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1. Introduction to the UFO system

The universal functional optimization (UFO) system is an interactive modular system for solving both
dense medium-size and sparse large-scale optimization problems. The UFO system can be used for the
following applications:

1. Formulation and solution of particular optimization problems that are described in chapter 2.

2. Preparation of specialized optimization routines (or subroutines) based on methods described in
chapter 3.

3. Designing and testing new optimization methods. The UFO system is a very useful tool for opti-
mization algorithms development.

The special realization of the UFO system described in the subsequent text makes this system portable
and extensible and we continue with its further development.

1.1. Philosophy of the UFO system

The UFO system 1s an open software system for solving a broad class of optimization problems. An
optimization problem solution is processed in four phases. In the first phase the optimization problem is
specified and an optimization method is selected. This can be made in three different ways:

1. The full dialogue mode: The problem specification and the method selection are realized by using
a conversation between the user and the UFO system.

2. The batch mode: The problem specification and the method selection are realized by using the
UFO control language. An input file written in the UFO control language has to be prepared and
stored.

3. The combined mode: Only a part of the specification is written in the input file. The rest of the
specification 1s obtained as in the dialogue mode. This possibility is usually the best one since the
problem functions can be defined beforehand by using a convenient text editor.

The second phase 1s realized by using the UFO preprocessor. This preprocessor is written in the Fortran
77 language and its output is a Fortran 77 control program. This conception is very advantageous for
the following reasons:

1. The Fortran 77 (full ANSI norm) is a sufficiently high and portable programming language. More-
over, this language is very suitable for numerical computations, and a broad class of subroutines is
available in this field.

2. A control program, generated by the UFO preprocessor, calls for necessary modules only and
its specification is very easy. Moreover, control program global declarations are determined by
the problem size, which decreases storage requirements. This way overcomes an impossibility of
dynamical declarations in the Fortran 77 language.

3. The UFO system is open. When a new class of optimization problems or optimization methods
has to be included, one only needs to change the system templates and prepare new modules. The
control program is composed of individual modules by using specifications in the first phase. This
fact allows us to create a great number of various optimization methods and their modifications.

In the third phase, the control program is translated by using a Fortran 77 compiler and a final program
is linked by using library modules. In the fourth phase, the final program is executed and thus results
which can be viewed by using extensive output means are obtained.



The above conception is enabled by a special form of source modules. These modules usually consist
of two parts, the interface template and the Fortran 77 realization. The interface template is used by
the UFO preprocessor only and it serves for the control program generation (the part of control program
corresponding to a given module is coded in the template). These templates also contain knowledge
bases for an automatic selection of the optimization method. If the UFO system has to be extended then
usually only templates, which do not need to be compiled, are changed. Besides interface templates,
which are a part of source modules, special templates controlling the UFO preprocessor exist. A batch
input file written in the UFO control language is one of these special templates.

The UFO macroprocessor works in two stages. In the first pass, the file P.TMP is created. This file is
a control program ancestor containing some macroinstructions and macrovariables which are replaced in
the second pass. The control program P.FOR is the result of the second pass.

1.2. Execution of the UFO system

The UFO system contains three basic procedures GENER, COMPIL and UF0GO. The UFO preprocessor
is called if the statement

GENER input_name

is typed. Then the control program, written in the Fortran 77 language, is obtained. Furthermore, the
compilation of the control program, followed by its loading and executing, is started if the statement

COMPIL output_name
is typed. Finally, all the UFO system phases are performed if the statement
UFOGO problem name

is typed. Here input name is the first part of the batch file name input name.UFO that is used as
a batch input for the control program generation, output_name is the first part of the text file name
output_name.QUT that is used as a text output from the UFO system and problem name is the first
part of both the batch file name problem name.UF0 and the text file name problem name.QUT. All these
names have to be typed with capital letters in UNIX versions of the UFO system. If GENER and UFOGO
statements do not contain a file name specification, then a full dialogue mode is considered (the batch file
name is STANDARD.UFO in this case) and the standard text file name is P.0OUT. If COMPIL statement does
not contain a file name specification, then the standard text file name is P.0OUT. The UF0GO statement
has the same meaning as two consecutive statements GENER and COMPIL.
First we show how the batch mode proceeds. We suppose that the model function has the form

fF(l‘) = 100(1‘% — xz)z + (21 — 1)2

(the Rosenbrock function) and the starting point is ;1 = —1.2 and x5 = 1.0. If we prepare the batch
input file P.UFO of the form

