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Abstract

In this paper, we propose an algorithm for solving nonlinear nonconvex programming
problems, which is based on the interior-point approach. Main theoretical results con-
cern direction determination and step-length selection. We split inequality constraints
into active and inactive to overcome problems with stability. Inactive constraints are
eliminated directly while active constraints are used to define symmetric indefinite lin-
ear system. Inexact solution of this system is obtained iteratively using indefinitely
preconditioned conjugate gradient method. Theorems confirming efficiency of several
indefinite preconditioners are proved. Furthermore, new merit function is defined,
which includes effect of possible regularization. This regularization can be used to
overcome problems with near linear dependence of active constraints. The algorithm
was implemented in the interactive system for universal functional optimization UFO.
Results of extensive numerical experiments are reported.
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INTERIOR POINT METHOD FOR NONLINEAR
NONCONVEX OPTIMIZATION *

Ladislav Luksan, Jan Vléek, Institute of Computer Science AVCR,
Pod vodarenskou vézi 2, 182 07 Praha 8, Czech republic and Technical University of
Liberec, Halkova 6, 461 17 Liberec, Czech Republic

1 Introduction
In this contribution, we are concerned with a general nonlinear programming problem:

(NP): Find the minimum of function f(x) on the set given by constraints ¢;(z) < 0
and cgp(r) = 0, where f : R® — R, ¢; : R* — R™ and ¢g : R* — R™E are
twice continuously differentiable mappings (¢; < 0 is considered by elements) and
I={1,...om}, E={mr+1,...,m;+mg}.

Necessary conditions (the KKT - conditions) for the solution of problem (NP) (if
gradients of active constraints are linearly independent) have the following form

g(z,u) = 0, (1.1)
cr(r) < 0, wu;>0, urer(x)=0,
ce(r) = 0,

where

g(z,u) =V (z)+ Y wVe(z) + Y u;Ve(z) = V(z) + Ar(z)ur + Ap(z)up (1.4)
icl i€E
and A;(z) = [Ve(z) 1i € I], Ag(z) = [Vei(x) 2 i € E]. Here uy € R™, up € R™F are
vectors of Lagrange multipliers.
We use the idea of interior-point methods, which is based on the introduction of a
slack vector s; € R™ and the transformation of the original problem to the following
sequence of problems with the logarithmic barrier function:

(IP): For a given value p > 0, find the minimum of function f(z) — pe® In(Sr)e with
constraints ¢;(z) + s; = 0 and cg(z) = 0, where e is the vector with unit elements and
St = diag(s; : i € I) (we assume that p — 0).

The logarithmic barrier term is used to ensure the inequality s; > 0 implicitly (a
detailed explanation of this idea can be found in [12], [27], [28]).

3This work was supported by grant GACR No. 201/00/0080



Necessary conditions (the KKT - conditions) for the solution of problem (IP) (if
gradients of active constraints are linearly independent) have the following form

gwu) = 0, 5)
SiUre — pe = 0, (1.6)
cr(x) +s; = 0, (1.7)
ce(r) = 0, (1.8)

where g(z,u) is given by (1.4) and U; = diag(u; : ¢ € I). Note that (1.5)—(1.8) with
sy > 0 is equivalent to (1.1)—(1.3) if 4 = 0. Linearizing (1.5)-(1.8), we get a step of
the Newton method

G 0 Ay Ag Az g
0 U[ S[ 0 AS[ _ S]U]G—Me (1 9)
A? I 0 0 AU[ N cr +Sr ’ '

where g = g(z,u) and G = G(x,u) = V2f(2) + Sic; u;V2¢i(x) + Xiep ui Ve (z). We
assume, that matrix of this system is nonsingular (more details are given in Section 2).

The algorithm of an interior-point method can be roughly described in the following
form. For given vectors x € R", s; € R™, uy € R™, ug € R™% such that s; > 0,
uy > 0 and a given barrier parameter g > 0, we determine direction vectors A,
Asy, Aur, Aug by solving linear system equivalent to (1.9) (more details are given in
Section 2). Furthermore, we choose step-length 0 < o < @, and set = := = 4+ aAx,
sr = sp(a,Asp), ur := ur(a, Auy), ugp := ug + aAug, where sy(a, Asy) > 0 and
ur(a, Aur) > 0 are functions of o depending on As; and Awuy, which are chosen by a
suitable strategy (more details are given in Section 3). Finally, we determine a new
barrier parameter ;1 > 0 (see Section 4). Notice that condition s; > 0 is necessary
for the definition of a logarithmic barrier function and condition u; > 0, motivated by
(1.6), is necessary for the construction of an efficient preconditioner used in Section 2.

Interior-point methods were developed for solving linear, quadratic or convex pro-
gramming problems, since they have a polynomial complexity in these cases, see [2§]
(simplex type methods do not have this property). Application of interior-point meth-
ods to nonlinear nonconvex programming is a quite new approach, which is suitable
especially for large-scale sparse problems (see, e.g., [12], [27]). We have immediately
influenced by ideas proposed in [3], [23], [24], [25]. The main claim of this paper con-
sists in some new ideas concerning direction determination and step-length selection.
In Section 2, we propose a variant of indefinitely preconditioned conjugate gradient
method for solving a system equivalent to (1.9). We prove several new theorems con-
cerning its convergence. In Section 3, we propose a new merit function and prove that
the direction vector, which is obtained by an inexact solution of a system equivalent
to (1.9), is descent for this function. The effect of regularization, which can be used to
overcome problems with linear dependence of active constraints, is included into the
merit function. The algorithm proposed in Section 5 was implemented in interactive
system for universal functional optimization UFO [15]. Section 6 contains results of
extensive numerical experiments. Some ideas used in this contribution were motivated

by [16] and [18].



2 Direction determination

System (1.9) is nonsymmetric with the dimension n 4+ mg + 2m;. This system can be
symmetrized and reduced by the elimination of vector As;. One has

AS[ = —UfIS[(U]—i-AU[)—FMU;IG (21)
so that
G A[ AE Ax g
A? —UI_IS] 0 AU[ =—|cr+ ,U,UI_IG . (22)

Equation (1.6) implies that S;Ure =~ pe and if yu — 0, then either u; — 0 or s; — 0
holds for every index ¢ € I. Now we split the set of inequality constraints to an
active subset, where §; < 747, and an inactive subset, where §; > ¢;i;. In the same
way, we split and denote other quantities corresponding to inequality constraints. By
elimination of inactive equations, we obtain

Aty = S;U(ér + AT Az) + pSite (2.3)
so that R R
g AA[ R AE Ax f]A
AT —U7'S; 0 | | Adr | =— |ér+uUte], (2.4)
where

G = G+ A5 0 AT,
g = g+ Algflff[é[ + /Lzzlpglile
Both matrices G and U;IS*, are bounded (we assume that G and A are bounded) and
if the strict complementarity conditions lim, ,o(s; + u;) > 0 Vi € I hold (recall that
s; > 0 and u; > 0), then one has lim,,_,o U;'S; = 0. This property is very useful, since
system (2.4) can be efficiently preconditioned by the way described in [16] if U; 'S} has
small elements.

