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Abstract

We first present a brief survey of hardness results for training feedforward neural net-
works. These results are then completed by the proof that the simplest architecture
containing only a single neuron that applies the standard (logistic) activation function
to the weighted sum of n inputs is hard to train. In particular, the problem of finding
the weights of such a unit that minimize the relative quadratic training error within 1
or its average (over a training set) within 13/(31n) of its infimum proves to be NP-hard.
Hence, the well-known back-propagation learning algorithm appears to be not efficient
even for one neuron which has negative consequences in constructive learning.
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1 The Complexity of Neural Network Loading

Neural networks establish an important class of learning models that are widely applied
in practical applications to solving artificial intelligence tasks [13]. The most prominent
position among successful neural learning heuristics is occupied by the back-propagation
algorithm [31] which is often used for training feedforward networks. This algorithm
is based on the gradient descent method that minimizes the quadratic regression error
of a network with respect to a training data. For this purpose, each unit (neuron)
in the network applies a differentiable activation function (e.g. the standard logistic
sigmoid) to the weighted sum of its local inputs rather than the discrete Heaviside
(threshold) function with binary outputs. However, the underlying optimization process
appears very time consuming even for small networks and training tasks. This was
confirmed by an empirical study of the learning time required by the back-propagation
algorithm which suggested its exponential scaling with the size of training sets [35] and
networks [36]. Its slow convergence is probably caused by the inherent complexity of
training feedforward networks.

The first attempt to theoretically analyze the time complexity of learning by feed-
forward networks is due to Judd [21] who introduced the so-called loading problem
which is the problem of finding the weight parameters for a given fixed network archi-
tecture and a training task so that the network responses are perfectly consistent with
all training data. For example, an efficient loading algorithm is required for the proper
PAC learnability [6] (besides the polynomial VC-dimension that the most common
neural network models possess [30, 38]). However, Judd proved the loading problem
for feedforward networks to be NP-complete even if very strong restrictions are im-
posed on their architectures and training tasks [21]. The drawback of Judd’s proofs is
in using quite unnatural network architectures with irregular interconnection patterns
and a fixed input dimension while the number of outputs grows which do not appear
in practice. On the other hand, his arguments are valid for practically all the common
unit types including the sigmoid neurons. Eventually, Judd provided a polynomial-time
loading algorithm for restricted shallow architectures [20] whose practical applicability
was probably ruled out by the hardness result for loading deep networks [32]. Further,
Parberry proved a similar NP-completeness result for loading feedforward networks
with irregular interconnections and only a small constant number of units [27]. In
addition, Wiklicky showed that the loading problem for higher-order networks with
integer weights is even algorithmically not solvable [39].

In order to achieve the hardness results for common layered architectures with com-
plete connectivity between neighbor layers, Blum and Rivest in their seminal work [5]
considered the smallest conceivable two-layer network with only 3 binary neurons (two
hidden and one output units) employing the Heaviside activation function. They proved
the loading problem for such a 3-node network with n inputs to be NP-complete and
generalized the proof for a polynomial number of hidden units (in terms of n) when the
output neuron computes logical AND [5]. Hammer further replaced the output AND
gate by a threshold unit [11] while Kuhlmann achieved the proof for the output unit
implementing any subclass of Boolean functions depending on all the outputs from hid-
den nodes [23]. Lin and Vitter extended the NP-completeness result even for a 2-node



cascade architecture with one hidden unit connected to the output neuron that also
receives the inputs [24]. Megiddo, on the other hand, showed that the loading problem
for two-layer networks with a fized number of real inputs and the Heaviside hidden
nodes, and the output unit implementing an arbitrary Boolean function is solvable in
polynomial time [26].

