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Abstract:

We define fuzzy neuroidal nets in a way that enables to relate their computations to computations of
fuzzy Turing machines. Namely, we show that polynomially space-bounded computations of fuzzy Turing
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1 Introduction

Fuzzy Turing machines as a formal means of describing and dealing with fuzzy algorithms were
proposed by Zadeh [14] in late seventies. However, except of a very few immediate reactions (cf. [9],
[5]) no much research was initiated by this notion. Recently, a revised model of fuzzy Turing machines
corresponding to the rigorous foundations of fuzzy logic (cf. [2]) appeared in [13]. Here, fuzzy Turing
machines corresponding to arbitrary fuzzy propositional calculus defined by a continuous t-norm have
been defined and studied from the viewpoint of their computational power.

In parallel with the development of the notion of fuzzy Turing machines also the notion of fuzzy
finite automata (cf. [9]) appeared. The latter model has recently received increasingly more attention.
Namely, with the renaissance of neurocomputing, it appeared that, similarly as standard, ‘crisp’ finite
automata (cf. [10]), also finite fuzzy finite automata can be efficiently implemented with the help of
recurrent neural nets (cf. [6], [7]). In the latter mentioned paper its authors Omlin, Thornber and
Lee Gilles raised a question whether computationally more powerful fuzzy systems (called ‘recurrent
fuzzy systems’ by the authors) than fuzzy finite automata could also be implemented with the help of
recurrent neural nets. In this paper we will address the corresponding question within the framework of
computations defined by the above mentioned recent model of fuzzy Turing machines which certainly
represent ‘recurrent fuzzy systems’. We define a class of discrete fuzzy neural nets in a way that neatly
relate their computations to computations of fuzzy Turing machines. In order to obtain a result as
general as possible we will consider nondeterministic versions of both fuzzy Turing machines and fuzzy
neural nets. From the same reasons we will also consider more general nets than (discrete) neural
ones — so-called neuroidal nets introduced originally by Valiant [11]. Neuroidal nets can be seen as
programmable variants of standard neural nets.

As our main result we prove direct simulations between the class of fuzzy neuroidal nets and fuzzy
Turing machines. Technically, we show that polynomially space-bounded computations of fuzzy Turing
machines with a polynomial advice function are equivalent to the computations a polynomially-sized
family of fuzzy neural nets. This result ranks discrete fuzzy neural nets among the most powerful
computational devices known in the computational complexity theory. Thus, our result answers the
previous question by Omline et al. affirmatively, at least for the case of discrete (recurrent) fuzzy
neural nets.

The notion of a fuzzy Turing machine and that of its computations will be reminded in Section 2.
In Section 3 a nonuniform version of fuzzy Turing machines — namely fuzzy Turing machines with
advice, and the respective nonuniform complexity classes, will be introduced. In Section 4 the notion of
fuzzy neural nets and that of infinite families of such nets will be defined. Next, in Section 5 our main
result relating the computations of fuzzy Turing machines and fuzzy neural nets is proved. Finally, in
Section 6 the the merits of our results, and some problems for further research are mentioned.

2 Fuzzy Turing machines

For the sake of completeness we briefly remind a basic variant of a fuzzy Turing machine as described
in the original paper [13]. This model is obtained from the standard nondeterministic Turing machine
by fuzzification of its ‘instruction set’. However, the machine design is still general in the sense that the
truth degrees associated with each accepting computation are computed by a special truth function
called t–norm. Namely, this t–norm determines the kind of fuzzy propositional calculus in which
the respective computations can also be described (cf. [12]). By choosing a particular t–norm we
will obtain specific variants of fuzzy Turing machines, among them also the one defined originally by
Santos [9]. As compared to this machine the acceptance criterion of the ‘revised’ machine from [13]
is also changed so that the nondeterministic variant of the resulting machine satisfies Church-Turing
Thesis (cf. [13] for the details).

Prior to giving the respective definition of a fuzzy Turing machine we introduce the definition of
a t–norm (cf. [2]).

