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� Introduction

We present here a 	nite element program with the working name FEC 
Finite Element
Contact� for solving the contact problem in elasticity� We use the contact problem
formulation based on the Signorini type conditions and on the Coulomb model of
friction� We allow the models with di�erent material properties� however� for each
de	ned subregion they have to be constant� The boundary conditions are assumed to
be linear along each boundary segment� These things� together with the discretized
geometry 
i�e� triangulated region  list of nodes and elements�� are de	ned in the
input 	le for the FEC 
USROT�TXT or binary version USROT�DAT�� In another
	le� TEM�DAT� the values of temperature for each node are de	ned� Both theoretical
background and the actual usage of the program is described in the report� The output
	les VALUESx�DAT� x���� ���� and VALPST�DAT contain the values of displacements�
stresses and principal stresses� For the numerical results� we refer to ���� ��� ��� ���
��� ��� ��� ��� ��� ��� ��� ����

� Formulation of the problem

��� Variational formulation of the problem

Let S bodies in the system occupy region � � �� � � � ���S � Let the boundary �� be
divided into disjunct parts �u��� ��c���� �� � �u � �� � �c � ��� �c �

S
k�l �klc and ��

represent unilateral and bilateral contact boundaries� respectively� Let n be outward
normal to ��k on �klc � We de	ne the sets

V � fv � H�
��jv � � on �u� vn � � on ��g�
K � fv � V j vkn � vln � � on �klc g�

Let the potential energy functional be of the following form

L
v� � L�
v� � j�
v� � 
����

where
L�
v� �

�
�
A
v�v�� L
v� � 
����

A
u�v� �
Z
�
cijkmeij
u�ekm
v�dx � 
����

L
v� �
Z
�
Fividx�

Z
��
Pivids �

Z
�
�ijeij
v��dx � 
����

j�
v� �
Z
�klc

gkljvkt � vltjds � 
����

Fi represents body loads� Pi surface tension� � temperature increment from an un
deformed state and gklc are prescribed friction forces� The coe�cients cijkl� �ij can
be expressed by the constants E� �� �� known from the thermoelasticity theory� The
solution of our problem is the minimum of L
v� on the set K�
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��� Finite element approximation

The problem de	ned in previous section cannot be solved exactly in general� Therefore
it is replaced by a sequence of problems for which we can 	nd a solution� We construct
a 	nite dimensional aproximation of V and K� Let us consider a conform tetrahedral
mesh corresponding to regions ��� � � � � S� Th� with nodes ai� Let �� be polyhedral
and let h be the length of the longest side of tetrahedron in the mesh� It holds �klc �
JS
j��

�klcj � and �� �
J �S
j��

��j � where �klcj and ��j are faces of �klc and of ��� J � J
k� l��

respectively� Similarly �klc �
MS
m��

�klcm and �� �
M �S
m��

��m� where �klcm and ��m are the

tetrahedral faces after the mesh generation� Let us de	ne on �klc and �� for every node
ai � �klc � ��

N kl
i � fj � f�� � � � � Jgj ai � �klcjg� 
����

Ni � fj � f�� � � � � J �gj ai � ��jg� 
����

Let nkj be the outward normal to �k on �klcj �

Vh � fvh � �C
����� � � � �� �C
�S���jvjT � �P�
T ��� �T � Th�
vh
ai�nj � �� j � Ni� ai � ���

vh
ai� � �� ai � �ug� 
����

Kh � fvh � Vhj 
vkhn � vlhn�
ai� � 
vkh � vlh�
ai�n
k
j � ��

j � N kl
i � ai � �klc � � � k 	 l � Sg � 
����

Let us de	ne the approximation of L
Lh
vh� � L�
vh� � jh
vh�� 
�����

where jh
vh� � Vh � R�
� is convex� weakly lower semicontinuous functional�

DEFINITION ��� A function uh � Kh
�Vh is the approximate solution of the contact

problem i�

Lh
uh� � Lh
vh� �vh � Kh � 
�����

Let
� � f
� � �L�
�klc ��

�j j
�j � � a�e� on �klc g � 
�����

From the Schwartz�s inequality for the product of vectors 
� and gklc vt� it follows

sup
���	

Z
��klc

�
�gklc 
v
k
t � vlt��ds �

Z
��klc

�gklc jvkt � vltj�ds � 
�����

As the inverse inequality is obvious� it holds

j�
v� � sup
���	

Z
��klc

�
�gklc 
v
k
t � vlt��ds � 
�����
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Let
�h � f
�h � �j 
�hj�klcm � �P�
�

kl
cm��

�g � 
�����

Then the natural approximation of j� is

jh
v� � sup
��h�	h

X
k�l�m


�hm

Z
�klcm

�gklc 
v
k
t � vlt��ds � sup

��h�	h

jhh
v� 
�h� � 
�����

Moreover�

jh
v� �
X
k�l�m

j
Z
�klcm

�gklc 
v
k
t � vlt��ds j � 
�����

Let us de	ne the Lagrangian

H
vh� 
�h� � L�
vh� � jhh
vh� 
�h�� vh � Kh� 
�h � �h � 
�����

The problem 
����� can now be formulated as the saddle point one�
Find 
uh� 
�h� � Kh � �h such that

H
uh� 
�h� � H
uh� 
�h� � H
vh� 
�h� �
vh� 
�h� � Kh � �h � 
�����

� Assembling of the system

��� The input�output data structure

The data is stored in two global arrays� one integer and one real� Various data types
which correspond to one of these arrays are distinguished by di�erent addresses to their
	rst element�

Geometrical model properties are stored especially in integer arrays ITNODE� I
BNDRY� OLDNODE� OLDBLST� ICCB� ICP and in real arrays V X� V Y� V Z�
TR� CPX� CPY� CPZ�

In the ITNODE
J� I� array� � � I � NT � where NT is the number of elements in
the mesh� the global nodal indices� � � J � �� of the tetrahedron I are stored� The
material index is stored for J � �� Similarly� in IBNDRY 
J� I�� � � I � NB� where
NB is the number of boundary faces� the global nodal indices� � � J � �� of the face I
are stored� for J � � the boundary type is stored 
�u� ��� �c� �� with P 	� �� �� with
P � ��� and for J � � the number of original boundary face on which the face I after
the triangulation lies� is stored� The information about these original model faces� not
necessarily triangular� is stored in the two arrays OLDNODE and OLDBLST � In the
ICCB
J� I�� � � I � NCB� where NCB is the number of pairs of contact faces after
the triangulation� the indices 
to the IBNDRY array� of the faces for each pair I are
stored for � � J � �� In the ICP 
J� I�� � � I � NCP � where NCP is the number of
pairs of contact nodes after the triangulation� the global indicies of nodes which form
the contact pair I are stored for � � J � ��

In the arrays V X� V Y � V Z the nodal coordinates of NV mesh nodes and in TR
the temperature values in these nodes are stored� In the CPX
I�� CPY 
I�� CPZ
I��
� � I � NCP � the coordinates of normals for the contact pair I are stored� where

�



the normal is taken as the outward one with respect to the region containing the node
ICP 
�� I��

The boundary conditions are characterized by the two real arrays
H�
J� I�� H�
J�K�� � � J � �� � � I � NV R� NV R is the number of model vertices
before the triangulation� � � K � NMP � NMP is the number of nodes on �u 
 �� �
The body forces vector and elastic constants are store in the similar manner�

As the variable number of degrees of freedom can occur in each node� ranging
from � to �� it is necessary to store this information� together with global indices
of corresponding degrees of freedom� For this purpose� an integer array KOD
J� I��
� � J � �� � � I � NV � is de	ned� If the degree of freedom J is missing in the node
I� i�e� I belongs to �u � ��� then KOD
J� I� 	 ��

The output parameters� i�e� displacements and stresses in nodes and on elements�
are stored similarly� moreover� their values are written to 	les for the graphical output�
Due to symmetry� only six components per node or element are stored for the stress
tensor�

��� Assembling of local systems

The contributions to the Lagrangian H will be assembled by single elements and bound
ary faces� Let us consider a tetrahedron Tn � Th with vertices Q�� Q�� Q�� Q
 and
linear mapping

 � R� � R�� � � 
�� � x � 
����

which maps the reference tetrahedron Tref with vertices Q� � ��� �� ��� Q� � ��� �� ���
Q� � ��� �� ��� Q
 � ��� �� �� on Tn� Let us denote for brevity

xlm � xl
Qm�� l � �� �� �� m � �� � � � � � � 
����

On Tn let us de	ne the functions v�i by the formula

v�i 
�� � vi

��� � i � �� �� � � 
����

where vi � vi
x� are linear polynomials on Tn� The matrix of partial derivatives of the
mapping  has the form

J�
�� �

�
�� x�� � x�� x�� � x�� x�
 � x��
x�� � x�� x�� � x�� x�
 � x��
x�� � x�� x�� � x�� x�
 � x��

�
�� � 
����

The matrix of partial derivatives of the inverse mapping ��� J��� � �J����� The
corresponding inverse can be obtained by Cramer�s rule for the system with right hand
sides 
 �i�� �i�� �i� �� Let us de	ne

vTi� 
x� �
�
�vi
�x�

�
�vi
�x�

�
�vi
�x�

	

x� � 
����

Similarly


v�i��
T 
�� �

�
�v�i
���

�
�v�i
���

�
�v�i
���

	

�� � 
����

�



It follows from the chain rule

vTi�
x� � 
v�i��
T 
���J���� � 
����

Let us introduce vectors

�i � � vi
Q��� vi
Q��� vi
Q��� vi
Q
� �
T 
����

��
i � � v�i 
Q��� v

�
i 
Q��� v

�
i 
Q��� v

�
i 
Q
� �

T � 
����

It holds
�i � ��

i � 
�����

Therefore� on every tetrahedron we seek the solution in the form of linear polynomial

����� As  is linear� v�i is also linear polynomial and therefore

v�i 
�� � 
a�i �
TG�
�� �G�
��Ta�i � 
�����

a�i � � 
a�i �
�� 
a�i �

�� 
a�i �
�� 
a
i �

� �T 
�����

G�
�� � � �� ��� ��� �� �T � 
�����

Analogically to 
������ let us introduce the vectors of derivatives of monomials

p�i 
�� �
�G�

��i

�� � 
�����

i�e�

v�i��

T � 
a�i �
TP� � 
�����

where
P� � �p���p

�
��p

�
�� 
�����

is the matrix �� �� Furthermore� we introduce the matrix S� �� ��

S � �G�
Q��� G
�
Q��� G

�
Q��� G
�
Q
� �

T � 
�����

Therefore� we can express the coe�cients of the sought polynomial a�i in dependance
on nodal parameters ��

i

a�i � S����
i � 
�����

Finally� let us introduce the vectors

v � � v�� v�� v� �T � 
�����

v� � � v��� v
�
�� v

�
� �

T � 
�����

� � ��T
� � �

T
� � �

T
� �

T � 
�����

�� � � 
��
��
T � 
��

��
T � 
��

��
T �T � 
�����

a� � � 
a���
T � 
a���

T � 
a���
T �T � 
�����

v� � � 
v���T � 
v���T � 
v���T �T � 
�����

v�� � � 
v����
T � 
v����

T � 
v����
T �T 
�����

�



and block variants of already de	ned matricesM � S� G�� P�� �J����

M � diag
M�i � 
�����

Therefore�

v
x� � 
G��T 
��S��� � 
�����

v�
x� � 
J��
�T 
P��T 
��S��� � 
�����

Let us de	ne
e � eij � 
�� �ij�eij � 
�����

Then we can write
�X

i�j�k�l��

cijkleijekl �
�X

i�j�k�l��
i�j� k�l

cijkleijekl � 
�����

Moreover� we express the dependence eij � eij
u� in the matrix form� Let T be the
�� � matrix

T �

�
���������

� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

�
���������
� 
�����

Thus�
e � Tv�
x� � 
�����

The bilinear form 
���� can on the element Tn be therefore written as

�
�
A
vh�vh�jTn �

�
�
�TS�T


Z
Tref


P�D�
P��T �
��d�

�
S��� � 
�����

where D� is the matrix � � �

D� � 
J��� TTDTJ�T� �jJ�j � 
�����

D� the matrix �� �� represents the coe�cients of the Hooke�s law� in which the substi
tution 
����� is used� and jJ�j is the jacobian of the mapping � If the constant 	eld
of body forces is assumed on every element� F � 
F�� F�� F��� we obtain for the body
forces in 
���� Z

Tn

Fivhidx � �TS�T

Z

Tref

G�
��d�

�
FjJ�j � 
�����

Similarly�

Z
Tn

�ijeij
vh��hdx � �TS�T

Z

Tref


P�B�
G��T �
��d�

�
S��r � 
�����

�



where B� is the �� � matrix

B� � 
J�T� TTb�jJ�j 
�����

and the vector b� �� �� represents the coe�cients of thermal expansion� Furthermore�
the vector r� ���� represents 
known� nodal values of the piecewise linear function of
the temperature� To express the Neumann boundary conditions and the in uence of the
frictional forces� i�e� the term 
������ it is necesarry to parametrize the corresponding
boundary triangular face Sn�

x � Zt� z � 
�����

where x � �x�� x�� x��� t � �t�� t���

Z �

�
��
x�� � x�� x�� � x��
x�� � x�� x�� � x��
x�� � x�� x�� � x��

�
�� � z �

�
��
x��
x��
x��

�
�� � 
�����

Let the functions Pi be linear on Sn� let be again determined by the nodal parameters
rPi� where rPi is the � � � vector�

Z
Sn

Pivhids � �T
� S

�T
�


Z
Sref


G�G
T
� �
t�dt

�
S��� rPJSn � 
�����

At the same time� S��G� and �� are de	ned in the same manner as S� G and � in the
case of body forces vector discretization� The dimension di�ers� as the face is de	ned
by the three nodes only� Moreover� it is a planar object� i�e� the corresponding approx
imation polynomial is de	ned by only two independent variables� JSn � � measSn
can be computed from the knowledge of xkl� k� l � �� �� �� Sref is the reference triangle
with vertices ��� ��� ��� �� and ��� ��� rP � �rT

P�
�rT

P�
�rT

P�
�T � The integrand in 
�����

can be for Sn � �klc expressed in the form

�THi
vki � vli�g
kl
c � 
�����

where Hi is � � � vector� i � �� �� ��

Hi � � �i� � nin�� �i� � nin�� �i� � nin� �T 
�����

and � is the � � � vector� Let us de	ne a � � � matrix

H � �H�� H�� H� �T � 
�����

As the components Hi are constant on given face� therefore determined by only one
parameter� we obtain by discretizing of the term 
�����

Z
Sn

gklc 
�h
v
k
ht � vlht�ds � �T

� S
�T
�


Z
Sref

G�
t�dt

�
H� � 
JSngklc � � 
�����

For every element Tn with possible boundary faces Sn we obtain a local functional in
the form

fn
yn� �n� �
�
�
yTnCnyn � yTn dn � yTnG

T
n�n � 
�����

�



where Cn is the �� � �� matrix� yn� dn are the �� � � vectors� The dimension �n and
Gn depends on the number Sn � T n 
 �

kl

c � let us denote it as pn� Then �n is of type
�pn � � and Gn of type �pn � ���

During the assembling of fn it is necessary to implement the block matrix multi
plication e�ciently� including the matrices with integrations� i�e� the terms 
����� and

������ For instance� in 
����� the elements of the matrix 
P�D�
P��T �� i�e� the sums

�X
k�l��

d�klp
�

ik

��p�

jl

�� i� j � �� � � � � �� 
�����

are integrated� and then it is suitable to employ the block diagonal structure of P�
���
where all three blocks are the same matrices P� 
����� ������ The essential part of
integrations in 
����� are therefore computations of integrals of monomials

Z
Tref


p�ikp
�
jl�
��d� � i� j � �� � � � � �� k� l � �� �� �� 
�����

which are independent of the element Tn� After the assembling of fn� the degrees of
freedom which correspond to the nodes on 
�u � ��� 
 Tn are eliminated�

The approximation of the set Kh v 
���� leads in the case of linear approximation
to the constraints

Acpycp � � � 
�����

where the vectors Acp and ycp� which are of type ��� and ���� respectively� correspond
to a given contact pair of nodes�

��� Assembling of global system

The resulting global matrices have a sparse structure� therefore the matrix format
SPARSE ����� is used� when in general the M � N matrix A is represented by two
integer and one real array� In the array IA
I�� I � �� � � � �M � � such indices of the
arrays JA� A are stored� which correspond to the 	rst element of the Ith row 
or
Ith column�� In the JA
J�� J � �� � � � � LJA� the column 
or row� index of the given
element and in A
J� its value is stored� In the case of square� symmetric matrix it is
possible to store only its lower 
or upper� triangular part�

During the assembling of the discretized global functional 
������ the node num
bering is taken into account� together with the information concerning the number
of degrees of freedom in particular nodes� i�e� with the array KOD
�� NV �� de	ned
above� The block insertion of local element matrices turned out to be e�cient� Let
j � j
i� be the permutation of local degrees of freedom xni of element Tn� such that

j
i�� 	 j
i��  g
i�� 	 g
i�� �� � il � ��� l � �� �� 
�����

where g
i� is the global index of the i�th local degree of freedom� With this de	nition�
we 	rst assemble !subglobal" matrix having the same dimension as the local matrix�
Then the columns of this matrix� from the highest to the lowest� are inserted into the
global matrix� By doing this� the number of shifts in the global matrix is minimized�

�



We 	nally arrive at the discretized version of the problem 
������
Find 
x� �� � Kd � Ld� such that

H
x� �� � H
x� �� � H
y� �� �
y� �� � Kd � Ld� 
�����

where

H
y� �� � �
�
yTCy � yTd � yTGT� � 
�����

Kd � fy � RN jAy � �g� 
�����

Ld � f� � R�P j ���i�� � ���i�� � ���i � �� i � �� � � � � Pg 
�����

and the matrices C� A� G and the vector d are respectively� the positive semide	nite
sti�ness matrix of type N � N � the constraint matrix of type M � N expressing the
inpenetration conditions 
������ the frictional forces matrix of type �P � N and the
external forces vector of type N � �� For M and �P � it holds M � N and �P � N �
respectively�

��� Uzawa�s method

We use the Uzawa�s algorithm for the problem 
����� 
���� �����
ALGORITHM ���

�� � � � initial approximation
If �k is known� we solve the minimization problem
H
x� �k�� min�
obtaining xk�
Then we correct
�k�� � #Ld


�k � �xk
T
GT �� � � ��

where #Ld
is the projection of R�P onto Ld � de	ned as�

#Ld

y� � �
#Ld


y��T� � � � � � 
#Ld

y��TP �

T � 
�����

for i � �� � � � � P


#Ld

y��i �

�

y�i��� y�i��� y�i�T for jyji � ��


y�i��� y�i��� y�i�T�jyji for jyji � ��

�����

and jyji �
q
y��i�� � y��i�� � y��i�

REMARK ��� In planar case both de	nition of Ld

Ld � f� � RP j j�ij � �� i � �� � � � � Pg � 
�����

and de	nition of #Ld

y�


#Ld

y��i �

�
yi for jyij � ��

sgn yi for jyij � ��

�����

are simpli	ed�
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REMARK ��� The existence of such ��� ��� that for � � 
��� ��� the component xk

generated by the Uzawa�s algorithm converges to the 	rst component x of the saddle
point is studied in ���� ��� ��� ��� ���� During computations� the acceptable value of
�� i�e� the value� for which the convergence is achieved in real time� has to be chosen
experimentally� The dependance between this value and the magnitude of the elements
of the matrices C and G can be observed�

The minimization algorithm in the Uzawa�s method is the most expensive step of
the whole algorithm� For the methods for solving this step� we refer e�g� to ���� ��� ���
��� ��� ��� ����

� H�version of the FEM for the contact problem

��� Introduction

The adaptive mesh re	nement has proved to be an e�cient tool for the numerical
solution of partial di�erential equations� The reduction of the discretization error is
accomplished by as few additional degrees of freedom as possible� The mesh re	nement
represents the hversion of the 	nite elementmethod� whereas in the pversion the order
of the approximation space is increased� The re	nement is made only in those parts
of the region where the estimated error is great� In structural mechanics this should
contain the parts near clamping� in contact regions or near nonconvex boundaries�

The adaptive local mesh re	nement has the following general structure�


�� Construction of the initial coarse grid T�� k � �


�� Solution of the problem on Tk


�� The Aposteriori error estimate calculation for all elements in Tk and construction
of Sk � Tk� where Sk are the elements with great error estimate


�� If Sk 	� f�g� then
division of the elements in Sk�
construction of the next !conform" mesh Tk��� k � k � �
return to 
��

else
	nish

The steps 
��
�� for 	xed k will be called the re	nement iteration� The iteration in

�� for the conform mesh construction will be called the conformity iteration� For the
steps 
�� and 
�� it is necessary to choose such data structures and algorithms which
can be relatively simply inserted to existing programs for solving the steps 
�� and
especially 
��� The space and time requirements as well as the robustness have to be
taken into account�

The next part of the step 
�� determines the elements with great error estimate�
There exist two main strategies� In the 	rst strategy we require that the total error� i�e�
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the sum of errors ��T on particular elements� is smaller than some prescribed tolerance
�� The su�cient condition for the acceptance of the mesh with N elements reads

�T � �p
N

�T � Tk� 
����

The division is performed for the elements with

�T �
�p
N
� 
����

However� this strategy is implicit if 
���� is not ful	lled as N depends on the mesh
re	nement result� From numerical point of view the choice of � can also be doubtful�
In the second strategy 
	xed fraction� the elements are ordered with respect to their
error magnitudes and the division is performed for certain part of the elements with
greatest error value� i�e�

�T � � � max
T ��Tk

�T �� � 	 � 	 �� 
����

This strategy equilibriates the error between the elements and it is used in our calcu
lations�

Similarly to two dimensions case� the tetrahedron can be divided either by octa
section or by the bisection� We concentrate on the bisection in what follows� The 	rst
algorithm of this type was published in ���� and it is essentially equivalent to that of
���� The algorithm implemented in our work proceeds from ��� and contains necessary
modi	cations for the conformity preserving on contact boundaries� The numerical per
formance of both the error estimators and the local re	nement algorithm are published
in ���� ��� ��� ����

��� Error estimate calculation

We proceed from linear problems for all estimators� The in uence of the contact
boundary is naturally included for the second and third estimators�

The 	rst estimator was published in ����� Let

e� � � � �h � 
����

where � is the exact value of the stress tensor and �h is its computed aprroximation�
The error e� is measured in the L� norm� i�e�

jje� jj� �
X
T�Th

jje�jj�T 
����

where
jje� jj�T �

Z
T

e��T 
e��dx � 
����

However� the value � is not known and therefore it is necessary to replace it by some
approximation � �� !better" than �h� We assume� that the stresses are approximated
by the polynomials of the same order as the displacements� i�e� by linear polynomials

� �ij � N� �ij � i� j � �� �� �� 
����
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where N are the basis 
shape� functions� cf� 
������ and � �ij are the nodal values of
the stress components� The parameters �� can be obtained by suitable projection
P � diag 
P�ij with the requirementZ

�
P
� � � �h�dx � � � 
����

The form P � NT can be chosen� but the simple averaging P � �k� where k are the
mesh nodes and �k Dirac�s function� gives acceptable results ����� Let us denote the
suggested estimator as ��� i�e�

�T�� � jj� � � �hjjT � 
����

In the second estimator ���� we assume that we have computed uh� the approxima
tion of the displacement 	eld and also corresponding strain and stress tensors� �
uh�
and �h � ��
uh�� respectively� Similarly as in the 	rst estimator we introduce the
smoothened stress tensor $�h � Ah�h� where $�h has square summable divergence� Let
the terms g
�
uh�� and g�
$�h� denote primal and dual potential energy functionals� re
spectively ����� The estimator will consist of local error indicators for the constitutive
relations �T�	� for the equilibrium equations �T�F and for the boundary conditions �T�P �

��T�� � �T�	 � C
�T�F � �T�P �� 
�����

where

�T�	 �
Z
T
�g
�
uh�� � g�
$�h�� $�h�
uh��dx�

Z
T
j�
uh�� ���$�hj�dx � 
�����

�T�F �
Z
T
jdiv$�h � Fj�dx � 
�����

�T�P �
Z
T���

j$�hn�Pj�dx � 
�����

and the constant C is su�ciently large� The n is the outer normal to T 
 �� and F
represent external body forces density� From the numerical point of view� the choice
of C is not critical since the terms �T�F and �T�P strongly predominate the term �T�	
and since the 	xed fraction strategy is used�

The third estimator proceeds from ���� The elasticity problem can be written as
the variational equation

A
u�v� �
Z
�
Fividx�

Z
��
Pivids � 
�����

where u � V is the exact solution� v � V arbitrary and the nonemptyness of �u is
assumed� Let uh � Vh be the approximate solution of 
������ Putting

e � u� uh 
�����

and integrating by parts over all elements� we get the residual equation

A
e�v� �
Z
�
Fividx�

Z
��
�Pi � �ij
uh�nj�vids

�
X
S��I

Z
S
���ij
uh�nj��vids �v � V � 
�����
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where �I �
S

k�m

Tk 
 Tm� Tk� Tm� k 	 m� are the mesh tetrahedrons� n � 
ni�i������ is

the outward normal with respect to Tk and ��� �� � � jTm� � jTk � De	ne local projections
of input data

#TF �
R
T Fdx

meas T
where meas T is the tetrahedron volume� 
�����

#SP �
R
S Pds

meas S
where meas S is the area of the face on �� � 
�����

Let

JS �

��
��

���ij
uh�nj��S S � �I
�f#SP � 
�ij
uh�nj�jSg S � ��
� S � �u


�����

The estimator is suggested in the following form

�T�� �
�
�
meas T ��j#TFj� � �

�

X
S�ET


meas S��jJSj�
�
�
�

�

� 
�����

where ET � T 
 
�� � �u � �I��

The fourth estimator is based on solutions of local problems� and it was analyzed
for the Helmholtz�s equation in the plane ���� Thus

l
u� � �raru� bu � f on � � R� 
�����

a
�u

�n
� g on �� 
�����

with the assumptions a � C�
��� b � C�
��� there exist constants a� a� b� b� such that