Much effort has been spent to generalize the hardness results also for continuous
activation functions, especially for the standard sigmoid used in the back-propagation
heuristics for which the loading problem is probably at least algorithmically solv-
able [25]. DasGupta et al. proved that loading a 3-node network whose two hidden units
employ the continuous saturated-linear activation function while the output neuron ap-
plies the threshold function for dichotomic classification purposes is NP-complete [8].
Further, Hoffgen showed the NP-completeness of loading a 3-node network employing
the standard activation function for ezxact interpolation but with the severe restric-
tion to binary weights [15]. A more realistic setting as concerns the back-propagation
learning was first considered in [33] where loading a 3-node network with two standard
sigmoid hidden neurons was proved to be NP-hard although an additional constraint
on the weights of the output threshold unit used for binary classification was assumed
which is satisfied e.g. when the output bias is zero. Hammer replaced this constraint
by requiring the output unit with bounded weights to respond with outputs that are
in absolute value greater than a given accuracy which excludes a small output in-
terval around zero from the binary classification [12]. This approach also allows to
generalize the hardness result for a more general class of activation functions than just
the standard sigmoid. On the other hand, there exist activation functions that have
still appropriate mathematical properties and for which the feedforward networks are
always loadable [34].

Furthermore, the loading problem assumes the correct classification of all training
data while in practice one is typically satisfied by the weights yielding a small training
error. Therefore, the complexity of approzimately interpolating a training set with in
general real outputs by feedforward neural networks has further been studied. Jones
considered a 3-node network with n inputs, two hidden neurons employing any mono-
tone Lipschitzian sigmoidal activation function (e.g. the standard sigmoid) and one
linear output unit with bounded weights [19]. For such a 3-node network he proved
that learning the patterns with real outputs from [0, 1] each within a small absolute
error 0 < ¢ < 1/10 is NP-hard implying that the problem of finding the weights that
minimize the quadratic regression error within a fixed € of its infimum (or absolutely)
is also NP-hard. This NP-hardness proof was generalized for polynomial number £ of
hidden neurons and a convex linear output unit (with zero bias and nonnegative weights
whose sum is 1) when the total quadratic error is required to be within 1/(16k°) of its
infimum (or within 1/(4%%) for the Heaviside hidden units) [19].

In addition, Vu found the relative error bounds (with respect to the error infimum)
for hard approximate interpolation which are independent on the training set size p by
considering the average quadratic error that is defined as the total error divided by p.
In particular, he proved that it is NP-hard to find weights of a two-layer network with
n inputs, £ hidden sigmoid neurons (satisfying some Lipschitzian conditions) and one
linear output unit with zero bias and positive weights such that for a given training



data the relative average quadratic error is within a fixed bound of order O(1/(nk?®))
of its infimum [37]. Moreover, for two-layer networks with & hidden neurons employing
the Heaviside activations and one sigmoid (or threshold) output unit, Bartlett and
Ben-David improved this bound to O(1/k?) which is even independent on the input
dimension [4]. In the case of the threshold output unit used for classification, DasGupta
and Hammer proved the same relative error bound O(1/k?) on the fraction of correctly
classified training patterns which is NP-hard to achieve for training sets of size k%5 <
p < k* related to the number k of hidden units [7]. They also showed that it is
NP-hard to approximate this success ratio within a relative error smaller than 1/2244
for two-layer networks with n inputs, two hidden sigmoid neurons and one output
threshold unit (with bounded weights) exploited for the classification with an accuracy
0 < ¢ < 0.5. On the other hand, minimizing the ratio of the number of misclassified
training patterns within every constant larger than 1 for feedforward threshold networks
with zero biases in the first hidden layer is NP-hard [7].

The preceding results suggest that training feedforward networks with fized archi-
tectures is hard indeed. However, the possible way out of this situation might be the
constructive learning algorithms that adapt the network architecture to a particular
training task. It is conjectured that for a successful generalization the network size
should be kept small, otherwise a training set can easily be wired into the network
implementing a look-up table [34]. A constructive learning algorithm usually requires
an efficient procedure for minimizing the training error by adapting the weights of only
a single unit that is being added to the architecture while the weights of remaining
units in the network are already fixed (e.g. [9]). Clearly, for a single binary neuron em-
ploying the Heaviside activation function the weights that are consistent with a given
training data can be found in polynomial time by linear programming provided that
they exist (although this problem restricted to binary weights is NP-complete [28] and
also to decide whether the Heaviside unit can implement a Boolean function given in
a disjunctive or conjunctive normal form is co-NP-complete [14]). Such weights do
not often exist but a good approximate solution would be sufficient for constructive
learning. However, several authors provided NP-completeness proofs for the problem
of finding the weights for a single Heaviside unit so that the number of misclassified
training patterns is at most a given constant [16, 29] which remains NP-complete even
if the bias is assumed to be zero [1, 18]. In addition, this issue is also NP-hard for a
fixed error that is a constant multiple of the optimum [3].