$SET (INPUT)
X(1)=-1.2D0; X(2)= 1.0DO
$ENDSET
$SET (FMODELF)
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2
$ENDSET
$NF=2
$MOUT=1
$NOUT=1
$BATCH
$STANDARD

and type the statement UFOGO P, then the following results appear in the output file P.0OUT



CLASS = VM - LIt UPDATE = B MODEL = FF HESF = D NF = 2

0 NIT= 40 NFV= 138 NFG= 0 NDC= 0 NCG= 0 F= .504D-13 G= .828D-05
FF = .5038712822D-13
X = .1000000098D+01 .1000000177D+01

(in a PC computer). Batch files are written in the UFO control language. This language is described
in section 4.1. Here we note that a certain experience with the UFO control language can be obtained by
using the demo-files PROBO1.UFO,... PROB20.UFO. These demo-files contain 20 test problems described
in chapter 7. We can solve them by using the statements UFOGO PROBO1,..., UFOGO PROB20.

Besides the batch mode, we can use the full dialogue mode. The full dialogue mode is started if we use
the statement UFOGO (without a batch input file specification). Full dialogue modes (text and graphic)
are described in sections 4.3 and 4.4. An example which demonstrates the text dialogue mode applied to
the Rosenbrock function is given in Appendix A.

Besides basic output files; the UFO system produces additional files which can contain some useful
information. A list of the most important UFO files follows:

P.UFO - Batch input file.

P.TMP - Temporary file containing a control program ancestor generated in the first pass of the
UFO macroprocessor.

P.FOR - Control program generated in the second pass of the UFO macroprocessor (UNIX versions
use the file P.F in this case).

P.0OUT - Text input file.

P.DAT - Stored values of problem variables.

P.DIM - Dimensions of basic problem vectors and matrices.

P.SIF - Messages of the SIF decoder.

P.I - Template given by the SIF decoder.

1.3. The UFO versions for PC computers

There are two UFO versions for PC computers. The MS DOS version requires the Microsoft Fortran
Power Station compiler version 1.0 and it uses the DOS graphic system for the graphic dialogue (Section
4.4) and the graphic screen output (Section 5.3). The Windows (98, NT, 2000) version requires the
Digital Visual Fortran compiler version 5 and higher but it does not contain graphical possibilities at
present. Of course, the UFO system can also be used for PC computers with other compilers. In
this case, the UNIX version of the UFO system has to be applied with procedures GENER, COMPIL and
UFOGO modified for the compiler used. The PC versions are distributed by using the files UFODOS.ZIP
and UFOWIN.ZIP, which contain templates #.I, sample input files *.UF0, sample output files *.0UT,
procedures *.BAT, programs *.EXE and other important files together with the subdirectory F32, which
contains libraries *.LIB. The installation of the UFO system is carried out by putting the *.ZIP file into
the directory UFO and by using the routine PKUNZIP. If the connection to the CUTE test environment
is required, then the subdirectory UFO has to be created and the *.SIF files from the CUTE collection
(page http://www.cse.clrc.ac.uk/Activity/CUTE) have to be copied into this subdirectory.

The PC versions of the UFO system are provided with the special UFO environment, which makes
the use of the UFO system easy. The UFO environment is called by using the statement UFO (program
UF0.EXE). It is controlled by using the “pull-down” menu. The main menu is activated by pressing key
<F10>. The UFO environment contains a source program editor whose control is similar to the Word
Star editor and, therefore, to the most commonly used source program editors under the MS DOS system.
All significant statements of the source program editor are available from the UFO environment menu.

Since the UFO environment menu is clearly understood we do not describe it (the description is given
in [142]). We only show the usual way for operating input files. When the batch mode input file is
prepared by using the source program editor we press key <F10> and find the command Run! in the
UFO environment menu. This command starts the UFO preprocessor and its action corresponds to the
statement UFOGO (with the input file which is loaded in the source program editor). An easier possibility



is pressing keys <Alt-1>. Similarly, pressing keys <Alt-9> has the same effect as the statement GENER
(with the input file which is loaded in the source program editor). Furthermore, if the control program
P.FOR is loaded in the source program editor, pressing keys <Alt-3> has the same effect as the statement
COMPIL and pressing keys <Alt-5> causes an exit from the UFO environment.