Using this approach, we can split equality (2.1) into two equalities. We obtain

A§[ = —Uflgj(a] + Aﬁ[) + ,uUfle, (25)
A§[ = —(é[ + A?Al‘ + 51)

after arrangements. Vector A4y is determined by solving system (2.4) and vector Ay
is computed from (2.3). Matrix S;'U; is bounded and if the strict complementarlty
conditions hold, then lim,_,o SI U; = 0. Since S;Ure ~ ue — 0, vectors MSI e ~ Ure
and pU; e ~ Se used in (2.3) and (2.5) are also bounded.



2.1 Indefinitely preconditioned conjugate gradient method

To simplify the notation in the subsequent analysis, we rewrite system (2.4) in the form

o [G A A b
AL 0 0 | |dg b

(i.e., we introduce vectors d and b). Here M; = U;'S; is a positive definite diagonal
matrix. We assume that matrix K is nonsingular, which implies that Az has a full
column rank. Therefore, all inversions used in the subsequent analysis make sure.
System (2.7), which is symmetric and indefinite of order n + 7y + mg, can be solved
either directly by using the sparse Bunch-Parlett decomposition or iteratively by using
Krylov-subspace methods for symmetric indefinite systems. Motivated by [16] (see also
[4], [11], [14], [19], [20]) we first investigate the preconditioner

D AI Ag
C = AT _MI 0 ) (28)
AT 0 0

where D is a positive definite diagonal matrix derived from the diagonal of G, see [16].
Note that C' is nonsingular when Ap has a full column rank (see (2.11)). We restrict
to the situation when matrix G — D is nonsingular. This is an usual situation and
also the worst case in some sense (the Krylov subspace used in Theorem 2 has a lover
dimension if G — D is singular, see [14]).

Now we prove three theorems which explain good properties of preconditioner (2.8)
and the high efficiency of the conjugate gradient method preconditioned by (2.8). These
theorems are generalizations of theorems given in [16] to the case when mj # 0.

Theorem 1. Consider preconditioner (2. 8) applied to system (2.7) and assume that
G- D is nonsingular. Then matrix KC~! has at least 1 + 2mpg unit eigenvalues
but at most my + mpg linearly independent eigenvectors corresponding to these eigen-
values exist. The other eigenvalues of matrix KC~! are exactly eigenvalues of ma-
trix ZLGZg(ZEDZp)"", where [Zg, Ag] is a nonsingular square matrix, ZLAE =0,
ZL7Zp = I and where G=G+ AI lAf, D=D+ AIM 1AT IfZTGZE is positive
definite then all eigenvalues are pos1t1ve.

Proof. First we derive the expression for matrix KC! = (C'K)T. To do it, we
formally write Cz = K7, i.e.
Dx+ Arir + Apzp = Gy+ A + Apye
ATz — Mz, = Aly— M
ALy = ALy
and using a block structure of C' we eliminate vector Z obtaining # = C'~'Kj. This is
a formally complicated but straightforward procedure so we give the final result (after
transposition):
(G=D)P+1 H; Hg
KO !'= 0 I 0 |, (2.9)
0 0 I



where G = G+ A M AT, D=D+ A M;*AT and P=D ' — D ' Ap(ALD 'Ap)*
ATD! (explicit expressions for H; and Hy are not important). Now it is clear that
matrix KC ! has at least 717 +my unit eigenvalues which correspond to unit matrices
in its second and third rows. The remaining eigenvalues are eigenvalues of matrix
(G D)P + I so they have to satisfy the equation (G'— D)Pz = (A — 1)z. Since
Pr = 0 if and only if x = Agu, u € R™#, we obtain at least mp additional unit
eigenvalues corresponding to the my linearly independent eigenvectors Apu, u € R™~.
Now let us assume that A # 1. Since eigenvalues of KC ™! have to satisfy equations

él‘ + A[ﬁ?[ + AEIL’E = )\(D!L’ + A[ﬁ?[ —|—AEIL’E),

ALr = MMix

we obtain

A?l‘ — M[i‘[ = 0,

Alx = 0,
which gives © = Zgu and &; = M;'ATe = M;7'AT Zgu, where [Z, Ag] is a nonsin-
gular square matrix, ZLAp = 0 and ZLZg = I. Substituting this result into the first
equation of (2.10) and premultiplying the resulting equation by ZL, we obtain

(ZEGZp + ZEA M AT Zp)u = MZED Zp + ZEA MY AT Zg)u

so that A is an eigenvalue of matrix ZLGZp(ZEDZg)™". Tt is obvious that A > 0 if
matrix ZLG Zg is positive definite. If A = 1, then the first equation of (2.10) gives

Gl‘ —|—121]i'[ + AEZL‘E = lA)ZL' + A[i‘] +AE«TE

so that #; € R™ and xp € R™F can be arbitrary and non-singularity of G-D implies
x = 0. Therefore, if G- D is nonsingular, then matrix KC~! has at most m; + mp
linearly independent eigenvenvectors corresponding to the unit eigenvalues. O

There are two important cases. If m; = 0, we obtain Theorem 3.3 proposed in
[16]. If mp = 0, then matrix KC~' has at least m; unit eigenvalues with m; linearly
independent eigenvectors and the other eigenvalues are exactly eigenvalues of matrix
GD L. If M; — oo, then GD ! ~ GD ™!, which leads to a diagonally preconditioned
system. If ]\;II — 0, then term A;M;'AT dominates and GD ! ~ ZTGZI(ZTDZI) ,
where [Z;, A;] is a nonsingular square matrix, Z7 A; = 0 and Z7Z; = 1.

Theorem 1 shows that the efficiency of a Krylov-subspace method preconditioned
by (2.8) does not depend strongly on the choice of active and inactive variables (matrix
G=G+ AISI UIAT + AIS, UIA is the same for every splitting). Nevertheless, the
splitting influences the resulting (inexact) solution of system (1.9), since the equations
corresponding to inactive variables are determined exactly by a direct elimination while
active variables are obtained inexactly by an iterative process, which is prematurely
terminated (a variant of the inexact Newton method described in [9] is used in the
algorithm given in Section 5).



Theorem 2. Consider preconditioner (2.8) applied to system (2.7) and assume that
G — D is nonsingular. Then Krylov subspace K = span{r, KC ‘7, (KC 1)?r,...},
where ¥ € R"T™F™E has a dimension of at most min(n + 1,n — mp + 2).

