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1 Introduction

We present here a finite element program with the working name FEC (Finite Element
Contact) for solving the contact problem in elasticity. We use the contact problem
formulation based on the Signorini type conditions and on the Coulomb model of
friction. We allow the models with different material properties, however, for each
defined subregion they have to be constant. The boundary conditions are assumed to
be linear along each boundary segment. These things, together with the discretized
geometry (i.e. triangulated region - list of nodes and elements), are defined in the
input file for the FEC (USROT.TXT or binary version USROT.DAT). In another
file, TEM.DAT, the values of temperature for each node are defined. Both theoretical
background and the actual usage of the program is described in the report. The output
files VALUESx.DAT, x=1,...4, and VALPST.DAT contain the values of displacements,
stresses and principal stresses. For the numerical results, we refer to [35, 36, 38, 39,

10, 41, 42, 43, 45, 46, 62, 63].

2 Formulation of the problem

2.1 Variational formulation of the problem

Let S bodies in the system occupy region Q = Q' U...UQ%. Let the boundary 9 be
divided into disjunct parts I',,[';,I'.,I'g, 0Q = T', UL, UT. U L. I'e = Uy, Ffl and I'g
represent unilateral and bilateral contact boundaries, respectively. Let n be outward
normal to 9N* on T'*. We define the sets

V={veH(Q)v=00onT,, v,=0o0nT},

K={veV|vh—vl <0on I}

n —

Let the potential energy functional be of the following form

L(v) = Lo(V) +jo(v) (2.1)

where |
Lo(v) = §A(V,V)—L(V) ) (2.2)
Alu,v) = /Q Cistom s (Wenm (V)dX (2.3)
L(V):/QFividX‘l‘/F Pivids‘|‘/06ijeij(v)®dx 5 (24)
jo(v):/rklgkqvf—vgds . (2.5)

F; represents body loads, P; surface tension, © temperature increment from an un-
deformed state and ¢*' are prescribed friction forces. The coefficients ¢, Bi; can
be expressed by the constants F, o, a, known from the thermoelasticity theory. The
solution of our problem is the minimum of £(v) on the set K.
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2.2 Finite element approximation

The problem defined in previous section cannot be solved exactly in general. Therefore
it is replaced by a sequence of problems for which we can find a solution. We construct
a finite dimensional aproximation of V and K. Let us consider a conform tetrahedral
mesh corresponding to regions 2, 1 < ¢ < S, 7, with nodes a;. Let 2* be polyhedral
and let h be the length of the longest side of tetrahedron in the mesh. It holds T'* =

J J'
U Ff}, and 'y = U T'g;, where Ff]l and Tg; are faces of T'* and of Ty, J = J(k,I),
=1 7=1
M M
respectively. Similarly Ffl = U Ffjn and I'o = U I'g,, where Ffjn and Iy, are the
m=1 m=1

tetrahedral faces after the mesh generation. Let us define on T'* and T for every node
a; € Flzl U FO

N = e DY et (2.6
N, = {jE{l,...,J/HaiEFoj}. (27)

Let nf be the outward normal to QF on Ff]l

Vi = {vn€ [C(Ql)]3 X ... X [C(QS)]3|V|T c [Pl(T)]?’ VT € Ty;
vi(ain; =0, j € Nj, a; € Ty;

vi(a;) =0, a; € I'.}, (2.8)
Ky = {vi € Vil (vf, + vh.)(@) = (v — vi)(a;)nf <0,
jENM a;eTH 1 <k<1<S}. (2.9)

Let us define the approximation of £
Ln(Vi) = Lo(Va) + Jr(Va), (2.10)

where ju(vy) @ Vi — RL is convex, weakly lower semicontinuous functional.
DEFINITION 2.1 A function uy, € K1V}, is the approximate solution of the contact
problem iff

/Jh(uh) < ,Ch(Vh) Vv, € K, . (2.11)
Let
A= {ji e [LAHT™MP] i <1 ae on M}, (2.12)
From the Schwartz’s inequality for the product of vectors ji and ¢*'v;, it follows
sup [ (gt (v = vilds < [ g IvE = villds. (2.13)
jeA Jurk! urgt

As the inverse inequality is obvious, it holds

jolv) =sup [ (gt (vi = vi)lds. (2.14)
geh JUl's
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Let

A= € Al iy, € [T (2.15)
Then the natural approximation of jq is
V)= sup 3 i [ E—VOlds = sup ju(voi). (216)
An€AR 1 m Lém An€An

Moreover,

)= L[ T v = viids. (2.17)

k,l,m cm

Let us define the Lagrangian
H(vi, fin) = Lo(Vi) + Jen(Va, fin), Vi € Ky, fin € Ap. (2.18)

The problem (2.11) can now be formulated as the saddle point one.
Find (up, A\n) € K x Ay such that

H(wy, fin) < Hlup, M) < H(vi A V(v fin) € Ky x Ay . (2.19)

3 Assembling of the system

3.1 The input/output data structure

The data is stored in two global arrays, one integer and one real. Various data types
which correspond to one of these arrays are distinguished by different addresses to their
first element.

Geometrical model properties are stored especially in integer arrays ITNODE, I-
BNDRY, OLDNODE, OLDBLST, ICCB, ICP and in real arrays VX, VY, VZ,
TR, CPX, CPY,CPZ.

In the ITNODE(J,I) array, | <1 < NT, where NT is the number of elements in
the mesh, the global nodal indices, 1 < J < 4, of the tetrahedron [ are stored. The
material index is stored for J = 5. Similarly, in IBNDRY (J, 1), 1 < I < NB, where
N B is the number of boundary faces, the global nodal indices, 1 < .J < 3, of the face 1
are stored, for J = 4 the boundary type is stored (I',, Lo, I'., I'; with P # 0, I'; with
P =0), and for J = 5 the number of original boundary face on which the face I after
the triangulation lies, is stored. The information about these original model faces, not
necessarily triangular, is stored in the two arrays OLDNODFE and OLDBLST. In the
ICCB(J,I),1 <1< NCB, where NCB is the number of pairs of contact faces after
the triangulation, the indices (to the IBNDRY array) of the faces for each pair I are
stored for 1 < .J < 2. In the ICP(J,I),1 <1 < NCP, where NCP is the number of
pairs of contact nodes after the triangulation, the global indicies of nodes which form
the contact pair I are stored for 1 < J < 2.