� 	 a � a
x� � a 
�����

� 	 b � b
x� � b � 
�����

Let 
�� ��	 denote a scalar product on � for � � �� Similarly for � � ��� let 	 �� � �


denote a scalar product on ��
The variational formulation of 
��������� is� Find u � H�
��

A
u� v� � 
f� v�� � 	 g� v ��� �v � H�
�� � 
�����

where
A
u� v� �

Z
�

arurv� buv�dx � 
�����

Denote
jjjujjj� � A
u� u� � 
�����

DEFINITION ��� Let us consider a tetrahedral mesh on �� Let H be the space of
piecewise linear polynomials� in which we 	nd the solution uh and H be the space of
piecewise quadratic polynomials� where the approximation of the error is sought� Let
HT and HT be the restrictions of H and H onto the elements of the mesh T �
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DEFINITION ��� %HT � fv � HT � Iv � � g� where I is the Lagrange�s interpolation
operator� %HT is the !bubble functions" space�

The estimator is de	ned as the solution of the following residual equation

A
%e� v�jT � FT 
v� �v � %HT � 
�����

where

FT 
v� � 
f � l
uh�� v�T � 	 g � a
�uh
�n

� v �ET���

�
�
�
	 ��a

�uh
�n

��� v �ET��I � 
�����

In our case� the bilinear form corresponding to elasticity problem is assumed in

������ and instead of the scalar function uh� we seek the vector function uh� The
operator l
uh�jT � �� as the elasticity problem is described by the Lame�s equations
����� where only second derivatives of the solution appear and uh is piecewise linear�
The substitution of remaining terms of 
����� by terms from 
����� is obvious� Thus

�T�
 � %e � 
�����

��� Implementation of estimators for contact problems

The approximation of the error is based on the knowledge of element values of stresses

the vector � of type �� �� and nodal values of stresses 
the vector &� of type ��� ���
Here� we assume the relation

� � � 
G��TS�� &� � 
�����

cf� 
����� where G� is the block diagonal matrix� consisting of � blocks� each block is
the matrix of monomialsG� of type �� �� The similar block structure has also S� the
blocks of which are � � � matrices� In the case of �� estimator� the value jje�jj�T with
� � � �� has to be computed�

Similarly to the section ��� we obtain the dependence of this value on the nodal
and element parameters


 &��T�


Z
Tref

jJ�jdx
�
� �
 &��TS�T


Z
Tref

G�jJ�j dx
�
�

� 
 &��TS�T

Z

Tref

G�
G��T jJ�j dx
�
S�� &� � 
�����

where the notation of section ��� is used�
In the estimator 
������ we concentrate on the computation of JS 
������ We as

sume constant values of stresses on all the faces� It is not necessary to search all the
neighbours for a given element� as the nodal values are known� together with the values
on the whole element� Let us introduce the average value of the stress tensor on each
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face %� by averaging the values in all nodes of the given face� Now� the stress jump can
be replaced in the natural way by

�
�
���ij
uh�nj �� � %�ijnj � �ijnj jTk � 
�����

where Tk is the tetrahedron� on which we compute the error�
During the insertion of conditions on contact part of the boundary� we will try to

transform the problem to the certain linear elasticity problem� It can be seen that
�T�� explicitly depends on the boundary conditions with dual quantities 
stresses��
The residual between the computed and prescribed stress is measured� Therefore� we
consider those conditions on contact boundary which contain only stresses ���� ����
We measure the values � � ��n�� and � � �j
�tj � gc��� Let us introduce the vector
�n� �
�t in 
����� for �c� where � �

�



� � � max
j
�tj� �T � and �T � �� Furthermore� the

conditions of action and reaction on the contact are transformed to the stress jump
measurement as for the faces on �I �

In the last estimator� the piecewise quadratic functions with zeros in the element
vertices in �D are chosen as bubble functions space� The right hand side is similar to
that of the quantity JS appearing in the second estimator� The quadratic polynomials
are determined by the nodal values and the values in the midpoints of all tetrahedron
edges� After the local assmbling� it is necessary to eliminate the degrees of freedom
which correspond to the vertices of the tetrahedron� Thus� for every element it is
necessary to assemble and solve systems with up to �� unknowns�

��� Local re	nement algorithm

Let us return to the step 
�� of the overall adaptive mesh re	nement algorithm� The
bisection algorithm accomplishes the mesh conformity by the iterative bisection of
those tetrahedra which do not meet the conformity condition� During the bisection�
a certain edge� called the re	nement edge� is chosen and the new vertex is placed to
its centre� With this new vertex� two new tetrahedrons are created 
Fig� ����� The
selection of the re	nement edge is therefore a key aspect of the algorithm� In addition
to the algorithm itself� we introduce a new data structure called !marked tetrahdron"�
It will be used for the geometrical data of the tetrahedron together with a small amount
of informations which are needed for the bisection�

DEFINITION ��� For tetrahedron T � let V 
T ��E
T � and S
T � denote the set of its
vertices� edges and faces� respectively� Let E
� denote the set of edges of the face
 � S
T �� let rT be the re	nement edge� Furthermore� let m� � E
T � be the marked
edge of the face � Finally� let fT � f�� �g be a boolean  ag� Then a marked tetrahedron
is a �tuple 
V 
T �� rT � 
m����S�T � fT �� For the re	nement faces� i�e� for the two faces
that intersect at the re	nement edge� the marked edge coincides with the re	nement
edge�

Marked tetrahedrons will be divided into four classes by a mutual position of their
marked edges 
Fig� �����
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P  marked edges are coplanar� A type P is further classi	ed as type Pu or Pf �
according to whether its  ag is set or not�

A  the marked edges intersect the re	nement edge� but are not coplanar�

O  the marked edges of the nonre	nement faces do not intersect the re	nement
edge� In this case� a pair of opposite edges are marked in the tetrahedron�

M  the marked edge of just one of the nonre	nement faces intersects the re	nement
edge�

DEFINITION ��� Let T� and T� be the child tetrahedra created by the bisection of
the T � A face  � S
Ti� is inherited 
i�� if  � S
T �� The faces  � S
Ti�� for which
�� � S
T ��  � �� are cut faces 
c�� A face� which is neither inherited nor cut is
called a new face 
n�� Cf� Fig� ����

ALGORITHM ���
fT�� T�g � BisectTet
T �
Input� A marked tetrahedron T
V'stup� Marked tetrahedra T�� T�
Cf� Fig� ���

�� Bisect T by joining the midpoint of its re	nement edge to each of the two vertices
not lying on the re	nement edge� This de	nes new sets V 
T�� and V 
T���

�� Mark the faces of the children as follows�

a� The inherited face inherits its marked edge from the parent� and this marked
edge is the re	nement edge of the child�

b� On the cut faces of the children mark the edge opposite the new vertex with
respect to this face�

c� The new face is marked the same way for both children� If the parent is
type Pf � the marked edge is the edge connecting the new vertex to the new
re	nement edge� Otherwise it is the edge opposite the new vertex�

�� The  ag is set in the children if and only if the parent is type Pu�

It is proved in ���� that the repeated application of the Algorithm ��� on an arbitrary
initial tetrahedron cannot create degenerate tetrahedra for any of its succesors�

DEFINITION ��� Let V 
T � be a set of mesh nodes which belong to the region � � R��
The node � � V 
T � is a hanging node of T � if � � T � V 
T ��

DEFINITION ��� A mesh is marked if each tetrahedron in it is marked� A marked
conforming mesh is conformingly marked if each face has a unique marked edge�
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In a marked conforming mesh the face shared by two tetrahedra de	nes for both
of them the same marked edge� Let a conforming mesh be given� Let the edges be
ordered in certain manner� Let us choose as the re	nement edge of the tetrahedron
its longest edge and as the marked edge 
of its two remaining faces� the longest edge
of this face� Assume that fT � � holds for all tetrahedra in the initial mesh� The
following algorithm represents the process of local adaptive mesh re	nement�

ALGORITHM ���
T � � LocalRefine
T �S�
Input� Conformingly marked mesh T � S � T and fT � � �T � T
Output� Conformingly marked mesh T �

�� T � BisectTets
T �S�
�� T � � RefineToConformity
T �

At the same time BisectTets
T �S� � 
T � S� � S
T �S

BisectTet
T � and
RefineToConformity is described in the following algorithm�

ALGORITHM ���
T � � RefineToConformity
T �
Input� Marked mesh T
Output� Marked mesh T � without hanging nodes

�� S � fT � T j T has a hanging node g
�� if S 	� � then

T � BisectTets
T �S�
T � � RefineToConformity
T �

else

T � � T
This recursive algorithm can be easily transformed to the nonrecursive one� There

fore� every recursive call of RefineToConformity represents one iteration of confor
mity�
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��
 Implementation of the local re	nement algorithm

For the adaptive mesh re	nement� it is convenient to de	ne an array of edges IED
GE
J� I�� � � I � NED� � � J � �� where NED is the number of edges in the
mesh� Additionally to the endpoints� indices� the information about the child edge�
IE� � IEDGE
�� I�� will be stored� If IE� � � then the edge I has not a descendant�
If IE� 	 � then a descendant was already created in the current conformity iteration
and the value �IE� is the pointer to the heap array� where the 	rst child edge is
temporarily stored� If IE� � � then IE� is the pointer to the IEDGE array� where
the 	rst child edge is stored� The IEDGE array is sorted in the lexicographical order�

DEFINITION ���� The edge ej is greater then ei� if
IEDGE
�� ej� � IEDGE
�� ei� or
IEDGE
�� ej� � IEDGE
�� ei� and IEDGE
�� ej� � IEDGE
�� ei��

This ordering is de	ned uniquely� The edge search in the IEDGE array can be
performed by the bisection method� The subroutine FINDEDGE 	nds for a pair of
endpoints I� J a corresponding edge L in the IEDGE array� If L 	 �� then the edge is
greater than the edge �L� smaller than the edge �L� � and is not yet inserted� The
cases L � � and L � NED are also taken into account�

The edges of the tetrahedron are characterized by a local vertex 
node� numbering

LOCEDGE
�� ���� Furthermore� we consider a list of vertices and edges with respect
to particular faces of the tetrahedron 
LOCFACN
�� �� and LOCFACE
�� ���� In
Fig� ��� the local vertex indices� the local edge indices 
underlined� and the local face
indices 
italics� are depicted� This is the case when the re	nement edge connects the
vertices � and �� The tetrahedron type can then be written as a four digit number
which express the relation face  its marked edge� The particular digits represent local
edge indices� being therefore between � and �� If the tetrahedron is not of type O� the
index of the re	nement edge is determined uniquely� If it is of typeO and the local edge
index of the edge opposite the re	nement edge is lower then the one of re	nement edge
itself� then the uniquenes is achieved by the change of sign of the four digit number�
The cases Pu and Pf are distinguished in the same manner� As it follows from the
Algorithm ��� and Algorithm ���� that the types Pf and O cannot occur in the mesh
simultaneously� the information concerning the tetrahedron type can be represented
by an integer variable IETY PE� We add the sixth component to the ITNODE� i�e�
ITNODE
�� I� � IETY PE� It holds for each tetrahedron

���� � jIETY PEj � ���� � 
�����

When generating the initial conform mesh� we have to decide which edge will be
the marked one� The requirement is that the tetrahedrons sharing this face have
the same marked edge for this face� In the case of a pair of faces which form the
contact� we extend this requirement by the condition that the marked edges have to
be geometrically equivalent� The endpoints of these edges have di�erent global nodal
indices but the same coordinates� By doing this� the problem is transformed to the
above case� together with various subroutines which !balance" possible incompleteness
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of newly de	ned pairs of contact nodes� It is necessary to choose such ordering which
ful	ls these requirements� At the same time we cannot assume anything about the
node numbering on contact faces and edges�

DEFINITION ���� Consider the edges ei and ej with lengths di and dj and with
midpoint coordinates ci � �xi� yi� zi� and cj � �xj� yj� zj�� The edge ej is geometrically
greater than ei if dj � di or dj � di and xj � xi or dj � di� xj � xi and yj � yi or
dj � di� xj � xi� yj � yi and zj � zi�

The marked edge of the face in the initial mesh is the edge geometrically greater
than all other edges of this face and therefore is determined uniquely� The re	nement
edge of the tetrahedron is de	ned in the same manner�

The implementation of LocalRefine is realized by the subroutine BISTETS�
where the conformity iterations are performed� In the initial conformity iteration the
bisection of the element is based on the value resulting from an error estimator� In the
next iterations� the element is bisected if there exists an edge of this element for which