Proof. If G—D is nonsingular, then matrix (C:’—D)ﬁ+[ has exactly mg unit eigenval-
ues with mpg linearly independent eigenvectors a,,, 11, - - -, Gm;tmy (N€re Gmri1, .oy Gmysmp
are columns of matrix Ag). The other eigenvectors of (G'— D) P +1T define an invariant
subspace of dimension n — mg. Therefore, we can write

mr+mg n—mg

r o= Z a;a; + Z Bjw;
i=mr+1
R mr+mg n—mg
Hitr = ) alai+ Z 51w]
i=mr+1
mr+mg n—mg
Hprp = Z afa; + Z ﬁEw]
i=mr+1
where wy, . .., Wn_m, form a basis in the invariant subspace of (G — D)P + I (here r,
71, g are components of 7). Now we use the induction. Assume that
mr+mpg mr+mpg n—mpg
T o,a; . ZH(%’I + aFP)a; '21 Brw;
—\k= __ =mj 1=my j=
(KC)'r = Py +k 0 + 0
TE 0 0
for some k > 0 (it is obvious for £ = 0). Using (2.9), we can write
[ mr+mpg mr+mg n—mpg
. X Qs _ ZH(C%I + aF)a; Z Viw;
—1\k+1=- __ 1=mry 1=mry
(KC)"'r = Py +k 0 + 0
L rE 0 0
r mr+mpg r n—mpg
20l v abar | [ 86+ 8P
1=mry =
+ 0 + 0
i 0 i 0
[ mr+m mr+m n—mpg
'S o ( b E(af + aF)a; > Bt hw;
. i=mr+1 i=mr+1 ]:1
= Py +(k+1) 0 + 0
L TE L 0 0

where *y;?, 1 <7 <n— mg, are new coordinates in the invariant subspace spanned by
the vectors w; € R", 1 < j < n — mg, and 6]]?”1 :’yf—i-ﬁfﬂLﬁjE, 1<73<n—mg.
Thus we have proved by induction that all the vectors 7, KC~'7, (KC~")F, ... are
combinations of n — mg + 2 vectors

mr+mpg mr+mpg I B

_ . o,;a; _ Z I(CYZ- + OZZ- )ai ’U)j

1=my+ 1=mj+ .
. , , 0 1<j57<n—mg,
rr 0 0
T 0



so Krylov subspace K has a dimension of at most n — mg + 2. If mg = 0, the second
vector is zero, so K has a dimension of at most n + 1 in this case. O

If Krylov subspace K has a dimension of at most min(n + 1,n — mg + 2), then
using Krylov-subspace method we obtain the solution of system (2.7) after at most
min(n + 1,n — mg + 2) iterations.

If m; = 0, we obtain Theorem 3.4 proposed in [16]. If mp = 0, then Krylov
subspace K has a dimension of at most n + 1 and using Krylov-subspace method we
obtain the solution after at most n + 1 iterations.

Further interesting property of preconditioner (2.8) is demonstrated on the precon-
ditioned conjugate gradient (PCG) method applied to system (2.7) (see Theorem 3).
For simplifying the notation, we use the following algorithmic form, which do not use
iteration indices (w is a precision).

Algorithm PCG

d—given, 7:=b— Kd, f:=0,
while ||7|| > w/||b|| do

t:=C"'r, v =7, B = B,
p:=1t+pp, q:=Kp, a:=v/p"q,
d:=d+ap, T:=T—a«aqf, [:=1/y

end while.

We use the following notation.

) d P q r
d= dl ) p = ﬁf ) q_ = qAI ) r= ff ) = tl )
dg PE qE TE 135

Lemma 1. Consider Algorithm PCG with preconditioner (2.8) applied to system
(2.7). Assume that initial d is chosen in such a way that 7y = 0 and ry = 0 at the
start of the algorithm. Let

= ZEdZ + DilAEdAa
= Zgpz + D Agppua,
t = Zptz+ D 'Agta
and
r o= DZp(ZEDZp) "ry + Ap(ALD ™ Ag) 4,
q = DZE(ZgDZE)ilqz + AE(AgbilAE')iqu47

which imply

ry = Zpr, ra=AgD7'r,

4z =75q,  qia=ApD7q



(all these decompositions are determined uniquely when Ap has linearly independent
columns). Then 7y =0, ry = 0 and

ty; = (ZEDZg) 'ry, t1=0,
FT = rlty,

pz = tz+ Bpz, pa =0,

9z = Z5GZgpz,
Pq = piaz

dz; = dz+ apyg,

rz = Tz — Qqz,

dqa = da+aps=dy

in all iterations of Algorithm PCG (since py = 0, d4 remains unchanged).

Proof. Although the proof is carried out by induction, we omit iterative indices and
use assignments ”:=" to simplify the notation. The inductive assumptions are 7y = 0,
rg =0, pa=0and p; = M; AT Zyp, (we can set py = 0 and p; = M7 AT Zpp, at
the start of the algorithm, since f = 0 in the first iteration). Using a straightforward
elimination as in the proof of Theorem 1, we obtain

p PA[MI_I D’IAECEI
C™'=| M'ATP M'ATDT'AMY MptATD T ARCE' (2.11)
CtALD=Y CLtATD= YA M, —C,t

Whe}"e D = b + A[MI_IA?, p = Dil — DilAE(AgbilAE)ilAgbil and Cgp =
ALD 1Ag. Since #; = 0 and ri = 0 by the assumption, we can write

P
i | = M;YATP r,
te (ALD1Ay) AT D!

which together with PAp =0 and PDZg = Zg gives

t = p(DZE(Zgsz)_ITZ + AE(Agb_IAE)_l’I“A) = ZE(Z£DZE)_1TZ

or
tZ = (ng)ZE)_er, tA = 0.
Similarly .
tr = M AT Pr = MY ATt = MY AT Zpt,
Furthermore
fTE = TTt = TTZEtZ

(DZp(ZEDZ1) " 1y + Ap(ASD™ Ag) ™ r )" Zist
= L(ZLDZp) ' ZEDZgt,; = rTt,.

8



Since py = 0 and p; = Mflflr{ZEpZ by the assumption, we can write

pz = tz+ Bpz,
pa = ta+PBpa=0,
pr o= tr+Bpr= M7 AT Zy(ty + Bpz).

Thus again ps = 0 and p; = M; AT Zgp,. Now

q G A{ Ap p
a | =| AT —M; 0 pro|,
qE AL 0 0 PE

which gives R R X X
q=Gp+ Arpr + Appr = GZgpz + Arpr + Appe

(since pa = 0) so
Gz =2 q =2 G Zpp, + ZEAMTYAY Zpp, = ZEG Zppy.
Furthermore
dr=Alp— Mypr = A] Zgpy — MM A] Zgpz = 0
(since p; = M;YAT Zpp,) and

qp = ALp = ALZgp, = 0.

Finally
P’ = pTa=pL7%q
peZt(DZp(ZEDZg) gy + Ap(ALD ™ ' Ap) " q.)
= pyZ2EDZp(ZEDZE) 4z = vz
and
dZ = dZ —+ apz
rz = Tz —Qqz
f] = ’IQ]—CYqA]:O
rg = rg—aqg =0

Theorem 3. Consider Algorithm PCG with preconditioner (2.8) applied to system
(2.7). Assume that initial d is chosen in such a way that 7y = 0 and rg = 0 at the

start of the algorithm. Let matrix ZEGZy; be positive definite. Then:

(a) Vector d* = Zgdy + D" Agd’, (the first part of vector d* which solves equation

Kd = b) is found after n — mp iterations at most.

9



(b) The algorithm cannot break down before d* is found.

(¢) Error ||d — d*|| converges to zero at least R - linearly with quotient

VE—1
VE+T1

where £ is the spectral condition number of matrix ZLG Zp(ZEDZy) ™!