Hush further generalized these results for a single sigmoid neuron by showing that
it is NP-hard to minimize the training error under the L; norm strictly within 1 of
its infimum [17]. He conjectured that a similar result holds for the quadratic error
corresponding to the L, norm which is used in the back-propagation learning. In
the present paper this conjecture is proved. In particular, it will be shown that the
issue of deciding whether there exist weights of a single neuron employing the standard
activation function so that the total quadratic error with respect to a training data is at
most a given constant is NP-hard. The presented proof also provides an argument that
the problem of finding the weights that minimize the relative quadratic training error
within 1 or its average within 13/(31n) of its infimum is NP-hard. This implies that
the popular back-propagation learning algorithm may be not efficient even for a single



neuron and thus has negative consequences in constructive learning. For the simplicity,
we will consider only the standard sigmoid in this paper while in the full version we plan
to reformulate the theorem for a more general class of sigmoid activation functions.

2 Training a Standard Sigmoid Neuron

In this section the basic definitions regarding a sigmoid neuron and its training will be
reviewed. A single (perceptron) unit (neuron) with n real inputs xq,...,z, € R first
computes its real excitation

E=wy+ Zwixi (2.1)
i=1
where w = (wyp,...,w,) € R* is the corresponding real weight vector including a

bias wy. The output y is then determined by applying a nonlinear activation function
o to its excitation:

y=o0(&)- (2.2)
We fix o to be the standard (logistic) sigmoid:
© =1 23)
O T T e '

which is employed in the widely used back-propagation learning heuristics. Correspond-
ingly, we call such a neuron the standard sigmoid unit.
Furthermore, a training set

T = {(Xkadk); X = (xkla- e 7:Ukn) € §Rn7 dy € [07 1]7 k= 17' : 7p} (24)

is introduced containing p pairs—training patterns, each composed of an n-dimensional
real input x; and the corresponding desired scalar output value dj, from [0, 1] to be
consistent with the range of activation function (2.3). Given a weight vector w, the
quadratic training error

( (wg + zn:’wll'kl) — dk> (25)

of a neuron with respect to the training set 7" is defined as the difference between the
actual outputs y(w,x;) depending on the current weights w and the desired outputs
dj over all training patterns £ = 1,...,p measured by the L, regression norm. The
main goal of learning is to minimize the training error (2.5) in the weight space. The
decision version for the problem of minimizing the error of a neuron employing the
standard sigmoid activation function with respect to a given training set is formulated
as follows:

"
MB
é
§
§~
"
M@

Minimum Sigmoid-Unit Error (MSUE)
Instance: A training set T" and a positive real number £ > 0.
Question: Ts there a weight vector w € R"*! such that Fp(w) < e?
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3 Minimizing the Training Error Is Hard

In this section the main result that training even a single standard sigmoid neuron is
hard will be proved:

Theorem 1 The problem MSUFE is NP-hard.

Proof: In order to achieve the NP-hardness result, a known NP-complete problem
will be reduced to the MSUE problem in polynomial time. In particular, the following
Feedback Arc Set problem is employed which is known to be NP-complete [22]:

Feedback Arc Set (FAS)

Instance: A directed graph G = (V, A) and a positive integer a < |A|.

Question: Is there a subset A" C A containing at most a > |A’| directed edges such
that the graph G' = (V,; A\ A') is acyclic?

The FAS problem was also exploited for a corresponding result concerning the Heaviside
unit [29]. However, the reduction is adapted here for the standard sigmoid activation
function and its verification substantially differs.

Given a FAS instance G = (V, A), a, a corresponding graph G, = (V;., A,) is first
constructed so that every directed edge (u,v) € A in G is replaced by five parallel
oriented paths

P(u,'u),h — {(U; Uu); (U/’U7 Uuhl); (thla UuhZ); feey (uvh,rfla U)} (31)

for h =1,...,5 in G, sharing only their first edge (u,u,) and vertices u,u,,v. Each
path P ), includes
r=8a+6 (3.2)

additional vertices uy, Uyp1, Uph2, - - -, Upnr—1 unique to (u,v) € A, i.e. the subsets of
edges