1.4. The UFO versions for UNIX workstations

The UNIX versions of the UFO system are distributed by using the files ufo.tar.gz, for.tar.gz,
bel.tar.gz and the procedure instal. File ufo.tar.gz contains templates *.I, sample input files
* . UF0, sample output files *.0UT, procedures and other important files. File for.tar.gz contains the
UFO source modules #.F. File bel.tar.gz contains the BEL (UFO preprocessor) source modules *.F.
The installation of the UFO system is carried out by putting these files into the directory ufo and by using
the statements instal SGI, instal DIG, instal SUN and instal HP, for Silicon Graphic, Digital, Sun
and Hewlett Packard workstations, respectively (the Fortran 77 compiler is assumed). If the connection
to the CUTE test environment is required, then the subdirectory ufo has to be created and the *.SIF
files from the CUTE collection (page http://www.cse.clrc.ac.uk/Activity/CUTE) have to be copied
into this subdirectory. The UNIX versions of the UFO system do not contain graphical possibilities at
present.

1.5. Suggestions for beginners

If we want to solve a particular optimization problem, then the best way for understanding the UFO
system is to find a similar problem in the list of sample problems (Chapter 7). This sample problem
can be solved typing UFOGO PROBxx (xx is the number of the sample problem). After solving the sample
problem, we can modify the batch input file PROBxx.BAT to describe our problem. Basic suggestions
concerning the description of optimization problems are given in Chapter 2 and the most important
features of the UFO control language are described in Chapter 4. Optimization methods need not be
selected by user, the system automatically chooses a suitable method. On the other hand, if the user
is familiar with optimization methods, then the method can be selected by using suggestions given in
Chapter 3. Information about output possibilities can be found in Chapters 5 and special tools of the
UFO system are described in Chapter 6.



2. Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an
objective function F' : R” — R over a set X C R". The objective function can have several forms
determined using the macrovariable S MODEL:

$MODEL="FF’ -
$MODEL="FL’ -
$MODEL="FQ’ -
$MODEL="AF" -
$MODEL="AQ’ -
$MODEL="AP’ -
$MODEL="AM’ -

General optimization. In this case

F(x) = £f" ()
where f¥ : R* — R is a real valued, so-called model function

Linear optimization. In this case

) =% (7 + Y o)

where ', gF' 1 <i < n, are real coefficients.

Quadratic optimization. In this case

i=1 ji=1

where f£', gF' 1 <i<n, hi

ij»1 <1< n, 1 <j<n, are real coefficients.

Sum of function minimization. In this case

F(e)=) fi'(2)

where f,f :R" — R, 1 <k < nyu, are real valued, so-called approximating functions.

Sum of square minimization. In this case

k=1
where f## : R* — R, 1 < k < ny, are real valued, so-called approximating functions.

Sum of power minimization. In this case

k=1

where f,f R — R, 1 <k < nyu, are real valued, so-called approximating functions
and 1 < r < 0o is a real exponent.

Minimization of maximum (minimax). In this case

P(e) = max |fi (o)

where f,f :R" — R, 1 <k < nyu, are real valued, so-called approximating functions.



$MODEL="DF’ - Minimization of the general integral criterion with respect to the state equations. In
this case

max

tA
F($) = / fA($a yA(l‘,tA),tA) th + fF($a yA(xatﬁax)atﬁax)
3

min
A

and

dya(z,ta)

DA = PP gale ) ta), ot @ 5T = P (1)
A

where f4 : RPT75+!l . Ris a real valued, smooth, so-called subintegral function, f¥ :
RP7e+l . Ris a real valued, smooth, so-called terminal function, f¥ : grtne+l
R"% is a real valued, smooth, so-called state function and f¥ : R® — R"% is a real
valued, smooth, so-called initial function.

$MODEL="DQ’ - Minimization of the sum of square integral criterion with respect to the state equa-
tions. In this case

1 D3 g A E 2 1 - E/ A max EN2
T §/t2nm Z_;w Ml ) = u ) dtat 5;% (v (2, 05) = yi7)
and

dy x’t min
% = [P(e, yale, ta), ta), v (2, 057) = (@)

where fF : RPTnetl . R7E is a real valued, smooth, so-called state function and
¥ i R — R"® is a real valued, smooth, so-called initial function.

$MODEL="DE’ - Solving an initial value problem for a system of ordinary differential equations. In

this case

dya(ta)

i = fE(ya(ta), ta), y*(3") = y3in
A

where fF : R?E+1 . R"E s a real valued, smooth, so-called state function.