(d) If d = d*, then also d; = d} and d%, can be determined by the formula

di, =dp + (ALD Ap) P ALD 1y,

Proof. (a) Lemma 1 implies that if system (2.7) is solved by conjugate gradient
method with preconditioner (2.8), then d = Zpd, + D 'Agd,, where components dy
are generated by conjugate gradient method with preconditioner Z}gf)ZE applied to
system Z}géZ gdz = bz and components d4 remain unchanged (explicit expression for
bz is not important). Since ZgéZE is positive definite, we obtain the solution d7, and,
therefore, d* after at most n — mpg iterations.

(b) Since denominators used in the conjugate gradient method with preconditioner
(2.8) applied to system (2.7) are the same as denominators used in the conjugate
gradient method with preconditioner Zg[)ZE applied to system ZgéZEdZ = by and
matrix Z]ZJCN?Z g is positive definite, then the algorithm cannot break down before d7,
and, therefore, d* is found.

(c) Since d4 remains unchanged and Z5Zp = I, one has ||d — d*|| = || Z(dz — d3)|| =
ldz — d%]|. Thus we can use standard estimation for the conjugate gradient method
with preconditioner Z DZE applied to system Z GZEdZ = by.

(d) Since d = d* and #; = 0, we obtain d; = d; from (2.7). Furthermore (2.7) implies

b—é’d*—A]CZ?—AEdE = T,
b—Gd — Aid; — Agdl, = 0,

which after subtraction gives Ag(d%—dg) = r. Premultiplying this equation by AZD !,
we obtain the solution di — dg = (ALD 1 Ag) *ATD 7. O

If 70 = 0, we obtain Theorem 3.5 proposed in [16]. If mp = 0, then Zp = I so the
algorithm is equivalent to conjugate gradient method with preconditioner D applied to
system Gd = b. Notice that we require positive definiteness of matrix G in this case.

Although notation (2.7) is advantageous for theoretical analysis, we use another
notation for implementation purposes. If we set A = [/L, Ap] and M = diag(MI, 0),
we can write

- G A 1[d b1 -
wa=[$ A4 =[2] =0 212
and . N
D A
—| 4 | 2.1
¢ lAT —M] (2.13)



Theorem 3 assumes the initial d is chosen in such a way that # = 0 at the start of the
algorithm. Equation (2.12) implies that this condition is satisfied if we set d = 0 and
d— (ATD 1A) LATD 1,

Expressions for matrices K and C' given by (2.12) and (2.13) imply that

. [ p  DUAATD A A l

and

where P = D' — D 'A(ATD 'A + M) 'ALD!. Using these formulas, Algorithm
PCG can be rewritten in the following form

Algorithm PCGa

d — given, d = 0,
ri=b—Gd—Ad, :=b— ATd+ Md,
B:=0,

while ||r|| > wl|b|| or ||#]| > w]||b|| do

bm DV (r— Al), i= (ATD"VA+ XD)U(ATD 1y — ),
v :=rTt 4+ 7Tt B = B,
p:=t+Bp, pi=1+p6p,
q:=Gp+Ap,  §:=ATp— Mp,
a:=plq+pTq,  a:=7/a
d:=d+ ap, J::cz+aﬁ,
ri=r—aq, r =7 —aq,
Bi=1/y
end while.

Matrix (ATD 'A + M) ! used in the above algorithm is not computed, but the
sparse Choleski decomposition (complgte or incomplete) is used instead. Unfortunately,
matrix AT D YA+ M can be dense if A has dense rows. To eliminate this situation, we
assume (without loss of generality) that A" = [A], AJ] and D = diag(D;, D4), where
ATD7YAg + M is sparse and Ay consists of dense rows. Then

(ATHUA+ N1yt = (ATHUA, 4+ 3T + ATD; LAy
= (ATD,'A, + M) !
(ATD7 Ay + M) " AT M Ag(AT DAy + M) ™!
(by the Woodbury theorem), where
VTy = Dat A(ATDIUA, + N AT
is a (low-dimensional) dense matrix. Again the sparse Choleski decomposition is used
instead of (ATD;'A; + M)~'. Notice that this approach is not quite reliable since

11



matrix ATD 1A, + M can be singular even if A”D~*A+ M is nonsingular. In this case,
the above way cannot be used, since the required inversion does not exist. However, we
can use the Bunch-Parlett decomposition of matrix C alternatively to compute C'7.

2.2 Linear dependence of gradients of active constraints

Motivating by Tikhonov regularization [22] we use a perturbation of M to eliminate
singularity (or near singularity) of matrix AT D~'A + M. Therefore, we solve equation

oo =& ot allB]-B0 e

and use preconditioner

D A ] (2.15)

o) = l AT (M +£E)

where F is a positive semidefinite diagonal matrix (e.g., £ = I) and £ > 0 is a small
number. Note that a near singularity of matrix ATD YA + M is caused by a near
linear dependence of gradients of active constraints. In this case, vector d obtained
from (2.12) tends to infinity and the interior-point method usually fails. The following
theorem shows that the regularization can eliminate this phenomenon.

Theorem 4. Consider system (2.14) with nonsingular G. Then

1d(d"(e) Ed(2))
2 de

= —d"(e)E(ATG™'A+ M + <E)~"Ed(e). (2.16)

If there is a number € > 0 such that ATG A+ M + a:l:? is positive definite Ye > g,
then (2.16) is negative (if d(¢) # 0) Ve > and d”(e)Ed(s) — 0 if ¢ — 0.

Proof. Differentiating (2.14) by ¢, we obtain
K(e)d (e) + K'(g)d(s) = 0,

G AA . }{[!(E)]—{: ;]{
Using partial elimination, one has

d'(c) = =G 'Ad'(¢)

which gives

and

N ~ ~ A~ A A

d'(e) = —(ATG YA+ M + cE) ' Ed(e).

Now

1d(d"(e) Ed(e)) _ >
5 i =d"(e)Ed'(¢),

SO (2 16) follows from the previous equality. If there is a number Z > 0 such that
ATG™'A + M + ¢FE is positive definite V= > z, then

vI(ATG YA+ M + eE) > vT(ATG YA+ M +2FE)v > MwTv > 0 (2.17)
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Yv # 0, Ve > 2, due to positive semidefiniteness of E (A is the minimum eigenvalue
of positive definite matrix ATG 1A+ M +zFE). Thus (2.16) is negative (if d(g) # 0)
Ve > 2. Furthermore, using partial elimination of (2.14), we obtain
d(e) = =G 'Ad(e) — G
(ATGT'A+ M +eE)d(e) = ATG™'b— b
and (2.17) implies that ||d(¢)|| < ||ATG b — b||/A Ve > &. If € — oo then

() Ed(e) = g (7 () (ATG b — b) — d () (ATG VA + W)

1| ATG b — b||? ( ||AT(;IA+M||>
— 1+ — 0.
€ A A

O
Singularity (or near singularity) of matrix AT D~'A+ M is usually detected during
the Choleski decomposition. If the Gill-Murray modification [13] of the Choleski de-
composition is used, then a suitable matrix E is obtained as a by-product. Note that
the regularlzatlon described above deteriorates properties of preconditioner (2.15). If
F = dlag(EI, FEg) where Fg is nonsingular, then the situation is the same as in case
all constraints are inequalities. Thus the Krylov subspace has a dimension of at most
n + 1 and using Krylov-subspace method we obtain the solution after at most n + 1
iterations.
The regularization described above can affect direction vector not negligibly. There-
fore, we have to include this effect to the definition of the merit function as is shown
in Section 3. For this purpose, we define E; = diag(E;, Ey), where E; = 0.