5
Ay = | Py (3.3)
h=1

corresponding to different (u,v) € A are pairwise disjoint. Thus,

V., = VU{u,; (u,v) € A}

U {uvhla Uph2s « - - 5 Uphr—1; (u7 U) € A, h = 17 R 5} (34)
4 = | Aww- (3.5)
(u,v)€A

It follows that n = |V;| = |[V|+ (5r — 4)|A| and s = |A,| = (5r + 1)|A|. Obviously, the
FAS instance GG, a has a solution iff the FAS problem is solvable for GG, a. The graph
G, is then exploited for constructing the corresponding MSUE instance with a training
set T'(G) for the standard sigmoid unit with n = (40a + 26)|A| + |[V| = O(JA]* + |V])
inputs:

T(G) = {(xa4)1), (%3, 0); (i,4) € A,
X(i,j) = (x(i,j),l, e ,x(i,j),n) - {—1, 0, 1}“} (36)

5



that contains p = 2s = (80a + 62)|A| = O(]A|?) training patterns, for each edge
(i,7) € A, one pair (X ), 1), (=X ), 0) such that

-1 for £ =1
Tie =4 1 for £ = (=1,...,n, (1,7) € A,. (3.7)
0 for £ #£1i,7

In addition, the error in the MSUE instance is required to be at most
e=2a+1. (3.8)

Clearly, the present construction of the corresponding MSUE instance can be achieved
in a polynomial time in terms of the size of the original FAS instance.

Now, the correctness of the reduction will be verified, i.e. it will be shown that the
MSUE instance has a solution iff the corresponding FAS instance is solvable. So first
assume that there exists a weight vector w € 27! such that

ET(G) (W) <e. (3.9)
Define a subset of edges
A'={(u,v) € A; wy, >w,} CTA (3.10)

in G. First observe that graph G’ = (V, A\ A') is acyclic since each vertex u € V C V,
is evaluated by a real weight w, € R so that any directed edge (u,v) € A\ A" in G’
satisfies w, < w,.

Moreover, it must be checked that |A’| < a. For this purpose, the error Ep)(w)
introduced in (2.5) is expressed for the training set 7'(G) by using (3.7) and (3.5) as
follows:

Er(w) = Z (o(wo — w; + wj) — 1)? + Z o? (wo + w; — w;)
(iaj)eAr (iyj)EAT
- Z (0*(—wo + w; — wy) + o (wo +w; —w;))  (3.11)

(uvv)eA (ivj)eA(u,v)

where the property o(—¢) =1 — (&) of the standard sigmoid (2.3) is employed. This
error is lower bounded by considering only the edges from A’ C A:

Ery(w) > Y EAuy) (3.12)

(u,v)€A’

where each term E A, for (u,v) € A" will below be proved to satisfy

EAwuwy = Z (0% (—wo + w; — wy) + 0% (wy + w; — wy)) > (3.13)

a+1
(irj)EA(u,'u)

Clearly, e.g. wy > 0 can here be assumed without loss of generality. For each (u,v) € A’
let P, be a path with the minimum error

EPu.,) = Z (0% (—wo + wi — w;) + 0 (wo + w; — wy)) (3.14)
(i’j)ep(u,v)



among paths Py, for b = 1,...,5. Furthermore, sort the edges (i,j) € Py
with respect to associated decrements w; — w; in nonincreasing order and denote by
(c,d), (e, f) € Py the first two edges, respectively, in the underlying sorted sequence,
e we —wqg > we —wy > w; —w; for all (z,7) € Puw \ {(c,d), (e, )}

First consider the case when wy + w, — w; > In2, ie. o?(wg + we — wy) > 4/9
according to (2.3). It follows from definition of P, and (3.3) that

EA(U,U) 2 Z (02(—w0 + w; — wj) + 0'2(1110 + w; — wj))
(6:5) €A w,0) \{(wuv)}
2 5. Z (02(—w0+wi—wj)+02(w0+wi—wj))
(4.3) € Pu,v) \{(wuv) }

20 €
> 5.0° . — > >
> o (wo + we — wy) > 5 o]

(3.15)

since Py \ {(u,uy)} contains an edge (i, j) € {(c,d), (e, )} with o*(wg +w; — w;) >
0?(wp 4+ we — wy) by definition of (e, f) due to o is increasing. This proves inequality
(3.13) for wy + w. — wy > In2.

