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NONSMOOTH EQUATION METHOD FOR NONLINEAR
NONCONVEX OPTIMIZATION *

Ladislav Luksan, Jan Vléek, Institute of Computer Science AVCR,
Pod vodarenskou vézi 2, 182 07 Praha 8, Czech republic and Technical University of
Liberec, Halkova 6, 461 17 Liberec, Czech Republic

1 Introduction
In this contribution, we are concerned with a general nonlinear programming problem:

(NP): Find the minimum of function f(x) on the set given by constraints ¢;(z) < 0
and cgp(r) = 0, where f : R* — R, ¢; : R* — R™ and ¢g : R* — R™E are
twice continuously differentiable mappings (¢; < 0 is considered by elements) and
I={1,....om}, E={m;+1,...,m;+mg}.

Necessary conditions (the KKT - conditions) for the solution of problem (NP) (if
gradients of active constraints are linearly independent) have the following form

g(z,u) = 0,
C[(l‘) S 0, Ur 2 0, U]C](III)G = 0, (].].)
ce(x) = 0,

where

g(z,u) =V f(z) + Y wVe(z) + Y w;Vei(z) = V(z) + Ar(z)ur + Ap(z)ug
i€l i€E
and A;(z) = [Ve(z) 1i € I], Ag(z) = [Vei(x) 2 i € E]. Here uy € R™ | up € R™” are
vectors of Lagrange multipliers, U; = diag(u; : 7 € I), C(x) = diag(c;(z) : i € I) and
e is the vector with unit elements.

The second set of conditions in (1.1), so called complementarity conditions, can be
transformed to equations using the Fischer-Burmeister function ¢ (a,b) = va? + b? —
(a+0b), which is zero if and only if @ > 0, b > 0 and ab = 0. Therefore, complementarity
conditions are satisfied if and only if ¢)(u;, —c;(x)) =0, i € T and (1.1) can be replaced
by the nonlinear system

g(z,u) = 0,
’QZJ[(’LL[,—C](IL')) == 0, (12)
ceg(x) = 0,

where ¢y (uy, —cr(x)) = [¥(ui, —ci(x)) i € 1]"
The Fischer-Burmeister function v (a,b) is continuously differentiable at a point
where |a| + |b| # 0 and is semismooth if |a| + |b| = 0. Moreover, function ¥?(a,b) is

3This work was supported by grant GACR No. 201/00/0080

1



continuously differentiable everywhere [2]. Therefore, (1.2) is a system of semismooth
equations, which can be solved by the Newton method [10], [2], [8]. The gradient and
the Clarke subdifferential of the Fischer-Burmeister function are given by formulas

!
Vo) = [T | 2o (13)
_ cos¢ — 1
01¥(0,0) = conv(be[LOJQﬂ sinqﬁ—l}' (1.4)

Formula (1.4) implies that [—1, —1]" € 9¢(0,0). Therefore, setting r(a,b) = Va2 + b?
for |a| + |b] # 0 and r(a,b) = 1 for |a| + |b| = 0 we obtain

Mo L
V| € 0 (a,b). (1.5)
r(a,b)
Linearizing system (1.2) by using (1.5), we obtain a step of the Newton method
G A Agp Az g
(R +CHR;'AT  —(R; —U)R;* 0 Aup | =— |91 ]|, (1.6)

where
G =G(z,u) = V:f(x) + Z u;V2e;(z) + Z u; Ve (),
i€l i€E

Ar = Ar(z), Ap = Ag(x), Cr = Ci(x), Ur = Ui(z), Ry = diag(r(u;, —ci(z)) i € ),
g =g(z,u), r = Yr(ur,—cr(x)) and cg = cg(x). Note that linear system (1.6) is not
suitable for iterative solvers in general since it is nonsymmetric and can have unsuitable
diagonal elements. Therefore, an equivalent system is constructed and solved as is
shown in Section 2.

The algorithm of a nonsmooth equation method can be roughly described in the
following form. For given vectors z € R", uy € R™, ug € R™F we determine direction
vectors Ax, Auy, Aug by solving linear system equivalent to (1.6). Furthermore, we
choose step-length v > 0 and set © := x + aAx, ur :== uy + aAuy, ug = ug + cAug.
Individual parts of the algorithm require more detailed explanation.

