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Abstract:

It is a well-known fact that the Dempster combination rule for combination of uncertainty degrees coming
from two or more sources is legitimate only if the combined empirical data, charged with uncertainty and
taken as random variables, are statistically (stochastically) independent. We shall prove, however, that
for a particular but large enough class of probability measures, an analogy of Dempster combination rule,
preserving its extensional character but using some nonstandard and boolean-like structures over the unit
interval of real numbers, can be obtained without the assumption of statistical independence of input
empirical data charged with uncertainty.
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1 Belief Functions and Dempster Combination Rule

Let us limit ourselves to a purely theoretical approach focused just to the mathematical apparatus
used in order to formalize the basic notions and results of the Dempster—Shafer model of uncertainty
quantification and processing.

Let S be a finite nonempty set, let P(S) denote the system of all subsets of S. Basic probability
assignment (b.p.a.) over S is a probability distribution m over P(S), i. e., amapping m : P(S) — {0,1}
(the unit interval of real numbers) such that _ , - m(A) = 1. Non-normalized belief function defined
(or: induced) by the b.p.a. m over S is the mapping bel}, : P(S) — {0, 1} such that, for each A C S,

bel}, (A) =Y m(B), (1.1)

for the empty subset () of S we adopt the convention that suming over the empty set of items, the
result equals zero. Normalized belief function defined (or: induced) by the b.p.a. m over S is the
mapping bel,, : P(S) — {0,1} such that, for each A C S

belm(A) = (1 =m(@))™" Y

0#£BCA

orBCA m(B), (1.2)
supposing that m(0) < 1 holds, bel,, () = 0 according to the same convention as above. If m(§)) = 1,
bel,, is not defined.

At the same combinatoric level the Dempster combination rule can be also easily defined. Let
my, ma be two b.p.a.’s over the same (nonempty finite) set S. Set, for each A C S

ma(4) = ZB,CQS,BOC:A ma(B) ma(C). (1.3)
An easy calculation yields that
ZACS ma(4) = (1.4)
- ZACS <Z<B,G>ep(5)x7>(5),3mc,4 m1(B) m2(0)> =
- Z<B7C>e7><5>x7><s> ma(B)m,(C) = Zscs mi(B) (chs mQ(C)) -
ZBCS mi(B) =1,

as the set of pairs (B,C) such that BN C = A are disjoint for different A’s and each (B,C), B C
S, C C S, belongs to just one set of pairs, namely to that with A = BN C. Hence, the mapping
ms : P(S) — (0,1) is also a probability distribution over P(S), i.e., a b.p.a. over S, it is called the
Dempster product of the b.p.a.’s my, ms, and denoted by m; & msy. The binary operation @, taking
pairs of b.p.a.’s over S into the space of b.p.a.’s over the same S, is called the Dempster combination
rule for b.p.a.’s.

Dempster combination rule for belief functions is defined in such a way that Dempster product
bely, @®bely —(bely, ®Dbelpy,, resp.) of two belief functions is the belief function induced by the Demp-
ster product of the b.p.a.’s defining the particular belief functions under combination. In symbols,

belly, @belly, = beln omas (1.5)
belm1 D bel:ng = belml@mza

in the case of (1.6), of course, only when bel,,, am, is defined, i.e., when (m; ® ms) () < 1 holds.
Equality symbol in (1.5) and (1.6) denotes the identity relation, i.e., the equality of the corresponding
values for each A C S. As can be easily proved, Dempster combination rule is commutative and
associative for b.p.a.’s as well as for belief functions.



Dempster combination rule is usually presented as an appropriate tool how to combine numerical
degrees of uncertainties concerning the same field of events but of different provenience or coming from
different, sources, e.g., from two subjects or experts with their particular pieces of knowledge being
charged by a portion of subjectivity. However, when taking both the particular degrees of uncertainty
as a priori probability measures not conditioned by each other, then every rule combining these two
probability measures into a uniquely determined one necessary introduces into the model in question
a hidden assumption of a fixed kind and degree of statistical (stochastical) (in) dependence between
the two sources of incertainty. We shall show, in the rest of this chapter and very briefly, referring to
[4] or [5] for a more detailed case analysis, that this is, in fact, the case.