$MODEL="NE’ - Solving a system of nonlinear functional equations

fA(x) =0, 1<k<nyu
where ny = n (SMODEL="NE’ is equivalent to SMODEL="AQ’ if n4 = n).

The model function f¥ : R® — R can have several types of Hessian matrices specified by the
macrovariable $HESF:

SHESF="D’ - Dense Hessian matrix.
$HESF="S’ - Sparse Hessian matrix with a general pattern.
$HESF="N’ - Hessian matrix is not used.

The default option is $HESF="D’. The approximating functions f,f : R — R, 1 <k < ny, can have
several types of Jacobian matrices specified by the macrovariable $JACA:

SJIACA="D’ - Dense Jacobian matrix.
$JACA="S’ - Sparse Jacobian matrix with a general pattern.
$SJACA="N’ - Jacoblan matrix is not used.

If the approximating functions are used then we can choose several types of the Hessian matrix represen-



tation. These types are again specified by the macrovariable $HESF:

$HESF="D’ - Dense Hessian matrix.

$HESF="S’ - Sparse Hessian matrix with a general pattern.
$HESF="B’ - Sparse Hessian matrix with a partitioned pattern
$HESF="N’ - Hesslan matrix is not used.

If $JACA="D’, then it must be either SHESF="D’ or SHESF="N". If $JACA="S’, we can specify all types
of Hessian matrices (SHESF="D’, SHESF="S’, SHESF="B’, SHESF="N"). The representation $HESF="B’
usually leads to more expensive matrix operations. Therefore, we recommend to prefer the choice
$HESF="S’ against the choice $HESF="B’.

The subintegral function, the terminal function, the state function and the initial function, which
appeared in the case of dynamical systems optimization, are considered to be dense. Therefore we cannot
use the specifications $SHESF="S’ or SHESF="B’ in this case.

The set X C R" can be the whole R™ (unconstrained case) or defined by box constraints

l‘ZL < if 7€l

r, < 2Y if iel
l‘ZL < x < l‘ZU if €13
l‘ZL xz; if 7€y

where L1 UL, UI3UI; C {i € N :1<i<n}, or by general linear constraints

n

k< ngclxz if kel
i=1
n
ngcixi < ¢ if k€L
i=1
n

k< ngclxz < ep if ke Ls
i=1
n

o ngclxz if kels
i=1

where g%, 1 <k < n¢, 1 <i<n, are real coefficients and Ly ULy ULz ULs C{k€ N:1<k <nc},
or by general nonlinear constraints

k< fE (%) if ke
fEx) < & if ke Ny

L C U :

e < fix) < ¢ if kKEN3

k= fE(x) if k€ Ns

where fkc :R" — R, 1 <k < ng, are real valued, smooth, so-called constraint functions and Ny U N5 U
N3UNs C{k e N:1<k<n¢c}. The constraint functions fkc :R" — R, 1 <k <ng, can have several
types of Jacobian matrices specified by the macrovariable $JACC:
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$JACC=D’ - Dense Jacobian matrix.
$JACC=S - Sparse Jacobian matrix with a general pattern.

If $JACC="D’, then it must be SHESF="D’ or $HESF="N". If $JACC="S’, then it must be $HESF="S’
or $HESF="N".

There are several limitations in the current version of the UFO system:

1. Minimization of maximum (minimax) and nonsmooth optimization are not implemented in the
sparse case.

2. Minimization of dynamical systems 1s not implemented in the sparse case.

3. Usually the UFO system serves for local optimization. Global optimization can be used only for
relatively small (n < 20) dense problems that are unconstrained or contain box constraints.

These limitations will be consecutively removed in subsequent versions of the UFO system.

In the rest of this report we will use the notation NF, NA| NC instead of n, n4, n¢ and X, FF(X),
GF(X), HF(X), FA(KA;X), GA(KA;X), FC(KC;X), GC(KC;X) instead of z, ff'(z), ¢¥' (), A (z), f(2),
g (z), [E (), g¢ (x). This new notation corresponds to that of the variables and of the fields in the UFO
system.

2.1. Specification of variables

First we must specify the number of variables using the statement $NF=number_of_variables. If there
are no box constraints we set $KBF=0. In the opposite case we set SKBF=1 or $KBF=2. If $KBF=1
or $KBF=2, then

X(T) - unbounded LFIX(T) =0
XL(I) < X(I) VI IX(D) = 1

X(1) < XU(I) ,if IX(I) = 2
XL() < X(I) < XU(I) ,ifIX(I) = 3
X(T) - constant LFIX(T) =5

where 1< I< NF. The option $KBF=2 must be chosen if IX(I)=3 for at least one index 1< I< NF. Then
two different fields XL(I) and XU(T), 1< I< NF are declared. In the opposite case we set $KBF=1 and
only one common field XL(I)=XU(I), 1 < I< NF is declared.

