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Abstract:

The computational potential of artificial living systems can be studied without knowing the
algorithms that govern the behavior of such systems. What is needed is a formal model
that neither overestimates nor underestimates their true computational power. Our basic
model of a single organism will be the so-called cognitive automaton. It may be any device
whose computational power is equivalent to a finite state automaton but which may work
under a different scenario than standard automata. In the simplest case such a scenario
involves a potentially infinite, unpredictable interaction of the model with an active or
passive environment to which the model reacts by learning and adjusting its behaviour or
even by purposefully modifying the environment in which it operates. One can also model
the evolution of the respective systems caused by their architectural changes. An interesting
example is offered by communities of cognitive automata. All the respective computational
systems show the emergence of a computational power that is not present at the individual
level. In all but trivial cases the resulting systems possess a super-Turing computing power.
That is, the respective models cannot be simulated by a standard Turing machine and in
principle they may solve non-computable tasks. The main tool for deriving the results is
non-uniform computational complexity theory.
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1 Introduction

A tantalizing question in computational mind modeling is the following: if it is true
that the mind can be modeled by computational means, how can we explain the fact
that mathematicians are often able to prove “mechanically unprovable” theorems, i.e.
theorems whose truth or falsity cannot be algorithmically proved within a given formal
system (e.g. corresponding to a computer simulating the mind) due to Gédel’s incom-
pleteness theorem. In an extensive discussion of the respective problems R. Penrose
[6] conjectures that there must be some so far unknown faculty of the brain that gives
it a non-computable, non-algorithmic, “super-Turing” power in some cases.

In this paper we offer a plausible explanation of this phenomenon in the realm of
artificial living systems. We will show that under a certain not-commonly considered
computational scenario the ability to surpass the computational limits of a single Turing
machine can emerge in non-uniformly evolving families or communities of far simpler
computational devices than Turing machines, viz. finite automata.

The plan of the approach is as follows. First, in Section 2 we introduce our basic
tool for modeling a single living organism — an interactive cognitive automaton seen
as a finite discrete-state computational device. Then, in Section 3 we model the evo-
lution of such devices by means of potentially infinite sequences of cognitive automata
of increasing size and show that the resulting “families” possess the super-Turing com-
puting power. For a formal treatment of the respective issues we use basic notions from
non-uniform complexity theory. Next, in Section 4 we show that so-called active cogni-
tive automata that can move in an interactive environment and modify it at will, gain
the computing power equivalent to that of the standard (or interactive) Turing ma-
chine. Finally, in Section 5 we consider evolving communities of communicating active
cognitive automata and for such communities we will show the emergence of super-
Turing computing power. The merits of the respective results from the viewpoint of
computational cognition will be discussed in Section 6.

All the above mentioned results are based on (old and new) results from non-
uniform computational complexity theory. The paper opens a new application area for
this theory by interpreting its results in terms of cognitive and evolutionary systems.
Doing so sheds new light on the computational potential of the respective systems.

Proofs are omitted in this extended abstract.

2 Cognitive Automata

When modeling living organisms in order to study their computing potential it is impor-
tant to keep in mind that the computational power of a model can be studied without
actually knowing the concrete algorithms that are used by the model in concrete situ-
ations. What we have to know is the set of the elementary actions of the given model
(its “instruction set”) and the scenario of its interaction with its environment (what
data can appear at its input, whether and how this data depends on previous outputs
from the system, whether the system can “off-load” its data to the environment, and
S0 on).



The second fact that we have to take into account is the crucial difference between
the requirements put upon a model in case one merely wants to simulate the behaviour
or actions of some (living) system, and those in case we also want to investigate its
computational potential. In the former case the choice of a more powerful model than
is necessary is acceptable since this can simplify the task of simulation. In the latter
case the same choice would lead to the overestimation of the computing potential of
the system at hand. Thus, in the latter case the model must neither be too powerful
nor too weak: it must exactly capture the computing power of the modeled system.

Fortunately, also in such a case we are in a much better situation than it might ap-
pear. Despite their unprecedented complexity (when measured in terms of complexity
of human artifacts) it is commonly believed that each living organism can enter into
only a finite — albeit in most cases astronomic — number of distinguishable internal
configurations. From the space limitations put upon this paper we cannot afford to
give exhaustive arguments in favor of this fact. Instead, we take it as our fundamental
assumption that a living organism interacting with its environment can in principle be
modeled by a finite discrete-state machine. In the sequel we will call any finite discrete-
state machine used in the above mentioned modeling context a cognitive automaton.
A finite automaton presents a paradigmatic example of such a device. Other examples
of cognitive automata are combinatorial circuits [1], discrete neural (cf. [5], [17]) or
neuroidal [11] nets, neuromata [7] and various other computational models of the brain
(cf. [17], [18]).

