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computation, including ‘interactive’ Turing machines (ITM’s) with advice and new, natural characteriza-
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1 Introduction

In the twentieth century, computability theory explored the limits of what can be digitally computed.
The prominent claim, known as the Church-Turing thesis, asserts that every algorithm can be captured
in terms of a standard Turing machine. The classical computing scenario consists of a fixed program, a
finite input supplied in either off-line or online mode, and a meaningful result only if the computation
halts in finite time. No changes to the program of the machine or its ‘architecture’ are allowed in the
meantime, intermediate results cannot influence the input and no information is carried over to future
runs of the machine. This even applies in the case of ω-Turing machines.

Does this correspond to the way modern networked computers operate? Clearly it does not.
Today’s systems operate practically uninterruptedly since the moment of their installation. They
obtain their inputs via many different channels at unpredictable times, deliver corresponding responses
continuously at times when they are ready, accumulate information over the course of their entire
existence and use it across the boundaries of separate ‘runs’. Also, parts of their underlying hardware
and software are updated, whenever an ‘external agent’ that operates some component decides to do
so, without loss of vital data.

One can object, as many people do when confronted with this observation, that this use of com-
puters is simply different from the way assumed in the Church-Turing thesis, and that this change
is insignificant and can be easily accommodated by adjusting the original model. While the latter is
true, the former is questionable: is it really an insignificant change? Answering this question will be a
main concern in this paper. It will appear that at least in theory, the traditional notion of algorithmic
computation must be extended for it.

Compared to the classical computing scenario, the essence of the changes in modern comput-
ing technology we have in mind can be subsumed under three complementary issues: interactivity,
non-uniform evolution (and adaptivity), and infinity of operation. Interactivity is often also called
‘reactivity’ [3]. The systems performing according to these three qualities together constitute what is
meant by evolving interactive computing.

The most prominent example is the Internet. It can be seen as a wide-area computing infrastruc-
ture, a kind of global computer ([4]). As a ‘computer’, the Internet is hindered by diverse administra-
tive, architectural, and physical constraints. Worse even, it is ‘undesigned’, evolving unpredictably,
with unpredictable computing characteristics. Many people, especially in the software engineering
community (cf. [4], [16]), noticed that we are facing a new computing phenomenon that does not fit
the classical Turing machine paradigm. For instance, Cardelli [4] writes:

‘In order to program a global computer we first need to understand its model of computation.
For example, does computation on the Web correspond naturally to a traditional model?
There are indications that it does not. [For example] when browsing, we actively observe the
reliability and bandwidth of certain connections (including zero or time-varying bandwidth),
and we take action on these dynamic quality-of-service observables. These observables are
not part of traditional models of computation, and are not handled by traditional languages.
What models of computation and programming constructs can we develop to automate
behavior based on such observables?’

In this paper we will concentrate only on the first part of Cardelli’s question, calling for models of
computation that capture the essence of global computing. It will lead us to the concepts of non-
uniform computation and to a new approach to several non-uniform complexity classes.

Wegner [16, 17] went even further, by claiming that interactivity alone can lead to computations
that are more powerful than computations by Turing machines. In other words, ‘interactive computing’
would violate the Church-Turing thesis. We will argue that interactivity alone is not sufficient to
break the Turing barrier. Interactivity merely extends the objects that one computes on: from finite
strings to infinite ones, and the feedback mechanism remains computable. The computing power of a
system could go beyond that of classical computing if non-uniformity is considered. Non-uniformity
enters when one allows ‘evolving’ changes of the underlying hardware and/or software in the course
of uninterrupted computing. This is a standard case with the Internet.

Surprisingly, evolving interactive computing seems to pervade not only the current, highly net-
worked information processing systems but also – and mainly so – the information processing in
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(societies of) living organisms. It is a ‘technology’ that has been invented by nature long ago that
has very much the same characteristics as we described. Note that evolution in our setting is funda-
mentally different from the notion of learning that is often mentioned in connection with interactivity.
Learning is usually understood as a software evolution, whereas we will also and especially consider
hardware evolution.

The structure of the paper is as follows. In Section 2 we introduce an elementary, and therefore
fundamental, tool for dealing with interactive systems: the interactive finite automaton. In Section
3 we introduce sequences of interactive finite automata that share global states, leading us to the
model of evolving interactive systems that we have in mind. Next, in Section 4 we describe the basic
interactive Turing machine (ITM) that will serve as a platform for the design of its non-uniform
variants. In Section 5 we define the ITM with advice, in Section 6 the so-called site machine that
models a site in a computer network, and finally in Section 7 we present the web Turing machine – a
model of the Internet. Then, in Section 8 we prove the computational equivalence of the non-uniform
models. In Section 9 we investigate the efficiency of web Turing machine computations in more detail,
and show that these machines belong to the most efficient computational devices known in complexity
theory. Finally, in Section 10 we will discuss some interesting issues related to our results.

Most of the results mentioned here can be found in more detail in the original papers [12, 14, 13,
15, 20]. The present paper primarily outlines the overall research framework. The notion of sequences
of interactive finite automata with global states and the respective results are new.