The initial values of variables X(I), 1< I< NF, types of box constraints IX(I), 1< I< NF, and lower
and upper bounds XL(I) and XU(IT), 1< I< NF, can be specified using macrovariable SINPUT. The
default values are IX(I)=0 and XL(I)=XU(I)=0, 1< I< NF. For example:

$KBF=2; $NF=4
$SET(INPUT)
X(l):Xl
X(2)=xs; IX(2)=1; XL(1)=x}
X(3)=xz; IX(3)=3; XL(3)=xkt; XU(3)=xY
X (4)=x4; IX(4)=5
$ENDSET

The UFO system allows us to use a scaling of variables (for instance if the values of variables differ
very much in their magnitude). We set:
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$NORMF=1 - Scaling parameters XN(I), 1< I< NF, are determined automatically so that
X(I)/XN(I)=1, 1<IKNF, for the initial values of variables.
$NORMF=2 - Scaling parameters must be specified by the user by means of the macrovariable

$INPUT.
The scaling of variables is recommended only in exceptional cases since 1t increases the computational
time and storage requirements. The scaling of variables is suppressed if SNORMF=0 (this value is
default). The scaling of variables is not permitted in the case of general constraints (if KBC>0).

2.2. Specification of the model function (dense problems)

If the macrovariable $MODEL is not specified or if $MODEL="FF’, then the objective function is
defined by the formula

F(X) = 4+ FF(X) if $TEXT = 0 (minimization)
or
F(X) = — FF(X) if $TEXT = 1 (maximization)

Option $IEXT=0 is defauls.

The model function FF(X) must be defined by the user either directly in the full dialogue mode, or
by using corresponding macrovariables in the batch (or mixed) mode. The value of the model function
is specified by using the macrovariable SFMODELF:

$SET(FMODELF)

FF = value FF(X)

(for given values of variables X(T), 1< I< NF)
$ENDSET

The first derivatives of the model function are specified by using the macrovariable $§GMODELF:

$SET(GMODELF)
GF(1) = derivative 9FF(X)/ 0X(1)
GF(2) = derivative 9FF(X)/ 0X(2)

GF(NF) = derivative OFF(X)/ 0X(NF)
(for given values of variables X(I), 1<I<NF)
$ENDSET
The second derivatives of the model function are specified by using the macrovariable SHMODELF. If
$HESF="D’, the Hessian matrix is assumed to be dense and we specify only its upper half:

$SET(HMODELF)
HF(1) = derivative 9?FF(X)/ 0X(1)?
HF(2) = derivative ?FF(X)/ 0X(1)0X(2)
HF(3) = derivative 0?FF(X)/ 0X(2)?
HF(4) = derivative 9?FF(X)/ 9X(1) 0X(3)
HF(5) = derivative 9*FF(X)/ 0X(2) 9X(3)
HF(6) = derivative 0?FF(X)/ 0X(3)?

HF(NF*#(NF+1)/2) = derivative 0?FF(X)/ 0X(NF)?
(for given values of variables X(I), 1<I<NF)
$ENDSET

If the macrovariables $§GMODELF or SHMODELF are not defined, we suppose that the first or the
second derivatives of the model function are not given analytically. In this case, they are computed
numerically by using the UFO system routines whenever it is required. If it is advantageous to compute
the first derivatives of the model function FF(X) together with its value, we can replace the set of models
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$FMODELF, $GMODELF by the common model $FGMODELF. Similarly we can replace the set of
models $FMODELF, $GMODELF, $HMODELF by the common model SFGHMODELF.

To improve the efficiency of the computation, we can specify additional information about the model
function FF(X). The first piece of information, useful for an automatic choice of the optimization method,
is the computational complexity specified by the macrovariable $KCF:

$KCF=1 - Evaluation of the model function FF(X) is very easy (it requires O(n) simple oper-
ations at most).

$KCF=2 - Evaluation of the model function FF(X) is of medium complexity (it at least requires
O(n) complicated operations and O(n?) simple operations at most).