Definition 1 A t–norm is a binary operation ∗ on [0,1] (i.e. t: [0,1]2 → [0,1]) satisfying the following
conditions:
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1. ∗ is commutative and associative, i.e for all x, y, z ∈ [0, 1] we have x ∗ y = y ∗x and (x ∗ y) ∗ z =
x ∗ (y ∗ z);

2. ∗ is non–decreasing in both arguments, i.e. x1 ≤ x2 implies x1 ∗ y ≤ x2 ∗ y and y1 ≤ y2 implies
x ∗ y1 ≤ x ∗ y2;

3. for all x ∈ [0, 1] we have 1 ∗ x = x and 0 ∗ x = 0.

(Note that we do not require a continuity of the t–norm.) For the sake of simplicity, we will
introduce only the definition of a single–tape fuzzy Turing machine since we will be mainly interested
in its principal computational abilities and less in its effectiveness.

Definition 2 A nondeterministic single–tape fuzzy Turing machine (Fuzzy-NTM) is a ten–tuple F =
(S, T, I,Δ, b, q0, qf ,M, μ, ∗) where:

1. S is the finite set of states;

2. T is the finite set of tape symbols, to be printed on a tape that has a left-most cell but is
unbounded to the right;

3. I is the set of input symbols; I ⊆ T ;

4. Δ is the next-move relation which is a subset of S × T × S × T × {−1, 0, 1}. For each possible
move of F there is an element δ ∈ Δ with δ = (s1, t1, s2, t2, d). That is, if the current state is
s1 and the tape symbol scanned by the machine’s head is t1, F will enter the new state s2, the
new tape symbol t2 will rewrite the previous symbol t1, and the tape head will move in direction
d. (In the previous relation symbol −1 (1) denotes a move by one cell to the left (right) and 0
denotes no move.)

5. b, in T − I, is the blank;

6. q0 is the initial state;

7. qf is the final, or accepting state;

8. M is a finite subset of the real interval [0,1], of cardinality |M | > 0;

9. μ : Δ → M is a function that to each move δ assigns the truth degree μ(δ) of its membership
in Δ

10. ∗ is a t–norm.

Note that the membership degree of δ ∈ Δ equals the truth degree of the proposition “δ is an
element of Δ”. For δ = (s1, t1, s2, t2, d) ∈ Δ we will define a predicate Δ(s1, t1, s2, t2, d) and we will
say that the truth degree of Δ(s1, t1, s2, t2, h) equals α if and only if μ(δ) = α.

The notion of computation is defined as usual with the help of instantaneous descriptions (IDs).
An instantaneous description Qt of F working on input w at time t > 0 is a unique description of
machine’s tape, of its state and of the position of the machine’s head after performing its t-th move
on input w. If Qt and Qt+1 are two IDs we will write Qt �α Qt+1 and say that Qt+1 is reachable
in one step from Qt with truth degree α if and only if there is a possible move in Δ, with truth
degree α, leading from Qt to Qt+1. On input w the machine starts its computation in the respective
initial ID Q0. This is an ID describing the tape holding a string of n input symbols (the so–called
input string, or input word), one symbol per cell starting with the leftmost cell. All cells to the right
of the input string are blank. The head is scanning the leftmost cell and the current state is q0.
From the initial ID the computation proceeds to IDs that are reachable in one step from Q0, etc. If
Q0 �α0 Q1 �α1 Q2 . . . �αk−1 Qk, with α0, . . . , αk−1 ∈ M we say that Qk is reachable from Q0.

Now we establish a relation between the truth degrees of individual moves and those of achieving
individual IDs. In order to do so note that, intuitively, within the propositional calculus belonging to
the respective t–norm, for a particular move δ = (s1, t1, s2, t2, h) ∈ Δ its membership degree α = μ(δ)
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can be interpreted as the truth degree of the proposition “at each time t, when the machine is in
state s1, its head is scanning the i-th cell with symbol t1, the machine will subsequently enter state s2,
rewrite the scanned symbol by t2 and move its head in direction h”. Then, this truth degree can be
extended to any ID of F reachable from its initial ID as follows.