2 Interactive finite automata

Under the classical scenario, finite automata are used for recognizing finite strings. Under the in-
teractive scenario, we consider interactive finite automata (IFA) which are a generalization of Mealy
automata. They process potentially infinite strings (called streams) of input symbols and produce a
potentially infinite stream of output symbols, symbol after symbol. To stress the interactiveness, we
assume that there is no input tape: the automaton reads the input stream via a single input port.
Likewise, it produces the output via a single output port. There is no way to return to symbols once
read except when they’re stored internally. We assume throughout that the input and output symbols
are taken from the alphabet Σ = {0, 1, λ}. Symbol λ at a port means that ‘presently, there is neither
0 nor 1 appearing at this port’. The steps of an IFA follow a finite, Mealy-type transition function.

Any IFA realizes a translation φ that transforms infinite input streams over Σ into similar output
streams. The λ’s are not suppressed in the translation. Clearly, instead of an IFA one could consider
any other device that is capable of entering into only a finite number of different configurations, such
as discrete neural (cf. [8]) or neuroidal (cf. [10]) nets, neuromata [9], combinatorial circuits (cf. [2]),
and so on. From [2, 19] the next theorem follows:

Theorem 1 For translations φ : Σω → Σω the following are equivalent:

(a) φ is realized by a interactive finite (Mealy) automaton.

(b) φ is realized by a neuroid.

(c) φ is realized by a discrete neural net.

(d) φ is realized by a discrete neuroidal net.

(e) φ is realized by a combinatorial circuit.

In the theorem, all respective devices are assumed to work in an interactive mode in processing infinite
input streams. Devices such as neural nets or combinatorial circuits that read their input in parallel,
process the input stream in blocks that correspond to the number of their input ports.

IFA’s embody two features of evolving interactive computing: interactivity, and infinity of op-
eration. The interactivity enables one to describe (albeit a posteriori) the interaction between the
machine and its environment: inputs succeeding to some outputs may be reactions to these outputs.
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Note that we did not yet impose the third desideratum of evolving interactive computing: the evolv-
ability of the underlying computing mechanism. Of course, due to their simplicity, IFA’s do not have
universal computing power either. Note that the motivation and computational scenario of IFA’s
differ from those usually considered for ω-automata (cf. [12] or [13]).

3 Sequences of interactive finite automata with global states

In order to achieve universal computing power and support the evolvability property, we consider
sequences of IFA’s. This enables us to realize more complicated translations and will also reveal
the dependence of computational efficiency on the size of the underlying devices. The approach is
inspired by the similar practice in non-uniform complexity theory where e.g. sequences (or families)
of combinatorial circuits are considered (cf. [2, 6]). Our approach differs not only in the use of
different ‘building blocks’ – namely IFA’s instead of combinatorial circuits, but also in the use of a
communication mechanism between neighboring members in a sequence. Both changes are motivated
by the need to accommodate all ingredients of evolving interactive computing.

Definition 1 Let A = {A1, A2, . . .} be a sequence of IFA’s over Σ, and let Qi be the set of states of
Ai. Let G = {G1, G2, . . .} be a sequence of nonempty finite sets such that Gi ⊂ Qi and Gi ⊆ Gi+1.
Then A with G is called a sequence of IFA’s with global states.

For a sequence A, there need not exist an algorithmic way to compute the description of the Ai, given
i. Thus, the only way to describe the sequence may be to enumerate all its members. The set

⋃
i Gi

is called the set of global states. From now on we always assume sequences of IFA’s to have global
states.

On an infinite input stream over Σ, a sequence A computes as follows. At the start, A1 is the
active automaton. It reads input and produces output for a while, until it passes control to A2. In
general, if Ai is the current active automaton, it performs its computation using the local states from
the set Qi − Gi �= ∅. If an input symbol causes Ai to enter a global state g ∈ Gi, then Ai stops
processing and passes control to Ai+1. The input stream is redirected to the input port of Ai+1, Ai+1

enters state g ∈ Gi+1 and continues processing the input stream as the new active automaton, starting
with the next input symbol.

Thus, in effect the input stream is processed by automata with increasing index. This models the
property of evolution. The ‘transfer’ of control to the next automaton is invoked by the automaton
currently processing the input. The next automaton continues from the same state in which the
previous automaton stopped. This mechanism enables the transfer of information from the previous
stage. In a sequence of IFA’s with global states the next automaton can be seen as a ‘next generation’
machine. Note that in finite time only a finite part of a sequence of IFA’s can have become active.

Alternatively, instead of a sequence of automata, one may consider a single automaton that ‘evolves’
so at any time it acts as Ai iff Ai ∈ A is the currently active automaton. That is, the transition function
of the automaton at hand is the same as that of Ai as long as Ai is active. Of course, the condition
concerning the global states must still be maintained. The resulting automaton may appropriately be
called an evolving interactive finite automaton.

A sequence of IFA’s is called polynomially bounded iff there is a polynomial p such that for every
i ≥ 1, the size of Ai is at most p(i). The classes of translations realized by sequences of IFA’s with
global states and polynomially and exponentially bounded size will be denoted as IFA-POLY and IFA-
EXP, respectively. We will also consider the classes NA-LOG (the translations realized by sequences
of neuromata [8] of logarithmic size), NN-POLY (the translations realized by sequences of standard
recurrent, or cyclic, discrete neural nets of polynomial size reading their inputs in parallel), and CC-
POLY (the translations realized by sequences of combinatorial circuits with a polynomial number of
gates).
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4 Interactive Turing machines

The next tool we consider are interactive Turing machines (ITM’s). ITM’s differ from standard
TM’s in one important aspect: they allow for a infinite, never ending exchange of data with their
environment.

