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Abstract

A variable metric method is introduced for nonsmooth unconstrained optimization,
which has a feature of both standard variable metric methods and standard bundle
methods. This method is competitive with standard bundle methods measured by
number of iterations, but it is more efficient than these methods measured by compu-
tational time, since it does not use any time consuming quadratic programming sub-
algorithm. Numerical comparisons of this method with standard methods are given.

Keywords
Nonsmooth optimization, bundle methods, variable metric methods, computational
experiments.

'Work supported by grant GA CR 201/00/0080.
2Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodarenskou vézi
2, 182 07 Prague 8, Czech Republic, E-mail: 1uksan@cs.cas.cz, vlcek@cs.cas.cz



VARIABLE METRIC METHODS FOR NONSMOOTH
OPTIMIZATION 3

Ladislav Luksan, Jan Vlcek
Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic and Technical University of
Liberec, Héalkova 6, 461 17 Liberec, Czech Republic

1 Introduction

Nonsmooth optimization problems frequently occur in practice. In this contribution,
we restrict our attention to unconstrained problems. We will assume that objective
function f : R™ — R is locally Lipschitz and that we are able to compute a subgradi-
ent g € 0f(x) at any point x € R™. Since a locally Lipschitz function is differentiable
almost everywhere by the Rademacher theorem, then usually ¢ = V f(z). A special
feature of nonsmooth problems is the fact that the gradient V f(x) can change dis-
continuously and it need not be small in the neighbourhood of a local extremum of
the objective function. For this reason, the usual optimization methods cannot be ef-
ficiently used. We show here that the variable metric methods mentioned in Section 2
are exceptional in a sense and that they can be successfully combined with bundle
methods described briefly in Section 3. The resulting variable metric method for non-
smooth problems is introduced in Section 4. Computational experiments are reported
in Section 5.

2 Standard variable metric methods

Variable metric methods were originally developed for smooth unconstrained optimiza-
tion. These methods are iterative with the iteration step

ot = gk iRk,
where the direction vector d* is computed by the formula
4" = —H* gk
and the stepsize t* > 0 is chosen by line search so that
f(@® +t5dh) — & < epth(d®)" g, (2.1)

and
(d)"g(z* + t*d") > ep(d*)" g, (2.2)
3This work was supported by grant GA CR 201/00/0080
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with 0 < e, < 1/2 and g7, < eg < 1 (we use the notation f*¥ = f(z¥), g* = g(zF)).
The symmetric positive definite matrix H* is computed recursively by the formula

o1, 1

Hk+1 — ,}/k (Hk_|_ S (Sk)T_ _kauk(Hkuk)T
a

~k b
k k k T
nfa g k. k a” k. k
+E<b_ks —Hu)(b—ks —Hu)), (2.3)
where sF = gt — gk yb = ghtl _ gk gk — (uk)THkuk, b — (uk)TSk, k=

(s8)T(H*)"'s* and where p* > 0, v¥ > 0, n* > 0 are free parameters (we exclude
the inefficient DFP method corresponding to n* = 0). The values

B (Sk)Tuk

r= 2(fF — frEAL 4 (sF)Tghtl)’ (2.4)
’Yk = Pk ck/ak, (2.5)
L R i O CS) -

1 — (b%)2/(a*c")

are suitable choices for nonsmooth problems, but the value v* = p¥\/c¥ /a*¥ should not
be used in all iterations. Controlled scaling proposed in [7], which combines the above
value with value v* = 1 is more advantageous.

The above considerations are summarized in the following model algorithm. A
detailed description of the standard variable metric methods can be found in [8].

Algorithm 2.1

Data ¢>0,0<e;,<1/2, e <erp< 1.

Step 1 (Initiation). Determine an initial point ! € R" and an initial symmetric
positive definite matrix H' (e.g. H' = I). Compute values f!' = f(z!),
g' € 0f(z"). Set k = 1.

Step 2 (Direction vector). If ||gF|| < &, then terminate the computation, otherwise
set d¥ = —H*g*.