Let S be interpreted as a nonempty finite set of possible internal states of a system, just one sg € S
being the actual one. The subject’s aim is either to identify the actual internal state sg, or at least
to decide whether sqg € T holds or does not hold for some (proper, as a rule) subset 7' of S. The
subject is not able to answer this question by the direct observation of sg, so that she/he has to guess
the correct answer on the ground of some observation(s) concerning the system in question and its
environment. Let us denote by z this empirical value and by E the space (perhaps a vector one) of
all possible empirical values. In order the subject’s reasonings were based on some rational grounds,
she/he must know at least some relations holding between the actual internal state of the system and
the observed empirical values. Namely, the subject has at her/his disposal a relation p C S x E, also
taken as a mapping p: S x E — {0,1}, such that, given s € S and z € E, p(s,z) = 0 iff the subject
knows (or is able to deduce within the scope of her/his deductive abilities) that the actual internal
state of the system cannot be s supposing that the value 2 was observed. If this is not the case, i.e.,
if p(s,x) = 1, then the subject cannot avoid the possibility just described, hence, the state s and the
empirical value x are compatible. Consequently, p is called the compatibility relation and it will play
the role of the keystone in our further considerations and constructions.

In order to describe the supposed random nature of the observed empirical values, we shall suppose
that the observed empirical value z € E is the realization of a random variable X. This random
variable is defined as a measurable mapping which takes an abstract and, in what follows, fixed
probability space (€2, A, P) into the measurable space (F,E£) generated over E when choosing and
fixing a nonempty o-field £ C P(FE) of subsets of the space E.

Given a compatibility relation p: S x E — {0,1}, we denote by U,(z) = {s € S : p(s,z) =1} the
set of all states from S which are compatible with the empirical value 2 € E. Combining this notation
with the mapping X : (Q, A, P) — (E,E), we obtain the composed mapping U,(X(-)) : & — P(S),
hence, for each w e,

Upy(X(w)) ={s € S:p(s,X(w)) =1}. (1.7)

We shall suppose that U,(X(-)) is measurable in the sense that
{{we:U,(X(w))=A}:ACS}CA (1.8)
holds. Let us denote, for each A C S, by m(A) the value

m(A) =P ({weQ:U,(X(w)) = A}). (1.9)

As can be easily proved, the mapping m : P(S) — (0,1) is a b.p.a. over S, and for every b.p.a. m°

over S there exists a mapping U° : @ — P(S) defining m® in the sense of (1.9). Moreover, it follows
easily that

bel;,(A) = P({weQ: 0 #U,(X(w)) C A}) (1.10)

and
belpm(A) = P({weQ: Uy(X(w)) C A} /{we: Uy(X(w)) # 0}) (1.11)

hold for each A C S supposing that the conditional probability in (1.11) is defined.

Consider the case when two subjects solve the same problem to identify, or at least to specify
partially, the actual internal state of the system under consideration. Their observations can be,
however, of different kind and nature, so that there are two (possibly different) spaces Ej, Es of
empirical values, each of them equipped by its own o-field £, & of subsets, and there are two random
variables X1, X» both defined on the same probability (2, A, P), but taking their values in (E;, ) for



X1 and in (Es, &) for Xs. The apriori knowledge of each of them is defined by compatibility relations
p1:SxE; —{0,1} and py : S x By — {0,1} (p1 C S x Ey, p2 C S x Es, under the set-theoretic
notation).

Let the two subjects (or some third “meta-subject”) decide to combine their a priori knowledge
and empirical data in the following way. Let Ej5 = E; x E, be the Cartesian product of both
the empirical spaces, let £12 be the o-field of subsets of F; x FEs generated by & and &. Let
X2 = (X1, X2) : Q = Ej5 be the mapping defined by Xi2(w) = (X (w), X2(w)) for each w €Q; an
elementary result of measure theory (cf. [3], e.g.) then reads that X;» is a measurable mapping.
Finally, let the compatibility relation p12 : S X Ej5 — {0,1} be defined by

p12(s, (z1,72)) = min{pi (s, z1), p2(s,z2)} (1.12)

for each s € S, 1 € Ey, and x2 € E>. An easy calculation yields that, for each x = (x1, 22) € E2,