The next thing that our model has to capture is the fundamental difference between
the standard scenario of computations by a finite automaton or Turing machine, and
that of “computations” by a cognitive automaton. In the former case we assume a
finite input that is known, fixed prior to the start of the computation. After starting
the computation neither additional inputs nor changes in already existing, but not-yet-
read inputs are allowed. In the next run of the machine, with new input data, both
the finite automaton and the Turing machine must start again from the same initial
configuration as in the case of previous inputs. There is no way to transfer information
from past runs to the present one. Under this computational scenario, the respective
machines are prevented from learning from their past experience.

Contrary to this, living organisms interacting with their environment process their
inputs as delivered by their sensory systems without interruption. The inputs “appear”,
in an on-line manner, unexpectedly and as a rule they must be processed in real-time
(this seems to be a necessary condition for the emergence of at least a rudimentary form
of consciousness — cf. [20]). In principle the respective computations never terminate
and are practically limited only by the lifespan of the organisms at hand. Moreover,
the inputs stream into their cognitive systems in parallel via numerous channels and
the systems process them also in a parallel manner. In most cases, once read, the
original input is no longer available. The number of input channels depends on the
size (or complexity) of the system at hand. In addition, especially the inputs into more
complex systems that modify their environment or communicate with other systems
may depend on the previous actions of a system or the reactions of other systems. Thus
the systems gain a potential ability to learn from their own mistakes or experience. The
respective computational scenario is a scenario of perpetual interactive learning.



Formally, any cognitive automaton realizes a translation ®,,,, that transforms infi-
nite input sequences of Boolean m-tuples into similar sequences of n-tuples, for certain
m,n > 1. Depending on the type of formal device used in place of the cognitive au-
tomaton, this device can read and produce the tuples in parallel via many input/output
ports (as in the case of neural nets), or these tuples are “packed” into symbols of some
finite alphabet and are read or produced in this packed form in one step via a single
port (as in the case of finite automata, or interactive Turing machines from Section 4).

From [21] and [7] the next theorem follows:

Theorem 1 Let ®,,, : {{0,1}"}¥ — {{0,1}"}*, with m,n > 1, be a translation
acting on infinite streams. Then for any m,n > 1 the following are equivalent:

o &, is realized by a discrete neural net;

o &, is realized by a neuroidal net;

o &, is realized by a neuromaton;

o O, ., is realized by a finite (Mealy) automaton.

Any translation ®,,,, that is realized by one of the above mentioned devices will be
called a regular translation.

Although the learning potential of finite automata is not quite obvious, it can
be easily observed e.g. in the case of neuroids [11]. Namely, they can be seen as
“programmable neurons” since this ability was their primary design goal. The basic
set of elementary operations of a cognitive automaton in order to obtain the potential
for the development of cognitive abilities via learning is proposed in [11], [18] and [20].
Nevertheless, as mentioned above, the exact form of learning algorithm is unimportant
for determining the computational power of the respective devices.

3  Families of Cognitive Automata

In order to be able to process more complicated translations than the regular ones and
also to reveal a dependence of computational efficiency on the size of the underlying
devices we will consider families of cognitive automata.

Let F, = {N, Ny, ... N, ...| size(N;) < p(i)} be an infinite family of cognitive
automata of increasing size bounded by function p. Such a family is also called a non-
uniform family since in general there need not exist an algorithmic way to compute
the description of A;, given i. Thus there need not be a ‘uniform’ way to describe the
members of the family. Intuitively, the only way to describe the family is to enumerate
all its members.

Definition 1 Let F,, be a family of cognitive automata, and let ®,,, be the transla-
tion realized by automaton Ny, € F, for some n > 1. Then the non-uniform transla-
tion W(F,) realized by F), is the set of translations realized by the members of F,, i.e.
®(F,) = {Pppnlm > 1}.