Step 3 (Line search). Determine stepsizes t*, to satisfy conditions (2.1)-(2.2) and
compute values fET1 = f(zb+1) gFtl € of (a*tY). If | A+ — fF < e in
several consecutive iterations, terminate the computation.

Step 4 (Update). Compute matrix H**! by (2.3) with parameters (2.4)-(2.6) and
controlled scaling. Set k := &k + 1 and go to Step 2.

It can be proved under mild assumptions (see [1]) that the variable metric method
represented by Algorithm 2.1 is globally and superlinearly convergent in the smooth
case. Even if this result cannot be generalized to the nonsmooth case, Algorithm 2.1
is surprisingly robust for solving nondifferentiable problems as is shown in [4], [9] and
in Section 5. Notice that Algorithm 2.1 usually terminate in Step 3, since sequence
{“ng} does not converge to zero in the nonsmooth case.
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3 Standard bundle methods

In the nonsmooth case, values f(z*), g(z*) € df(z*) at single point =¥ do not suffice
for describing local behaviour of the objective function. A bundle of values f7 = f(y7),
g’ € Of(y’) obtained at trial points 3/, j € J C {1,...,k}, gives much better
information. These values serve for the construction of the piecewise linear function

fi(@) = max{f’ + (z —y’) ¢’} = max{f(z") + (z — 2")T¢’ — af},
JE€Tk JETk

where of = f(a%) — fF, j € Ji, are linearization errors and ff = f7 + (zF — 27)"¢/,
j € Jk. This piecewise linear function is majorized by the objective function and
a;? >0, j € Jk, in the convex case. To guarantee nonnegativity of these numbers in

the nonconvex case, the subgradient locality measures
of = max {|f(a*) — fF],7(s5)"} .

where v >0, v > 1, fF = f;(z¥) and

T

k-1
55 = ll2/ = 7l + 3 |l — o]
i=j
for j € Jy, are used in this section (see e.g. [3]). Since, from a practical point of view, we
can only work with limited-size bundles, where | J;| < m, say (|Jx| is the cardinality of
set Ji), the set Jj is usually determined in such a way that J, = {1,...,k}, whenever
k <m,and Jpy1 = Jp U{k+ 1}\{k + 1 — m}, whenever & > m. If J; # {1,...,k},
then one possibility guaranteeing the global convergence of the bundle method is the
use of transformed aggregate values f¥ g% s¥ and

of = max {|f(a*) — £, 7(s5)"}

which accumulate information from previous iterations. These values represent a linear
function which is added to the set of linear functions contained in the bundle. New
aggregate values f¥ gk & obtained by solving quadratic programming subproblem
(3.1)-(3.3) (see (3.6)), are transformed to the next iteration by (3.12).

Direction vector d* is usually obtained as a minimum of the piecewise quadratic

function
() = 5o — 4T GHw — %) + max{ ff(a), F(2¥) + (& — 247 gk — o},

where (1/2)(z —2F)TG*(z —2*) with G* positive definite is the regularizing term. This
minimization problem is equivalent to the quadratic programming problem: Minimize
function

1
§dTde—|—v (3.1)
on the set determined by the constraints
—af +dl¢ < v, jEeT, (3.2)
—af+d"gf < v (3.3
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(minimization proceeds over all pairs (d,v) € R"™! satisfying inequalities (3.2), (3.3)).
Solution of the problem (3.1)-(3.3) can be expressed in the form

d" = —(G") g, (3.4)
" = —(dMTGFdE - aF, (3.5)
where
gy = X Ng+ M,
JE€Tk
- (3.6)
(a5, f5,82) = X Ao, fF, J)+A’“( o far5er)
JE€Tk
and where the Lagrange multipliers )\ , ] € Jk, A7, are solutions of the dual quadratic

programming problem: Minimize functlon

T
1 .
3 (Z g’ +)\agf) (G*)~ (Z Aig’ +)\a9a) + >N a + A (3.7)
J

€Tk JETk JETk

on the set determined by the constraints

;> ] >
)‘] - 07 J € jk) )‘a el 07 } (38)