UP12 (l‘) = UP1 (1‘1) n Upz (1‘2), (113)
hence, for each we,
Ups (X12(w)) = Uy, (X1(w)) N Up, (X2 (w)). (1.14)
As in the case of p; and ps, we can define b.p.a. mj2 and belief functions bel:n12 and belp,,
generated by pio and X12. We obtain, for each A C S, that
miz(4) = P{weQ:U,,(X12(w)) = 4}), (1.15)
bely, ,(A) = P{weQ:0#£U,,(Xi2(w)) C A},
belmm (A) = P ({wEQ : UPIQ (X12(w)) C A} / {WEQ : Up12 (X12(w)) 7£ 0})7

supposing that the last conditional probability is defined, i.e., supposing that mi2() = P({w e Q :
Upin(Xi2(w)) = 0}) < 1 holds.
The space S is assumed to be finite, so that P(S) is finite as well and for each Ay, A> C S, A # As,

((B,C):B,CCS,BNC=A4)n{(B,C):B,CCS, BNC=A}=0. (1.16)

Consequently, (1.15) can be rewritten as

mia()=3" o oo PUOERUn (Xi(@) =B, Up (Xa(@)) =C}),  (117)

bely,,,(A)= Z(B,c),B,CcS,(D;éBchA P

_ 2(370),B7CCS,07&BHCCAP ({we:U,, (X1 (w))=B,U,,(X2(w))=C})
T Y B.0oy.Bocseznne P ({w€Q:Up, (X1 (w) =B, U, (Xa(w) =C})

Let us state explicitly, now, that we assume that for all A C S and each p(p1, p2, p12, resp.)

{we:Up, (X1(w) =B, U,, (X2(w))=C}),

bel ., (A)

{weN:U,(X(w)) = A} = (U,(X)) (A e A (1.18)

holds, so that the values m(A), m1(A), m2(A) and m5(A) are defined. This assumption will be ac-
cepted also below, moreover, we shall suppose that the random variables X; and X are stochastically
(statistically) independent.

P({WEQ : Xl(LU) € Fl, XQ(LU) € FQ}) = (119)
= PHweN: X (w) €M} PHweN: Xy(w) € Fr})

holds. Given A;, A» C S we obtain that also the set-valued random variables U,, (X1(:)) and
Up, (X2(+)) are statistically independent, so that the equality
P{weQ: U, (X1(w) = A1, Uy, (X2(w)) = A2}) = (1.20)
= PweR: Uy, (Xi(w) = Ai}) P({w€Q : Uy (Xa(w)) = A2})



holds as well. Consequently, (1.17) can be rewritten as

mia(d) = Z(B,C)7B,CCS7BHC:AP({w€Q :Up, (X1(w)) = B}) - (1.21)
P ({we : Uy, (Xa(w)) = C}) =
- Z(Byc>7B,OcS7BmczAm1(B)m2(0),
belina(A) = D o b ecsozmncen™ B m2(C),
mq(B) mo(C
belm,,(A) = Z(RC),@;&BchA 1(B)m2(C)

2B,y 02Bnc M1 (B) m2(C)

* *

Hence, mi2 = my ® ma, bel,, , = bel;‘n1 ® bel,,,, and bel,,,, = bely, @ bely,,. In other words said,
application of Dempster combination rule when combining two (or more) degrees of uncertainty de-
fined by particular belief functions is sound and justifiable only when supposing that the particular
random empirical data are statistically independent and that the pieces of knowledge described by
particular compatibility relations are combined in the “optimistic” sense. Perhaps strange and inter-
esting enough, we shall see, in the rest of this paper, that these assumptions are not necessary when
processing the degrees of belief in a nonstandard and, in a sense, boolean-like way. In the next chapter
we shall introduce some necessary and very elementary technical preliminaries.

2 Arithmetical and Probabilistic Structures
over Boolean—Like Processed Real Numbers

The reader is supposed to be familiar with the notion of Boolean algebra and with the most elementary
properties of these structures, cf., e.g. [2] or [8]. Following [8], we shall define Boolean algebra B as a
quadruple (B, V, A, =), where B is a nonempty set (called the support of B), V and A are total binary
operations taking the Cartesian product B x B into B, and — is a total unary operation taking B into
B, such that for all z, y, z € B the following identities hold

(Al) zVvVy=yVe, zAy=yAux, (2.1)
(A2) zVv(yVz)=(zVy Vz, zAYAz)=(xAYy) Az,

(A3) zV(yAz)=(zVy A(xVz), zAyVz)=(@Ay)V(rAz),

(Ad) zA(xVy =z zV(zAy)=ux,

(A5) (zA(mz))Vy=y, (@V (1) Ay=y.