The use of the Fisher-Burmeister function for solving dense medium-size nonlinear
programming problems is studied theoretically in [3] and [4]. Unfortunately, no com-
putational experiments are presented. The aim of this paper is an application of the
nonsmooth equation approach to the solution of large sparse problems and, especially,
the use of the indefinitely preconditioned conjugate gradient method in this case.

2 Direction determination

System (1.6) is nonsymmetric with the dimension n + m; + mg. This system can be
symmetrized by the multiplication of a diagonal matrix and reduced by the elimination
of inactive constraints. In the subsequent text, we use the simplified notation ¢; = ¢;(x),
ri = 1w, —ci(2)), i = Y(ui, —ci(x)) = ri — (i — ¢) so OY;/Ou; = (u; — 13)/mi,
awl/acz = (Ci + Ti)/Ti.



Definition 1. Let 0 < gy < 1/2. We say that the constraint with index i € I is active,
if

which can be written in the form
ri —u; < go(ri + ). (2.2)

Lemma 1. Let the constraint with index i € I be active. Then u; > 0 and (4/5)ey <
(ri + ¢;)/ri < 2. Furthermore, there are numbers €, and €, such that the constraint
with index i € I is active if u; > 0 and |¢;| < equ; and inactive if u; < 0 or |¢;| > eou;.

Proof. (a) Obviously, 0 < (r; — u;)/r; < 2 and 0 < (r; + ¢;)/r; < 2. Assume that
u; < 0. Then (r; — u;)/r; > 1 which together with the previous inequalities implies
(ri —w;)/(ri +¢;) = ((r; — w;)/ri)(ri/(r; + ¢;)) > 1/2, which is in contradiction with
(2.2), since g9 < 1/2. Using (1.5), we obtain

T

s0 01;/0c; and —0; /Ou; lie on the unit circle centred at point [1,1]. If the constraint
with index i € I is active, then (2.2) implies that —0v;/0u; lies under the line defined
by (2.1) (with equality), see Fig. 1.

_ v,
Ou, . ,
N2
[1—“‘"] +[1+—‘2"’f] 1
dc; Ou,
1
y oy, v
W O
ou, dc,
DT
X, 1 X, oy

Fig. 1



Denote by (z1,y1) and (z2,y2) intersections of the circle (2.3) and the line defined by
(2.1) (with z; < z3). Then y = oz and

(1+ed)r* —2(1 +e¢)r+1=0.
If the constraint with index ¢ € [ is active, then

awz 1 +é&9— 260 4
> 1= > =0
aCi 1+80 5

(we used the inequality gy < 1/2).

(b) Obviously, y; = gozq > 0. Furthermore, (2.3) implies 25 < 2, which gives ys =
gory < 1. If —0;/Ou; < yi, then (2.1) holds and the constraint with index i € [
is active and if —0v;/0u; > yo, then (2.1) cannot hold and the constraint with index
1 € I is inactive. We have proved above that the constraint with index ¢ € [ is inactive
when u; < 0. Assuming u; > 0, we can write

Ovi g m gL (2.4)

N J1+ A2

where \; = |¢;|/u;, @ € I. Since the function on the right hand side of (2.4) is increasing
(with the value 0 for A\; = 0 and the limit 1 for \; — oco), there are numbers £; and &,
such that —0v;/0u; <y if |¢;|/u; < e and —0Y; /Ou; > yo if || /u; > e9. O

Theorem 1. Let the pair x* € R™ and u; € R™ solve (1.1) and the strict comple-
mentarity conditions u} + |¢;(z*)| > 0 Vi € I hold. Then there exist neighborhoods
N C R" and M; C R™ of x* and u} such that the constraint with index i € I is
active when ¢;(z*) = 0 and inactive when uf = 0 whenever x € N and u; € M.
Moreover, if v — x* and u; — u}, then (r; —u;)/(r; + ¢;) — 0 for all active constraints
and (r; — u;)/(r; + ¢;) — oo for all inactive constraints.

