size O(m) that accepts R, and, vice versa, each neuromaton of size m
accepts a regular language that can be described by a regular expression of size O(m).

Now, in order to enable a consideration of more complex languages we will introduce the notion
of infinite families of neuromata.

Let Fp = {N1,N2, . . . | size(Ni) ≤ p(i)} be an infinite family of neuromata of increasing size
bounded by polynomial p = p(i). Such a family is also called a non-uniform family since in general
there need not exist an algorithmic way to compute the description of Ni, given i. Thus, there is no
‘uniform’ way to describe the members of the family. Intuitively, there is no better way to describe
the family than to enumerate all its members.

The language recognized by Fp is the set

L(Fp) =
⋃

n≥0

{w|w ∈ {0, 1}n, w is accepted by Nn ∈ Fp}

Note that in order to define the above language we have restricted each neuromaton from Fp to
work only on inputs of a fixed length. The class of languages accepted by families of neuromata of
polynomial size will be denoted as POLY-NA. In addition to this class we will also consider the class
LOG-NA (the class of languages recognized by neuromata of logarithmic size), the class POLY-C
(languages recognized by the class of all Boolean circuits with a polynomial number of gates), the
class POLY-NN (standard recurrent, or cyclic, discrete neural nets of polynomial size, reading their
inputs in parallel), and the class POLY-FA (finite automata with a polynomial number of states).

Our main tool for characterizing the computational efficiency of the respective classes will be Turing
machines with advice. Such machines have been introduced by Karp and Lipton in their seminal paper
[3] establishing the foundation of non-uniform complexity theory. An advice is a special kind of an
oracle. Effectively, an oracle allows inserting of outside information into the computation.) This
information may depend on the concrete input and is given for free to the respective oracle machines.
By this, the respective machines may gain the super-Turing computing power, viz. they can decide
languages that are not recursively enumerable (cf.[1]). The difference between an oracle and an advice
lies in the ‘usefulness’ of the additional external information. Contrary to the case of oracles, the
advice value must not depend on a concrete input word; rather, it can only depend on the size of the
input. Intuitively, the information delivered by an oracle makes sense only for the given input; the
information offered by an advice can be used for all inputs of the same size.

Definition 2.1 An advice function is a function f : Z+ → Σ∗. An advice is called S(n)-bounded if
for all n, the length of f(n) is bounded by S(n).
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Technically, a Turing machine with advice described by the advice function f operates on its input
of size n in much the same like the standard Turing machines do. However, such machine can also
call its advice by entering into a special query state. After doing so, the value of f(n) will appear at
the special read-only advice tape. Since that time the machine can also use in its computation the
contents of this tape.

For the classes of languages recognized by Turing machines with advice, we will introduce a stan-
dard notation used for non-uniform complexity classes (cf. [1].)

Definition 2.2 A language L belongs to complexity class C/F iff L is recognized by a Turing machine
from complexity class C with advice function f ∈ F .

Common choices considered for C that we shall use are: LOGSPACE (‘deterministic logarithmic
space’), PTIME (‘deterministic polynomial time’), PSPACE (‘polynomial space’), etc. Common
choice for F are log, the class of logarithmically bounded advice functions, and poly, the class of
polynomially bounded advice functions.

For more information concerning the complexity of non-uniform computing cf.[1].

3 The power of infinite families of neuromata

Our next aim will be to show that the class POLY-NA coincides with the class of languages (stan-
dardly denoted as PSPACE/poly) accepted by polynomially space bounded Turing machines with a
polynomially bounded advice function. We will do this by sketching a mutual simulation of neuromata
by Turing machines with advice of the respective type.

Theorem 3.1 The following assertions are equivalent:

• L ∈ POLY-NA

• L ∈ PSPACE/poly

Proof: Let L ∈ POLY-NA. This means that there is a polynomial p and a family Fp such that
L = L(Fp). We will design a Turing machine A with a polynomial advice that accepts L in a polynomial
space.

Define the advice function f of machine A as follows: for inputs of size n it assigns the description
of the respective neuromaton Nn ∈ Fp. Since size(Nn) ≤ p(n) there is a description of Nn that is
also of a polynomial size w.r.t. n. Let d(n) be the size of such description. Then, clearly, f is a
polynomially bounded advice function. On input w, with |w| = n machine A works as follows. It
first calls its advice function (with argument n.). As a result of this call it gets on its advice tape the
description of Nn. This description is bounded by d(n). Now all what remains to do is to simulate the
actions of Nn on input w. Clearly, this can be done by A in space O(d(n)) (see the description of a
computation of a neuromaton in the previous section). Thus, L ∈ PSPACE/poly.

For proving the opposite direction we will have to develop a specific simulation algorithm that
must reflect the fact that Turing machines and neuromata have different input mechanisms.

Let L ∈ PSPACE/poly, let A be a single-tape Turing machine with advice, with a separate input
tape. Let A accept L, let f be the respective advice function of size d(n), let A be of space complexity
p(n). For each input of size n we will construct a specific neuromaton Nn that will accept exactly the
words w ∈ L of size n.