The zero element 0p of the Boolean algebra B is defined by 05 = x A (—x), the unit element 15 of B
by 1z = z V (—z). The binary relation <p defined on B by z <5 y iff x Ay = x defines obviously a
partial ordering in B, moreover, V and A are the supremum and the infimum operation with respect
to <. Obviously, 0 <5 x <5 15 holds for each z € B. For every finite subset C' C B the supremum
V.ccr (V O, abbreviately) and the infimum A .~z (AC, abbrevistely) with respect to <p are
uniquely defined by recursion. If \/ C' and A C are defined for all C' C B, the Boolean algebra B is
called complete.

In what follows, we shall focus our attention to the three following mutually isomorphic Boolean
algebras.

Let NT = {1,2,...} be the set of all (standard) positive integers, let P(N*) be the power-set
of all subsets of N't, let U, N and Nt — - be the set-theoretic operations of union, intersection and
complement. Then the quadruple By = (P(N7T),U,N, Nt —) is obviously a complete Boolean algebra.

Let By = {0,1}* be the space of all infinite binary sequences, let * = (x1,22,...), or © =
()22, x; € {0,1} for all i € AT, denote an element of B; (and similarly for y, z,...). Let
0 = (0,0,0,...) € By and 1 = (1,1,1,...) denote the two constant sequences, let Vi and A;
be binary operations taking By x B; into By in such a way that & Vi y = (sup{w;, y;})$2, and



x A1y = (inf{z;, y;})2, for each &, y € By; here sup and inf are the usual supremum and infimum
operations in {0,1}. Let 1°° — . be the unary operation taking By into B; in such a way that
1° —x = (1 —x;)2, for all € By. Then the quadruple By = ({0,1})2,, Vi, A1, 1 — ) is a
complete Boolean algebra with the zero element 0z, = 0° and the unit element 15, = 1°°. The
Boolean algebras By and B; are evidently isomorphic, their isomorphism being established by the
1 — 1 mapping x : P(N*) — {0,1}* which ascribes to each A C A" its characteristic function
(sequence, in this particular case) x* = (x(4);)2, € {0,1}>, defined for each i € Nt by x(A4); = 1,
ifi € A, x(A); =0 otherwise.

The third Boolean algebra will be obtained by a particular 1 — 1 encoding of sets of positive
integers and infinite binary sequences by real numbers from (a certain subset of) the unit interval
{0,1} of (standard) real numbers. Let C be the well-known Cantor subset of {0,1}. Formally, C is
the set of all real numbers from the unit interval for which there exists its ternary decomposition
(decomposition to the base 3) which does not contain any occurrence of the numeral 1. Hence, the
mapping g : {0,1}> — C ascribing to each = (z1,2,...) € {0,1}* the real number Y ;= 2z;37°
is a 1 — 1 mapping as well as the composed mapping ¢ : P(NT) — C defined by

p(4) = po(x(4) =Y~ 2x(4);37 (2.2)
for each A C N'T.
Set, for each «, 8 € C,
aVe B = g H(@)Uue H(B), (2.3)
ahy = (e @)ne H(B),
I~a = Nt —p ),

“

in the last row “—” denotes the set theoretic operation of complement. An easy calculation yields
that 1—a = 1 — a holds for each a € C. The quadruple By = (C, V2, Az, 1 — -} is a complete Boolean
algebra, 05, = 0 and 13, = 1, and B» is obviously isomorphic with the Boolean algebras By and B
due to the mappings ¢ and ¢ defined above.