$KCF=3 - Evaluation of the model function FF(X) is extremely difficult (it at least requires

O(n?) complicated or O(n?) simple operations).

The option $KCF=2 is default. An additional useful piece of information is the analytical complexity
(differentiability and conditioning), which is specified by the macrovariable $KSF:

$KSF=1 - The model function FF(X) is smooth and well-conditioned.
$SKSF=2 - The model function FF(X) is smooth but ill-conditioned.
$KSF=3 - The model function FF(X) is nonsmooth.

The option $KSF=1 is default. Other specifications which can improve the computational efficiency and
robustness of optimization methods are a lower bound of the objective function values and an upper bound
of the stepsize. Both these values depend on the definition of the objective function and can be specified
by the statements $SFMIN=Ilower_bound (for the objective function) and $XMAX=upper_bound (for the
stepsize). We recommend a definition of $FMIN whenever it is possible and a definition of $XMAX
whenever the objective function contains exponentials.

If SMODEL="FL’, we suppose the model function to be linear of the form

NF
FF(X) = FF + Y GF(I) » X(I)
I=1
In this case we need not specify the value and the first derivatives of the model function by the macrovari-
ables $FMODELF and $GMODELF as in the general case. Instead, we must specify the coefficients FF
(constant value) and GF(I), 1< I< NF, (constant gradient) using the macrovariable SINPUT:

$ADD(INPUT)
FF = constant value
GF(1) = constant derivative 9FF(X)/0X(1)
GF(2) = constant derivative IFF(X)/0X(2)

GF(NF) = constant derivative 0FF(X)/0X(NF)
SENDADD

If SMODEL="FL’, we usually assume that either box constraints or general linear constraints are given.
In this case the optimization problem is the linear programming problem.
If SMODEL="FQ’, we suppose the model function to be quadratic of the form

NF LR
FF(X)=FF + GF(I) = X(I) + = HF(K) * X(I) * X(J
(X) IZ:;() M 2;;()() )
where K=MAX(LD)*(MAX(I,J)-1)/24+MIN(I,J). In this case we need not specify the value, the first
derivatives and the second derivatives of the model function by the macrovariables SFMODELF, $GMOD-
ELF and $HMODELF as in the general case. The coefficients FF (constant value) and GF(I), 1< I<
NF, (constant gradient) are specified in the same way as in the linear case. The coefficients HF(K), 1<
K< NF#(NF+1)/2, (the constant Hessian matrix) must be specified using the macrovariable $INPUT.
If SHESF="D’, the Hessian matrix is assumed to be dense and we specify only its upper half:
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$ADD(INPUT)
HF(1) = constant derivative 9?FF(X)/0X(1)?
HF(2) = constant derivative 9?FF(X)/9X(1)d X(2)
HF(3) = constant derivative 9?FF(X)/0X(2)?
HF(4) = constant derivative 9?FF(X)/9X(1)d X(3)
HF(5) = constant derivative 9?FF(X)/9X(2)d X(3)
HF(6) = constant derivative 9?FF(X)/0X(3)?

HF(NF*(NF+1)/2) = constant derivative §?FF(X)/0X(NF)?
$ENDADD

If SMODEL="FQ’, we usually assume that either box constraints or general constraints are given. In
this case the optimization problem is the quadratic programming problem.

If the model function is linear or quadratic, then the options $KCF and $KSF need not be defined
since they are not used.

2.3. Specification of the model function (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Hessian matrix HF. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case we use the option $HESF="S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Hessian matrix is specified by using the macrovariable $INPUT. Two integer vectors ITH
and JH are used where TH(I), 1< I< NF+1, are pointers and JH(K), 1< K< M, are indices of nonzero
elements. Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in
rows. The number of nonzero elements must be specified using the statement $M=number_of_elements.
The number of nonzero elements could be greater than is required (twice say) since it is used for the
declaration of working fields. For example, if we have the Hessian matrix

hfla hfZa hf?ﬂ Oa hf:’)
hgl ’ th ’ Oa h§4a 0

) 42 ) 44> ’
hgl ’ Oa h§3’ Oa th

then we have to set:

$NF=5
$M=20 (the minimum required value is M=10)
$ADD(INPUT)
1H(1)—1~ 1H(2)=5; IH( )=7
[H(4)=9; [H(5)=10; [H(6)=11
JH(1)=1; JH(2)=2; JH(3)=3; JH(4)=5; JH(5)=2
JH(6)=4; JH(7)=3; JH(8)=5; JH(9)=4; JH(10)=b
$ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero.