Let Qt be reachable from Q0 via a computational path Q0 �α0 Q1 �α1 Q2 . . . �αt−1 Qt, with
α0, . . . , αt−1 ∈ M, let D((Q0, Q1, . . . , Qt)) denote the truth degree of the proposition “after t steps,
starting from Q0 and proceeding along the computational path Q0 �α0 Q1 �α1 Q2 . . . �αt−1 Qt, the
instantaneous description of F is Qt”. The corresponding evaluation function D is defined as

D((Q0, Q1, . . . , Qt)) =
{

1, t = 0
D((Q0, Q1, . . . , Qt−1)) ∗ αt−1, t > 0

Thus, the above mentioned truth degree is being ‘adjusted’ along any computational path with
the help of the respective t–norm which acts as the truth function of the (strong) conjunction & (cf.
[2]). Due to nondeterminism it may happen that Qt is reachable from Q0 via different computational
paths. Therefore, the ‘path independent’ truth degree d(Qt) of the proposition “after t steps, starting
from Q0 the ID of F is Qt” is defined as

d(Qt) = max{D((Q0, Q1, . . . , Qt))}
where the maximum is taken over all computational paths leading from Q0 to Qt.

A sequence Q0, Q1, . . . , Qq of IDs is called an accepting sequence of IDs of F on input w, if and
only if Q0 is an initial ID, Qi−1 �αi Qi for 1 ≤ i ≤ q, and Qq is an accepting ID (i.e. such ID that
contains the final state qf ). If an accepting ID Qq is reachable from q0 on input w we say that w is
accepted with truth degree d(Qq).

Now we are in a position to define the acceptance criterion for a fuzzy Turing machine. A Fuzzy-
NTM works as a (fuzzy) language acceptor as follows. The tape symbols of the machine include the
alphabet of the language, called the input symbols, a special symbol blank, denoted b, and perhaps
other symbols.

Definition 3 Let F = (S, T, I,Δ, b, q0, qf ,M, μ, ∗) be a Fuzzy-NTM. The input string w is accepted
with truth degree e(w) by F if and only if

• on input w, the computation of F reaches an accepting ID Qk at depth k and e(w) = d(Qk);

• evaluation d(Qk) is not less than the evaluations of all IDs at the same depth

• k is the minimal depth at which such accepting ID exists.

The space complexity of an accepting computation of F on inputs of size n is defined as usually,
i.e. as a maximal amount of tape cells rewritten by F when processing inputs of that size.

Next we proceed to the definition of fuzzy languages. The idea is to define a fuzzy language as
a fuzzy set of words. That is, each word from the respective language belongs to it with a certain
membership grade which is a real number between 0 and 1. If such a language is recognized by a fuzzy
Turing machines then the membership grade of each accepted word is equal to its acceptance truth
degree.

Definition 4 The fuzzy language accepted by F is the fuzzy set of ordered pairs

LF = {(w, e(w))| w is accepted by F with truth degree e(w)}
In the context mentioned above function e is also called membership function of LF . Observe that

in Definition 4 only words with the maximal acceptance degree are considered. It is important to
realize that F does not ‘print’ the truth degree e(w) corresponding to the accepted word w. In fact,
this would also be principally impossible due to the fact that truth degrees are real numbers. Rather,
this truth degree is only defined by Definition 3, but not explicitly computed by F .

Note that in case when μ(δ) = 1 for all δ ∈ Δ the Fuzzy-NTM equals the classical acceptance
criterion the standard NTM as defined e.g. in [3]. Such a machine is also called a crisp Turing
machine.
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3 Fuzzy Turing machines with advice

The ultimate goal of this paper is the design and study of fuzzy neuroidal nets. Our main tool for
characterizing their computational efficiency will be fuzzy Turing machines with advice which we define
in this section. Crisp Turing machines with advice have been introduced by Karp and Lipton in their
seminal paper [4] establishing the foundation of non-uniform complexity theory. An advice is a special
kind of an oracle. Effectively, an oracle allows inserting of outside information into the computation.
This information may depend on the concrete input and is given for free to the respective oracle
machines. By this, the respective machines may gain the super-Turing computing power, viz. they
can decide languages that are not recursively enumerable (cf.[1]). The difference between an oracle
and an advice lies in the ‘usefulness’ of the additional external information. Contrary to the case of
oracles, the advice value must not depend on a concrete input word; rather, it can only depend on the
size of the input. Intuitively, the information delivered by an oracle makes sense only for the given
input; the information offered by an advice can be used for all inputs of the same size. In order to
prevent delivering of too much information in a single advice value (e.g. the results of all computations
on inputs of size n) one usually considers bounded advice functions.