The following partial operation >.* : C> — C ascribing to (some) infinite sequences of real numbers
from the Cantor set C a number from C will be defined as follows. Let (ay, as,...) be a sequence of

00 *
numbers from C such that the subsets ¢~ (a;) of N+, i = 1,2, ..., are mutually disjoint. Then Y a;
i=1
00 *
is defined by ¢ (Ufil gofl(ai)), > «; being undefined otherwise. As can be easily proved, for each
i=1

oo * oo * 00

sequence {(aq,as,. ..y € C* the following implication holds: if Y «; is defined, then Y a; = > «y,
i=1 i=1 i=1
o0 *

where the last expression denotes the usual operation of summation in (0,1). The operation ) is
oo * oo * =t

commutative in the sense that if )  «; is defined, then )  a(; is also defined and, consequently,
i=1 i=1

oo * o0 0
equal to Y i, Y @;, and Y ), for each 1 — 1 mapping 7 : N'* — N
i=1 i=1 i=1
The basic structure enabling to formalize, at the most abstract level, the notion of probability and
random event is that of probability space. Let us recall, for the sake of reader’s convenience, its usual

(standard) definition, immediately followed by its nonstandard modification.

Definition 2.1.

(i) Let © be a nonempty set, let A be a o-field of subsets of 2, i.e., A is nonempty and, for each
A, Ay, As, e A also Q— A € Aand |J;2, A; € Ahold. The pair (9, A) is called measurable
space (generated in 2 or over Q by the o-field A) and elements of A are called measurable sets.

(ii) A mapping P : A — (0,1) ascribing to each A € A a real number P(A) from the unit interval
of reals is called (standard) probability measure (p.m., abbreviately) on (2, A), if (a) P(Q) =1



(2 € A and 0 € A obviously hold for each o-field A of subsets of Q) and (b) P (U;2, 4;) =
oo, P(A;) holds for each sequence (A, A, ..., ) of mutually disjoint sets from A.

(iii) A mapping p : A — C (Cantor subset of (0,1)) is called nonstandard (Cantor-valued) probability
measure (ns.p.m., abbreviately) on (2, A), if (a) u(Q2) = 1 and (b) for each sequence(A;, A,, . ..)

o]

00 *
of mutually disjoint sets from A the series > u(A;) is defined and p (U;2; Ai) = Y w(A;).
i=1 i=1

(iv) A triple (Q, A, P) ((Q, A, ), resp.) where (Q, A) is a measurable space and P is a probability
measure (p is a nonstandard probability measure, resp.) on (Q, A) is called (standard) prob-
ability space (nonstandard or ns-probability space, resp.). In both the cases, measurable sets,
i.e., elements of A, are called random events. For each A € A, the value P(A) (u(A), resp.) is
called the probability (nonstandard or ns-probability, resp.) of the random event A. O

o0 * o0 *
It follows immediately from what we told above, that if > w(A;) is defined, then > u(A;) =
i=1 i=1

o0
>~ u(A;), hence, every ns-probability measure on (2, A) is a (special case of) standard probability
i=1

measure on the same measurable space.

3 Basic Nonstandard Probability Assignments
and Their Processing

In our context, the most important property of nonstandard probability measures consists in the fact
that there are extensional in the sense that nonstandard probabilities of random events combined from
some “elementary” random events by the set-theoretic operations of union, intersection and comple-
ment can be defined and computed as real-valued (vector) functions of the nonstandard probabilities
of these “elementary” random events. The corresponding formalized statement reads as follows.

Theorem 3.1. Let (Q, A, u) be a nonstandard probability space. Then, for all A, B€ A,
WO - A)=1-p(A), p(AUB) = u(A) Vo pu(B), w(ANB) = u(A) Ao p(B),  (3.1)
where V5 and A» are the binary operations taking C x C into C defined by (2.3). a

o0 *
Proof. The following relation between the operations Vo and Y is evident. If (a;)2, is a sequence
- *i=1
of real numbers from C such that a; = 0 for all i > n and ) «; is defined, then
i=1

00 *
Z Q; = \/2 a2 \/2 e \/2 (7% (32)
i=1

n *
holds and we shall use the notation Y «; to abbreviate the right-hand side expression in (3.2).

i=1
Let A, B € A. Setting By = A— B, Ex = ANB, B3 =B — A, and E; = () C Q for each i > 3,

o]
we obtain a sequence of mutually disjoint measurable sets from A so that Y wu(F;) is defined and
i=1

U Ei = AU B. Hence,

i=1

WAUB) = 3 u(E) = u(E) Va p(Bs) Vi pu(By) = (3.3

i=1

= wA—B) Vs u(ANB) Vs u(B — A) =



= »le _1( (A B)) _1(u(AﬁB)))V2u(B—A)=

= ¢l (n(A - B)) TTWANB)))) U™ (B - A))] =
= o[lp” A B))uU (M(AWB))) (e (WANB) U™ (WB - A)))] =
= [so ) U™ 1(M(B))] = u(A) V2 u(B).