An ITM reads input from its input port and produces output at its output port. We assume that
in each step the machine reads a symbol from its input port and writes a symbol to its output port.
As before, the input and output symbols are taken from the alphabet Σ = {0, 1, λ}. We will normally
require that an ITM reacts to any non-empty input by producing a non-empty output symbol at
its output port after at most some finite time (the interactiveness or finite delay condition). The
finite-delay condition ensures that if an input stream has an infinite number of non-empty symbols,
then there must be an infinite number of non-empty symbols in the output stream.

Definition 2 A mapping φ : Σω → Σω is called the interactive translation computed by an ITM I iff
for all x and y, φ(x) = y if and only if I produces y on input x.

As input streams have infinite length, complexity measures for ITM’s cannot be defined in terms of
the total amount of resources used for processing the entire input, as the resulting values will generally
be infinite as well. Therefore we measure the pace of growth of the resource utilizations, as a function
of the length of the input stream processed so far.

Definition 3 We say that for a given input stream the ITM I is of space complexity S(t) iff for any
t > 0, after processing t input symbols from the given stream no more than S(t) cells on I’s (internal)
tapes were ever needed. If this condition holds for every input stream, then we say that the ITM I is
of space complexity S(t).

The definition of time complexity is more involved. This is so because, as long as empty symbols
are counted as legal symbols in input and output streams, any initial segment of a computation by
an ITM is of linear time complexity w.r.t. the input read thus far. Yet it is intuitively clear that
computing some non-empty output symbols can take more than one step and that in the meantime
empty, or other ‘ready-made’ symbols must have been produced. We will measure the complexity of
producing non-empty output symbols from a given input stream, at concrete times, by the reaction
time. For t ≤ j, we say that the j-th output depends on the input prefix of length t if and only if any
change of the (t + 1)-st and later input symbols cause no change of the output up to and including
the j-th symbol. The value j is a (lower)bound to the reaction time for the prefix.

Definition 4 We say that for a given input stream the ITM I is of reaction time complexity T (t) iff
the reaction time of I to the input prefix of length t is (upper-)bounded by T (t), for any t > 0. If this
condition holds for any input stream, then we say that the ITM I is of reaction time complexity T (t).

ITM’s alone do not lead to a non-recursive computational power. Allowing ITM’s to process
infinite input streams only extends the operational scope, compared to classical TM’s which process
merely finite streams. For further details see [12, 13].

5 Interactive Turing machines with advice

Next we introduce interactive Turing machines with advice (ITM/A’s). An ITM/A is an ITM as
described above, enhanced by an advice (cf. [6, 2]). Advice functions allow the insertion of external
information into the course of a computation, in this way leading to a non-uniform operation.

Definition 5 An advice function is a function f : Z+ → Σ∗. An advice is called S(n)-bounded if for
all n, the length of f(n) is bounded by S(n).

A standard TM with advice and input of size n, is allowed to call for the value of its advice function
only for this particular n. An ITM/A can call its advice at time t only for values t1 ≤ t. To realize
such a call an ITM/A is equipped with a separate advice tape and a distinguished advice state. By
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writing the value of the argument t1 on the advice tape and by entering into the advice state at time
t ≥ t1 the value of f(t1) will appear on the advice tape in a single step. By this action, the original
contents of the advice tape is completely overwritten.

We will be interested in advice functions whose values are bounded in length by known (com-
putable) functions of t, especially in polynomially or logarithmically bounded functions. Note that
the mechanism of advice is very powerful and can provide an ITM/A with highly non-recursive ‘as-
sistance’.

The complexity measures for ITM/A’s are defined as for ITM’s without advice (see Definitions 3
and 4). The length of the rewritten part of the advice tape is counted in the space complexity of the
respective machine, not including the actual read-only advice value.

Definition 6 The class ITM − C/F consists of the translations φ computed by ITM − C machines
using an advice function from F .

Common choices for ITM − C that we shall use are: ITM − LOGSPACE (deterministic loga-
rithmic space), ITM −PTIME (deterministic polynomial time), and ITM −PSPACE (polynomial
space). Common choices for F are log (logarithmically bounded advice functions) and poly (polyno-
mially bounded advice functions).

For completeness we show that ITM’s with advice are indeed more powerful than ITM’s without
advice. (The result also follows from a countability argument.) Care must be taken that the finite-
delay condition is correctly observed.

Consider the translation κ defined as follows. As a special input, we first consider the string
consisting of the infinite enumeration of all Turing machine descriptions, in blocks of non-decreasing
size. For this input, the translation should assign to each machine description a ‘1’ if and only if the
machine at hand accepts its own description, and ‘0’ otherwise. If the input is not of this form and
starts to differ at some point from the blocked form described, then κ is assumed to work as described
up until the last complete encoding in the sequence, and then copy every (empty or nonempty) symbol
that follows after this.

Lemma 1 Translation κ can be realized by an ITM/A, but there is no ITM (without advice) that can
realize κ.

Proof (sketch): Define the function f that to each n assigns the description of the ‘busy beaver
machine’ of length n. The busy beaver machine is a Turing machine which, among all machines with
encodings of length n, performs the maximum number of steps before halting, on an input that is
equal to its own description. If no machine description of size n exists, then f(n) is assigned the
empty string.