In the arrays VX, VY, VZ the nodal coordinates of NV mesh nodes and in TR
the temperature values in these nodes are stored. In the CPX(I), CPY (1), CPZ(I),
1 < I < NCP, the coordinates of normals for the contact pair I are stored, where
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the normal is taken as the outward one with respect to the region containing the node
ICP(1,1).

The boundary conditions are characterized by the two real arrays
HI(J, D), H2(J,K), 1 <J <3, 1 < I < NVR, NVR is the number of model vertices
before the triangulation, 1 < K < NMP, NMP is the number of nodes on I', N T,.
The body forces vector and elastic constants are store in the similar manner.

As the variable number of degrees of freedom can occur in each node, ranging
from 0 to 3, it is necessary to store this information, together with global indices
of corresponding degrees of freedom. For this purpose, an integer array KOD(.J, 1),
1<J<3,1 <1< NV, is defined. If the degree of freedom J is missing in the node
I,i.e. I belongs to I', U Ty, then KOD(J,I) < 0.

The output parameters, i.e. displacements and stresses in nodes and on elements,
are stored similarly, moreover, their values are written to files for the graphical output.
Due to symmetry, only six components per node or element are stored for the stress
tensor.

3.2 Assembling of local systems

The contributions to the Lagrangian H will be assembled by single elements and bound-
ary faces. Let us consider a tetrahedron T, € 7, with vertices @)1, )2, ()3, Q4 and
linear mapping

pi B2 = R, &= () =x, (3.1)

which maps the reference tetrahedron T),.; with vertices @, = [0,0,0], @, = [1,0,0],
Q5 =10,1,0], Q, = [0,0,1] on T},. Let us denote for brevity

Tim = 21(Qm), 1=1,2,3, m=1,....,4. (3.2)
On T, let us define the functions v} by the formula
vi(§) = vi(e(§)), 1=1,2,3, (3.3)

where v; = v;(x) are linear polynomials on T},. The matrix of partial derivatives of the
mapping ¢ has the form

T12 — X111 X113 — 11 P14 — P11
J () = | T2 — 291 Toz —Tn Tu—Tn | . (3.4)

T3y — X31 X33 — 31 T34 — T31

The matrix of partial derivatives of the inverse mapping ¢!, J,-1 = [J,]7'. The
corresponding inverse can be obtained by Cramer’s rule for the system with right hand

sides (6,1, 0i2, 0i3). Let us define

dv; Ov;  Ov;
R
VIt = [ 500 2 ), 35

Similarly

it = |5 S 2 .

06, 06" 06, (3.6)
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It follows from the chain rule

vi(x) = (V)OI (3.7)
Let us introduce vectors
A = [v (Cz) (%) vi(Q_S)avi(Qi)]T (3.8)
A7 = [01(Q)), v (@), v (@), vi (@] (3.9)
It holds
Ay =AF (3.10)

Therefore, on every tetrahedron we seek the solution in the form of linear polynomial
(3.3). As ¢ is linear, v} is also linear polynomial and therefore

() = (a]) G (¢) = G (§) a7, (3.11)
a; = [(af)", (af)", (a))", (af)"]" (3.12)
G = [1,&4, 6, 6], (3.13)
Analogically to (3.13), let us introduce the vectors of derivatives of monomials
I0G™
(¢ = 3.14
I = GO (310
ie.
(vi)' = (a})"P", (3.15)
where
P* = [p].p3, p3] (3.16)
is the matrix 4 x 3. Furthermore, we introduce the matrix S, 4 x 4,
S = [G*(@l)v G*(@2)7 G*(@S)v G*(@4)]T- (3.17)

Therefore, we can express the coefficients of the sought polynomial a7 in dependance
on nodal parameters A*

af =S'Ar. (3.18)

Finally, let us introduce the vectors

= [V1, Vg, U3]T7 3.19
= r v; v;’:]T7 3.20
= [AT AT AT 3.21

)’ (a3)", ()" )",
v ) ’ ( )Tv (V37)T]T7

D) )

5

A%

<< I “>* > 1< e

[ (3.19)
[ (3.20)
[ (3.21)
[(ADT (A9, (AE)T]T7 (3.22)
[ (3.23)
[ (3.24)
[ (3.25)

(A
(
(
(



and block variants of already defined matrices M = S, G*, P*, [J]!

M = diag(M), ) (3.26)
Therefore,
v(x) = (G)'(HST'A, (3.27)
v(x) = (I,)7(E®)()sT'A (3.28
Let us define
e=¢; = (2 — 52']‘)62']‘ . (329)
Then we can write , ,
Y Ciymeien = Y CijkEiCH - (3.30)
kit i

Moreover, we express the dependence €; = €;(u) in the matrix form. Let T be the
6 X 9 matrix

1000 0O0O0O0OO0
01 01 0O0O0O0OTUO0
001 00O0OT1TTO0OFPO
T_O()OOlOOOO (3.31)
0000O0OT1O0T1TTFPO
L0 0000000 1]
Thus,
e="Tyv (x). (3.32)
The bilinear form (2.3) can on the element T, be therefore written as
1 1
JAvln, = ST ([ D@ @K st 6
Tref
where D* is the matrix 9 x 9
D* = (J,'T'DTI;")|3,]. (3.34)

D, the matrix 6 x 6, represents the coefficients of the Hooke’s law, in which the substi-
tution (3.29) is used, and |J,| is the jacobian of the mapping ¢. If the constant field
of body forces is assumed on every element, F = (Fy, Fy, F3), we obtain for the body
forces in (2.4)

/Tn Fiopdx = ATST (/Tf g*(g)dg) F|J,|. (3.35)

Similarly,

/Tn Bijes;(vi)Opdx = ATS™T (/Tref (R*B*(G*)T)(f)df) A (3.36)



where B* is the 9 x 1 matrix
B = (37T7h)d, | (3.37)

and the vector b, 6 x 1, represents the coefficients of thermal expansion. Furthermore,
the vector V, 4 x 1, represents (known) nodal values of the piecewise linear function of
the temperature. To express the Neumann boundary conditions and the influence of the
frictional forces, i.e. the term (2.16), it is necesarry to parametrize the corresponding
boundary triangular face S,.

x=17t+z, (3.38)
where x = [21, x2, 23], t = [t1, 12],
T12 — X111 13 — X111 11
Z = Tog — L1 23 — T21 5 zZ = 21 . (339)
T3 — X313 X33 — X31 €31

Let the functions P; be linear on 5, let be again determined by the nodal parameters
Vp,, where Vp, is the 3 x 1 vector.