Definition 5 An advice function is a function f : Z+ → Σ∗. An advice is called S(n)-bounded if for
all n, the length of f(n) is bounded by S(n).

Technically, a fuzzy Turing machine with advice described by the advice function f operates on
its input of size n in much the same like the standard fuzzy Turing machines does. However, such
machine can also call its advice by entering into a special query state. After doing so, the value of
f(n) will appear at the special read-only advice tape. Since that time the machine can also use in its
computation the contents of this tape.

For the classes of languages recognized by fuzzy Turing machines with advice, we will introduce a
notation similar to that used for crisp non-uniform complexity classes (cf. [1].)

Definition 6 The class Fuzzy − C/F consists of fuzzy languages L for which there exists a L1 ∈
Fuzzy −C and a f ∈ F such that the following holds for all n and inputs x of length n : x ∈ L if and
only if 〈x, f(n)〉 ∈ L1.

Thus, a fuzzy language L ∈ Fuzzy − C/F iff L is recognized by a fuzzy Turing machine from
complexity class Fuzzy−C with advice function f ∈ F . A common choice for Fuzzy−C that we will
also use is Fuzzy − PSPACE (‘fuzzy deterministic polynomial space’). A common choice for F is
poly, the class of polynomially bounded advice functions.

For more information concerning non-uniform computing cf.[1].

4 Fuzzy Neuroidal Nets

Similarly as fuzzy Turing machines from Definition 2 which were defined as standard Turing machines
with fuzzy transition relations, fuzzy neuroidal nets will be defined as standard discrete neuroidal nets
in which the behavior of neurons will be governed by a fuzzy parameter-update transition rule. At its
end this approach will enable assigning of truth degrees to configurations of a neuroidal net at hand
and eventually to speak about the truth degree of acceptance similarly as it was the case with fuzzy
Turing machines.

In the sequel, in order to be compatible with our notion of nondeterministic fuzzy Turing machines
we define a corresponding notion of nondeterministic fuzzy neuroidal nets, essentially making use of
the original Valiant’s definition (and notation) of discrete neuroidal nets [11].

Definition 7 An n–input nondeterministic fuzzy neuroidal net Nn is an ten–tuple Nn = (G, I, o,W,Q,T,Δ,M, μ, ∗),
where

1. G = (V,E) is the directed graph describing the topology of the network; V is a finite set of
|V| ≥ n nodes called neuroids labeled by distinct integers 1, 2, . . . , |V|, and E is a set of |E| = m
directed edges between the nodes. The edge (i, j) for i, j ∈ {1, . . . , |V|} is an edge directed from
node i to node j.
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2. I ⊆ V, with |I| = n is a distinguished set of input neurons;

3. o ∈ V, o �∈ I is a distinguished output neuron;

4. W ⊂ Z is the finite set of integers called weights. To each edge (i, j) ∈ E there is a value
wi,j ∈ W assigned at each instant of time.

5. Q, with |Q| ≥ 2 is a finite set of the states of neuroids which a neuroid can be in each instant;
Q consists of two kinds of states called firing and quiescent states. To each node i there is also
a Boolean variable fi called activity to have value one or zero depending on whether the node i
is in a firing state or not.

6. T ⊂ Z is a finite set of integers called thresholds of the neuroid. The elements of sets Q, T, W,
and fi’s are called parameters of net Nn.

7. Δ is the parameter update relation which is a subset of Q × T × W × Z × {0, 1} × Q × T × W.
Each element δ ∈ Δ defines for each combination of parameters holding at time t a set of new
values of the respective parameters holding at time t + 1 in the following way.

Let Z be the set of all integers, let wi ∈ Z be the sum of those weights wki of neuroid i that are on
edges (k, i) coming from neuroids which are currently firing, i.e., formally wi =

∑
k firing
(k,i)∈E

wki =∑
j

(j,i)∈E
fjwji. The value of wi is called the excitation of i at that time.