The minimum value of function (3.7), which corresponds to the solution of prob-
lem (3.7)-(3.8), is

wh = SERT(GH g+ k= ok (6N (3.9

Having direction vector d* determined, we compute a new approximation of the
minimum of the objective function. It is usually not possible to just set zF*! = z* 4
d*. To guarantee the global convergence of the bundle method, we use a line search
procedure which generates two points

B = kb,
Yy = ok ik dt,

where 0 < th < th < 1 are stepsizes, in such a way, that exactly one of the two
possibilities, descent step and zero step, occurs. Several line search procedures suitable
for bundle methods are introduced in [3]. We prefer here the line search procedure
described in [16], since it is relevant for the variable metric method described in the
next section as well. Thus the descent step implies the conditions

th=th >0, flF+thd") < fa¥) —epthut, (3.10)
while the zero step implies the conditions
th >tk =0, (d*) T g(a* + thd*) > o — cpu” (3.11)
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with
oF ! = max {|f(a¥) — f(a + thd®) + th(d") T g(a* + thd")], y|thd* |}

Here 0 < e, < 1/2 and e, < ep < 1.
Having point x;,; determined, it is necessary to transform all values to this point.
This is realized by the formulas

F = @ =T, e )
fatl = fo + (@ —ab)Tg
flfj:ll — fk+1 4 (xk-i—l _ yk+1)gk+1

T
T

géc-i-l — gf (3.12)
S = okt k) e,

skt =t ot — k|

st = [l25 == )

It remains to specify the way for determining matrices G¥. To ensure the global
convergence of a bundle method, we assume for simplicity that matrices G* are uni-
formly positive definite and uniformly bounded (their eigenvalues are positive and lie
in the compact interval that does not contain zero). Moreover, if the k-th step is a zero
step, then we assume that hT(G**1)"th < hT(G*)"'h, Vh € R". These assumptions
are relatively strong, but they can be weakened for individual bundle methods.

In the most frequently used proximal bundle method, where matrix G* is diagonal
of the form G* = ¢*I, the above assumptions are satisfied if weights o* are positive and
lie in the compact interval that does not contain zero and o**' > ¢* holds in the zero
step. The choice of weight o is very important. Weights which are too large imply
small direction vectors, almost all serious steps and a slow descent. Weights which are
too small imply large direction vectors and many zero steps.

The above considerations are summarized in the following model algorithm. De-
tailed descriptions of standard bundle methods can be found in [2], [3], [5], [6], [13],
[14], [15].

Algorithm 3.1
Data ¢>0,0<e,<1/2,ep<er<l,y>0,v>1,m>1.

Step 1 (Initiation). Determine an initial point ' € R" and an initial symmetric
positive definite matrix G'. Set y' = z' and compute values f!' = f(y'),
g' € 0f(y"). Set sj =s, =0, fl = fo = f', 91 = g9, = ¢", 1 = {1} and
k=1.

Step 2 (Direction vector). Find the solution of quadratic programming subprob-
lem (3.1)-(3.3) (constraint (3.3) is used only if J, # {1,...,k}). This defines
the Lagrange multipliers A%, j € J, and A} (Af # 0 only if .J, # {1,...,k}),

rk k k

aggregate values §~, af, f* 3k direction vector d* and values v¥, w*. If

wk < ¢, terminate the computation.



Step 3 (Line search). Determine stepsizes t¥, t% to obtain either a descent step
or a zero step (i.e. either (3.10) or (3.11) holds). Set z**! = zF 4 &
Yt = af + thdF and fA = f(aF +thd), gF = g(aF + thdF).

Step 4 (Update). Compute transformed values by (3.12) and determine matrix
G satisfying assumptions discussed above. If || < m, set Jpy1 =
T +{k+ 1} If | Tkl = m, set Tpp1 = Tp +{k +1}\{k+1—m}. Set
k =k + 1 and go to Step 2.