/ Pﬂ)hids = AgﬁaT (/ (gogg)(t)dt) glzPJSn . (340)
Sp. Sres -

At the same time, S,, G, and A, are defined in the same manner as S, G and A in the
case of body forces vector discretization. The dimension differs, as the face is defined
by the three nodes only. Moreover, it is a planar object, i.e. the corresponding approx-
imation polynomial is defined by only two independent variables. Jg, = 2 meas S,
can be computed from the knowledge of zy;, k,[ =1,2,3. S,.s is the reference triangle

with vertices [0,0], [1,0] and [0,1], Vp = [V}, VE,VE]T. The integrand in (2.16)
can be for S, C T'* expressed in the form

£ H (v —v)gy (3.41)
where H; is 3 x 1 vector, 2 = 1,2, 3,
H, = [6i1 — ning, 6z — ning, 83 — ning " (3.42)
and 7 is the 3 x 1 vector. Let us define a 3 x 3 matrix
H=[H, H, Hy]". (3.43)

As the components H; are constant on given face, therefore determined by only one
parameter, we obtain by discretizing of the term (2.16)

/ gc Nh Vht Vht)d = éoTﬁ(;T (/S

For every element T, with possible boundary faces 5, we obtain a local functional in

Gofthte 7 - (Jsgt). ()

ref

the form |

fn(ymﬂn)zﬁyfcnyn yrd, +yl Gl (3.45)



where (), is the 12 x 12 matrix, y,, d, are the 12 x 1 vectors. The dimension p, and

(i, depends on the number S, C T, N flzl, let us denote it as p,. Then pu, is of type
3p, x 1 and G, of type 3p, x 12.

During the assembling of f, it is necessary to implement the block matrix multi-
plication efficiently, including the matrices with integrations, i.e. the terms (3.33) and
(3.36). For instance, in (3.33) the elements of the matrix (P*D*(P*)T), i.e. the sums

Z G (O (&) =112 (3.46)

k=1

are integrated, and then it is suitable to employ the block diagonal structure of P*(¢),
where all three blocks are the same matrices P* (3.16, 3.26). The essential part of
integrations in (3.46) are therefore computations of integrals of monomials

/ (PRr)(©)de, ij=1,....4, ki=123, (3.47)

Tref
which are independent of the element T,. After the assembling of f,, the degrees of
freedom which correspond to the nodes on (I', U o) N T, are eliminated.
The approximation of the set Kj, v (2.9) leads in the case of linear approximation

to the constraints

Aspyep <0, (3.48)

where the vectors A, and y.,, which are of type 1 x6 and 6 x 1, respectively, correspond
to a given contact pair of nodes.

3.3 Assembling of global system

The resulting global matrices have a sparse structure, therefore the matrix format
SPARSE [36], is used, when in general the M x N matrix A is represented by two
integer and one real array. In the array TA([), I = 1,..., M + 1 such indices of the
arrays JA, A are stored, which correspond to the first element of the I-th row (or
I-th column). In the JA(J), J =1,...,LJA, the column (or row) index of the given
element and in A(J) its value is stored. In the case of square, symmetric matrix it is
possible to store only its lower (or upper) triangular part.

During the assembling of the discretized global functional (2.18), the node num-
bering is taken into account, together with the information concerning the number
of degrees of freedom in particular nodes, i.e. with the array KOD(3, NV), defined
above. The block insertion of local element matrices turned out to be efficient. Let
J = j(1) be the permutation of local degrees of freedom x,,; of element T}, such that

i(01) < j(ia) & glin) < g(ia) Y1 <i <12,1=1,2, (3.49)

where ¢(i) is the global index of the i—th local degree of freedom. With this definition,
we first assemble “subglobal” matrix having the same dimension as the local matrix.
Then the columns of this matrix, from the highest to the lowest, are inserted into the
global matrix. By doing this, the number of shifts in the global matrix is minimized.
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We finally arrive at the discretized version of the problem (2.19):
Find (z,X) € K4 X Lg, such that

H(z,p) < H(z, ) < H(y,A) Yy, p) € Ky x La, (3.50)
where
H(y,p) = 3y " Cy—yTd+y Gy, (3.51)
K;={y € R| Ay <0}, (3.52)
Li={n € B7| i+ pdi +ps <1, i=1,...,P} (3.53)

and the matrices C'; A, G and the vector d are respectively: the positive semidefinite
stiffness matrix of type N x N, the constraint matrix of type M x N expressing the
inpenetration conditions (3.48), the frictional forces matrix of type 3P x N and the
external forces vector of type N x 1. For M and 3P, it holds M < N and 3P < N,
respectively.

3.4 Uzawa’s method

We use the Uzawa’s algorithm for the problem (3.50) ([29, 38]):
ALGORITHM 3.1

A% .. .initial approximation

If \* is known, we solve the minimization problem

H(z, \¥) — min,

obtaining x*.

Then we correct

AL — HLd()‘k + pkaGT)7 p >0,
where II; , is the projection of R3F onto Ly , defined as:

I, (y) = (M, (y)is - - ()] (3.54)
fore=1,..., P
(y3i-2, Y3i—1,ys:) " for [yl: <1,
II ;= 3.95
( Ld(y)) { (ySi—vaSi—lvySi)T/|y|i for |y|2 > 1, ( )

and [y|; = /y2i_5 + v3 1 + v3
REMARK 3.2 In planar case both definition of Ly

Ld:{:uERP| |ﬂ2|§17Z:177P}7 (356)

and definition of II; (y)

)y for yi| <1

are simplified.



REMARK 3.3 The existence of such py, pa, that for p € (p1,p2) the component z*
generated by the Uzawa’s algorithm converges to the first component = of the saddle
point is studied in [22, 29, 36, 38, 53]. During computations, the acceptable value of
p, 1.e. the value, for which the convergence is achieved in real time, has to be chosen
experimentally. The dependance between this value and the magnitude of the elements
of the matrices ' and G can be observed.

The minimization algorithm in the Uzawa’s method is the most expensive step of
the whole algorithm. For the methods for solving this step, we refer e.g. to [35, 36, 38,
40, 45, 62, 63].