2.3 Additional indefinite preconditioners

There are additional indefinite preconditioners for system (2.12) based on the Choleski
or the Bunch-Parlett decompositions [10] of a sparse matrix derived from G. These pre-
conditioners are especially advantageous for convex quadratic programming problems
where matrix G is positive definite. Preconditioner

B A
=] = a A - . 2.1
C [ AT ATB='A — (M + D) ]’ (2.18)

where B is a nonsingular approximation of G (usually B = G) and D is a diagonal
matrix such that M + D is positive definite, is introduced in [11], [16], [21] (D should
be as close as possible to matrix ATB~'A). In this case,

B B! - B 'AC'ATBY BTAC
O 1 — [ éilﬁTgfl —CA'*I ] 3 (219)
where C' = M + D (recall that C' is positive definite) and if B = G, then
I 0
_1 = ~ ~ A A
Ko™ = l (I- MATG ] ’ (220)
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where H = (ATG'A + M)C'. Instead of B!, we use the Choleski or the Bunch-
Parlett decomposition of matrix B~ G which is usually sparse.
Preconditioner

¢= l fT —(MA+ D) ] ’ (2.21)

where B is an ‘approximation of G such that B+A(M+D) LAT is nonsingular (usually
B G) and D is a diagonal matrix such that M + D is positive definite, is introduced
in [2], [16]. (D should be as small as possible). In this case,

(2.22)

where C'= ATB~'A+ M + D (we assume that B and C' are nonsingular) and if B = G,
then

(2.23)

where H = (ATG='A + M)C".

Formula (2.22) is not suitable for computation, since it requires the Choleski or the
Bunch-Parlett decomposition of matrix C , which is usually dense. Therefore, we use
the following alternative formula

i B VAN + D)
(M 4+ D) '"ATB~' (M + D)""AT"B~'A(M + D)~' — (M + D)~

(2.24)
where B = B+ A(M + D) *AT. Instead of B!, we use the Choleski or the Bunch-
Parlett decomposition of matrix B which is usually sparse (it is dense when A has dense
columns). Note that nonsmgularlty of B and C is not required in (2.24). Nevertheless,
matrix B has to be nonsingular. Note also that we can set

Ccl=

H=ATB'AM+D)! (2.25)

n (2.23).

Preconditioner (2.21) is based on the regularization. If G and M + =F are ”suffi-
ciently” nonsingular, we can set B = G and D = ¢E so C(¢) = K(¢) and the solution
of (2.14) is found in the first iteration. This situation also arises when ¢ = 0 and
mp = 0. If G and M are ” sufficiently” nonsingular, we can set B=Gand D=0 so
C = K and the solution of (2.12) is found in the first iteration.

The following theorems, which are analogies of Theorem 1, Theorem 2, Theorem 3,
hold for preconditioners (2.18) and (2.21) with B = G (we assume that all inversions
exist).

Theorem 5. Consider preconditioner (2.18) (or (2.21)) with B = G and assume that
M + D is positive definite. Then the matrix KC~" has at least n unit eigenvalues and
a full system of n linearly independent eigenvectors corresponding to these eigenval-
ues exists. The other eigenvalues of matrix KC~' are exactly eigenvalues of matrix

14



(ATG YA+ M)CL, where C = M+ D for (2.18)(or C = ATB"YA+ M+ D for (2.21)).
If ATG—'A + M is positive definite then all eigenvalues are positive.

Proof. The proof uses expression (2.20) (or (2.23)) and is introduced in [16] (see also
[11]). O
Theorem 6. Consider preconditioner (2.18) (or (2.21)) with B = G applied to system
(2.12). Then Krylov subspace K = span{r, KC~'7,(KC~")?r,...}, where ¥ € R"*™,
has a dimension of at most m + 1.

Proof. Matrix H = (ATG LA 4+ M)C ! has a full system of linearly independent
eigenvectors, since ATG YA + M is symmetric and C' is positive definite. Thus KC !
has a full system of linearly independent eigenvectors by Theorem 5. By the same
theorem, KC~! has at most m + 1 different eigenvalues so the Krylov subspace K has
a dimension of at most m + 1. O

Lemma 2. Consider Algorithm PCG with preconditioner (2.18) (or (2.21)) with B =
G applied to system (2.12). Assume that initial d is chosen in such a way that r = 0 at
the start of the algorithm. Let matrix ATGYA + M be positive definite. Then r = 0

and

i = —C ',

't o= 7l

p = t+Bp,

g = —(ATGT'A+ M)p,
p'qg = p'a,

d = d+ap,

Poi= 7 —aq,

in all iterations of Algorithm PCG, where C = M + D for (2.18) (or C = ATG 'A +
M + D for (2.21)).

Proof. The proof for (2.18) is given in [11]. Consider preconditioner (2.21). Although
the proof is carried out by induction, we omit iterative indices and use assignments
7:=" to simplify the notation. The inductive assumptions are r = 0 and p = —CA}*lflﬁ
(we can set p = —G L Ap at the start of the algorithm, since 8 = 0 in the first iteration).
Since r = 0 by the assumption, we can write

t] [GlAcvw ] [ G Af
t| | - || ¢t

by (2.22). Obviously, 77 = #71. Since p = —G~' Ap by the assumption, we can write

~

p = t+pBp=—G rA(l + Bp)
p = t+Fp.

15



Thus again p = —G L Ap. Now

¢l [ G A ~G'Ap ] 0
qi| [ AT -M p | —ATGT A+ M)p |

which gives p’'§ = p’¢. Finally

>

|

Theorem 7. Consider Algorithm PCG with preconditioner (2.18) (or (2.21)) with
B=a@G applied to system (2.12). Assume that initial d is chosen in such a way that
r = 0 at the start of the algorithm. Let matrix ATG=YA + M be positive definite.
Then:

(a) Vector d* which solves equation Kd = b is found after m iterations at most.
(b) The algorithm cannot break down before d* is found.

(¢c) Error ||d — d*|| converges to zero at least R - linearly with quotient

VE—1
VE+T1

where r is the spectral condition number of matrix (ATG1A 4+ M)C !, where
C=M+D for (2.18) (or C = ATB™*A+ M + D for (2.21)).

Proof. The proof for (2.18) is given in [11]. Consider preconditioner (2.21).

(a) Lemma 2 implies that if system (2.12) is solved by conjugate gradient method
with preconditioner (2.21), then d are generated by conjugate gradient method with
preconditioner C' applied to system (ATG~'A + M)d = —b. Since ATG'A + M
and C are positive definite, we obtain the solution d* after at most m iterations.
Since r* = 0, one has d* = —GTAd-. Therefore, ATd* — Md* = b is equivalent to
(ATG LA + M)d* = —b and since d* solves this system we have #* = 0. Thus d = d*
if d = d*.