Proof. Let uf > 0. Since ¢;(z*) = 0 and function ¢;(x) is continuous, there exist
neighbourhoods N; C R™ of z* and M; C R of u} such that u; > u}/2 if u; € M; and
lei(2)] < eyuf/2 if © € N; so the constraint with index 7 € I is active by Lemma 1. Let
uf = 0. Since ¢;(z*) < 0 and function ¢;() is continuous, there exist neighbourhoods
N; € R™ of ¥ and M; C R of u} such that |¢;(z)] > |¢i(z*)]/2 if x € N; and
u; < |ei(x*)|/(2e9) if u; € M, so the constraint with index ¢ € I is inactive by Lemma 1.
If we set N' = N;erN; and put M7y equal to the Cartesian product of M;, ¢ € I, then
the constraint with index i € I is active if ¢;(z*) = 0 and inactive if u} = 0 whenever
z € N and u; € M;. Moreover, if x — 2* and u; — u}, then u; — uf > 0 and ¢; = 0
for all active constraints, implying r; — uf and (r; — u;)/(r; + ¢;) — 0. Similarly,
u; — 0 and ¢; — ¢;(z*) < 0 for all inactive constraints, implying r; — |c;(z*)| and
(ri —ui)/(ri + ¢;) = 0. R O
Let us denote active quantities by ;, ¢;, 75, ¥; and inactive quantities by ;, ¢;, 775,
¢;. Eliminating equations corresponding to inactive quantities from (1.6), we obtain

Aiy = M;! [(RI +Cr) " Ry + AT Az ] ; (2.5)



where M; = (R; + C;)"*(R; — U;) and

g? AZ A [ Az ) g
AT —M; 0 Ady | =— | (Rr+Cr) 'Ry | (2.6)
Ag 0 0 Aug CE

where M; = (RI + C’I)_I(I%I — UI) and

oy

= G+ AM AT,
= g+ AIMfl(RI + C’I)ilRﬂLI-

Nl

Condition (2.2) guarantees that matrices M; and M; ' are bounded. Therefore also
G is bounded (if G' and A are bounded). Moreover, Theorem 1 insures that M; — 0
if © — 2%, uy — uj and the strict complementarity conditions hold at the solution
point. The property M; — 0 is very useful, since system (2.6) can be efficiently
preconditioned by the way described in [5] if M; has small elements. The second set
of equations of (2.6) was obtained after multiplying corresponding set of equations of
(1.6) by the diagonal matrix (R; + C;)~'R; whose elements lie in the bounded interval
[1/2,5/(42¢)] by Lemma 1. If ¢y has a reasonable value (usually £y = 1/10), then this
scaling does not influence the final inexact solution of (2.6).

Vector Aty is determined by solving system (2.6) and vector Ay is computed from
(2.5). System (2.6), which is symmetric and indefinite of order n + m; + mg, can be
solved either directly by using the sparse Bunch-Parlett decomposition or iteratively
by using preconditioned Krylov-subspace methods for symmetric indefinite systems.
Motivated by [5] and [7], we will investigate the preconditioner

D A, Ag
C=|AT -M; 0 |, (2.7)
AT 00

where D is a positive definite diagonal matrix derived from a diagonal of G. Let us
denote the matrix of system (2.6) by K. Then the following theorems are proved in
[9].

Theorem 2. Consider preconditioner (2.7) applied to system (2.6). Then matrix
KC~! has at least M + 2mp unit eigenvalues but, ifG—Dis nonsingular (the usual
case), then at most m; + my linearly independent eigenvectors corresponding to these
eigenvalues exist. The other eigenvalues of matrix KC~! are exactly eigenvalues of
matrix ZLGZp(ZEDZg)~", where [Z, Ag] is a nonsingular square matrix, Z5Ag = 0,
7L 7 =T and where G = G+ 1411]\7[;1121?, D=D+ AIMfIA?. If ZLG Zp, is positive
definite then all eigenvalues are positive.

Theorem 3. Consider preconditioner (2.7) applied to system (2.6) and assume that
G — D is nonsingular. Then Krylov subspace K = span{r, KC~'r,(KC 1)%r,...},
where ¥ € R"T™*™E has a dimension of at most min(n + 1,n — mp + 2).