If δ = (qi, ti, wji, wi, fj , q
′
i, t

′
i, w

′
ji) is an update from Δ and at time t neuron i finds itself in state

qi, has threshold ti, carries weight wji at some edge, its excitation is wi, and activity of neuron
j is fj , then at time t + 1 neuron i will transit into state q′i, change its threshold into t′i, and its
weight wji into w′

ji;

8. M is a finite subset of the real interval [0, 1], of cardinality |M| > 0;

9. μ : Δ → M is a function that to each update δ assigns the truth degree μ(δ) of its membership
in Δ

10. ∗ is a t–norm.

An instantaneous description (ID) of Nn at time t is a list of states and thresholds of all neurons
followed by a list of weights of all edges in Nn at that time. The respective lists of parameters are
pertinent to neuroids ordered by their labels and to edges ordered lexicografically w.r.t. the pair
of labels (of neuroids) that identify the edge at hand. Thus at any time an ID is an element from
{Q × T}|V| × W|E|.

The computation of a neuroidal network is determined by the input and the initial conditions. The
input is a sequence of n Boolean values which specifies the activities of input neurons within set I at
time t = 0. Thus, the respective input neuroids are forced to fire or are prevented from firing at that
time by mechanisms outside the net (by peripherals). The initial conditions specify the initial values
of weights, states and threshold of all neuroids. These are represented by the initial ID. Of course,
the initial conditions must be compatible with the input.

A computational step of neuroidal net Nn which finds itself in an ID Qt is performed as follows.
First, all excitations wi are computed for this ID in parallel. Then parameter updates are realized for
each neuroid i in parallel, in accordance with the respective update relation Δ. If for a neuroid there
are several possibilities for performing an update then one of them is nondeterministically selected
and realized. In this way a new configuration Qt+1 is entered.

The result of the computation after the t–th step is the |V|–tuple of states of all neuroids in Qt+1.
This |V|–tuple is also called the action at time t. Obviously, any action is an element in Q|V|. Then
the next computational step can begin. We say that a computation of Nn on input w, with |w| = n
terminates at time t if and only if for some t we have Qt = Qt+1 and the output neuron o of Nn fires
at that time. Qt is then called a terminating ID.

Similarly as in the case of fuzzy Turing machines we establish now a relation between truth degrees
of individual updates performed by Nn and the respective IDs. For the initial ID Q0 we define its

5



truth degree D((Q0)) = 1. Let D((Q0, Q1, . . . , Qt)) be the truth degree of the statement ‘starting from
Q0 and proceeding via Q1, Q2, etc., after t steps the ID of Nn is Qt’. If α1, . . . , α|V|, respectively, are
truth degrees of updates performed by neurons 1, 2, . . . , |V|, respectively, in the (t + 1)–st step, then
D((Q0, Q1, . . . , Qt+1)) = D((Q0, Q1, . . . , Qt)) ∗ α1 ∗ . . . ∗ α|V|. With the help of the latter definition
we can define the truth degree d(Qt) of reaching Qt from Q0 irrespective of the computational path
by which Qt has been reached as follows. We define

d(Qt) = max{D((Q0, Q1, . . . , Qt))}
where the maximum is taken over all computational paths leading from Q0 to Qt. Now we can proceed
to the notion of acceptance by fuzzy neuroidal nets and of a language recognized by fuzzy neuroidal
nets.

Definition 8 Let Nn = (G,W,Q,T,Δ,M, μ, ∗) be a nondeterministic fuzzy neuroidal net. The input
string w, with |w| = n is accepted with truth degree e(w) by Nn if and only if

• on input w, the computation of Nn reaches an accepting ID Qk after k computational steps and
e(w) = d(Qk);

• evaluation d(Qk) is not less than the evaluations of all IDs reachable after k steps;

• k is the minimal number of steps in which such accepting ID can be reached.

Note the compatibility of the above acceptance criterion with that of fuzzy Turing machines from
Definition 3. In order to define a fuzzy language accepted by neuroidal nets we have to define an
infinite family of neuroidal nets, having one member for each size of inputs. Moreover, we will require
that each member of such a family ‘works’ over the same set M of possible truth degrees, and with
the same t–norm. This leads to the following definition.