(b) Since denominators used in the conjugate gradient method with preconditioner
(2.21) applied to system (2.12) are the same (with exception of the sign) as denomina-
tors used in the conjugate gradient method with preconditioner C applied to system
(ATG 1A + M)d = —b and since matrices ATG A + M and C are positive definite,
the algorithm cannot break down before d* and, therefore, d* is found.

(c) We can use standard estimation for the conjugate gradient method with precondi-
tioner C' applied to system (ATG~'A + M)d = —b. O
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3 Step-length selection

Step-length 0 < « < @ and new vectors = := = + aAz, s; = s;(a,Asy), ur ==
ur(a, Auy), ug := ug + aAug can be determined in many ways. In all these ways,
it is necessary to satisfy condition s; > 0 (to make it possible to define a loga-
rithmic barrier function) and u; > 0 (which is motivated by (1.6) and which guar-
antee positive definiteness of matrix M; = U;'S;). We have used three simple
strategies for computation of s;(c, Asy) and uy(c, Auy). Strategy 1 uses maximum
step-length @ = min(1, A/||Az]|) (A serves as a safeguard and has a similar signifi-
cance as a trust-region radius) and handles individual components separately so that
si(a, Asr) = s; + as,As; and u;(o, Auy) = u; + oy, Auy, i € I, where

as, = @, Asi 2 07
. Si

(s, = min <a, —’yAZ > , As; <0,
1

Qy, = @, Au; > 0,
. U;

Qy,; = min <a, _fyA;) , Au; < 0,
(3

and 0 < v < 1 is a coefficient close to unit. Other strategies require bounds

- . Si
oy, = min [ —
s ’YiGI,Asi<0 ( A5i> ’
. U;
0, = min | —
“ 7 iel Aui<o Au; )’

where 0 < v < 1 is a coefficient close to unit, and define s;(«, As;) = s;+min(c, @g)Asy,
ur(o, Auy) = ur + min(a, @, ) Auy. Strategy 2 uses upper bound @ = min(1, A/||Az||).
Strategy 3 corresponds to the choice @ = min(1, @y, A/||Ax||), which gives s;(a, Asy) =
s+ alsyfor 0 < a <@

A further requirement for the selection of a step-length is the satisfying of a suitable
goal criterion. This criterion is usually a merit function which is a combination of the
barrier function and a measure of constraint violation. Motivated by [16], we use the
following function (which includes the effect of the regularization described in Section 2)

P(a) f(z + alAz) — pe’ In(St(a, Asp))e
(ur + Aup)" (er(r + aAz) + s1(a, Asy))
(ug + Aug) cp(r + aAx)

o
§||cf(x + aAx) + sp(a, Asp) — eEr(ur(a, Aur) — ur)||?

+ o+ 4+ +

%HCE(x + aAz) — eEpalug|?, (3.1)

where o > 0. The following theorem holds.

Theorem 8. Let s; > 0, uy > 0 and let the triple Az, Auy, Aug be an inexact
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solution of a regularized system so that

G R 1{1] R AE’ A.ZL' AA T
AT —U7'S;—<cE; 0 Adp |+ | ér+pUrte| = | 71 ], (3.2)
Ag 0 —SEE AUE Cg T

where r, 7, rg are parts of the residual vector and let Aty and As; be given by (2.3)
and (2.1), respectively. Then

P'(0) = —(Ax)'GAz — (As)T S 'UrAst — o(||er + s1]|* + |lee|]?)
+ (Azx)'r +o((er + 81" 7+ chrg). (3.3)

If

o> — (AIIIT)GAI‘ + (AS])TSI_IU[AS], (34)

ller + s1l2 + llenl|?

and if (2.4) is solved with a sufficient precision, namely if

(Al‘)TT —+ O'((é] + §1)Tf[ + CETE) < (A.CL')TGA.CL‘ —+ (AS])TS;IU]AS[
+ o(ller +sil” + llesl), (3.5)
then P'(0) < 0.

Proof. Since s; > 0 and u; > 0, one has s;(a, Asy) = s; + aAs; and ur(a, Auy) =
ur + aAuy for sufficiently small values of . Thus differentiating (3.1) by a, we obtain
P'(0) = (Ax)'(Vf(x)+ Ar(ur + Aup) + Ap(ug + Aug))

— w(As)"S7 e + (Asp)" (ur + Auy)
+ o(er +s1)T(ATAx + Asp — eErAuy)

+ och(ALAr — cEpAug). (3.6)
Using the equality
G 0 A[ AE ALE g r
0 U[ S] 0 AS[ + SIUIe—ue . 0
A? I —6E] 0 Au; cr+ Sr N rr ,
A% 0 0 —SEE AUE CE T

which is equivalent to (2.1), (2.3) and (3.2), we obtain
(Az)"(Vf(z) + Ar(ur + Aup) + Ap(up + Aug)) = —(Az)"GAz + (Az)Tr,
(Asy)"(ur + Aur) — p(Asr) TSy te = —(Asp) TS, ' UrAsy,
(cr +sp)T (AT Az + Asp — eErAug) = —|er + sq||* + (&7 + 81) 77y,
ch(ALAT — eEpAug) = —|lcg||® + cpre

(since 71 = 0 by (2.3)), which after substituting into (3.6) gives (3.3). If (3.4) holds,
then the right-hand side in (3.5) is positive so if (2.4) is solved with a sufficient precision,
then (3.5) holds and P'(0) < 0 by (3.3). O
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Condition (3.4) restricts the choice of parameter o weakly. If matrix G is positive
semidefinite, any value o > 0 satisfies this condition. In the opposite case, the second
term, which is always positive, decreases the value of P’(0) and partially eliminates the
influence of the first term.

Theorem 8 gives one possibility for the computation of parameter o, which implies
the inequality P'(0) < 0. But it is usually more efficient for practical computation to
choose parameter ¢ as a constant and replace matrix G' by a positive definite diagonal
matrix if condition P’(0) < 0 does not hold, see [18].

If P'(0) < 0, we can use a line-search technique. In this case, we set a = ('@,
where 0 < 8 < 1 is a line search parameter and [ > 0 is a minimum nonnegative
integer such that P(S'a) < P(0). After determination of o < @, we set x := x + aAx,
sr:=sr(a, Asy), ur == us(a, Auy), ug := up + cAug.

The above line-search technique is not always advantageous, since step-length o =
B'@ can be too short, especially if Strategy 3 is used. Therefore, we have tested two
additional possibilities. First, we have excluded barrier term pe” In(Sy(«v, Asy))e from
(3.1), since our strategies guarantee that sy(«, Asy) > 0 and us(a, Auy) > 0. Secondly,
we have used the simple choice a = @ (the first step accepted). In this case, merit
function (3.1) serves only to indication of restarts. Surprisingly, the simple choice is
very efficient as it is demonstrated in Table 1la—Table 1c.

4 Computation of the barrier parameter

Although computation of the barrier parameter is a crucial part of the interior-point
method, we do not bring new results here. We only recapitulate ideas, which were used
in our implementation.