Theorem 4. Consider conjugate gradient method with preconditioner (2.7) applied
to system (2.6). Assume that initial estimation of the solution is chosen in such a way
that hI = 0 and h, = 0 at the start of the algorithm (h,, hI and hg are parts of the
residual vector). Let matrix ZLG Zy be positive definite. Then:

(a) Vector A*x (the first part of the solution) is found after n — mp iterations at
most.

(b) The algorithm cannot break down before A*z is found.

(¢) Error ||Az — A*z|| converges to zero at least R - linearly with quotient

VE—1
VE+1

where r is the spectral condition number of matrix Z5EGZp(Z5DZy) ™"

(d) If Ax = A*x, then also Aty = A*u; and A*ug can be determined by the formula

A*up = Aug + (ALD 1Ag) *ALD 'h,.

Theorem 2 shows that the efficiency of a Krylov-subspace method preconditioned
by (2.7) does not depend strongly on the choice of active and inactive variables (matrix
G is the same for every splitting). Nevertheless, the splitting significantly influences
the resulting solution since the equations corresponding to inactive variables are solved
precisely and only active variables are obtained by the inexact iterative process.

Although the Fisher-Burmeister function has good theoretical properties, we fi-
nally used the modified Fisher-Burmeister function in our algorithm, since it was
more efficient in computational experiments. The modified Fisher-Burmeister function
Y (a,b) = va? + b? + 2 —(a+b), where ¢ is a sufficiently small positive number, is dif-
ferentiable everywhere and r = v/a? + b? + £2 is continuous at the origin. The following
theorem characterizes inaccuracy, which appears in the complementarity conditions if
the modified Fisher-Burmeister function is used.

Theorem 5. Let ¢*(a,b) =0 and |a| < |b|. Then
lal < 2[0] +\/]e? = 6%(/2,

1
lallpl < 5 (e +3[6]) max(le — o], [a] +[b]).

Proof. Let ¢°(a,b) = J. Then
Va2 + b2 +e?2—a—-b=9

SO
>+ +e?=(a+b+0)*=a’>+b>+ 6>+ 2ab+ 2(a + b)d
or
2lal[b] < |e* = &%| + 2(|a| + [b])]6]. (2.8)
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This implies

|£% — 67| |al |£% — 67|
E 0oy < =21
0] 0] |al

so |a| lies between roots of the quadratic equation 2|a|* — 4|a||d| — |¢? — 6| = 0 which
have opposite signs. Therefore,

1 1
lal < 18]+ 51/46% +21e? — 82 < 18] + S (200] + /212 = 62)) = 200] + /|2 — 52 /2.

Using (2.8) again, we obtain
2|al[b] < |e = &[(le] + 18]) + 2(lal + [b])]0].

2]a| < + 46/,

Substituting max(|e — 4|, |a| + |b]) for both |¢ — §| and |a| + |b| we obtain the second
assertion of the theorem. O

There are two important cases. First, if ¢°(a,b) = 0, then § = 0 and, therefore,
la] < e/v/2, |al|b] < (¢/2) max(e, |a| + |b]). On the other hand, if || = ¢ then |a| < 2¢,
|al|b] < 22(|al + [b]).

The use of the modified Fisher-Burmeister function is advantageous, since the case
when |a| + |b| = 0 is not exceptional. Moreover, the use of the basic Fisher-Burmeister
function can lead to difficulties caused by computations in the finite precision arith-
metic. We have tested both these possibilities and obtained better results with the
modified Fisher-Burmeister function. Note that all equations used in this section hold

for the modified Fisher-Burmeister function if we set r; = /c? + u? + 2.

3 Step-length selection

Step-length o > 0 can be determined in many ways. Basic requirement for the selection
of step-length is the satisfying of a suitable goal criterion. This criterion is usually a
merit function which is a combination of the objective function and a measure of
constraint violation. Motivated by [5] and [7], we use the following merit function
P(a) = f(z+alz)+ (ur + Aup)cr(z + alz) + (up + Aug) cp(z + alAz)

+ Sl + adur, —ei (0 + adn) P + Zlles (@ + ada)|, (3.1)

where o > 0, which is a generalization of the merit function introduced in [5]. The
following theorem holds.