4 H-version of the FEM for the contact problem

4.1 Introduction

The adaptive mesh refinement has proved to be an efficient tool for the numerical
solution of partial differential equations. The reduction of the discretization error is
accomplished by as few additional degrees of freedom as possible. The mesh refinement
represents the h-version of the finite element method, whereas in the p-version the order
of the approximation space is increased. The refinement is made only in those parts
of the region where the estimated error is great. In structural mechanics this should
contain the parts near clamping, in contact regions or near nonconvex boundaries.
The adaptive local mesh refinement has the following general structure:

(1) Construction of the initial coarse grid To; k=0
(2) Solution of the problem on T

(3) The A-posteriori error estimate calculation for all elementsin T} and construction
of Sy C Ty, where Si are the elements with great error estimate

(4) If Sy # {0}, then
division of the elements in Si;
construction of the next “conform” mesh Ty1q; k=k+1
return to (2)
else

finish

The steps (2)-(4) for fixed k will be called the refinement iteration. The iteration in
(4) for the conform mesh construction will be called the conformity iteration. For the
steps (3) and (4) it is necessary to choose such data structures and algorithms which
can be relatively simply inserted to existing programs for solving the steps (1) and
especially (2). The space and time requirements as well as the robustness have to be
taken into account.

The next part of the step (3) determines the elements with great error estimate.
There exist two main strategies. In the first strategy we require that the total error, i.e.
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the sum of errors n7 on particular elements, is smaller than some prescribed tolerance
¢. The sufficient condition for the acceptance of the mesh with N elements reads

&
<_
=N

The division is performed for the elements with

VT € 1T. (4.1)

&
> —.
"IN

However, this strategy is implicit if (4.1) is not fulfilled as N depends on the mesh
refinement result. From numerical point of view the choice of £ can also be doubtful.
In the second strategy (fixed fraction) the elements are ordered with respect to their
error magnitudes and the division is performed for certain part of the elements with
greatest error value, i.e.

(4.2)

nr > - %rllgé N, 0<y <l (4.3)

This strategy equilibriates the error between the elements and it is used in our calcu-
lations.

Similarly to two dimensions case, the tetrahedron can be divided either by octa-
section or by the bisection. We concentrate on the bisection in what follows. The first
algorithm of this type was published in [65] and it is essentially equivalent to that of
[1]. The algorithm implemented in our work proceeds from [1] and contains necessary
modifications for the conformity preserving on contact boundaries. The numerical per-
formance of both the error estimators and the local refinement algorithm are published

in [43, 44, 45, 46].

4.2 Error estimate calculation

We proceed from linear problems for all estimators. The influence of the contact
boundary is naturally included for the second and third estimators.
The first estimator was published in [75]. Let

€ =T —Th, (4.4)

where 7 is the exact value of the stress tensor and 7, is its computed aprroximation.
The error e, is measured in the L, norm, i.e.

lle-|[* = >_ [lelI7 (4.5)

TeTh
where

lelly = [ (e (er)ix. (16)

However, the value 7 is not known and therefore it is necessary to replace it by some
approximation 7%, “better” than 7,. We assume, that the stresses are approximated
by the polynomials of the same order as the displacements, i.e. by linear polynomials
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where N are the basis (shape) functions, cf. (3.27), and 7}; are the nodal values of
the stress components. The parameters 7° can be obtained by suitable projection
P = diag (P);; with the requirement

/QE(T* —7)dx = 0. (4.8)

The form P = N7 can be chosen, but the simple averaging P = &, where k are the
mesh nodes and 65 Dirac’s function, gives acceptable results [45]. Let us denote the
suggested estimator as nq, i.e.

nra = || — |z (4.9)

In the second estimator [67] we assume that we have computed uy, the approxima-
tion of the displacement field and also corresponding strain and stress tensors, £(uy)
and 7, = Ae(uy), respectively. Similarly as in the first estimator we introduce the
smoothened stress tensor 7, = A7y, where 7, has square summable divergence. Let
the terms g(e(uy)) and ¢*(7;,) denote primal and dual potential energy functionals, re-
spectively [67]. The estimator will consist of local error indicators for the constitutive
relations nr 4, for the equilibrium equations n7 r and for the boundary conditions 5z p:

72 =nra + COnrr +nr.p), (4.10)
where
oA = /T [g(=(un)) + " (F4) — Fne(up)]dx + /T e(up) — AR 2dx , (4.11)
- :/ \divF, + F|%dx (4.12)
T
- :/ 7n — PPdx | (4.13)
Tl

and the constant C' is sufficiently large. The n is the outer normal to TN T, and F
represent external body forces density. From the numerical point of view, the choice
of C is not critical since the terms n7 r and 57 p strongly predominate the term 97 A
and since the fixed fraction strategy is used.

The third estimator proceeds from [7]. The elasticity problem can be written as
the variational equation

A(U,V):/Fﬂ)idx—l-/ Pﬂ)ids, (414)
Q r;

where u € V is the exact solution, v € V arbitrary and the non-emptyness of I', is
assumed. Let uj, € V), be the approximate solution of (4.14). Putting

e=u-—u, (4.15)
and integrating by parts over all elements, we get the residual equation

A(e,v) = /QFZdeX—I_/F [Pi—rij(uh)nj]vids

+ > /SHTij(uh)nijidS YWwev, (4.16)

SCF]
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where 'y = U TN T, Tk, T, k < m, are the mesh tetrahedrons, n = (n;);=1,2,3 is
k<m
the outward normal with respect to Ty and [[r]] = 7| — 7| . Define local projections

of input data

Fd
II7F = I Fx where meas T is the tetrahedron volume, (4.17)
meas T
[s Pds _
[MgP = 22— where meas S is the area of the face on I';. (4.18)
meas S
Let
[[7ij (up)n;]]s Scly
JS = 2{H5P — (Tij(uh)nj)|5} S C Fq— (419)
0 S cr,

The estimator is suggested in the following form

1 2
nrs = [(meas TYF|* + 5 Z (meas S)*|Is|?| (4.20)

SEET

where Ep =T N (I, ul', UTy).

The fourth estimator is based on solutions of local problems. and it was analyzed
for the Helmholtz’s equation in the plane [8]. Thus

l(u)=—-VaVu+bu = fonQC R? (4.21)
ou
G5~ = gon of (4.22)

with the assumptions a € C1(2), b € C°(€Q), there exist constants a, @, b, b, such that

(x)

a (4.23)
b(x)

0 < a
0< b (4.24)

IA N
IA A

a
b

Let (-,-), denote a scalar product on w for w C €. Similarly for v C 9Q, let < -,- >,

denote a scalar product on ~.
The variational formulation of (4.21-4.22) is: Find u € H'(Q)

Alu,v) = (f,v)g + < g,v>a0 Yo H(Q), (4.25)
where
Alu,v) = / (aVuVov + buv)dx . (4.26)
Q
Denote
[ull]* = Au,u). (4.27)

DEFINITION 4.1 Let us consider a tetrahedral mesh on ). Let H be the space of
piecewise linear polynomials, in which we find the solution u, and H be the space of
piecewise quadratic polynomials, where the approximation of the error is sought. Let
Hyp and Hy be the restrictions of H and H onto the elements of the mesh 7.
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DEFINITION 4.2 Hy = {v € Hy, Iv =0 }, where I is the Lagrange’s interpolation

operator. Hy is the “bubble functions” space.