IEDGE
�� Li� � �� i � �� � � � � �� � � Li � NED � 
�����

The bisections of particular elements are performed by the subroutine BISECTTET �
From the Algorithmu ��� it follows that for bisection the explicit determination of the
tetrahedron type 
Pu� Pf � A� O� M� is not necessary� It is only necessary to distinguish
coplanar cases 
Pu� Pf � and other cases� where the particular types A� O and M need
not be distinguished� Each child of the parent tetrahedron inherits one vertex of the
re	nement edge� The second vertex is replaced by a new one� In Fig� ��� the re	nement
edge is the edge connecting vertices � and �� The local index of the missing vertex of
the re	nement edge is assigned to the local index of a new vertex� The type of face
of the child tetrahedron and then also the choice of the marked edge is determined by
the mutual position of the face� nodes of the re	nement edge and the new node� In the
case of Fig� ��� the face � is inherited� the faces � and � are cut faces and the face
� is new for the left child� For the right child� the face � is inherited� the faces � and
� are cut faces and the face � is new�

As the data structures of the original program were stored in two global arrays�
it is convenient in every conformity iteration to store newly de	ned entities 	rst on
the heap� The heap is represented by those parts of global arrays which were not yet
allocated� After the bisection of a given entity is done� the number of newly de	ned
entities is known and their insertion to the corresponding entity� i�e� to a certain place
in the global array can be performed at one time�

The 	rst entity for which new elements are created are simultaneously tetrahedrons

ITNODE
�� ��� and edges 
IEDGE
�� ���� The index of a new node is represented
by a negative whole number IG in ITNODE and IEDGE� One successor of the
tetrahedron I is stored in the place of original tetrahedron� i�e� in ITNODE
J� I��
J � �� � � � � �� At the same time� in the material entry� i�e� in the ITNODE
�� I� resides
the negative value of the heap index NHP � where the information about the second
successor and a possible information about new edges created from the re	nement one
is stored� With these edges� a list of newly created nodes is uniquely de	ned� The
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other pair of edges can be created during the bisection� however� their vertices are not
stored as they can be obtained from both new tetrahedrons� Thus on the heap the new
entity occupies at least six items� the vertices of a new tetrahedron� material type of a
new tetrahedron and IETY PE� the type of a new tetrahedron�

However� the case when a new node and a pair of child edges of the re	nement
edge are created� has to be distinguished� This can be achieved by substituting of
IETY PE by ���IETY PE� The original information in IETY PE remain unchanged
and regarding to 
����� it holds for an arbitrary tetrahedron

j�� � IETY PEj � ����� � ���� � jIETY PEj � 
�����

Let now the re	nement edge have an index L� Then IEDGE
�� L� � �
NHP � ��
and therefore the list of newly de	ned nodes is indeed easily accessible through the
array IEDGE� In the case of newly de	ned node it is also desirable to de	ne a pointer
NRHP to the real heap� where its coordinates and the interpolation of temperature
values to this node are stored� In Fig� ��� we assume that the re	nement edge is I��I�
and that a node IG is created�

We require on the index IG

jIGj � jIEij� i � �� � and jIGj � jIG�j � 
�����

where IEi are the vertex indices of the re	nement edge and IG� are the indices already
created nodes in the current conformity iteration� On the other hand� we naturally
minimize max

i����

jIGj � IEi��

After one conformity iteration we get NTHEAP new tetrahedrons� NEHEAP
new edges and NVHEAP new nodes on the heap� During the insertion of nodes� it
is necessary to change the entries of all the arrays which point to the nodes� i�e� the
array of tetrahedrons ITNODE� the array of boundary elements IBNDRY � the array
of edges IEDGE and also the array of pairs of contact nodes ICP and the array of
bilateral contact nodes� The corresponding entries have to be changed also on the heap
itself� Then new tetrahedrons and edges are inserted into the arrays ITNODE and
IEDGE�

Let us suppose that the bisection process in uences given pair of contact nodes�
Then the algorithm generates one of the cases a�  e� in the Fig� ���� The balancing
subroutines transform the cases b� and c� to the case a� and the case e� to the case d��
All three edges of the faces are checked� At this time� also new pairs of contact nodes
can be inserted into the array ICP �

The next entity for which new elements are created due to the bisection are the
boundary faces� i�e� the array IBNDRY � We proceed in the similar manner as in
the case of tetrahedrons� Both child faces have the same orientation as the parent
face� A pair of newly created faces has to be distinguished from the old ones� due to
the necessary modi	cation of the array of pairs of contact faces ICCB� This can be
achieved e�g� by setting the entry IBNDRY 
�� I� negative� where I is the 	rst of the
newly created faces�
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� Instructions for users of FEC


�� Compiling and linking of the FEC

We use the environment of the Digital Visual Fortran ��� compiler under Win��(NT

Microsoft Developer Studio  MSDEV�� Let the directory where the current version

���� of the threedimensional FEC resides be called Fec�dv���

To create a corresponding project� run MSDEV and click New� then select Projects
tab� Here choose Win�� Console Application and as the Project name choose Fec�dv���
After that� select project options by clicking on the Project Menu and Project Settings�
Various settings are prede	ned for the tabs General� Debug� Fortran� Link� etc� For the
debugging phase� we recommend to leave current settings� For the release phase� the
following can be e�g� changed� On the Fortran tab� change for the General Category the
Debugging Level from Full to None and the Optimization level from None to Optimize
for Speed� On the Link tab� change the Output 	le name from Debug(Fec�dv���exe
to Fec�dv���exe and uncheck the box Generate debug info� Then we have to add
the 	les into the project by clicking on Project and Add to Project menus� The
following Fortran source 	les have to be included into the project� fec���f� utils��f�
cg���f� proj��f and adapt�f� After inserting them� save the workspace by clicking File
and Save Workspace�

The compilation and linkage can be performed at one step by clicking Build Fec�d
v���exe� When correcting a particular source 	le� the compilation of this 	le can be
invoked by opening 
or activating if already opened� the corresponding window and
clicking Compile� The link can then be performed again by clicking on Build or if we
wish to be sure that all updated 	les are really compiled by clicking Rebuild All� The
program can be run in the Debugging mode by clicking Build� Start Debug and e�g�
Run to Cursor� where the cursor is placed on the line of the source code which we wish
	rst to analyze� Normal run can be invoked by clicking Build and Execute Fec�dv���exe
or directly outside the MSDEV studio by clicking on the 	le Fec�dv���exe�


�� The input�output 	les

The input 	le has the name usrot�dat� It is a binary 	le� which can be obtained from
its text form� usrot�txt� by running the utility a�b�exe 
ascii to binary�� However� for
some concrete models we may use transformation programs that create directly a binary
version� To understand the format of input 	le� it is advisable to read section ��� of
this report and the comments in the INDATA subroutine 
a�b�for� or in the INDATA�
INDATA� subroutines 
fec���f�� Generally speaking� the input values consist of integer
and real arrays and their dimensions� In integer arrays� pointers to real or other integer
ones are stored� In real arrays� the nodal coordinates� the normal coordinates� material
parameters and the values of external forces and of boundary conditions are stored�
The program creates � binary output 	les for further graphical postprocessing� These
	les are

values��dat  values of displacements on every element� The order of components is
u�� u�� u� 
obtained by the averaging of nodal values for each element�� This 	le
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is created in the subroutine TRANSF��

values��dat  values of displacements in every node� The order of components is
u�� u�� u�� This 	le is created in the subroutine TRANSF��

values��dat  values of the stress tensor on every element� The order of components is
���� ���� ���� ���� ���� ���� � � where

� �
q
� ��� � � ��� � � ��� � ������ � ������ � ������ � �
� ��� � � ��� � � �����

This 	le is created in the subroutine ELSTRESS�

values��dat  values of the stress tensor in every node� The order of components is
���� ���� ���� ���� ���� ���� � 
obtained by the averaging of element values in each
node�� This 	le is created in the subroutine TRANSF��

valpst�dat  scalar values of principal stresses 
	rst � items� and the coordinates of two
principal vectors 
last � items� on every element� The third principal vector can
then be already computed� This 	le is created in the subroutine TRANSF��

When the adaptation process is switched on 
IADAPT��(��� the additional 	le
usrota�dat is created� The format of this 	le is the same as of the usrot�dat� It contains
the model geometry after performing one re	nement iteration� In this version of the
program� this 	le has to be copied to the usrot�dat and the program has to be run
again� if we wish to continue with the adaptation process�


�� Running the FEC

When running� the program interactively asks only for a few data� IADAPT��(�(��
�  no adaptive re	nement is performed� �  adaptive re	nement is performed� �  same
as �� but the value maxT ��Tk �T � is substituted by maxT ��T� �T �� see section ���� By
doing this� the number of bisected elements decreases when increasing the number of
re	nement iteration 
relative comparison to the error on coarser grid� which is expected
to be greater��

The program writes on the output the numbers maxw� maxiw that express how
many entries of global arrays are used� The next query of the program is SOLVRO�)�
for the parameter � of the Uzawa algorithm� see section ���� If RO��� no friction is
assumed� INPUT MODE �(�  select the number of removed multipliers in the active
set method ���� ��� ��� ���� �  one� with the greatest negative value� �  all with negative
values� INPUT IDIAG��(�  select the method for the computation of the projected
gradient� �  assumes diagonal form of the constraint matrix product ���� ��� ���� � 
general case� LOWER(HIGHER TOLERANCE L��(H��� this is controlled by the
EPS� in CG� and CG� subroutines� !nextit �(*�"  input zero� if the user wishes the
Uzawa iterations run automatically� nonzero number� if he or she wishes to pause after
next Uzawa�s iteration�
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�� Graphical postprocessing of the results

The data in the 	les usrot�dat� values)�dat and valpst�dat can be visualized by a simple
graphical tool scene��exe� Due to the permanent development of FEC� it is assumed
for clarity that the graphics which include the executable scene��exe and the 	les for a
possible rebuild of the project 
i�e� the 	les +�cpp� +�c� +�h� +�dfm and scene��mak� reside
in the directory fecg�b� When making possible changes in the source 	les� the project
has to be rebuilt using the Borland C�� Builder compiler 
BCB� under Win��(NT�
The execution itself� outside the BCB� naturally requires the same operating systems�
Moreover� the palette 	les� palets�txt� paletp�txt and paletp��txt� are required for the
execution�

After starting the scene��exe� the 	rst query concerns the type of output device on
which the data is to be displayed� The option � 
scr� means the output only on the
screen� when the black background is set� The option � 
prtscr� corresponds to printing
the exported picture 
see below� on the printer� therefore with white background� This
option� however� displays lower number of contour levels and therefore the option �

prtscrall� should be preferred� This option is especially convenient when publishing
	gures in papers and reports� Each picture displayed in the scene� is saved in the 	le
timage�bmp until a next picture is displayed� Timage�bmp can be processed e�g� by
the Windows utility Paintbrush� After accepting a value� the user then selects by the
Tab key the EnterButton and presses it�

The second query 
auto��(man��� concerns the issue whether the user lets the
program plot the whole model automatically 
auto��� suitable at the beginning of the
analysis� or whether he or she determines the position of the observer and the direction
of the view manually 
man����

The third query controls the zooming of the view� If the option � was selected
in the previous 
i�e� second� query� one may use the value �� which means automatic
zoom with 	tting the model on the whole screen� Otherwise� the user enters a  oating
point number corresponding to required magni	cation�

The �th query is conditional� it appears only if zooming��� It concerns shifts of
the screen in horizontal and vertical directions� The standard values are dx�dy���

In the �th query� !barveni �coarse �smooth"� the smooth 
�� is highly recom
mended� whereas 
�� corresponds to the constant values on elements�

The �th query !Select region(�"� If the user wishes to plot only one selected region
of the model� then he or she enters its corresponding number� � otherwise�

The �th query !Type in eye position" is conditional� it appears only if the second
query is man��� The same holds for the �th query� !And direction and angle of view"�
The standard value of angle is ���� 
fraction of the right angle��

Entering an integer i in the �th query will ensure that only nodes 
and correspond
ing elements� that are farther from the observer than ith node� the socalled cutpoint�
will be plotted� The zero value plots all the nodes�

The ��th query o�ers the option of 	ltering� It 	lters out the faces fully inside the
model� thus accelerating the plotting algorithms�

Finally� remaining queries concern the plot itself� The ��th one o�ers options
whether to plot all node numbers 
��� to plot only the numbers of keypoints 
i�e� the
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nodes which correspond to some model vertex before the triangulation�� to plot only
the selected points 
�  the indices and o�sets are then entered�� to 	nish and proceed
to the results view 
�� or to exit the program 
���

The ��th query o�ers options concerning type of contours 
surface��� isolines����
For the �D model� the !surface��" option is highly recommended�

In the ��th query� the user can choose between two plotting algorithms  the option
!view��" is much faster� however� !	nal��" can produce nicer pictures�

The ��th query selects which quantity will be displayed� If the user wishes to
proceed to the next step� enters ��

The ��th query concerns principal stresses� If the user enters ��� for the scale
factor� the program immediately proceeds to the ��th query�

This 	nal query concerns the deformed shape plot� The coe�cient of de ection and
then a type of plot are entered� The option !element��" is the fastest� but does not use
a hidden line(surface removal� The program will 	rst display the initial con	guration
and then after pressing an arbitrary key� e�g� the spacebar� the deformed geometry�
With the next press of the spacebar� the program is 	nished and the corresponding
window can be closed�
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