Theorem 6. Let Az, Auy, Aug be obtained by an inexact solution of (2.6) such that

AGA 121! AE‘ AIL’ R Ag o i}x
A? —M; 0 At |+ | (Rr+Cp) 'Rpr | = | by |,

where hy, hr, hi are parts of the residual vector and let Au; is given by (2.5). Then
P'(0) = —(A2)"GAz —o ([¢r])” + llex]”)
+ (A2)"hy + 0 (U (B + Cr) Ry 'hr + cphig) - (3.2)
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If
(Az)"GAz

[1]1* + lleg*”
and if (2.6) is solved with a sufficient precision, namely if

o> —

(3.3)

(A2)"hy + 0 (U] (Ry + CO)R; 'y + chhi) < (A2)"GAz + o (|[yr|* + les]?) . (3.4)

then P'(0) < 0.
Proof. Differentiating (3.1) by «, we obtain

P'(0) = (Ax)" (Vf+ Ar(ur + Aup) + Ap(ug + Aug))
+ ov] ((Br+ Cr)R;" AT Az — (Ry — Up) Ry Auy) + och ApAz. (3.5)

Using (2.5) and (2.6), we obtain equalities
(A)T (Vf + Ar(ur + Aup) + Ag(up + Aug)) = —(Az)TGAz + (Ax)T hy,
7 ((Rr+ Cr) R AT A = (Ry — Up) Ry Auy) = = + 47 (Rr + Cr) Ry ',

cpALAzT = —||cg|® + cphE,

which after substituting into (3.5) give (3.2). If (3.3) holds, then the right-hand side
of (3.4) is positive so if (2.6) is solved with a sufficient precision, then (3.4) holds and
P'(0) < 0 by (3.2). O

Condition (3.3) restricts the choice of parameter o weakly. If matrix G is positive
semidefinite, any value o > 0 satisfies this condition. Inequality (3.4) gives one pos-
sibility for the computation of parameter o, which implies the inequality P'(0) < 0.
But it is usually more efficient for practical computation to choose parameter o as a
constant and replace matrix G' by some positive definite diagonal matrix if condition
P'(0) < 0 does not hold.

To improve local convergence properties of the method, we can use another merit
function

1
Qo) = 5||g(x + aAx,ur + aAur, ug + chuE)H2
1 1
+ Sllr(ur + alur, —er(a + alx))|]* + Slen(a + alz)|>.  (3.6)

This function is a natural criterion for nonlinear equation solvers. Since the square
of the Fisher-Burmeister function is continuously differentiable, the same property has
the function @(«). The following theorem characterizes properties of this function.

Theorem 7. Let the assumptions of Theorem 6 be satisfied. Then

Q') = —lgl’ = loell* = llesll*
+ g he + 7 (Rr + Cr)R;'hy + chhg. (3.7)

If (2.6) is solved with a sufficient precision, namely if

9"he 07 (B + Cr) Ry hy + cphi < |lgIP + 01l° + llesl, (3:8)
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then Q'(0) < 0.
Proof. Differentiating (3.6) by «, we obtain

Q'(0) = ¢"(GAz + AjAur + ApAup)
+ 7 ((RI +CHR'ATAx — (R; — UI)R,_IAUI) +cpALAT.  (3.9)

Using (2.5) and (2.6), we obtain equalities
g" (GAx 4+ A;Aup + ApAug) = —g g+ g" h,

vl ((Rr + Cr)R; ' AT Az — (R — Up) Ry Aug) = —||¢q||> + &7 (Br + Cr) Ry hr,
cpARAT = —|lcp|® + cphe,

which after substituting into (3.9) give (3.7). The right hand side of (3.8) is always
positive so if (2.6) is solved with a sufficient precision, then (3.8) holds and Q'(0) < 0
by (3.7). O