If we solved problem (IP) exactly and changed the value of parameter p conse-
quently, the total number of iterations would be rather large. Therefore, the value of
parameter p is recomputed in every iteration. Most implementations of interior-point
methods choose the value u in such a way that 0 < pu < sTuy/m; (or p = AsFur/my,
where 0 < A < 1). This case is analyzed in [12] and used in [24]. Computational
experience has shown that the algorithm perform best when components s;u; of the
dot-product in numerator approach zero at a uniform rate. The distance from unifor-
mity can be measured by the ratio
_ minger(s;u;)
o= stur/my
(also called the centrality measure). Clearly, 0 < p < 1 and ¢ = 1 if and only if the
condition (1.6) holds. The value A is then computed by using p. Usually heuristic
formulas are used for this purpose. In our implementation, we have used the formula

3
]_ —
A = 0.1 min (0.05—9, 2> (4.1)
0

proposed in [24]. We have also tested other possibilities, e.g., formulas given in [1], but
formula (4.1) has shown to be best.
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Concerning the local convergence analysis of interior-point methods with various
choices of the barrier parameter we refer to [6] and [12]. It is necessary to note that
slow decrease of 1 can lead to a considerable increase of the total number of iterations,
i.e., to a long computational time, but its rapid decrease can lead to the method failure.

5 Description of the algorithm

The above considerations can be summarized in the algorithmic form.

Algorithm 1.

Data:

Input:
Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Parameter for the active constraint definition ¢; (e.g. ¢y = 0.1). Minimum
precision for the direction determination 0 < @ < 1 (e.g. @ = 0.9). Line-
search parameter 0 < 5 < 1 (e.g. = 0.5). Maximum step-length reduction
0<vy<1(eg. v =0.95when barrier function (3.1) is used and v = 0.99
otherwise). Step bound A > 0 (e.g. A = 1000).

Sparsity pattern of matrices V2F and A. Initial choice of vector x.

Initiation. Choose the values p > 0 (e.g. p=1) and 0 > 0 (e.g. 0 = 1).
For i € I set s; := max(—c;(x),ds) and u; := &, where d; > 0 (e.g. 65 =0.1)
and 0, > 0 (e.g. §, = 0.1). For i € E set u; := 0. Compute value f(z) and
vectors cr(z), cg(x). Set k := 0.

Termination. Compute matrix A := A(z) and vector g := g(x,u). If KKT
conditions (1.5) - (1.8) with u sufficiently small are satisfied with a sufficient
precision, then terminate the computation. Otherwise set k := k + 1.

Approximation of the Hessian matriz. Compute approximation G of the
Hessian matrix G(z,u) by using differences of gradient g(x,u) as in [8].
Direction determination. Split constraints into active and inactive and build.
linear system (2.4). Determine positive definite diagonal matrix D as an ap-
proximation of the diagonal of G and determine a representation of the pre-
conditioner (2.8) (Bunch-Parlett decomposition or Schur complement based
representation, see [18]). Writing system (2.4) in the form Kd = b, set
w = min(||b||,1/k, ) and determine direction vectors Az, Ad; and Aug
as an inexact solution of (2.4) (with the precision ||[Kd — b|| < wl|b]|) by
the preconditioned Krylov-subspace method. Compute vectors Ay, ASy,
A3 by (2.3), (2.5), (2.6). Compute directional derivative P'(0) of the merit
function P(«) by (3.6)

Restart. If P'(0) > 0, determine positive definite diagonal matrix D by the
procedure given in [18], set G = D and go to Step 4.
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Step 6: Step-length selection.  Define maximum step-length @ and functions
sr(a, Asr), ur(co, Auy) by one of the strategies described in Section 4. Find
the minimum integer [ > 0 such that P(3'a) < P(0) (line-search) or set
[ = 0 (first step). Set a = '@ and v := z + aAz, sy = s7(a, Asy),
ur := ur(a, Asy), ug = ug + aAug. Compute value f(z) and vectors ¢;(x)
and cp(z).

Step 7: Barrier parameter. Determine parameter \ by (4.1), set u = AsTu;/m; and
go to Step 2.

Note that this algorithm does not contain regularization described in Section 2.2 and
additional preconditioners described in Section 2.3.

6 Numerical experiments

Algorithm 1 was tested by using five sets each containing 17 test problems. These
sets were obtained as a modification of test problems for equality constrained mini-
mization given in [16] and [17], which can be downloaded (together with report [17])
from http://www.cs.cas.cz/"luksan/test.html (we excluded Problem 5.8 from our
tests, since it consumed more than 50% of the total CPU time). In the first set,
equalities ¢(x) = 0 were replaced by inequalities ¢(z) > 0. In the second set, equal-
ities ¢(x) = 0 were replaced by inequalities ¢(z) < 0 (i.e., this set contains problems
LUKVLI1-LUKVLI18 from the cute collection [5]). The third set was generated from
the first set by adding box constraints x > 0. The fourth set was generated from
the second set by adding box constraints x < 0. The fifth set contains inequalities
—1<z<1land—1<e¢(x)<1. All problems used have optional dimension; we have
chosen dimension with 1000 variables. The results of the tests are listed in nine tables,
where NIT is the total number of iterations, NFV is the total number of function eval-
uations, NFG is the total number of gradient evaluations (NFG is much greater than
NIT, since second order derivatives are computed by using gradient differences), NCG
is the total number of CG iterations, NRS is the total number of restarts and NFAIL
gives the number of failures for a given set (the number of problems which have not
been solved). Table la-Table 1c correspond to Algorithm 1, where line search is not
used and merit function (3.1) serves only to indication of restarts.

Set | NIT NFV NFG NCG NRS TIME NFAIL
618 618 4515 23974 16 9.39 -

393 393 2824 11817 19  5.66
737 737 5626 16383 28 10.52 -
361 361 2726 13623 2 12.78 2
571 574 4026 4086 16 10.59 1

Table 1a: The first step accepted - Strategy 1

T = W N~
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Set | NIT NFV NFG NCG NRS TIME NFAIL
609 609 4211 42288 8§ 11.76 -
451 451 3222 9738 24 6.99 -
650 650 4797 20229 8 10.16 -
415 420 2931 8143 8 8.39
620 620 4454 5210 11 12.15

Table 1b : The first step accepted - Strategy 2

T = W N~
\]

Set | NIT NFV NFG NCG NRS TIME NFAIL
594 594 4485 31452 14 11.44 -
747 747 53182 15681 12 9.06 -

1276 1278 10597 50062 36  29.47 1

1507 1594 11828 14708 91 20.28 1
730 751 5297 9549 35 16.54 1

Table 1c : The first step accepted - Strategy 3

Ui W N =

Table 2a-Table 2¢ contain results obtained using line search with merit function
(3.1).