Now design an ITM A using advice f as follows. A checks every time whether the input stream
contains a ‘next’ block as expected, i.e. a next machine description. If the next input segment is not a
block as expected, A will know within finite time that this is the case (because the blocks must come
ordered by size). If the next input segment is not a valid encoding, A copies the segment to output
and then copies every (empty or nonempty) symbol that follows after this. This is consistent with κ
and satisfies the finite-delay condition.

If the input stream presents A with a next block that is the valid description w of a Turing machine
M, A works as follows. Let |w| = n. A calls its advice for value n and gets the description 〈B〉 of
length n of the respective busy beaver machine B. Now A alternately simulates one step of M on
input w, and one step of B on input 〈B〉. Under this arrangement, one of the two simulations must
halt as the first one. If it is the simulation of M that halts then A ‘accepts’ w, i.e. A outputs 1.
Otherwise, A outputs 0. Thus, A realizes κ and, as it satisfies the finite-delay condition in all cases,
it is an ITM.

The second part of the lemma is proved by using a modification of the standard diagonal argument.
For details, see [15]. �

The lemma serves as a means for proving the super-Turing computing power of machines that
are computationally equivalent to ITM/A’s. As a first result of this kind we prove that sequences of
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IFA’s with global states are equivalent to ITM/A’s, implying that the former also posses super-Turing
computing power.

Theorem 2 For translations φ : Σω → Σω, the following are equivalent:

(a) φ is computed by a polynomially bounded sequence A of IFA’s with global states.

(b) φ is computed by a logarithmically space-bounded ITM/A M with polynomially bounded advice.

Proof (sketch): (a) → (b). Let φ be computed by A. Simulate the action of A step by step using an
ITM M, with the following advice function. It will be invoked each time when an automaton Ai in A
currently reading the input enters a global state g ∈ Gi. At this time the advice function returns the
description of Ai+1 and M proceeds with the simulation of A by simulating Ai+1 starting from state
g ∈ Gi+1. To simulate Ai+1, logarithmic space is enough for M since all it has to store is a pointer to
the advice tape remembering the current state of Ai+1.

(b) → (a). For the reverse simulation, split the input string into blocks of size 1,2,3, . . . , i, . . .
and consider first the case when M does not call its advice. Sequence A will be designed so the
i-th automaton in the sequence can ‘continue’ the processing of the i-th block, making use of its
local states. Each automaton Ai is designed as a simulator of M on input prefixes of lengths �i =
1 + 2 + 3 + . . . + i = O(i2). On these prefixes M needs O(log i) space and therefore can enter O(p(i))
different states, for some polynomial p. This design warrants not only that Ai has enough states
to represent each configuration of M on an input prefix of length O(�i), but it also enables the
‘information transfer’, via the corresponding global states, from Ai to Ai+1 prior to the time when
the ‘storage capacity’ of Ai gets exhausted. Hence, A can remain polynomially bounded for this case.

Consider now the case when M can call its advice, which is q-bounded for some polynomial q. In
input block i this can happen up to i times. At these moments advices will be of size O(q(i)), and at
most O(i2) of them are needed on a length �i prefix. One can take this into account, by modifying the
Ai’s so they have all these advices encoded in their states and by simulating M on the given prefix
of the input, this time also including the use of advice by M. The resulting sequence of IFA’s with
global states is still polynomially bounded.

It is clear that in the given simulations A satisfies the finite-delay condition iff M does. �

The theorem implies several analogues for other types of computing devices operating with finite
configuration spaces. To circumvent the different input-output conventions in some cases, we call
two complexity classes ‘equal’ only when the devices corresponding to both classes read their inputs
sequentially; otherwise, when the devices in one class read their inputs in parallel, we say that they
‘correspond’.

Theorem 3 The following relations hold:

(a) IFA-POLY equals ITM-LOGSPACE/poly.

(b) NA-LOG equals ITM-LOGSPACE/log.

(c) CC-POLY corresponds to ITM-PTIME/poly.

(d) NN-POLY equals ITM-PSPACE/poly.

(e) IFA-EXP equals ITM-PSPACE/exp.

For later reference we let DSPACE(S1(t))/advice(S2(t)) denote the complexity class of all S1(t)-
space bounded deterministic TM computations making use of S2(t)-space bounded advice.

6



6 Site machines

Our next aim is to consider networks of machines. Under this scenario the individual interacting
machines will be called site machines, or simply sites. A site machine is an ITM enhanced by a
mechanism allowing message sending and receiving very much like well-known I/O-automata [7], but
it also allows the ‘instantaneous’ external influencing of its computational behaviour by changes of
its transition function in the course of the interaction with the environment. More precisely, sites are
viewed as follows.

Individual sites in the network are identified by their address, some symbolic number. The ad-
dresses of the sites are managed by a special mechanism that exists outside of the site machines (see
Section 7). In order to support the efficient communication among the sites, the respective ITM’s
are equipped with an internet tape. This is a tape whose contents can be sent to any other site. To
do so, the sending machine must write the address of the receiving site and its own ‘return’ address,
followed by the message, in an agreed-upon syntax, to its internet tape. By entering into a special
distinguished state, the message is sent to the site with the given address. Messages sent to sites
with non-existing addresses at that time do not leave the sending machine and the sending machine
is informed about this by transiting to another special state.