The estimator is defined as the solution of the following residual equation

A(é,v)h“ = FT(U) Vv € HT, (428)
where
8uh
Fr(v) = (f = lun),v)r + <g— “a—n’” > EpnagQ
1 0
+= < [[a=2]],v >mpar, - (4.29)
2 on

In our case, the bilinear form corresponding to elasticity problem is assumed in
(4.28), and instead of the scalar function wuj;, we seek the vector function u,. The
operator [(up)|r = 0, as the elasticity problem is described by the Lame’s equations
[53], where only second derivatives of the solution appear and uy is piecewise linear.
The substitution of remaining terms of (4.29) by terms from (4.16) is obvious. Thus

nr4a = e. (430)

4.3 Implementation of estimators for contact problems

The approximation of the error is based on the knowledge of element values of stresses
(the vector A of type 6 x 1) and nodal values of stresses (the vector A of type 24 x 1).
Here, we assume the relation

= (@)'sTA, (1.31)

cf. (4.7), where G™ is the block diagonal matrix, consisting of 6 blocks, each block is
the matrix of monomials G* of type 4 x 1. The similar block structure has also S, the
blocks of which are 4 x 4 matrices. In the case of n; estimator, the value ||e,||3 with
T &~ 7%, has to be computed.

Similarly to the section 3.2 we obtain the dependence of this value on the nodal
and element parameters

([ i) - 2arsT (] @) a

+(A)Ts ™ ( / g G (GM)"|3,] dx) ST'A, (4.32)

where the notation of section 3.2 is used.

In the estimator (4.20), we concentrate on the computation of Js (4.19). We as-
sume constant values of stresses on all the faces. It is not necessary to search all the
neighbours for a given element, as the nodal values are known, together with the values
on the whole element. Let us introduce the average value of the stress tensor on each
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face 7 by averaging the values in all nodes of the given face. Now, the stress jump can
be replaced in the natural way by

1 5
5[[7217(%)”]‘]] R Ty — Tl (4.33)

where T}, is the tetrahedron, on which we compute the error.

During the insertion of conditions on contact part of the boundary, we will try to
transform the problem to the certain linear elasticity problem. It can be seen that
nrs explicitly depends on the boundary conditions with dual quantities (stresses).
The residual between the computed and prescribed stress is measured. Therefore, we
consider those conditions on contact boundary which contain only stresses [43, 45].
We measure the values a = [7,]T and 3 = [|7| — ¢.]7. Let us introduce the vector
an+ 67 in (4.19) for I'., where 6 = %, v = max(|7¢],er) and ep > 0. Furthermore, the
conditions of action and reaction on the contact are transformed to the stress jump
measurement as for the faces on 1';.

In the last estimator, the piecewise quadratic functions with zeros in the element
vertices in 3D are chosen as bubble functions space. The right hand side is similar to
that of the quantity Js appearing in the second estimator. The quadratic polynomials
are determined by the nodal values and the values in the midpoints of all tetrahedron
edges. After the local assmbling, it is necessary to eliminate the degrees of freedom
which correspond to the vertices of the tetrahedron. Thus, for every element it is
necessary to assemble and solve systems with up to 18 unknowns.

4.4 Local refinement algorithm

Let us return to the step (4) of the overall adaptive mesh refinement algorithm. The
bisection algorithm accomplishes the mesh conformity by the iterative bisection of
those tetrahedra which do not meet the conformity condition. During the bisection,
a certain edge, called the refinement edge, is chosen and the new vertex is placed to
its centre. With this new vertex, two new tetrahedrons are created (Fig. 4.1). The
selection of the refinement edge is therefore a key aspect of the algorithm. In addition
to the algorithm itself, we introduce a new data structure called “marked tetrahdron”.
It will be used for the geometrical data of the tetrahedron together with a small amount
of informations which are needed for the bisection.

DEFINITION 4.3 For tetrahedron T, let V/(T'),E(T) and S(T') denote the set of its
vertices, edges and faces, respectively. Let E(p) denote the set of edges of the face
@ € S(T), let rr be the refinement edge. Furthermore, let m, € E(T') be the marked
edge of the face ¢. Finally, let fr € {0,1} be a boolean flag. Then a marked tetrahedron
is a 4-tuple (V(1'),rr, (my)ees(r), fr). For the refinement faces, i.e. for the two faces
that intersect at the refinement edge, the marked edge coincides with the refinement
edge.

Marked tetrahedrons will be divided into four classes by a mutual position of their

marked edges (Fig. 4.2).
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P - marked edges are coplanar. A type P is further classified as type P, or Py,
according to whether its flag is set or not.

A - the marked edges intersect the refinement edge, but are not coplanar,

O - the marked edges of the non-refinement faces do not intersect the refinement
edge. In this case, a pair of opposite edges are marked in the tetrahedron,

M - the marked edge of just one of the non-refinement faces intersects the refinement
edge.

DEFINITION 4.4 Let T} and T3 be the child tetrahedra created by the bisection of
the T'. A face ¢ € S(1}) is inherited (i), if ¢ € S(T). The faces ¢ € S(T;), for which
dp' € S(T), ¢ C ¢, are cut faces (c). A face, which is neither inherited nor cut is
called a new face (n). Cf. Fig. 4.3.

ALGORITHM 4.5

{T1, To} = BisectTet(T)

Input: A marked tetrahedron T'
Vystup: Marked tetrahedra T4, T,
Cf. Fig. 4.4

1. Bisect T' by joining the midpoint of its refinement edge to each of the two vertices
not lying on the refinement edge. This defines new sets V(7) and V(T3).

2. Mark the faces of the children as follows:
a) The inherited face inherits its marked edge from the parent, and this marked
edge is the refinement edge of the child.

b) On the cut faces of the children mark the edge opposite the new vertex with
respect to this face.

¢) The new face is marked the same way for both children. If the parent is
type Py, the marked edge is the edge connecting the new vertex to the new
refinement edge. Otherwise it is the edge opposite the new vertex.

3. The flag is set in the children if and only if the parent is type P,.

[t is proved in [1], that the repeated application of the Algorithm 4.5 on an arbitrary
initial tetrahedron cannot create degenerate tetrahedra for any of its succesors.