As each nonstandard probability measure is also a classical probability measure, u(2 — A) =
1 — p(A) holds for each A € A. De Morgan rules then yield that

pANB) =p(@ - ((Q-A)U(@Q-B)) = (3.4)

A) Va u(ﬂ B)))=

(@

NT=NT = (¢ (M(A))ﬁso 1( (B))
)

Bl =
)])

o
SESSE
+
I
“6|‘6
i)
AS)
»—A/:l
E,
)
I
Ei

Definition 3.1. Let S be a finite nonempty set. Basic nonstandard probability assingment (b.ns-p.a.)

on S (or: over S) is a mapping m* : P(S) — C such that . "m*(A) is defined and Y *m*(A) = 1.
ACS ACS
O

00 *

Remark. The value 5 "m*(A) is defined by Y. «;, where (A, As, ..., A),
ACS i=1

s = card(P(S)) = 2°#9(9) is an ordering (without repetitions) of all subsets of S, a; = m*(4;) for

i <s,and a; = 0foralli € N, i > s. If this is the case, i.e., if > "m*(A) is defined, then obviously

ACS
00 * s *
Soa; =Y m*(A;) = m*(Ar) Vam*(As) Vo - Vom*(As). As the operation V4 is commutative and
i— i=1
associative, the value Y. "m*(A) is defined unambiguously, i.e., it does not depend on the chosen

ACS
ordering (A;, As, ..., A,) of all subsets of S.

Theorem 3.2. There exists a nonstandard probability space (€2, A, u) such that, for each finite nonempty
set S and each ns.b.p.a. m* on S, there exists a measurable mapping (set-valued random variable, in
other terms) Uy,- : (2, A, u) = (P(S), P(P(S))) such that, for each A C S,

m* (A) =p({we: Up:(w) = A}). (3.5
Proof. Let Q = N = {1,2,...} be the set of all positive integers, let A = P(NT) be the system of all

sets of positive integers, let pu({i}) = 2-37 % for all i € N'*. Consequently, (Q, A, u) = (N *, P(NF), u)
is a ns. probability space. Or, let A1, A5, ... C AT be an infinite sequence of mutually disjoint subsets

of Nt. Then
H (UZI Ai) - ZjeUlf’; A; 2-37 = Zzl ZjeAl— 2-377 = (3.6)
= Y mA) =37 (A,

Let us recall the one-to-one mapping ¢ : P(N 1) — C (the Cantor set) defined by (2.2) above. For
eachx € C, © < (x1,22,...) € {0,2}>,

o (@) = {i € Ny = 2}, (3.7)
so that & = )7, - 1y 23" Set, for each wel = N7,

Un-(w) = ACN* iff we e L(m*(4)). (3.8)



Consequently, for each A C N,

p{weN : Ups(w) =AY =pu ({z eENT:ic wil(m*(A))}) = (3.9)
= u (cpfl(m*(A))) = Ziew_l(m*(A)) 2. 3*7: — m*(A)
and the asertion is proved. O

The following theorem deduces and presents a boolean-like modification of Dempster combination
rule which can be obtain within the framework of our nonstandard model. Interesting and perhaps
important enough, the obtained combination rule conserves the extensional nature of the classical
Dempster combination rule, but no assumption concerning the statistical independence (or a special
kind and/or degree of dependence) of the random variables in question is needed.