Note that in the above definition, for any given m > 1, an (infinite) input sequence
of m-tuples is processed by the automaton N, that is “specialized” in the processing
of m-tuples. The class of translations realized by families of neuromata (i.e. of discrete
neural nets reading their inputs via a single input port [7]) of polynomially bounded
size will be denoted as POLY-NA. In addition to this class we will also consider the
classes LOG-NA (the translations realized by neuromata of logarithmic size), POLY-
NN (the translations realized by standard recurrent, or cyclic, discrete neural nets
of polynomial size, reading their inputs in parallel via m ports), and POLY-FA (the
translations realized by finite automata with a polynomial number of states).

Our main tool for characterizing the computational efficiency of the families of
cognitive automata will be interactive Turing machines with advice. Non-interactive
versions of such machines were introduced by Karp and Lipton [3] who established
the foundation of non-uniform complexity theory. Machines with advice are akin to
oracle machines as already introduced by Turing [9]. Effectively, an oracle allows
inserting outside information into the computation. This information may depend on
the concrete input and is given for free to the respective oracle machine whenever the
oracle is queried. Advice functions are a special kind of oracle, where the queries can
depend only on the size of the input to a machine. Intuitively, the information delivered
by an oracle makes sense only for the given input; the information offered by an advice
can be used for all inputs of the same size and this is the only oracle information given
for all these inputs. With the help of advice a machine may easily gain a super-Turing
computing power, because there is no requirement of “computability” on advice (cf.
[1], [3], or [13]). Advice is not necessarily more restrictive than the use of an arbitrary
oracle, because one can combine all oracle-values ever queried in computations on
inputs of size n into one advice value f(n). This is why one usually imposes size-bounds
on advice.

Definition 2 An advice function is a function f : ZT — Y*. An advice is called
S(n)-bounded if for all n, the length of f(n) is bounded by S(n).

Technically, a Turing machine with an advice function f operates on its input of
size n in much the same way as a standard Turing machines does. However, such
machine can also call its advice by entering into a special query state. After doing so,
the value of f(n) will appear at the special read-only advice tape. From this moment
onward the machine can also use the contents of this tape in its computation.

It is intriguing to consider the effect of providing cognitive automata with some
means to query oracles. It is reasonable to assume that a p(n)-size bounded cognitive
automaton can only issue oracle queries of size p(n) in its computation on inputs of
size n.

Theorem 2 Let F, be a family of cognitive automata that use some Turing machine
as oracle. Then W(F,) can be realized by a Turing machine using O(p)-bounded advice.

A converse statement also holds but its formulation is beyond the scope of the
present paper.



For the classes of translations realized by (interactive) Turing machines with advice
we introduce a notation similar to that used in the theory of non-uniform complexity
classes (cf. [1]).

Definition 3 Letx = {:}i>0, let f be an advice function and let xof = {(x, f(t)) }i>0,
where the broken brackets denote the concatenation of two strings surrounded by the

brackets. Then the class C/F of translations consists of the translations ® for which
there exists a ®1 € C and a f € F such that for all x : ®(x) = ®1(xof).

Thus, a translation ® belongs to C/F iff ® is realized by a Turing machine from
complexity class C with advice function f € F. Common choices considered for C that
we will use are: LOGSPACE (‘deterministic logarithmic space’), PSPACE (‘polyno-
mial space’), etc. Common choices for F are log, the class of logarithmically bounded
advice functions, and poly, the class of polynomially bounded advice functions.

In non-uniform computational complexity theory and in the theory of neurocom-
puting (cf. [5]) the following assertion is proved.

Theorem 3 For the classes of non-uniform translations the following equalities hold:
e POLY-NN=POLY-NA=PSPACE/poly;
e LOGSPACE-NN=LOGSPACE-NA=LOGSPACE/log;
e POLY-FA=LOGSPACE/poly.

For more information about the complexity of non-uniform computing we refer
to [1].

4 From Cognitive Automata to Cognitive Turing Machines

Consider now a cognitive automaton enhanced by an apparatus that enables it to
move around in its living environment and to mark the environment in a way that
can later be recognized again by the automaton at hand. The resulting device is
called an active cognitive automaton. It can store and retrieve information in/from its
environment and thus it bears a similarity with robotic cognitive systems. Models of
finite automata which can read inputs from a two-way input tape and in addition can
also mark input tape cells have been studied for years in automata theory (cf. [16]). The
respective machines are provably computationally more powerful than non-marking
automata. When we allow a finite set of marks that can be placed to or removed from
a potentially infinite environment, one obtains an interactive Turing machine [12], [13],
[15]. Interactive Turing machines are a similar extension of standard Turing machines
as was the extension of finite automata towards active cognitive automata. Thus,
an interactive Turing machine is a Turing machine that translates infinite streams of
input symbols into similar streams of output symbols under an interactive scenario
as described in Section 2. Several further conditions may be imposed on the way the
machine interacts, e.g. to model the bounded delay property that cognitive systems
often display in their respond behaviour.