As in the case of the dense problem, the second derivatives of the model function can be specified by
using the macrovariable SHMODELF. If $HESF="S’, only nonzero elements of the upper half (including
the diagonal) of the Hessian matrix are specified. For the above example the specification has the form:
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$SET(HMODELF)
HF(l):hﬂ; HF(Q):hﬂ; HF(3):hf3§ HF(4):hf5
HF(5)=hiy; HF(6)=hi,; HF(T)=hi3; HF(8)=hi;
HF(9)=h{y; HE(10)=h;

SENDSET

If the model function is quadratic (i.e. if $MODEL="FQ’) and if SHESF="S’, then the coefficients
HF(K), 1< K< M, (constant sparse Hessian matrix) must be specified by using the macrovariable $IN-
PUT. If the matrix given in the above example is the constant sparse Hessian matrix, we use the following
specification:

$ADD(INPUT)
HF(1)=hT,; HF(2)=hE,; HF(3)=h%}; HF(4)=h{}
HF(5)=h%,; HF(6)=hL,; HF(7)=h%,; HF(8)=hi,
HF(9)=hjy; HE(10)=h{;

$ENDADD

2.4. Objective functions for discrete approximation
If we set SMODEL="AF’, then we suppose that the objective function F(X) has this form:

NA
F(X) = ) FA(KA;X) if KBA =0
KA=1
or

NA
F(X)= ) AW(KA) # (FA(KA; X) — AM(KA)) if KBA =1
KA=1
where FA(KA;X), 1< KA< NA, are approximating functions. This form of the objective function is
very useful in large-scale optimization when the approximating functions FA(KA;X), 1< KA< NA| are

assumed to have sparse gradients.
If we set SMODEL="AP’, then we suppose that the objective function F(X) has this form:

NA
1
F(X)= = 3 [FA(KA; X)| 4R if KBA =0
R
KA=1
or

F(X) = ~ % |AW(KA) * (FA(KA; X) — AM(KA))| #*R  if KBA = 1

R
KA=1

where FA(KA;X), 1< KA< NA, are approximating functions, and R>1 is a real exponent. The value
of the exponent is specified by the choice SREXP=R (default value is SREXP=2). Since the most used
value of the exponent is R=2, and since the computations are the simplest and the most efficient for such
a choice, we can use the specification $SMODEL="AQ’ in this case (minimization of the sum of squares).
Moreover, SMODEL="AQ’ is formally set whenever we choose $MODEL="AP’ and $SREXP=2.

If we set SMODEL="AM’, then we suppose that the objective function F(X) has the form:

F(X)= max (+FA(KA;X)) if $IEXT = -1
1<KA<NA

F(X) = max (|[FA(KA;X)|) if SIEXT =0
1<KA<NA
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F(X)= max (—FA(KA;X)) if $IEXT = +1
1<KA<NA

for $KBA=0, or

F(X) = | _max  (FAW(KA) « (FACKA; X) — AM(KA))) if SIEXT = -1

F(X)= _max_ (JAW(KA) + (FACKA; X) — AM(KA))|) if SIEXT = 0

F(X) = 1SIIglAasxl\IA(—AVV(KA) * (FA(KA; X) — AM(KA))) if SIEXT = +1
for $KBA=1, where FA(KA;X), 1< KA< NA, are approximating functions. The default value is
SIEXT=0 (the minimax or the Chebyshev approximation).

The option $KBA serves as a decision between a simple objective function and a more complicated
one. The simple objective function uses no additional fields while the more complicated one uses two
additional fields at most, AM and AW. Vector AM usually contains frequently used observations which
can be included into the functions FA(KA;X), 1< KA< NA| in the case of the simple objective function.
Observations AM(KA), 1< KA< NA, are specified by using the macrovariable $INPUT. Their default
values are AM(KA)=0, 1< KA< NA. Vector AW serves for possible scaling specified by the option
$NORMA:

$NORMA=0 - No scaling is performed. In this case AW(KA)=1, 1< KA< NA.

$NORMA=1 - Scaling parameters are determined automatically so that AW(KA)=|AM(KA)|, 1<
KA< NA.

$NORMA=2 - Scaling parameters must be specified by the user by means of the macrovariable
$INPUT.

The number of approximating functions NA must be specified, in all the above cases, by using the
statement $NA=number_of_functions.