On the other hand suppose that wy +w, —w; < In2. In this case vertices ¢ € V, on
path P, ) ((u,v) € A’) will possibly be re-labeled with new weights w; € R except for
fixed w,, w, so that there is at most one edge (¢, d) € P ) with a positive decrement
we — wg > 0 or all the edges (7,j) € P, are associated with nonnegative decrements
w;—w; > 0 while the error E P, , introduced in (3.14) is not increased. Note that error
E P, depends only on decrements w; — w; rather than on the actual weights w;, w;.
For example, these decrements can arbitrarily be permuted along path F, ) producing

new weights whereas EF,,) and w,,w, do not change. Recall from definition of
(c,d), (e, f) that for all (i,7) € Puy) \ {(c,d)} it holds

—w0+wi—wj§w0+wi—wj§w0+we—wf<ln2. (316)
Now, suppose that there exists an edge (i, j) € P \{(c, d)} with a positive decrement

0 < w; —w; < w,—w,y together with an edge (¢, m) € P, associated with a negative
decrement wy — w,, < 0. Then these decrements are updated as follows:

wp —wy = wi—wj—A (3.17)
wy—w, = wy— w, + A (3.18)

where A = min(w; — w;, w,, — wg) > 0. This can be achieved e.g. by permuting the
decrements along path P, ,) so that w; — w; follows immediately after w, — wy, (this
produces new weights but preserves E P, ,)) and by decreasing the weight of the middle
vertex that is common to both decrements by A which clearly influences error E P, ).
However, for £ < In 2 the first derivative (0%) is increasing because

_ 2e78 (276 1)
o (ted)]

(0*()"

>0 (3.19)



for £ < In2 according to (2.3). Hence,

o (—wo + w; — wy) + 0% (—wo + wp — wy) > oF(—wo + w; —wj — A)
+o?(—wy + wp — wm + A)  (3.20)
o?(wo + w; — w;) + o*(w + wp — wy,) > o (wy +w; — wj — A)
02 (wo + wp — wy, + A) (3.21)
according to (3.16). This implies that error E'P, ) only decreases while w; —w’; = 0 or
wy —w,, = 0. By repeating this re-labeling procedure eventually at most one positive

decrement w. — wy > 0 remains or all the negative decrements are eliminated.
Furthermore,

W, — wq + Z (w; —wj) =wy, —w, >0 (3.22)
(43)EPu,0)\{(c,d)}

due to (u,v) € A" which implies

Wg — we < Z (w; —wj) . (3.23)
(4,)€P(u,0) \{(c,d)}
Thus,
W — we < Wi — Wj (3.24)

can be assumed for all (4, ) € P since the decrements w; — w; for (i,7) € Py \
{(¢,d)} in sum (3.23) can be made all nonpositive or all nonnegative. According to
(3.24) inequality (3.13) would follow from

EA(u’U) > EP(u’U) > 02(—w0 + w, — wd) +7r- 02(—w0 + Wqg — wc)

€
+0?(wo + we — wg) + 7 - 0% (wo + Wg — W) > o) (3.25)
because there are r edges (i, j) on path P, except for (¢, d) and o is increasing. The
particular terms of addition (3.25) can suitably be coupled so that it suffices to show

3

o’(&) +r-0* (=) > Nat 1)

(3.26)

for any excitation & € R. For this purpose, a boundary excitation

& =In (6 - V/2e(a 1)) ~In (2a +1+V4a® 1 6a+ 2) (3.27)

20a+1)—¢
is derived from (2.3), (3.8) such that
2 _ 5
&) = 351y
Thus, 02(£) > 02(&) for € > &, due to o? is increasing which clearly implies (3.26) for
£ > & according to (3.28). For £ < &, on the other hand, it will even be proved that
£

) +r-o? (=6 >1> CTCE) (3.29)

(3.28)



which reduces to

, 1-0(8) — 9¢6
> (=5 2es +1 (3.30)

by using (2.3). Moreover, it is sufficient to verify (3.30) only for £ = &, i.e.
r>2e% 41 (3.31)

since 2¢¢ + 1 is increasing. Inequality (3.31) can be checked by substituting (3.2) for r
and (3.27) for &, which completes the argument for (3.25) and consequently for (3.13).
Finally, by introducing (3.9) and (3.13) into inequality (3.12) it follows that

€
a+1

€ > Er@)(w) > 4] (3.32)
which gives |A'| < a+ 1 or equivalently |A’| < a. This completes the proof that A’ is
a solution of the FAS problem.