DEFINITION 4.6 Let V(7) be a set of mesh nodes which belong to the region Q C R”.
The node v € V(7)) is a hanging node of T, if v € T — V(T').

DEFINITION 4.7 A mesh is marked if each tetrahedron in it is marked. A marked

conforming mesh is conformingly marked if each face has a unique marked edge.
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In a marked conforming mesh the face shared by two tetrahedra defines for both
of them the same marked edge. Let a conforming mesh be given. Let the edges be
ordered in certain manner. Let us choose as the refinement edge of the tetrahedron
its longest edge and as the marked edge (of its two remaining faces) the longest edge
of this face. Assume that fr = 0 holds for all tetrahedra in the initial mesh. The
following algorithm represents the process of local adaptive mesh refinement.

ALGORITHM 4.8

7' = LocalRe fine(T,S)

Input: Conformingly marked mesh 7, S C 7 and fr =0VI' €T
Output: Conformingly marked mesh 7'

1. T = BisectTets(T,S)
2. T' = RefineToCon formity(T)

At the same time BisectTets(7,8) = (T —S)U U BisectTet(T) and
TeS
Re fineT'oCon formaty is described in the following algorithm.

ALGORITHM 4.9

7' = RefineToCon formity(T)

Input: Marked mesh 7

Output: Marked mesh 7’ without hanging nodes

1. § ={T € 7| T has a hanging node }
2. if § # 0 then

T = BisectTets(T,S)
T' = RefineToCon formity(T)

else
T' =T

This recursive algorithm can be easily transformed to the non-recursive one. There-
fore, every recursive call of RefineT oCon formaity represents one iteration of confor-
mity.
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4.5 Implementation of the local refinement algorithm

For the adaptive mesh refinement, it is convenient to define an array of edges [ ED-
GE(J,I),1 < I < NED,1 < J < 3, where NED is the number of edges in the
mesh. Additionally to the endpoints’ indices, the information about the child edge,
TE3 =1EDGE(3,1), will be stored. If I E3 = 0 then the edge I has not a descendant.
It TE3 < 0 then a descendant was already created in the current conformity iteration
and the value —IFE3 is the pointer to the heap array, where the first child edge is
temporarily stored. If TE3 > 0 then [E3 is the pointer to the I EFDGFE array, where
the first child edge is stored. The [ EDGE array is sorted in the lexicographical order.

DEFINITION 4.10 The edge ¢; is greater then e;, if
TEDGE(2,¢;) > [EDGE(2,¢;) or
TEDGE(2,¢e;) = [EDGE(2,¢;) and IEDGE(1,¢e;) > IEDGE(1,¢€;).

This ordering is defined uniquely. The edge search in the IEDGE array can be
performed by the bisection method. The subroutine FINDEDGE finds for a pair of
endpoints I, J a corresponding edge L in the I FDGE array. If L < 0, then the edge is
greater than the edge — L, smaller than the edge —L + 1 and is not yet inserted. The
cases . =0 and L = NED are also taken into account.

The edges of the tetrahedron are characterized by a local vertex (node) numbering
(LOCEDGE(2,6)). Furthermore, we consider a list of vertices and edges with respect
to particular faces of the tetrahedron (LOCFACN(3,4) and LOCFACE(3,4)). In
Fig. 4.5 the local vertex indices, the local edge indices (underlined) and the local face
indices (italics) are depicted. This is the case when the refinement edge connects the
vertices 2 and 3. The tetrahedron type can then be written as a four digit number
which express the relation face - its marked edge. The particular digits represent local
edge indices, being therefore between 1 and 6. If the tetrahedron is not of type O, the
index of the refinement edge is determined uniquely. If it is of type O and the local edge
index of the edge opposite the refinement edge is lower then the one of refinement edge
itself, then the uniquenes is achieved by the change of sign of the four digit number.
The cases P, and P; are distinguished in the same manner. As it follows from the
Algorithm 4.5 and Algorithm 4.9, that the types Py and O cannot occur in the mesh
simultaneously, the information concerning the tetrahedron type can be represented
by an integer variable [ETY PE. We add the sixth component to the ITNODE, i.e.
ITNODE(6,1)=IETYPE. It holds for each tetrahedron

1122 < |[IETY PE| < 6655. (4.34)

When generating the initial conform mesh, we have to decide which edge will be
the marked one. The requirement is that the tetrahedrons sharing this face have
the same marked edge for this face. In the case of a pair of faces which form the
contact, we extend this requirement by the condition that the marked edges have to
be geometrically equivalent. The endpoints of these edges have different global nodal
indices but the same coordinates. By doing this, the problem is transformed to the
above case, together with various subroutines which “balance” possible incompleteness
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of newly defined pairs of contact nodes. It is necessary to choose such ordering which
fulfils these requirements. At the same time we cannot assume anything about the
node numbering on contact faces and edges.

DEFINITION 4.11 Consider the edges e; and e; with lengths d; and d; and with
midpoint coordinates ¢; = [@;,y;, 2] and ¢; = [2},y;,2;]. The edge ¢; is geometrically
greater than e; it d; > d; or d; = d; and x; > x; or d; = d;, x; = x; and y; > y; or
d]‘ = di, Ty =T Y5 =Yy and Z; > Z;.

The marked edge of the face in the initial mesh is the edge geometrically greater
than all other edges of this face and therefore is determined uniquely. The refinement
edge of the tetrahedron is defined in the same manner.

The implementation of LocalRefine is realized by the subroutine BISTETS,
where the conformity iterations are performed. In the initial conformity iteration the
bisection of the element is based on the value resulting from an error estimator. In the
next iterations, the element is bisected if there exists an edge of this element for which

IEDGE(3,L;)>0,i=1,....6,1< L; < NED. (4.35)

The bisections of particular elements are performed by the subroutine BISECTTET.
From the Algorithmu 4.3 it follows that for bisection the explicit determination of the
tetrahedron type (P,, Ps, A, O, M) is not necessary. It is only necessary to distinguish
coplanar cases (P,, Ps) and other cases, where the particular types A, O and M need
not be distinguished. Fach child of the parent tetrahedron inherits one vertex of the
refinement edge. The second vertex is replaced by a new one. In Fig. 4.5 the refinement
edge is the edge connecting vertices 2 and 3. The local index of the missing vertex of
the refinement edge is assigned to the local index of a new vertex. The type of face
of the child tetrahedron and then also the choice of the marked edge is determined by
the mutual position of the face, nodes of the refinement edge and the new node. In the
case of Fig. 4.5 the face 2 is inherited, the faces 1 and 4 are cut faces and the face
3 is new for the left child. For the right child, the face 3is inherited, the faces 1 and
4 are cut faces and the face 2is new.