Theorem 4 The computational power of active cognitive automata is equivalent to the
computational power of interactive Turing machines.

Turing [8] saw “his” machine (i.e., the Turing machine) as a formalized model of
a “computer”, which in his days meant “a person who calculates”. Such a person
computes with the help of a finite table (that corresponds to a “program”) that is
held in a person’s head, and further using a (squared) paper, pencil and a rubber.
In accordance with Turing’s own belief generations of researchers working in artificial
intelligence and philosophers of mind have believed that the Turing machine as a whole
corresponds to the model of the above mentioned human computer. Our previous short
discussion suggests that within the model of a computing person one has to distinguish
among three components: the machine’s finite control (its “program”), its “sensors,
effectors and motoric unit” (movable read/write head) and its environment (the tape).
Hodges, Turing’s biographer, writes in [2]: “ Turing’s model is that of a human mind
at work”. This is only partially correct: in Turing’s model, merely the machine’s finite
control corresponds to the mind of the modeled calculating person.

5 Communities of Active Cognitive Automata

Ultimately, active cognitive automata are of interest only in large conglomerates, in-
teracting like “agents” of individually limited powers. A community of active cognitive
automata (or shortly: a community of agents) is a time-varying set of devices consisting
at each moment of time of a finite set of active cognitive automata of the same type
sharing the same environment. Each automaton makes use of a piece of its immediate
environment as its private external memory giving it the computing power of an inter-
active Turing machine (as stated in Theorem 4). Each automaton has its own input
and output port. The ports of all automata altogether present the input and output
ports of the community. The number of these ports varies along with the cardinality
of the community. Within their set the automata are identified by a unique name (or
address).

The agents (automata) can communicate by sending their outputs as inputs to
other automata identified by their addresses, or by writing down a message into their
environment which can be read by other automata. One can see it also as if the
agents move in their environment and encounter each other randomly, unpredictably,
or intentionally, and exchange messages. Who encounters whom, who will send a
message, as well as the delivery time of each message is also unpredictable. The idea
is to capture in the model any reasonable message delivery mechanism among agents
— be it the Internet, snail mail, spoken language in direct contact, via mobile phones,
etc. Moreover, the agents are mortal: they emerge and vanish also unpredictably.

The description of a community of agents is given at each time by the list of names
of all living agents at that time, the list of all transient messages at that time, including
the respective senders and addressees, the time of the expedition of each message, its
addressee, and the message delivery times. Note that in general most of the required
parameters needed in the instantaneous description of a community at a given time
are non-computable (since according to our description of community functioning they



are unpredictable). Nevertheless, at each moment in time they can be given by a finite
table. Therefore the description of the whole community at any time is always finite.

In [13], [15] the following result has been proved for the case of “real” agents com-
municating via the Internet.

Theorem 5 The computational power of communities of agents is equivalent to the
power of interactive Turing machines with an advice function whose size grows linearly
with the processing time.

Note that similar to the case of infinite families of cognitive automata, communi-
ties of active cognitive automata have a super-Turing computing power. The source
of this power is given by the potentially unlimited cardinality of the community and
by the non-computable characteristics of the community size in the unpredictable in-
teraction among community members and those of their existence span (leading to
non-uniformity of the resulting system).

6 Afterthoughts

The results in the previous theorems have interesting interpretations in the world of
cognitive automata and computational cognition.

Theorem 1 describes the equivalence among the basic types of cognitive automata.
In complexity theory numerous other models of non-uniform computation are known
— such as combinatorial or threshold circuits and other types of neural nets, especially
the biologically motivated ones (cf. [4]). Nonetheless, the computational equivalence
of the respective models indicates that computational cognition is a rather robust phe-
nomenon that can in principle be realized by various computational models which
are equivalent to finite automata. We said “in principle” because in practice much
will depend upon the efficiency of such models. For instance, in [20] a principle of
consciousness emergence in cognitive systems is sketched. In the simplest case con-
sciousness takes the role of a control mechanism that, based on feed-back information
from a system’s sensors, verifies the correct realization of motoric actions to which
orders have been issued. If these actions are not performed in accordance with these
orders, the consciousness will realize it and take care about the appropriate remedy.
In order to fulfill this role consciousness must operate in real time w.r.t. the speed of
the system. The system must react fast enough to be able to recognize the erroneous
realization of its orders and take the appropriate measures in time that still give op-
portunity for the realization of rescue actions. In practice such requirements disqualify
“slow” systems and support the specialized, fast or “economical” solutions. It is known
that there are cognitive tasks that can be realized by a single biological neuron (over
n inputs) whereas the equivalent neural nets requires a quadratic number of standard
neurons [4].