It can be proved under mild assumptions (see e.g. [3]), that the number of consec-
utive zero steps in Algorithm 3.1 is finite and that every cluster point of the sequence
{2*} is a stationary point of the objective function. Notice that Algorithm 3.1 requires
relatively large bundles (m ~ n) to be computationally efficient so that the solution of
the quadratic programming subproblem (3.1)-(3.3) is time consuming.

4 Variable metric methods for nonsmooth prob-
lems

In this section, we refer to the hybrid method which keeps good properties of both the
standard variable metric method and the standard bundle method. We apply variable
metric updates which use original subgradients to the matrix H* = (G*)~! in (3.4),
which allows us to decrease the bundle dimension drastically. At the same time, we
use aggregate subgradients after zero steps and a line search described in the previous
section to guarantee the global convergence.

The variable metric methods for nonsmooth problems described in this section
use, for direction determination, the original subgradient after a descent step and
the aggregated subgradient after a zero step. The aggregation procedure uses three
subgradients g™ € 0f (z*), g**! € df (y**1), g¥ and three subgradient locality measures
Q= 0, ayq > 0, & > 0. The quadratic programming subproblem (3.7)-(3.8) reduces
to the minimization of the function

1 N m ~
©(A1, Aoy A3) = 5()\197” + Xog"tt + )\39k)THk()\1g + Xog"tt + )\39k)
+Aa T+ \zak, (4.1)

where \; > 0, i € {1,2,3} and A\ + Ay + A3 = 1. The optimal values \¥ > 0,
i € {1,2,3} can be computed by simple formulas. The resulting aggregate subgradient
and aggregate subgradient locality measure are computed from the formulas

g =N+ X"+ A5, @M = a5 4 Aga (4.2)

To ensure the global convergence, we assume that matrices H* are uniformly posi-
tive definite. This requires some modification of the basic algorithm, namely corrections
of matrices H* if necessary. In such a way we obtain more complex algorithms which
are described in [9] and [16] in detail. The assumption that AT (G*1)"th < hT(G*)~1h,
Vh € R™ after a zero step is usually guaranteed by the SR1 update. Therefore, we use
the BFGS update after a descent step and the SR1 update after a zero step.
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We summarize our considerations in the following model algorithm. Detailed de-
scription of variable metric methods for nonsmooth problems can be found in [9] and
[16].

Algorithm 4.1

Data ¢>0,0<¢e,<1/2, e, <er<1l,v>0,v>1.

Step 1 (Initiation). Choose the starting point ! € R™ and positive definite matrix
H' (e.g. H' = 1), set y' = 2! and o' = 0 and compute f! = f(z') and
gt € Of(x'). Set k =1.

Step 2 (Descent step initiation). Initialize aggregate subgradient g% = ¢* and ag-
gregate subgradient locality measure &@* = 0 and set m = k.

Step 3 (Direction determination). Set w* = (1/2)(g*)" H*gF + a*. If w* < ¢, then
terminate the computation, otherwise set d* = —H*§*.

Step 4 (Line search). Determine stepsizes t¥  t% to obtain either a descent step

or a zero step (i.e. either (3.10) or (3.11) holds). Set z**! = z* + tkd*,
Y+l = of b gk fAL = f(ob 4+ thdb), ¢*t! = g(aF + thd*) and compute
aF 1l Set uf = ghtt — g™ If th > 0 (descent step), go to Step 7.

Step 5 (Aggregation). Determine multipliers A\¥ > 0,4 € {1,2,3}, WV + 5+ =1,
which minimize the function (4.1) and compute the aggregate quantities
(4.2)

Step 6 (SR1 update). Let v = H¥u* — thd*. If glv, < 0, then set
Hk+1 — ch o Uk(vk)T/(uk)Tvk,

otherwise set H**! = H* Set k =k + 1 and go to Step 3.
Step 7 (BFGS update). If (u*)Td* > 0, set

Hk+1 _ Hk N (tlz N (uk)THkuk> dk(dk)T B Hkuk(dk)T + dk(uk)THk

(W) TdF ) (uk)Tdk (uk)TdF :

otherwise set H**! = H*. Set k = k + 1 and go to Step 2.