By sending the message successfully, the internet tape of the sending machine becomes empty in
a single step. The message arrives at the receiving machine after some finite time. If at that time the
receiving machine finds itself in a distinguished ‘message expected’ state (which can be superimposed
onto other states) then the message is written onto its internet tape, in a single step. The receiver is
informed about the incoming message by (enforced) entering into a distinguished state called ‘message
obtained’. Then the receiving machine can read the message, or copy it onto an auxiliary tape. After
reading the whole message the machine can enter into a ‘message expected’ state again. When it does,
its internet tape is automatically emptied in one step.

Otherwise, if the receiving machine is not ready to obtain a message (meaning that the machine
is engaged in writing onto or reading from its internet tape), the message enters into a queue and
its delivery is tried again in the next step. It may happen that two or more messages arrive to a
site simultaneously. This ‘write conflict’ is resolved by giving priority to the machine with the lowest
address, and the remaining messages enter the queue at the site.

Each site is operated by an (external) agent. An agent can work in two modes: network mode, in
which its machine is logged-in and can communicate with other sites, and stand-alone mode, in which
its machine is not logged-in. Switching between the two modes is done by the agent with a special
instruction.

By entering a suitable input sequence via the input port in network mode, an agent can instruct its
machine to do various specific things. First, the agent can instruct it to operate its current ‘program’,
sending or receiving messages, and performing any computation making use of all data stored on the
machine’s working tapes, on its internet tape, and the data read from the input port. However, while
working in network mode the agent is not allowed to change the machine’s hardware and software,
i.e., its transition function. This can only be done in stand-alone mode. A change of a transition
function may change the number of the machine’s tapes, its working alphabet and the number of
states. Such an action is done in finite time, during which time the machine is not considered to be
the part of the network. Changing the transition function does not affect the data written on the
machine’s tapes at that time (except for the case when the number of tapes is decreased, when only
data on the remaining tapes persist). After changing the transition function, the agent switches back
to network mode. The machine then continues operating following the new transition function. Only
the inputs read during network mode are considered to be part of the input stream. The same holds
for the output stream.

The instantaneous description (ID) of a site machine after performing t steps is given by the
description of all its working tapes (including its internet tape), the current symbol at its input port,
and the corresponding state of its finite control at time t. The current position of the tape heads is
assumed to be marked by special symbols on the respective tape descriptions.

At time t, the ‘program’ of the site machine M at that time, is described by a binary code denoted
as 〈M〉. It encodes, in an agreed-upon syntax, the transition function of the machine. Note that at
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different times t, a machine with the same address can be described by (operationally) different codes,
depending upon the activities of its agent.

To formally describe a site machine, we assume that there is a site encoding function δ that maps,
for each time t, the address i of a machine to its encoding at that time. The configuration of a site
at time t > 0 after processing t inputs consists of its address, followed by its encoding and its ID at
that time.

Theorem 4 For interactive translations φ : Σω → Σω, the following are equivalent:

(a) φ is computed by a site machine.

(b) φ is computed by an ITM M with advice.

Proof (sketch): If φ is computed by a site machine then the value of the site encoding function at
time t can serve as an advice to the simulating ITM/A. Vice versa, when the latter machine has to be
simulated by a site machine, then each advice reading can be substituted by a site machine update
where the advice value is encoded in the description of the update. �

7 The web Turing machine

The ultimate non-uniform model we introduce is the web Turing machine. A web Turing machine
(WTM) is a ‘time-varying’ finite set of interacting sites. The cardinality of this set, the programs of
the machines in the set, as well as the message delivery delays can unpredictably vary with time. We
only assume that the sites share the same notion of time, i.e., we assume a uniform time-scale within
a given WTM.

Let Z
+ denote the set of non-negative integers, and let N denote the set of natural numbers.

Definition 7 A web Turing machine G is a triple G = (α, δ, μ) where:

• α : Z
+ → 2Z

+
is the so-called address function which to each time t ≥ 0 assigns the finite set

of addresses of those sites that at that time are in network mode. Thus, at each time t ≥ 0, G
consists of the |α(t)| sites from the set St = {Mi|i ∈ α(t)} where Mi is the site at the address i.

• δ : Z
+ × Z

+ → Σ∗ is the so-called encoding function which to each time t ≥ 0 and address
i ∈ α(t) assigns the encoding 〈Mi〉 of the respective site Mi at that time at that address.

• μ : Z
+ × Z

+ × Z
+ → N is the so-called message transfer function which to each sending site i

and each receiving site j and each time t ≥ 0 assigns the duration of message transfer from i to
j at time when the message is sent, for i, j ∈ α(t).

The description of a WTM at time t > 0 is given by the set of encodings of all its sites at that time.
The configuration of a WTM at time t > 0 corresponding to the input read thus far by each site
consists of the list of configurations of its sites at that time. The list is ordered according to the
addresses of the sites in the list.

A computation of a WTM proceeds as follows. At each time, each site which is in network mode
and whose address is among the addresses given by the address function for this time, reads a symbol
from Σ, possibly the empty symbol, from its input. Depending on this symbol and on its current
configuration the machine performs its next move by updating its tapes, state and outputting a symbol
(possibly λ) to its output, in accordance with its transition function. Within a move the machine
can send a message to or receive a message from an other machine. Also, when the machine is in
stand-alone mode, its agent can modify the transition function of the machine or the data represented
on the machine’s tape. Moreover, at any time an agent can ‘log in’ (‘log out’) a site into (from)
the WTM by entering the respective mode of operation. This fact is recorded by the values of the
functions α and δ that must change accordingly at that time, to reflect the new situation.