Set | NIT NFV NFG NCG NRS TIME NFAIL
529 727 4000 27309 12 10.74 -
411 842 2908 15527 90 7.68 1
477 714 3559 15423 28  9.60 -
345 478 2557 12009 4 17.10 2
489 516 3709 5405 37 11.88 -

T = W N~

Table 2a : Line-search - Strategy 1

Set | NIT NFV NFG NCG NRS TIME NFAIL
629 911 4610 27946 34 10.56 -
497 922 3529 11919 95 743 1
617 9067 4832 23723 22 11.71 -
520 794 3888 10686 5 12.11 1
580 685 4365 10717 23 13.66 -

Table 2b: Line-search - Strategy 2

T = W N~
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Set | NIT NFV NFG NCG NRS TIME NFAIL
1 697 927 5461 24408 32 12.38 -

2 865 1300 6067 14726 91 10.80 1

3 | 1772 1882 16857 44363 48 36.42 2

4 11030 1175 8573 13682 11 18.30 2

5 | 1115 1313 8834 53898 249 61.64 2

Table 2¢ : Line-search - Strategy 3

Table 2a-Table 3¢ contain results obtained using line search with the barrier term

excluded.
Set | NIT NFV NFG NCG NRS TIME NFAIL
1 641 913 4725 25353 54 11.04 -
2 372 907 2689 12672 28 6.33 1
3 577 809 4407 15501 61 9.74 -
4 352 486 2668 63920 5 6.05 2
5 580 756 4077 6570 46 13.44 -

Table 3a : Barrier term excluded - Strategy 1

Set | NIT NFV NFG NCG NRS TIME NFAIL

1 | 519 751 3700 16730 16 7.35 -

2 | 404 988 2969 11773 31 5.96 1

3 | 907 1462 6779 19291 37 14.33 1

4 | 380 580 2734 6654 4 6.88 1

5 | 550 742 3986 6385 30 1251 -

Table 3b: Barrier term excluded - Strategy 2

Set | NIT NFV NFG NCG NRS TIME NFAIL
1 571 639 4432 18932 17 9.90 -

2 764 1281 5442 15590 30  9.86 1

3 | 1359 1630 11951 32862 33 25.11 2

4 | 1078 1241 8365 14430 13 25.11 2

5 | 1273 1342 9381 8523 18  22.53 2

Table 3c : Barrier term excluded - Strategy 3

For a better demonstration of efficiency of our algorithm, we performed additional
tests with problems from the widely used CUTE collection [5]. Table 8 contains a list
of these problems together with their dimensions. Here n is the number of variables,
m is the number of nonlinear constraints, m,4 is the number of nonzero elements in
the matrix A and mg is the number of nonzero elements in the matrix G. Column
denoted by S refers to the strategy used. Values NIT, NFV, NFG, NCG have the same
meaning as in the previous tables.
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NIT NFV NFG NCG
15 15 285 132
20 20 140 84
47 47 893 47

Problem n m ma mg
BRITGAS 450 360 1576 2779
CLNLBEAM | 1503 1000 4000 6005
DALLASL 906 667 1812 2814

EG3 1001 2000 5995 4995 44 44 308 443
EIGENB2 420 210 8000 80620 8 8 3261 207
EIGENC2 462 231 9261 97923 17 17 7531 180

GAUSSELM | 819 1296 5802 6175
HANGING 1800 1150 6900 13950
NGONE 100 1273 4996 5050
OPTCDEG2 | 1202 800 2800 4402
OPTCDEG3 | 1202 800 2800 4402
OPTMASS 1210 1005 3216 4627
READING1 | 2002 1000 4000 7003
READING3 | 2002 1001 4002 7004
READING4 | 1001 1000 2000 2001
READINGS5 | 5001 5000 10000 10001
READINGY9 | 2002 1000 3000 5003
SINROSNB | 1000 999 1998 1999
SREADIN3 | 1002 501 2002 3504
SSNLBEAM | 3003 2000 8000 12005
SVANBERG | 1000 1000 9000 9000

22 22 726 1479
29 29 609 795
35 35 3535 536
11 11 88 236

7 7 26 11

6 6 48 26
35 35 245 352
19 19 133 540
134 135 540 42065

2 3 12 4
11 11 95 93
13 13 92 20
38 38 266 193
19 19 133 125
20 20 380 81

—H = R R W R R R WWWHRE R WRWRRFRRFRFRRFR S

TRAINF 2008 1002 5010 10028 51 51 510 284
TRAINH 2008 1002 6012 13036 30 30 390 933
ZAMB2 1326 480 2400 6726 26 26 312 1645

Table 8 : The first step accepted

7 Conclusions

In this contribution, we describe an implementation of the interior-point method for
solving general nonlinear programming problems. The main results are proposed in
Section 2. These results are quite general and can be used in many additional applica-
tions, e.g., for solution of the Stokes or the Navier-Stokes problems after discretization.
For this reason, we have studied additional preconditioners, which are very efficient
when G is positive definite. In nonlinear programming, G is often indefinite or even
singular (with exception of convex quadratic problems), so preconditioner (2.8) seems
to be most robust in the general case. Its efficiency is demonstrated in Section 6, where
it is shown that number of CG iterations (NCG) is moderate (for CUTE problems, usu-
ally 10 CG iterations was used in one IP iteration). We also propose a certain kind of
regularization. More detailed investigation of this approach will be given in an inde-
pendent paper. Similar approach is studied in [26], where some questions concerning
the rate of convergence are answered.
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The implementation represented by Algorithm 1 has several non-traditional fea-
tures. First, the constraints are splitted into active and inactive sets. Equations cor-
responding to active constraints are solved inaccurately by the preconditioned Krylov-
subspace method while the other quantities are obtained by a direct elimination. This
way leads to equations which are suitable for iterative solvers. Furthermore, the La-
grange multipliers are forced to be positive. This approach implies several strategies
for step-length selection. Computational experiments show that Strategy 1 is usually
most efficient, but the other strategies can be successful if this strategy fails. Surpris-
ingly, step-length selection without line search is very efficient, but it requires a more
careful choice of the maximum step-length.

Algorithm 1 Results from [7]

Problem n m | NFV n m | NFV
CLNLBEAM | 1503 1000 20 | 303 200 21
DALLASL 906 667 471 906 667 | 100
EG3 1001 2000 44 | 101 200 31
GAUSSELM 819 1926 22| 819 1926 115
GRIDNETA 924 484 12| 924 484 21
GRIDNETD 924 484 12| 924 484 19
GRIDNETF 924 484 17| 924 484 20
GRIDNETG | 924 484 13| 924 484 21
GRIDNETI 924 484 16 | 924 484 28
NGONE 100 1273 35| 100 1273 | 217
OPTCDEG2 | 1202 800 11 302 200 30
OPTCDEGS3 | 1202 800 71 302 200 22
OPTMASS 1210 1005 6| 610 505 15
READING1 | 2002 1000 351 202 100 52
READING3 | 2002 1001 19| 303 200 12
READING4 | 1001 1000 | 135| 202 101 7
READING5 | 5001 5000 3|1 501 500 6
READINGY9 | 2002 1000 11| 501 500 15
SINROSNB | 1000 999 13| 1000 999 90
SREADIN3 | 1002 501 38 | 202 101 30
SSNLBEAM | 3003 2000 19| 303 200 23
SVANBERG | 1000 1000 20 | 1000 1000 18

TRAINF 2008 1002 51 | 808 402 | 345
TRAINH 2008 1002 30 | 808 402 | 441
ZAMB?2 1326 480 26 | 1326 480 37

Table 9 : Comparison of results

Finally, Table 8 demonstrates the high efficiency of our implementation of the
interior-point method. To make it more clear, Table 9 contains a comparison of Algo-
rithm 1 with algorithm described in [7] (we use the best results from the table given
in [7]).
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