The above algorithm is not only interesting theoretically but it is surprisingly very
efficient computationally. It is competitive with standard bundle methods measured by
the number of iterations, even if it uses the bundle of dimension at most 2. Moreover, it
is more efficient than standard bundle methods measured by the computational time,
since it does not use the time consuming quadratic programming subproblem (with
dimension m ~ n).



5 Computational experiments

In this section, we give a numerical comparison of three algorithms (VM - Algorithm
2.1, BM - Algorithm 3.1, VN - algorithm 4.1) described in previous sections. The test
problems given in [10] were used in our computational experiments (report [10] together
with FORTRAN codes can be obtained from the page http://www.cs.cas.cz/"luksan
/test.html). All algorithms were implemented in the UFO 2000 system (see [12]).
Computations were performed on an PC-Pentium 3 (800 MHz) computer in double
precision arithmetic. The results are reported in the following table, where NIT is the
number of iterations, NFV is the number of function evaluations and F is the minimum
function value. The last row contains the summary values and the total computational
time (in seconds).

The results in Table 5.1 imply several conclusions. The standard variable metric
method solved 24 problems successfully (it fails only in Problem 8). On the other
hand, it was computationally less efficient in Problems 17, 21, 22, 25. The standard
bundle method is very robust but its computational efficiency does not correspond
to the decrease of the number of function evaluations. The variable metric method
for nonsmooth problems is robust and also computationally efficient (it requires the
minimum CPU time).

P NI NF VM - F NI NF BM - F NI NF VN -F

1 40 o7  .59452613D-15 42 45 .38117064D-06 34 34 .27598807D-10
2 31 69 .41762449D-08 18 20 .46154993D-08 15 16 .94894120D-10
3 22 40 1.9522244 31 33 1.9522245 17 17 1.9522247

4 29 85 2.0000000 14 16 2.0000000 17 17 2.0000000

5 38 88 -2.9999999 17 19 -3.0000000 20 20 -2.9999996

6 22 69 7.2000000 13 15 7.2000014 19 19 7.2000000

7 14 47 -1.4142135 11 12 -1.4142135 10 10 -1.4142133

8 1 42 - 66 68 -.99999940 35 29 -.99999247
9 30 106 -.99999997 13 15 -1.0000000 37 37 -.99999979
10 22 39 -7.9999999 43 46 -7.9999999 14 14 -7.9999998
11 40 87 -43.999999 43 45 -43.999999 38 38 -43.999999
12 43 93 22.600162 27 29 22.600162 40 40 22.600162
13 99 193 -32.348675 60 62 -32.348678 92 33 -32.348678
14 | 216 442 -2.9196985 154 155 -2.9196975 32 32 -2.9197003
15 82 191 55981310 92 93 55981566 81 83 55981553
16 87 239 -.84140832 74 75 -.84140828 89 89 -.84140570
17| 851 1663 9.7857799 160 162 9.7857723 241 241 9.7858732
18 86 162 16.703837 128 143 16.703861 88 89 16.703838

19 90 162 .43449088D-06 | 150 151 .16712381D-06 | 123 123 .14683215D-05
20| 135 283 .25905459D-07 39 40 .12440972D-12 23 23 .00000000
21| 493 940 -638564.96 245 251 -638530.48 357 359 -638564.91
22 | 453 1090 .11091672D-05 52 53  .11665945D-11 | 358 360 .41534959D-05
23 64 112 .35595885D-07 19 20 .51313988D-08 65 66 .32729678D-05
24 72 157 .30888921D-07 27 28 .23412735D-07 67 67 .94570857D-06
25 | 427 1534 32.348815 428 450 32.349182 313 315 32.349159
¥ | 3447 7990 TIME = 2.80 | 1966 2046 TIME = 1.48 | 2205 2221 TIME = 0.93

Table 5.1 - Comparison of optimization methods.
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