Theorem 2 suggests that the evolution of families of cognitive automata that use
“recursively enumerable” information from an external source and which might lead
to the emergence of a super-Turing computing power, can be simulated using Turing
machine models with a very limited, global learning facility.



Theorem 3 illustrates the various degrees of efficiency of certain classes of cognitive
automata. For instance, the family of neural nets of polynomial size has the power of
PSPACE/poly whereas families finite automata of the same size only have the power
of LOGSPACE/poly. It also demonstrates the emergence of super-Turing power in the
course of non-uniform evolution within families.

Theorem 4 points to a jump in the computational power of sufficiently developed
active cognitive automata equipped by sensors that can scan the environment and by
effectors by which the automata can modify their environment. The corresponding
individual active cognitive automata (or cognitive robots) gain the power of interactive
Turing machines. In other words, the original finite-state computing device capable
of reaching but a bounded number of configurations will turn into a device which can
reach a potentially unbounded number of configurations. This is a nice argument that
qualitatively illustrates e.g. the revolutionary contribution of the development of the
script to the development of human civilization.

The study of the computational power of interactive Turing machines was initiated
and studied in [12]. Roughly speaking, the respective theory leads to a generalization
of standard computability theory to the case of infinite computations. The results
from [12] indicate that by merely adding interactive properties and allowing endless
computations, one does not break the Turing computational barrier. The resulting
devices are not more powerful than classical Turing machines. They simply compute
something different than the latter machines. Thus the new quality is only brought
into computing by letting non-predictability enter into the game (cf. [15]).

Theorem 5 asserts that a community of active cognitive automata has a much
greater power than the sum of the powers of the individual automata. Here we see the
emerging non-recursive computing power of unpredictable external information enter-
ing into a system. Do the results of Theorem 5 really mean that the corresponding
systems can solve undecidable problems? Well, they can, but only under certain as-
sumptions. In order for these systems to simulate a Turing machine with advice they
need a cooperating environment. Its role is to deliver the same information as is offered
by the advice. Thus the respective results are of a non-constructive nature: both the
advice and the corresponding inputs from the environment exist in principle but there
is no algorithmic way to obtain them. In practice the assumptions of the existence of
external inputs suitable for the solution of a concrete undecidable problem, such as the
halting problem, are nor fulfilled. Hence, without such “right” inputs no community of
cognitive automata will solve an undecidable problem. On the other hand, no Turing
machine without an advice could simulate e.g. the (existing) Internet — simply be-
cause the Internet develops in a completely unpredictable, non-algorithmic way. One
can say that the current Internet realizes a concrete non-algorithmic translation that,
however, emerges somehow “all by itself”, by the joint interplay of all users who operate
and upgrade the Internet in a completely unpredictable manner. All users jointly play
the role of an “advice” — nonetheless the respective advice keeps emerging on-line,
incrementally, is “blind”, possessing as a whole no purposeful intention. The same
holds for the development of a human society — it also evolves in a non-algorithmic
way and therefore cannot be modeled by a single computer (without advice).

What remains to be done is answering Penrose’s question from the introduction of



this paper. To see the idea, consider the information computed and stored in a long run
by the community of cognitive robots. By virtue of Theorem 5 this is non-computable
information. Now, each member of this community has access to this information which
effectively plays the role of an advice and thanks to this, in principle each member of
the community gains a super-Turing computing power.

7 Conclusion

The previous results can be seen as applications of computability theory to artificial
life systems. The main result explaining the emergence of the super-Turing computing
potential within the respective systems certainly justifies the approach and points to
the increasing role that computer science will play in problems related to understanding
the nature of the emergence of life in general and intelligence in particular (cf. [19]).
The above results point to quite realistic instances where the classical paradigm of a
standard Turing machine as the generic model of all computers which is able to capture
all computations, is clearly insufficient. It appears that the time has come to reconsider
this paradigm and replace it by its extended version — viz. interactive Turing machines
with advice. For a more extended discussion of the related issues, see [13].
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