The size of the automaton will be bounded by q(n) = O(max{n, d(n), p(n)}). It will store the
current contents of both the advice and working tape of A and update it in accordance with A’s
action on input w. Note that only the part corresponding to the contents of the working tape has to
be updated since the value of the advice function is given ‘once for all times’, for inputs of size n.
The i-th cell on each tape will be represented by module Mi of neurons that in addition to the tape
contents also represents the state of machine’s finite control and the presence or non-presence of the
respective tape head. The entities represented in module Mi include:
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• the current symbol stored at i-th cell of the working tape; one neuron is needed firing iff the
symbol stored is equal to 1;

• the i-th symbol of the advice tape (which is for all inputs of length n the same); one neuron will
do, firing iff the respective bit of the advice is 1;

• the Boolean variable indicating the presence of the working head (one neuron);

• the Boolean variable indicating the presence of the advice head (one neuron);

• the current state of A (k neurons iff A has k states).

Thus, the values of the respective entities are represented by firing or non-firing of the respective
neurons in Mi. The modules are concatenated to form a linear array enabling sending of signals to
their neighbors, simulating in this way the movements of the heads on working and advice tape of A.

There is one technical problem related to the fact that a neuromaton can only read its input via
the single input neuron while a Turing machine with a separate input tape can copy any symbol of
its input tape into arbitrary cell on its working tape. Moreover, a neuromaton must read its input at
each step, until the input is exhausted, while a Turing machine can read its input at any time and
can move freely over the input tape at any direction. In order to circumvent this problem we will
force machine A to read all of its input w of size n, in one scan, and store it at the beginning of its
working tape, in the first n cells. Since that time machine A will not be allowed to read its input tape
— it will be forced to operate like a machine without the input tape, having the input written on the
initial segment of its single working tape. All this can be arranged by ‘reprogramming’ the machine
accordingly. What is important is the fact that this change will not affect the assumed polynomial
space complexity of the underlying machine.

In order to achieve a similar distribution of input bits into the respective modules, our neuromaton
first reads its input, bit by bit, via its input neuron that is located in the n-th module. After entering
into the system at each time tick each input bit read keeps proceeding to the left neighboring module.
This mode of activity is terminated when the terminal neuron announces to all modules to stop moving
the bits to the left since the end of the input stream has been reached. At that time the i-th input bit
finds itself in the i-th module as needed, for i = 1, 2, . . . , n. From now on the neuromaton can start
to directly simulate the actions of a ‘reprogrammed’ machine A which works as a single working tape
machine.

The simulation is further complicated by the fact that the neuromaton has its working tape rep-
resentation superposed on its advice tape representation. Thus, the simulation of each move of A
requires the transfer of information between the head on the working tape and the head on the advice
tape. Nevertheless, all this can be done, but the details are tedious and are left to the reader.

From this sketch of simulating neuromaton it is clear that it is of a polynomial size and that it can
be constructed so as to accept exactly those words from L that are of size n. Thus, we can construct
an infinite family Fq such that L = L(Fq). It follows that L ∈ POLY-NA.

�

By a similar technique one can also prove an analogous result for neuromata of logarithmically
bounded size. However, this time the use of a separate input tape of the respective Turing machine
with advice must be restricted. We will assume that this input tape is one-way read only tape read
in an on-line manner (that is, at each step the machine moves its input head) in order to compensate
for the sequential reading mode of the corresponding neuromaton. The resulting claim, and the
reformulation of the previous theorem is given in the following corollary.

Corollary 3.1 (i) POLY-NA= PSPACE/poly and

(ii) for an on-line one-way Turing machine, LOGSPACE-NA=LOGSPACE/log

It is known that POLY-FA=LOGSPACE/poly [7], POLY-C=PTIME/poly ([3]) and finally POLY-
NN=PSPACE/poly (cf. [4] for numerous references). Referring to the known hierarchy of complexity
classes (cf. [1]) and the respective separation results we get the following assertion:
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Corollary 3.2 POLY-FA ⊂ POLY-NA, and
LOGSPACE-NA ⊂ POLY-FA ⊆ POLY-C ⊆ POLY-NN =POLY-NA

This brings an additional proof to that given in [5] that neuromata are more efficient than finite
automata. On the other hand, when seen as non-uniform families the power of neuromata equals to
that of general neural nets. The power of non-uniform circuit families lies somewhere in between that
of finite and neural automata families.

4 Conclusions

We have shown that non-uniform families neuromata posses a super-Turing computational power.
In general, it seems that non-uniformity jointly with interaction and infinite computations plays a
much more important role not only in contemporary computing (such as represented e.g. by the
Internet), but in general in all evolutionary interactive systems with a potentially endless life-span
(such as human societies or artificial living systems in general - cf. [9]). This understanding has
lead J. van Leeuwen jointly with the present author to the revision of the classical paradigm claiming
that each computation can be captured by Turing machines. The extended paradigm states that any
computation can be captured by interactive Turing machine with advice [6]. Thanks to their potential
of processing potentially infinite input streams neuromata (enhanced perhaps by more complex output
possibilities in the spirit of Moore or Mealy automata) can model interaction. The introduction of
infinite families of neuromata allows the non-uniform computations. Thus, the infinite families of
neuromata also support the extended paradigm mentioned above.
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