Definition 9 The family F(M, ∗) of fuzzy neuroidal nets over the set M of truth degrees and t-norm ∗
is an infinite sequence (N1,N2, . . .) of fuzzy neuroidal nets, with Nn = (Gn, In, on,Wn,Qn,Tn,Δn,M, μn, ∗).
Definition 10 Let F(M, ∗) be a family of fuzzy neuroidal nets. We say that family F(M, ∗) is poly-
nomially bounded if and only if there is a polynomial p(n) such that for each n ≥ 0 the description
complexity of Nn ∈ F(M, ∗) (i.e. the space, measured in bits, needed to write down a full specification
of Nn) is bounded from above by p(n).

Definition 11 The fuzzy language LF(M,∗) accepted by the family of fuzzy neuroidal nets F(M, ∗) is
the fuzzy set of ordered pairs

LF(M,∗) =

= ∪n≥0{(w, e(w))| |w| = n and w is accepted by Nn with truth degree e(w)}
Note that in order to define the above language for each input size a special neuroidal net is used.

The class of fuzzy languages accepted by families of fuzzy neuroidal nets of polynomial size will be
denoted as POLY-FNN. For crisp neuroidal nets we denote the respective class as POLY-CNN.

Fuzzy neural nets are restricted kind of fuzzy neuroidal networks in which the neuroids can modify
neither their weights nor their thresholds. The respective set of neuroidal states consists of only two
states — of a firing and quiescent state. Moreover, the neurons are forced to fire if and only if the
excitation reaches the threshold value. The computational behaviour of neural networks and fuzzy
languages recognized by fuzzy neural nets are defined similarly as those of neuroidal ones.

5 Equivalence of fuzzy Turing machines with fuzzy neuroidal nets

Our next aim will be to show that the class POLY-FNN coincides with the class Fuzzy-PSPACE/poly,
i.e. with the class of languages accepted by polynomially space bounded fuzzy Turing machines with
a polynomially bounded advice function. We will do this by sketching a mutual simulation of fuzzy
neuroidal nets by fuzzy Turing machines with advice.

6



Theorem 1 Let L be a fuzzy language. Then the following assertions are equivalent:

• L ∈ POLY-FNN

• L ∈ Fuzzy-PSPACE/poly

Proof: Let L ∈ POLY-FNN. This means that there is a polynomially bounded family F(M, ∗) such
that L = L(F(M, ∗)) = L(F). We will design a Fuzzy-NTM machine A = (S, T, I,Δ, b, q0, qf ,M, μ, ∗)
with a polynomial advice that accepts L in a polynomial space.

Define the advice function f of machine A as follows: for inputs of size n it assigns the description
of the respective fuzzy neuroidal net Nn ∈ F(M, ∗). Let d(n) be the size of such description. Then,
clearly, f is a polynomially bounded advice function. On input w, with |w| = n machine A works
as follows. It first calls its advice function with argument n. As a result of this call it gets on its
advice tape the description of Nn. This description is bounded by d(n). Now all what remains to do
is to simulate the actions of Nn on input w. Clearly, this can be done by A in space O(d(n)) (see the
description of a computation of a neuroidal net in the previous section) thanks to the fact that both
fuzzy Turing machine and the fuzzy neuroidal nets work with the same set M of membership degrees
and the same t–norm. Doing so, nondeterministic actions of Nn are simulated nondeterministically
by choosing the instructions of A with the membership degree corresponding to that of individual
neuroid updates. The compatibility of acceptance mechanism of both devices guarantees that an input
accepted by Nn is also accepted by A with the same truth degree. Thus, L ∈ Fuzzy–PSPACE/poly.

Now we prove the opposite inclusion. We will prove a slightly stronger result than needed — we
will prove the reverse simulation of a Fuzzy-NTM by a family of neural (rather than neuroidal) nets.
Let L ∈ Fuzzy–PSPACE/poly, let A = (S, T, I,Δ, b, q0, qf ,M, μ, ∗) be a single-tape Fuzzy-NTM with
a polynomial advice, with a separate input tape. Let A accept L, let f be the respective polynomial
advice function of size d(n), let A be of polynomial space complexity p(n). For each input of size n
we will construct a specific neural net Nn that will accept exactly the words w of size n as A does,
and it will accept them with the same truth degree as A does.