As the data structures of the original program were stored in two global arrays,
it is convenient in every conformity iteration to store newly defined entities first on
the heap. The heap is represented by those parts of global arrays which were not yet
allocated. After the bisection of a given entity is done, the number of newly defined
entities is known and their insertion to the corresponding entity, i.e. to a certain place
in the global array can be performed at one time.

The first entity for which new elements are created are simultaneously tetrahedrons
(ITNODE(6,%)) and edges (I EDGE(3,%)). The index of a new node is represented
by a negative whole number /G in ITNODE and IEDGE. One successor of the
tetrahedron [ is stored in the place of original tetrahedron, i.e. in ITNODE(J,I),
J=1,...,6. At the same time, in the material entry, i.e. in the ITNODEF(5, I) resides
the negative value of the heap index N H P, where the information about the second
successor and a possible information about new edges created from the refinement one
is stored. With these edges, a list of newly created nodes is uniquely defined. The
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other pair of edges can be created during the bisection, however, their vertices are not
stored as they can be obtained from both new tetrahedrons. Thus on the heap the new
entity occupies at least six items: the vertices of a new tetrahedron, material type of a
new tetrahedron and IETY PE, the type of a new tetrahedron.

However, the case when a new node and a pair of child edges of the refinement
edge are created, has to be distinguished. This can be achieved by substituting of
TETYPE by 10« I ETY PE. The original information in I ETY PFE remain unchanged
and regarding to (4.34) it holds for an arbitrary tetrahedron

110« IETY PE| > 11220 > 6655 > [[ETY PE|. (4.36)

Let now the refinement edge have an index L. Then IEDGE(3,L) = —(NHP + 6)
and therefore the list of newly defined nodes is indeed easily accessible through the
array [ FDGE. In the case of newly defined node it is also desirable to define a pointer
NRHP to the real heap, where its coordinates and the interpolation of temperature
values to this node are stored. In Fig. 4.6 we assume that the refinement edge is 12— 13
and that a node I is created.

We require on the index I

1G> |IEi|,i=1,2 and |[G| > |Gy, (4.37)

where [ F; are the vertex indices of the refinement edge and [y are the indices already
created nodes in the current conformity iteration. On the other hand, we naturally
minimize max (G| = IE;).

After one conformity iteration we get NTHEAP new tetrahedrons, NEHFEAP
new edges and NVHFEAP new nodes on the heap. During the insertion of nodes, it
is necessary to change the entries of all the arrays which point to the nodes, i.e. the
array of tetrahedrons I'TNODE, the array of boundary elements I BN DRY , the array
of edges IFDGFE and also the array of pairs of contact nodes IC'P and the array of
bilateral contact nodes. The corresponding entries have to be changed also on the heap
itself. Then new tetrahedrons and edges are inserted into the arrays ITNODF and
IEDGE.

Let us suppose that the bisection process influences given pair of contact nodes.
Then the algorithm generates one of the cases a) - €) in the Fig. 4.7. The balancing
subroutines transform the cases b) and ¢) to the case a) and the case e) to the case d).
All three edges of the faces are checked. At this time, also new pairs of contact nodes
can be inserted into the array ICP.

The next entity for which new elements are created due to the bisection are the
boundary faces, i.e. the array IBNDRY. We proceed in the similar manner as in
the case of tetrahedrons. Both child faces have the same orientation as the parent
face. A pair of newly created faces has to be distinguished from the old ones, due to
the necessary modification of the array of pairs of contact faces ICC'B. This can be
achieved e.g. by setting the entry I BN DRY (5, ) negative, where [ is the first of the
newly created faces.
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5 Instructions for users of FEC

5.1 Compiling and linking of the FEC

We use the environment of the Digital Visual Fortran 5.0 compiler under Win98/NT
(Microsoft Developer Studio - MSDEV). Let the directory where the current version
(6.0) of the three-dimensional FEC resides be called Fec3dv06.

To create a corresponding project, run MSDEV and click New, then select Projects
tab. Here choose Win32 Console Application and as the Project name choose Fec3dv06.
After that, select project options by clicking on the Project Menu and Project Settings.
Various settings are predefined for the tabs General, Debug, Fortran, Link, etc. For the
debugging phase, we recommend to leave current settings. For the release phase, the
following can be e.g. changed. On the Fortran tab, change for the General Category the
Debugging Level from Full to None and the Optimization level from None to Optimize
for Speed. On the Link tab, change the Output file name from Debug/Fec3dv06.exe
to Fec3dv06.exe and uncheck the box Generate debug info. Then we have to add
the files into the project by clicking on Project and Add to Project menus. The
following Fortran source files have to be included into the project: fec06.f, utils3.f,
cgl0.f, proj0.f and adapt.f. After inserting them, save the workspace by clicking File
and Save Workspace.

The compilation and linkage can be performed at one step by clicking Build Fec3d-
v06.exe. When correcting a particular source file, the compilation of this file can be
invoked by opening (or activating if already opened) the corresponding window and
clicking Compile. The link can then be performed again by clicking on Build or if we
wish to be sure that all updated files are really compiled by clicking Rebuild All. The
program can be run in the Debugging mode by clicking Build, Start Debug and e.g.
Run to Cursor, where the cursor is placed on the line of the source code which we wish
first to analyze. Normal run can be invoked by clicking Build and Execute Fec3dv06.exe

or directly outside the MSDEV studio by clicking on the file Fec3dv06.exe.