Both functions P(a) and @(«) have some advantages and disadvantages. Func-
tion P(«) is more closely related to the optimization problem. Using restarts, this
function decreases the probability to find the saddle point of the objective function
on the feasible set. Unfortunately, function P(«) is not sufficient to prove the global
convergence. On the other hand, function Q(«) can be used in the globally and super-
linearly convergent Newton method [2], [8]. Unfortunately, this method converges to
a KKT point satisfying (1.1), which may not be the required minimum if the second
order sufficient conditions do not hold. We have implemented and tested four differ-
ent strategies for step-length selection. All of these strategies use function P’(0) for
restarts. Using a sufficiently small value of o, we compute P'(0) and if P'(0) > 0,
then we replace matrix G' by some positive definite diagonal matrix and repeat the
direction determination. In the first strategy, using the Armijo procedure with ini-
tial estimate o = min(1, A/||Az||), we accept the first value for which P(a) < P(0)
(since function Q(«) is not used, the first derivatives need not be computed during the
step-length selection). In the second strategy, the value « is accepted if at least one of
conditions P(a) < P(0) and Q(«) < Q(0) is satisfied. In the third strategy, condition
P(a) < P(0) is used after restart and condition Q(a) < Q(0) is used otherwise. In the
fourth strategy no condition for step-length selection is used, i.e., the initial estimate
«a = min(1, A/||Az]||) is always accepted.

4 Description of the algorithm
The above considerations can be summarized in the algorithmic form.

Algorithm 1.

Data: Parameter for the active constraint definition ¢y. Minimum precision for
the direction determination 0 < @ < 1. Line-search parameter 0 < g < 1.
Step bound A > 0.



Input: Sparsity pattern of matrices V2F and A. Initial choice of vector x.

Step 1: Initiation. Choose the value o > 0 (e.g. 0 =1). Fori € TUFE set u; := 0.
Compute value f(x) and vectors ¢;(x), cg(z). Set k := 0.

Step 2: Termination. Compute matrix A := A(x) and vector g := g(z,u). If
conditions (1.1) are satisfied with a sufficient precision, then terminate
the computation. Otherwise set k := k + 1.

Step 3: Approzimation of the Hessian matriz. Compute approximation G of the
Hessian matrix G/(z,u) by using the differences of gradient g(x,u) as in
[1].

Step 4: Direction determination. Split constraints into active and inactive and
build linear system (2.6). Determine positive definite diagonal matrix D
as an approximation of the diagonal of G and determine a representa-
tion of the preconditioner (2.7) (Bunch-Parlett decomposition or Schur
complement based representation, see [7]). Writing system (2.6) in the
form Kd = b, set w = min(||b||,1/k,©) and determine direction vectors
Az, Aty and Aug as an inexact solution of (2.6) (with the precision
||KKd —b|| <wlb||) by the preconditioned Krylov-subspace method. Com-
pute vector Ay by (2.5). Compute directional derivative P’(0) of the
merit function P(«) by (3.5).

Step 5: Restart. If P'(0) > 0, determine positive definite diagonal matrix D by
the procedure given in [7], set G = D and go to Step 4.

Step 6: Step-length selection. Find the minimum integer [ > 0 using one of the
following strategies. Strategy 1: P(S') < P(0). Strategy 2: P(3') < P(0)
or Q(BY) < Q(0). Strategy 3: P(B!) < P(0) after restart and Q(3') <
Q(0) otherwise. Strategy 4: [ = 0, (i.e. a = 1). Finally, set o = 3!,
x =1+ oAz, ur := u; + aAuy, up = up + «Aug, compute value f(x)
and vectors ¢;(x) and cg(x) and go to Step 2.

5 Numerical experiments

Algorithm 1 was tested by using five sets each containing 18 test problems. These sets
were obtained as a modification of test problems for equality constrained minimiza-
tion given in [6], which can be downloaded (together with report [6]) from the page
http://www.cs.cas.cz/"luksan/test.html. In the first set, equalities ¢(x) = 0 are
replaced by inequalities ¢(x) > 0. In the second set, equalities ¢(x) = 0 are replaced
by inequalities ¢(x) < 0. The third set was generated from the first set by adding box
constraints x > 0. The fourth set was generated from the second set by adding box
constraints x < 0. The fifth set contains inequalities —1 <z <1 and —1 < ¢(z) < 1.
All problems used contain 1000 variables (vector x has the dimension 1000). The re-
sults of the tests are listed in Table 1 - Table 4, where NIT is the total number of
iterations, NFV is the total number of function evaluations, NFG is the total number
of gradient evaluations (NFG is much greater than NIT, since second order derivatives
are computed by using gradient differences), NCG is the total number of CG iterations,

10



NRS is the total number of restarts and NFAIL gives the number of failures for a given
set (the number of problems which has not been solved).