Any WTM acts as a translator which at each time reads a single input symbol and produces a
single output symbol at each site (some of the symbols may be empty). In this way a WTM computes
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a mapping from finite or infinite streams of input symbols at the sites to similar streams of output
symbols. The number of streams varies along with the number of sites. The incoming messages are
not considered to be a part of the input (as they arrive over different ports). Of course, the result of
a translation does depend on the messages received at individual sites and on their arrival times at
these sites. However, all messages are results of (internal) computations and therefore their sending
times are uniquely determined; the arrival times to their destinations are given by μ. Therefore, for
a given ‘packed’ stream of inputs (with each packed symbol unfolding to an input at every site), the
result of the translation is uniquely determined.

Definition 8 Let G = (α, δ, μ) be a WTM. The web translation computed by G is the mapping Γ such
that for all packed streams x and y, Γ(x) = y iff on input x to its sites, machine G produces y at its
sites.

The space complexity S(t) of G at time t is the maximum space consumed by any site of G, over all
input streams of length t. The respective complexity class will be denoted as WTM−DSPACE(S(n)).
By WTM − PSPACE and WTM − DLOGSPACE we will denote the classes of all polynomially
and logarithmically space-bounded web translations, respectively. For a further discussion of the
complexity issues, see Section 9.

We conclude this section by a few comments related to the definition of a WTM and its operation.
First note that we did not require either α, δ or μ to be recursive functions. Indeed, in general there
is neither a known computable relation between the time and the addresses of the site machines, nor
between the addresses and the site descriptions or between sender-receiver addresses and message
transfer times. Thus, for each t ≥ 0 the three functions are given by finite tables at best. Second,
note that we assumed that at each time G consists only of a finite number of sites, as implied by
the definition of α. Also note that the transfer time of a message depends not only on the address
of the sending and receiving sites but also on the message issuing time. This means that even if a
same message is sent from i to j at different times, the respective message transfer times can differ.
Message delivery time is assumed to be independent of the message length. This assumption may be
seen as being too liberal but dependences can be considered to be amortized over the time needed to
write the message to the internet tape.

8 The power of web computing

At each moment in time, the architecture and the functionality of a WTM are formally described
by its functions α and δ. These two functions model the fact that in practice (as in the case of the
Internet) the evolution of the machine depends both on the input to the individual sites and on the
decisions of the respective agents from which the changes in network architecture and site functionality
may result. The agent decisions may in turn also depend on the results of previous computations and
on messages received at individual sites as seen by their respective agents. Under this scenario the
description of a WTM may change from time to time in a completely unpredictable manner.

Due to the finiteness of a WTM at each time, its δ at a given time is always finite. Nevertheless, the
size of the encoding function over its entire existence, for t = 1, 2, . . . , is in general infinite. Intuitively,
this is the reason why a WTM cannot be simulated be a single ITM with a finite encoding. However,
for each time t the encoding of a WTM can be provided by an advice function, as shown in the
following theorem.

There is one technical problem in the simulation of a WTM by an ITM/A. Namely, by its very defi-
nition a WTM computes a mapping from packed input streams to packed output streams, with packed
symbols of variable size. The respective symbols are read and produced in parallel, synchronously at
all sites. However, a normal TM, working as a translator of infinite input streams into infinite output
streams using a single input and a single output tape, cannot read (and produce) packed symbols of
variable size in one step, in a parallel manner. What it can is to read and produce packed symbols
component-wise, in a sequential manner.

In order to solve this technical problem we assume that the simulating ITM/A has a specific
‘architecture’ tailored to the problem at hand. First, we assume that it has a single, infinite one-way
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read-only input tape at which the original stream of packed inputs {(xi1,t, xi2,t, . . . , xik,t)}∞t=0 to G’s
sites with {i1, i2, . . . , ik} = α(t), is written as follows: for consecutive t = 1, 2, . . . , it contains a ‘block’
of inputs (xi1,t, xi2,t, . . . , xik,t). Blocks and input symbols are separated by suitable marking symbols.
Second, we assume that the ITM/A has one infinite one-way write-only output tape to which outputs
are written of the form {(yi1,t, yi2,t, . . . , yik,t)}∞t=0, again in a block-wise manner. A pair of two infinite
streams of input and output symbols thus obtained is called the sequential representation of a web
translation Γ.

Theorem 5 For every WTM G there exists a single ITM/A A that acts as a sequential translator of
the web translation computed by G, and vice versa.

Proof (sketch): On its tapes A keeps the ID’s of all sites in G = (α, δ, μ), with their current modes. In
the advice, the values of all three functions α, δ and μ are stored. Thanks to this, A can sequentially
update the sites in accordance with the instructions and updates performed by each site.

The idea of the reverse simulation is to show that a single site operated by a suitable agent can
simulate a ITM/A. The role of the agent will be to deliver the values of the advice function at times
when needed. The machine can do so by switching to stand-alone mode and letting its agent exchange
its program for the program that has the value of the advice encoded in its states. Then the interrupted
computation will resume. The details are given in [15]. �

9 The efficiency of web computing

The equivalence between WTM- and ITM/A computations was proved with the help of simulations.
Because we were primarily interested in characterizing the computing power of WTM’s, no attempt
was made to make the simulations as efficient as they could be and to relate the complexity classes
of the two models. In this section we investigate the computational efficiency of ‘web space’ and ‘web
time’.