5.2 The input/output files

The input file has the name usrot.dat. It is a binary file, which can be obtained from
its text form, usrot.txt, by running the utility a2b.exe (ascii to binary). However, for
some concrete models we may use transformation programs that create directly a binary
version. To understand the format of input file, it is advisable to read section 3.1 of
this report and the comments in the INDATA subroutine (a2b.for) or in the INDATA,
INDATAZ2 subroutines (fec06.f). Generally speaking, the input values consist of integer
and real arrays and their dimensions. In integer arrays, pointers to real or other integer
ones are stored. In real arrays, the nodal coordinates, the normal coordinates, material
parameters and the values of external forces and of boundary conditions are stored.
The program creates 5 binary output files for further graphical post-processing. These
files are

valuesl.dat - values of displacements on every element. The order of components is
U1, ug, us (obtained by the averaging of nodal values for each element). This file
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is created in the subroutine TRANSF1.

values2.dat - values of displacements in every node. The order of components is

Uy, Uz, uz. This file is created in the subroutine TRANSF1.

values3.dat - values of the stress tensor on every element. The order of components is
Ti1, T22, T3, Ti2, T23, T13, T, Where

T = \/T121 + 73 4 T — Ti1Te2 — T11Ts3 — To2Tas + 3(7Hh + i + 7).
This file is created in the subroutine ELSTRESS.

values4.dat - values of the stress tensor in every node. The order of components is
Ti1, Ta2, T33, T12, T23, T13, 7 (Obtained by the averaging of element values in each

node). This file is created in the subroutine TRANSF2.

valpst.dat - scalar values of principal stresses (first 3 items) and the coordinates of two

principal vectors (last 6 items) on every element. The third principal vector can
then be already computed. This file is created in the subroutine TRANSF2.

When the adaptation process is switched on (IADAPT=1/2), the additional file
usrota.dat is created. The format of this file is the same as of the usrot.dat. It contains
the model geometry after performing one refinement iteration. In this version of the
program, this file has to be copied to the usrot.dat and the program has to be run
again, if we wish to continue with the adaptation process.

5.3 Running the FEC

When running, the program interactively asks only for a few data. ITADAPT=0/1/2.
0 - no adaptive refinement is performed, 1 - adaptive refinement is performed, 2 - same
as 1, but the value maxqer, s is substituted by maxyier, 97/, see section 4.1. By
doing this, the number of bisected elements decreases when increasing the number of
refinement iteration (relative comparison to the error on coarser grid, which is expected
to be greater).

The program writes on the output the numbers maxw, maxiw that express how
many entries of global arrays are used. The next query of the program is SOLV-RO=7,
for the parameter p of the Uzawa algorithm, see section 3.4. If RO=0, no friction is
assumed. INPUT MODE 1/2 - select the number of removed multipliers in the active
set method [36, 38, 62, 63], 1 - one, with the greatest negative value, 2 - all with negative
values. INPUT IDIAG=0/1 - select the method for the computation of the projected
gradient, 1 - assumes diagonal form of the constraint matrix product [36, 62, 66], 0 -
general case. LOWER/HIGHER TOLERANCE L=1/H=-1, this is controlled by the
EPS2 in CG1 and CG2 subroutines. “nextit 0/!0” - input zero, if the user wishes the
Uzawa iterations run automatically, nonzero number, if he or she wishes to pause after
next Uzawa’s iteration.
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5.4 Graphical postprocessing of the results

The data in the files usrot.dat, values?.dat and valpst.dat can be visualized by a simple
graphical tool scenel.exe. Due to the permanent development of FEC, it is assumed
for clarity that the graphics which include the executable scenel.exe and the files for a
possible rebuild of the project (i.e. the files *.cpp, *.c, *.h, *.dfm and scenel.mak) reside
in the directory fecgdb. When making possible changes in the source files, the project
has to be rebuilt using the Borland C++ Builder compiler (BCB) under Win98/NT.
The execution itself, outside the BCB, naturally requires the same operating systems.
Moreover, the palette files, palets.txt, paletp.txt and paletp2.txt, are required for the
execution.

After starting the scenel.exe, the first query concerns the type of output device on
which the data is to be displayed. The option 0 (scr) means the output only on the
screen, when the black background is set. The option 1 (prtscr) corresponds to printing
the exported picture (see below) on the printer, therefore with white background. This
option, however, displays lower number of contour levels and therefore the option 2
(prtscrall) should be preferred. This option is especially convenient when publishing
figures in papers and reports. Each picture displayed in the scenel is saved in the file
timage.bmp until a next picture is displayed. Timage.bmp can be processed e.g. by
the Windows utility Paintbrush. After accepting a value, the user then selects by the
Tab key the EnterButton and presses it.

The second query (auto=1/man=0) concerns the issue whether the user lets the
program plot the whole model automatically (auto=1, suitable at the beginning of the
analysis) or whether he or she determines the position of the observer and the direction
of the view manually (man=0).

The third query controls the zooming of the view. If the option 1 was selected
in the previous (i.e. second) query, one may use the value 0, which means automatic
zoom with fitting the model on the whole screen. Otherwise, the user enters a floating
point number corresponding to required magnification.

The 4-th query is conditional, it appears only if zooming>0. It concerns shifts of
the screen in horizontal and vertical directions. The standard values are dx=dy=0.

In the 5-th query, “barveni 1-coarse 2-smooth”, the smooth (2) is highly recom-
mended, whereas (1) corresponds to the constant values on elements.

The 6-th query “Select region/0”. If the user wishes to plot only one selected region
of the model, then he or she enters its corresponding number, 0 otherwise.

The 7-th query “Type in eye position” is conditional, it appears only if the second
query is man=0. The same holds for the 8-th query, “And direction and angle of view”.
The standard value of angle is 0.67 (fraction of the right angle).

Entering an integer i in the 9-th query will ensure that only nodes (and correspond-
ing elements) that are farther from the observer than i-th node, the so-called cutpoint,
will be plotted. The zero value plots all the nodes.

The 10-th query offers the option of filtering. It filters out the faces fully inside the
model, thus accelerating the plotting algorithms.

Finally, remaining queries concern the plot itself. The 11-th one offers options
whether to plot all node numbers (1), to plot only the numbers of keypoints (i.e. the
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nodes which correspond to some model vertex before the triangulation), to plot only
the selected points (3 - the indices and offsets are then entered), to finish and proceed
to the results view (0) or to exit the program (-1).

The 12-th query offers options concerning type of contours (surface=1, isolines=0).
For the 3D model, the “surface=1" option is highly recommended.

In the 13-th query, the user can choose between two plotting algorithms - the option
“view=0" is much faster, however, “final=1" can produce nicer pictures.

The 14-th query selects which quantity will be displayed. If the user wishes to
proceed to the next step, enters 0.

The 15-th query concerns principal stresses. If the user enters 0.0 for the scale
factor, the program immediately proceeds to the 16-th query.

This final query concerns the deformed shape plot. The coefficient of deflection and
then a type of plot are entered. The option “element=1" is the fastest, but does not use
a hidden line/surface removal. The program will first display the initial configuration
and then after pressing an arbitrary key, e.g. the spacebar, the deformed geometry.
With the next press of the spacebar, the program is finished and the corresponding
window can be closed.
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Figure 4.1:
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Figure 4.3:
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