Set | NIT NFV NFG NCG NRS TIME NFAIL

1091 1444 10176 23958 89 21.78 -
723 1657 5142 17790 188 20.91 1
691 1216 5220 56643 91 22.12 -
341 931 2571 1483 72 7.99 2
580 897 4387 7196 137 12.59 -

Table 1 : Nonsmooth equation method - Strategy 1

U= W DN =

Set | NIT NFV NFG NCG NRS TIME NFAIL

1323 1691 13858 29288 182 30.84 -
764 1595 6996 18113 196 22.19 1
735 1249 6660 68421 90 25.92 -
399 1261 4217 1938 84 10.29 2
500 705 4445 6149 86 10.53 -

Table 2 : Nonsmooth equation method - Strategy 2

Ot W N =

Set | NIT NFV NFG NCG NRS TIME NFAIL
863 3843 9408 61887 78 23.78 2

630 2957 6822 19748 121 15.63
613 2533 6842 38612 114 20.21
480 2137 5340 5182 92 13.70
526 2163 5605 4467 82 12.42

Table 3 : Nonsmooth equation method - Strategy

QU i W N~

W | W = W

Set | NIT NFV NFG NCG NRS TIME NFAIL
1111 1112 10295 38876 111 23.96 -
1386 1386 9794 31914 306 49.71
1621 1622 16566 31784 175 37.28
709 791 5311 35419 232 36.10
1395 1396 10170 11515 292 29.13

Table 4 : Nonsmooth equation method - Strategy

Ot W N =

il IS U RS

For a comparison, Table 5 and Table 6 contain results obtained by using the interior-
point method described in [9].
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Set | NIT NFV NFG NCG NRS TIME NFAIL
740 1059 5477 45935 98 27.24 -
736 1895 5321 58664 215 41.26 1
720 1378 5260 31350 82 28.33 -
378 538 2788 12666 20 19.50 3
570 723 4276 5876 05  14.48 -

T = W N~

Table 5 Interior-point method - Strategy 1

Set | NIT NFV NFG NCG NRS TIME NFAIL
786 786 5691 25602 25 15.08 -
717 717 5092 20289 119 24.07 -
907 907 6816 25639 84 22.66 -
458 458 3405 20793 49  22.76 3
609 612 4292 4183 21 12.24 1

T = W N~

Table 6: Interior-point method - Strategy 4

6 Conclusions

In this contribution, we describe an implementation of the nonsmooth-equation method
for solving large and sparse general nonlinear programming problems. Computational
experiments show that this approach is very reasonable. Nevertheless, KKT equa-
tions belong to the class of problems which are difficult for application of the Newton
method (this observation is also known from the equality constrained optimization,
see [5]). For this reason, the use of natural merit function @(«), which has the best
theoretical properties [2], is not efficient for practical computations, see Table 3. The
simple merit function P(«), which was chosen to give negative directional derivative
for a broad class of directions obtained as inexact solutions of system (2.6), has better
practical properties. Unfortunately, this function does not allow us to prove the global
convergence in general. Surprisingly good results were obtained without using a merit
function, see Table 4. However, parameters p and A have to be chosen more carefully
in this case. Another conclusion, which follows from our computational experiments,
is that the nonsmooth equation method based on the Fisher-Burmeister function (with
Strategy 1) is competitive with the interior-point method described in [9], see Table 5.
The main advantage of the nonsmooth equation approach is that no slack variables
are used and matrix M; is positive definite independently of the signs of Lagrange
multipliers. Therefore, a special strategy for step-length selection ensuring positivity
of slack variables and Lagrange multipliers need not be used. The nonsmooth equation
method is relatively sensitive to the choice of parameters p and A and the system
(2.6) is frequently ill-conditioned due to the linear dependence of gradients of the ac-
tive constraints (the number of active constraints can be greater than the number of
variables).
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