To get rid of some repeated assumptions in the theorems below we will bound the growth of the
‘parameters’ of a WTM over time, viz. its number of sites, the sizes of its site descriptions, and the
message transfer times. More precisely:

Definition 9 A WTM G = (α, δ, μ) is called S(t)-bounded if it satisfies the following restrictions:

• the space complexity of G is S(t), for all t ≥ 0,

• the address length of any site in G does not grow faster than the space complexity of G, i.e., for
all t ≥ 0 and any address i ∈ α(t) we have |i| = O(S(t)),

• the size of any site encoding does not grow faster than the space complexity of G, i.e., for t ≥ 0
we have |〈Mj〉| = O(S(t)) for all j ∈ α(t), and

• the message transfer times are not greater in order of magnitude than the total size of G, i.e.,
for all t ≥ 0 and i, j ∈ α(t) we have μ(i, j, t) = O(|α(t)|).

The first restriction bounds the space complexity of each site. The second one allows at most an
exponential growth (in terms of S(t)) of the synchronous WTM with time. The third restriction is
also quite realistic; it says that the ‘program size’ at a site should not be greater than the size of
the other data permanently stored at that site. The fourth restriction together with the second one
guarantees that the size (e.g. in binary) of the values of the message transfer function is also bounded
by O(S(t)). Note that by restriction one, the message length is also bounded by O(S(t)), since in the
given space no longer messages can be prepared.

In the complexity calculations that follow we will always consider a S(t)-bounded, or ‘bounded’
WTM. We will first show that any bounded WTM is equivalent to an exponential space-bounded
deterministic ITM using an exponential size advice.
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Theorem 6 For all space bounding functions S(t) ≥ 0,
⋃

c>0

WTM − DSPACE(cS(t)) =
⋃

c>0

ITM − DSPACE(cS(t))/advice(cS(t)).

In particular,
WTM − DLOGSPACE = ITM − PSPACE/poly

Proof (sketch): The left-to-right inclusion is proved by keeping a ‘mirror image’ of the WTM on the
tapes of the ITM/A. Since our WTM is S(t)-space bounded it can have up to O(cS(t)) sites of size
S(t), for some c. Hence the mirror image of the WTM can be maintained in exponential space as
claimed. For each t the advice size is also bounded by the same expression and the ITM/A uses it to
simulate the WTM updates. For proving the opposite inclusion we simulate the i-th cell of the ITM/A
by a special site that keeps the contents of this cell plus the information whether the machine’s head
is scanning this cell. The advice tape is represented in a similar manner. For the full proof see [15]. �

This result for space-bounded WTM computations is analoguous to similar results known for so-called
synchronized computations in uniform models (see for example [5], [18]).

Next we study ‘time’ as a computational resource for WTM’s, viz. the potential of a WTM to
perform parallel computations. In order to make use of this potential one has to ensure e.g. when
sending requests to two sites to run some computations, that these requests will be accomplished with
only a small delay. Similarly, after finishing the computation, one has to ensure that both results
will be returned again with only a small delay. This cannot be guaranteed under the original mild
assumption that each message will be delivered in an finite, albeit unpredictable time.

In order to enable a genuinely parallel realization of computations we therefore strengthen the
restriction on the duration of message deliveries within a bounded WTM further. We introduce the
unit cost WTM in which each message is assumed to be delivered to its destination within unit time.

Definition 10 A unit-cost WTM G is a bounded WTM G = (α, δ, μ) in which μ(i, j, t) = 1 for all
i, j ∈ α(t) and t ≥ 0.

Let WTMU − PTIME denote the class of all translations that can be realized by a unit-cost WTM
within polynomial reaction time.

It turns out that a unit-cost WTM can simulate an ITM/A very fast, by involving an exponential
number of sites in the simulation. Vice versa, a fast WTM with ‘many processors’ can be simulated
by an ITM/A in ‘small’ space. The simulation is sketched in the proof of the following theorem.
When speaking about the respective models we shall use similar input/output conventions as those
in Section 8.

Theorem 7
WTMU − PTIME = ITM − PSPACE/poly

Proof (sketch): When attempting to simulate a polynomial time-bounded WTM in polynomial space
on a ITM/A, we run into the problem that a WTM can activate an exponential number of processors
whose representations cannot all be kept on a tape simultaneously. Thus, a strategy must be designed
for re-using the space and recomputing the contents of each site when needed. The non-uniformity of
WTM updates is simulated, as expected, by advice calls.

To simulate a ITM/A of polynomial space complexity S(t) on a WTM of polynomial time com-
plexity, imagine the infinite computational tree T of the ITM/A computations. For a given input,
consider the subtree of T of depth cS(t) with the same root as T and an exponential number of nodes.
The simulated ITM/A processes the first t inputs successfully iff the path in T that starts in an
initial ID, ends in an ID that produces the ‘further’ output which is a reaction to the t-th input. The
existence of such an accepting path is found by making use of the parallel version of algorithm that
computes the transitive closure of T in polynomial space w.r.t. S(t). This simulation must be run for
each t = 1, 2, . . . . This is achieved by starting the simulation at each time t for that particular value
of t at a suitable site on the WTM. The involved details of both parts of the sketched proof can be
found in [15]. �
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Corollary 1 For any S(t) ≥ 0
⋃

c>e0

WTM − DSPACE(cS(t)) =
⋃

c>0

WTMU − TIME(cS(t)).