The size of the neural net will be bounded by q(n) = O(max{d(n), p(n)}). It will store the current
contents of both the advice and working tape of A and update it in accordance with A’s action on
input w. Note that only the part corresponding to the contents of the working tape has to be updated
since the value of the advice function is given ‘once for all times’, for inputs of size n. The i-th cell
on each tape will be represented by module Mi of neurons that in addition to the tape contents also
represents the state of machine’s finite control and the presence or non-presence of the respective tape
head. The entities represented in module Mi include:

• the current symbol stored at i-th cell of the working tape; one neuron is needed firing iff the
symbol stored is equal to 1;

• the i-th symbol of the advice tape (which is for all inputs of length n the same); one neuron will
do, firing iff the respective bit of the advice is 1;

• the Boolean variable indicating the presence of the working head (one neuron);

• the Boolean variable indicating the presence of the advice head (one neuron);

• the current state of A (k neurons iff A has k states).

Thus, the values of the respective entities are represented by firing or non-firing of the respective
neurons in Mi. The modules are concatenated to form a linear array enabling sending of signals to
their neighbors, simulating in this way the movements of the heads on working and advice tape of
A. Of course, care must be taken to simulate moves of A by update instructions within Nn with the
same truth degrees in order to achieve the truth-degree compatibility of corresponding IDs at both
devices.

The simulation is further complicated by the fact that the neural net has its working tape rep-
resentation superposed on its advice tape representation. Thus, the simulation of each move of A
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requires the transfer of information between the head on the working tape and the head on the advice
tape. Nevertheless, all this can be done, but the details are tedious and are left to the reader.

From this sketch of simulating neural net it is clear that it is of a polynomial size and that it can
be constructed so as to accept exactly those words from L that are of size n and that it will accept
them with the same truth degree as A does. Thus, we can construct an infinite polynomially bounded
family F such that L = L(F). It follows that L ∈ POLY − CNN ⊆ POLY − FNN.

�

Corollary 1 For the fuzzy languages, POLY-FNN= Fuzzy-PSPACE/poly. For the crisp ones, POLY-
CNN=PSPACE/poly.

Proof: The first equality is a direct consequence of the previous theorem. The second equality is a
special case of the first one when crisp instances of the respective devices are considered. Note that
this result has been known before (cf. [8]).

�

So far our approach differs substantially from earlier attempts to implement computations of fuzzy
finite automata by neural nets. Namely. e.g. Omlin et al. [7] have designed analog neural nets
simulating fuzzy finite automata in a way in which the acceptance degree becomes the result of the
respective computation. Contrary to that, in our approach we rigorously see fuzzy computations as
computations to which the (degree of) fuzziness is assigned by a mechanism that lies outside the given
computational mechanism, much in the same way as the truth degrees are assigned to formulae within
a fuzzy proposition calculus (cf. [2]). Nevertheless, the construction of fuzzy neuroidal nets from the
proof of Theorem 1 simulating a fuzzy Turing machine can be modified so that the acceptance truth
degree will become the result of simulation. We will sketch the respective construction only for the
practically interesting case of deterministic fuzzy computations. Namely, in such a case the acceptance
criterion from Definition 8 simplifies to a computation of the acceptance truth degree along a unique
computation path. To achieve this we must extend the net by neuroids that will (deterministically)
compute the truth degree of each ID reached by the net during its computation on a given input.
This can be done under the assumption that the respective t-norm is a computable function and that
the elements of M have a finite representation (e.g. they are rational numbers). In fact, the resulting
construction reminds much the construction of a crisp Turing machine from [13] that simulates a fuzzy
Turing machine and at the same time computes the acceptance truth degree. As a result we get the
following corollary to Theorem 1.

Corollary 2 Let Mq ⊂ Q be a finite set of rational numbers, let ∗Q be a computable t-norm, let
F = (S, T, I,Δ, b, q0, qf ,MQ, μ, ∗Q) be a deterministic fuzzy Turing machine. Then for each input w
of size n there is a neuroidal net that simulates F on that input and produces the acceptance degree
e(w) of w if and only if w is accepted by F with truth degree e(w).

6 Conclusions

We defined a new class of discrete fuzzy neuroidal nets whose computational mechanism is compatible
with that of fuzzy Turing machines that represent the most general fuzzy computational mechanism.
We also showed that both kinds of devices are computationally equivalent and we characterized pre-
cisely their computational efficiency. Our results open the way for considering simulations of fuzzy
Turing machines by analog neural nets.
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