Theorem 3.3. Let (2, A, 1) be a nonstandard probability space, let S be a nonempty finite set, let
E;, i = 1,2, be nonempty empirical spaces, let &, i = 1,2, & C P(E;), be nonempty o-fields of
subsets of these empirical spaces. Let X; : (Q, A, u) — (E;, &), i = 1,2, be measurable mappings
(generalized random variables), let p; : S x E; — {0,1}, i = 1,2, be compatibility relations over the
corresponding spaces. Let the mappings U; : Q — P(S) defined, for each weQ and for both i = 1,2,
by

Ui(w) ={s €S :pi(s, X;(w)) =1} (3.10)

be measurable mappings taking the ns. probability space (€2, A, u) into the measurable space (P(S), P(P(S))).
Let

p12(s, (x1,22)) = min {p1 (s, z1), p2(s,z2)} (3.11)
for every s € S, x1 € Ey, x2 € E5. Set
Ur2(w) = {s € S : p1a(s, (X1(w), X2(w))) = 1} (3.12)

and denote by mj(4), i =1,2,12, A C S, the value
mi(A) =p({weN: Uj(w) = A}). (3.13)

Then m} is a ns.b.p.a. on S for each i =1, 2, 12, and

*

mipy(A) =Y mi(B) Ami(C) (3.14)

holds for each A C S, where A5 is the nonstandard infimum operatin in C defined by (2.3). a

Proof. Fori=1,2, {weQ: U;(w) = A} € A holds for each A C S and both i = 1,2. Consequently,
p({weQ: Uj(w) = A}) is defined. If Ay, A C S, A; # A,, then

{we:Uj(w) =41} n{we: Uj(w) = A2} =0 (3.15)

holds for both i = 1,2, so that {{weQ: U;(w) = A} : A C S} is a system of mutually disjoint subsets
of € (a decomposition of  to subsets from A, in fact), and for such systems Y7 - p({w € : Uj(w) =
A}) is defined and equals to 1 for i = 1,2, as (Q, A, u) is a nonstandard probability space. Hence,
both m7 and mj defined by (3.13) are ns.b.p.a.’s over S.

As in the usual case, (3.11) and (3.12) yield that

Uiz (w) = {s € S : min{p1 (s, X1(w)), p2(s, Xa(w))} =1} = (3.16)
= Ul(w) n Ug(w).
For each A C S
{weN:Upp(w) =1} ={weQ: U1 (w)NUz(w) = A} = (3.17)

= Up e poos (0€Q: i) = B} N {weQ: a(w) = C}).



The relation

Z*ACSM({wGQ :Urp(w) = A}) = Z*

acgMiz(4) =1 (3.18)

can be proved in the same way as in the case of mj and m3.
Let (By,C4), (Bs,C>) be two different pairs of subsets of S, so that either By # Bs or C # Cs.
Then, obviously,

miy(A) = p{w e : Up(w) = A}) = (3.19)
H (UB,CCs,BﬂC:A({WEQ Ui(w) =B n{we: Uz(w) = C})) -

= Z;,CC&BOC:A pAwe:Ui(w) =B}N{weN: Uz(w)=C}) =
= Z;,CCS’BOC:A p{weQ: Ui (w) = BY) Ao p({w€Q : Us(w) = C}) =

*

- ZB,CCS,BOC:A mi(B) Az m3(C)

due to Theorem 3.1 and due to the definition of mi(B), m3(C) by (3.13). The assertion is proved.O

In the list of references below, [1] and [7] are already classical sources offering an introduction into
the field of the Dempster—Shafer theory. The research report [6] describes and analyses Dempster—
Shafer theory from the probabilistic point of view in more detail than the already published papers
[4] and [5].



Bibliography

[1] D. Dubois, H. Prade: Théorie de Possibilités — Applications & la Représentation de Connaissances en Informatique.
Mason, Paris, 1985.

[2] R. Faure, E. Heurgon: Structures Ordonnées et Algébres de Boole. Gauthier—Villars, Paris, 1971.

[3] P.R. Halmos: Measure Theory. D. van Nostrand, New York—Toronto—London, 1950.

[4] I. Kramosil: Believeability and plausibility functions over infinite sets. International Journal of General Systems
23 (1994), no. 2, pp. 173-198.

[5] I. Kramosil: A probabilistic analysis of Dempster combination rule. In: The LOGICA Yearbook. Filosofia, Prague,
1997, pp. 175-187.

[6] I. Kramosil: Probabilistic analysis of Dempster—Shafer theory — Part I. Technical Report no. 716, Institute of
Computer Science, Acad. of Sci. of the Czech Republic, September 1997, 56 pp.

[7] G. Shafer: A Mathematical Theory of Evidence. Princeton Univ. Press, Princeton, 1976.

[8] R. Sikorski: Boolean Algebras. Springer Verlag, Berlin — Gottinger — Heidelberg, 1960.

10