On the other hand, assume that there exists a solution A" C A of the FAS instance
containing at most a > |A’| directed edges making graph G' = (V, A\ A’) acyclic.
Define a subset

Al ={(u,up); (u,v) € A’} (3.33)

containing |A!| = |A'| < a edges from A,. Clearly, graph G, = (V,, A, \ A) is also
acyclic and hence its vertices i € V, can be evaluated by integers w; so that any
directed edge (7,7) € A, \ A] satisfies w; < w. Now, the corresponding weight vector
w is defined as

=K - (3.34)

for i € V., where K > 0 is a sufficiently large positive constant, e.g.

K=ln(yp—1) =l (\/% - 1) (3.35)

(recall p = |T'(G)| = 2s where s = |A,|) while wy = 0 which will be proved to be a
solution for the MSUE instance. The error (3.11) can be rewritten for w:

Erg(w) = Y 20%(w; — w;)
()€,
=2 > Clw-w)+2 > oP(w—wy). (3.36)
()€ (i)EAN AL

For (i,7) € A, \ A it holds
w; —wj = K(w; —w;) < —K <0 (3.37)

according to (3.34) where w; — w}; < —1 due to w;, w} are integers. This implies

o2 (w; — wj) < 0*(—K) = 2—13 (3.38)



for (i,7) € A, \ AL by formulas (2.3), (3.35) due to o is increasing. Hence, the error
(3.36) can be upper bounded as

Er)(w) < 2|41 +250%(—K) < 2a+1=¢ (3.39)

by using |A!] < a, 6%(€) < 1, and |A, \ A’| < s. Therefore w is a solution of the MSUE
problem. This completes the proof of the theorem. O

The proof of Theorem 1 also provides the NP-hardness result regarding the relative
(average) error bounds:

Corollary 1 Given a training set T containing p = |T| training patterns, it is NP-
hard to find a weight vector w € R*"! of the standard sigmoid neuron with n inputs
for which the quadratic error Er(w) with respect to T is within 1 of its infimum, or
the average quadratic error Ep(w)/p is within 13/(31n) of its infimum.

Proof: Given a FAS instance G = (V, A), a, a corresponding MSUE instance T'(G), €
is constructed according to (3.6), (3.8) in polynomial time. Assume that a weight
vector w* € ! could be found such that

ET(G) (w*) S Weingrl ET(G) (W) +1. (340)
The corresponding subset of edges A* C A making graph G* = (V, A\ A*) acyclic
can be then read from w* according to (3.10). It will be proved in the following that
|A*| < a iff the original FAS instance has a solution. This means that finding the
weight vector w* that satisfies (3.40) is NP-hard.
It suffices to show that for |A*| > a+1 there is no subset A" C A such that |A'| < a
and G' = (V, A\ A) is acyclic since the opposite implication is trivial. On the contrary
suppose that such a subset A’ exists. It follows from (3.40), (3.32), and (3.8) that

. . L 20+1
inf | Ere)(W) 2 Ere)(w") —1> |47 ———

weRnt+l

—1>2a. (3.41)

On the other hand, a weight vector w' € R"*! corresponding to subset A’ C A could
be defined by (3.34) that would lead to an error

Er) (W) <2a+2s0*(—K) (3.42)

according to (3.39). However, from (2.3), (2.5), and (3.41) there exists K > 0 such
that
25 0% (—K) < —2a + §£f+1 Er@y(w) <p=2s (3.43)
which provides a contradiction Eyg)(w') < infyepn1 Epg)(w) by using (3.42).
Finally, it follows from the underlying reduction that approximating the average
quadratic error Ep(w)/p within 13/(31n) of its infimum is also NP-hard due to p <
31n/13. O
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4 Conclusions

The hardness results for loading feedforward networks are completed by the proof that
the approximate training of only a single sigmoid neuron, e.g. by using the popular
back-propagation heuristics, is hard. This suggests that the constructive learning al-
gorithms that minimize the training error gradually by adapting unit by unit may also
be not efficient. In the full version of the paper we plan to formulate the conditions for
a more general class of sigmoid activation functions under which the proof still works.
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