In particular,
WTM − DLOGSPACE = WTMU − PTIME

The last result says that (bounded!) WTM’s make use of their space in an optimal way: in the
given space one cannot perform more time-bounded computations than a unit-cost WTM does.

The result on time-bounded unit-cost WTM’s and its proof, mirrors the similar result for uniform,
idealized computational models from the ‘second machine class’ (cf. [11]). Its members fulfill the
so-called Parallel Computation Thesis which states that sequential polynomial space is equivalent to
parallel polynomial time on devices from this class. In the non-uniform setting similar results are
known for infinite families of neural networks of various kinds (for a recent overview of known results
see [8]).

The results on time and space efficiency of WTM computations rank WTMs among the most
powerful and efficient computational devices known in complexity theory.

10 Afterthoughts

Theorem 1 points to a rich world of interactive devices that can serve as a basis for the investigation of
evolving interactive computing systems. In fact, in [20] these devices have been interpreted as cognitive
automata. Each of them can serve as a model of a ‘living organism’ and can be used for further studies
of the computational aspects of complex systems created from these elementary computing units.

Theorem 3 reveals that not all cognitive automata are equally efficient from the viewpoint of their
descriptional economy: systems representing their configuration space in unary representation (this
is the case of finite automata) suffer from space inefficiency. Other systems that make use of more
efficient state representations and can reuse their space, such as neural nets, are much more effective
from this point of view.

Theorems 2, 4, and 5 point to the central equivalence of the various models, summarized in the
following Theorem. It points to the fact that the notion of evolving interactive computing is a robust
and fundamental one.

Theorem 8 For translations φ : Σω → Σω, the following are equivalent:

(a) φ is (sequentially) computed by a sequence of IFA’s with global states.

(b) φ is (sequentially) computable by an ITM/A.

(c) φ is (sequentially) computable by a site machine.

(d) φ is computable by a WTM.

Lemma 1 shows the super-Turing computing power of the ITM/A’s and separates the model from
ITM’s. It also implies that the WTM, which can be seen as a quite realistic model of the Internet as
far as its computing power is concerned, can perform computations that cannot be replicated by any
standard interactive TM. This answers Wegner’s claim concerning the power of interactive computing.
Interaction can lead to computations that no Turing machine can mimic, providing that we allow
updates of the underlying machinery and consider unbounded, potentially infinite computations. The
latter condition is a crucial one since otherwise one would have but a finite number of updates that
could be built-in beforehand into the architecture of the ITM.

Theorem 8 also points to the various ways in which non-uniform features may enter into a com-
puting system. First, non-uniformity can be hidden in the ‘architecture’ of a computing system. This
is the case in sequences of finite automata with global states where the description of the system as a
whole is given by an infinite, in general non-computable string. Second, non-computable information
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may enter into a computing system from an ‘external’ source. E.g. in the case of ITM/A’s, this is
done by advice functions, and in the case of site machines or WTM’s there are agents that can change
the machine architecture in an unpredictable manner.

The results from theorem 8 have interesting interpretations in the world of cognitive automata
and computational cognition. The basic idea is as follows: in a ‘robotic’ setting, any interactive finite
automaton (viewed as a cognitive automaton) can be seen as a simple model of a living organism. A
(finite) set of cognitive automata can communicate basically in two different ways. First, the automata
can communicate using a fixed ‘pre-wired’ communication pattern, so to speak holding hands with
their physically immediate neighbors. By this we get systems equivalent to sequences of interactive
finite automata. If the automata communicate in arbitrary patterns or do not have global states, the
corresponding system of cognitive automata resembles certain types of amorphous computing systems
[1]. In principle it is no problem to define cognitive automata in such a way that they will also possess
a replication ability. Then one can consider systems of cognitive automata that grow while computing.
As a result one gets various morphogenetic computational systems.

The second possibility for cognitive automata to communicate, is the case when the automata
are equipped with sensors and effectuators by which they scan and change their environment. In the
case of ordinary TM’s the ‘living environment’ of a single cognitive automaton working under such
conditions is modelled by TM tapes and read/write heads. Following this analogy further, a WTM can
be seen as a set of cognitive automata. They share the same living environment and communicate via
message exchange. They can even move and exchange messages, either by encountering each other,
or leaving a message elsewhere (probably in a distinguished place) in the environment or by sending a
message via a chain of neighbors. A specific view of a human society as that of a community of agents
communicating by whatever reasonable means (language, e-mail, letters, messengers, etc.) also leads
to a model of WTM with specific parameters. What is important and interesting from the point of
view of cognitive sciences is the fact that irrespectively which possibility is taken, we always get a
system equivalent to a WTM and hence in general possessing a super-Turing computing power.

A challenging question still remains unanswered: could one indeed make use of the super-Turing
potential of the underlying machines to one’s advantage? Can one solve certain concrete undecidable
problems by such machines? The answer is, (un)fortunately, no. From a practical point of view our
results mean that the corresponding devices cannot be simulated by standard TM’s working under
a classical scenario. This is because the evolving interactive machinery develops in an unpredictable
manner, by a concurrent unpredictable activity of all agents operating the sites.

Nevertheless, the above results point to quite realistic instances where the classical paradigm of a
standard Turing machine as the generic model which captures all computations by digital systems, is
clearly insufficient. It appears that the time has come to reconsider this paradigm and replace it by
its extended version, viz. by ITM’s with advice. For a more extended discussion of the related issues,
see [14].
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