2.5. Specification of the approximating functions (dense problems)

The approximating functions FA(KA;X), 1< KA< NA, must be defined by the user either directly in
the full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values
of the approximating functions are specified by using the macrovariables SFMODELA or $FMODELAS:

$SET(FMODELA)

FA = value FA(KA;X)

(for a given index KA and given values of variables X(I), 1< I< NF)
$ENDSET

or

$SET(FMODELAS)
AF(1) = value FA(1;X)
AF(2) = value FA(2;X)

AF(NA) = value FA(NA;X)
$ENDSET

The first derivatives of the approximating functions are specified by using the macrovariables $§GMOD-

ELA or SGMODELAS:
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$SET(GMODELA)
GA(1) = derivative 9FA(KA;X)/0X(1)
GA(2) = derivative 9FA(KA;X)/0X(2)

GA(NF) = derivative 9FA(KA;X)/0X(NF)
(for a given index KA and given values of variables X(I), 1< I< NF)
$ENDSET

or

$SET(GMODELAS)
AG(1) = derivative 9FA(1;X)/0X(1)
AG(2) = derivative 9FA(1;X)/0X(2)
AG(NF) = derivative OFA(1;X)/9X(NF)
AG(NF+1) = derivative dFA(2;X)/0X(1)
AG(NF+2) = derivative dFA(2;X)/0X(2)

AG(NA«NF) = derivative FA(NA;X)/0X(NF)
$ENDSET

The second derivatives of the approximating functions are specified by using the macrovariables $HMOD-
ELA or SHMODELAS. If $JACA="D’, the Hessian matrices are assumed to be dense and we specify only
their upper half:

$SET(HMODELA)
HA(1) = derivative 9?FA(KA;X)/0X(1)?
HA(2) = derivative 0?FA(KA;X)/0X(1)0X(2)
HA(3) = derivative 9?FA(KA;X)/0X(2)?
HA(4) = derivative 0?FA(KA;X)/0X(1)0X(3)
HA(5) = derivative 0?FA(KA;X)/0X(2)0X(3)
HA(6) = derivative 9?FA(KA;X)/0X(3)?

HA(NF*(NF+1)/2) = derivative 0?FA(KA;X)/0X(NF)?
(for a given index KA and given values of variables X(I), 1< I< NF)

$ENDSET
or

$SET(HMODELAS)
AH(1) = derivative §?FA(1;X)/9X(1)?
AH(2) = derivative §?FA(1;X)/9X(1)0X(2)
AH(3) = derivative §?FA(1;X)/9X(2)?
AH(4) = derivative §?FA(1;X)/9X(1)0X(3)
AH(5) = derivative §?FA(1;X)/9X(2)0X(3)
AH(6) = derivative §?FA(1;X)/9X(3)?
AH(NF*(NF+1)/2) = derivative §?FA(1;X)/0X(NF)?
AH(NF+(NF+1)/2+1) = derivative §*FA(2;X)/0X(1)?
AH(NF+(NF+1)/242) = derivative §?FA(2;X)/9X(1)0X(2)
AH(NF+(NF+1)/243) = derivative §?FA(2;X)/9X(2)?

AH(NA*NF*(NF+1)/2) = derivative 0?FA(NA;X)/9X(NF)?
$ENDSET
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If the macrovariables $GMODELA and $GMODELAS or $HMODELA and $SHMODELAS are not
defined, we suppose that the first or the second derivatives of the approximating functions are not given
analytically. In this case, they are computed numerically by using the UFO system routines, when-
ever it i1s required. If it is advantageous to compute the first derivatives of the approximating functions
FA(KA;X), 1< KA< NA, together with their values, we can replace the set of models $SFMODELA,
$GMODELA by the common model $FGMODELA and the set of models $FMODELAS, $GMODE-
LAS by the common model $FGMODELAS. Similarly we can replace the set of models $SFMODELA,
$GMODELA, $SHMODELA by the common model $FGHMODELA and the set of models $FMODELAS,
$GMODELAS, $SHMODELAS by the common model $FGHMODELAS.

To improve the efficiency of the computation, we can specify additional information about the approx-
imating functions FA(KA;X), 1< KA< NA. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCA:

$KCA=1 - Evaluations of the approximating functions FA(KA;X), 1< KA< NA, are very easy
(they require O(n) simple operations at most).
$KCA=2 - Evaluations of the approximating functions FA(KA;X), 1< KA< NA| are of medium

complexity (they at least require O(n) complicated operations and O(n?) simple op-
erations at most).
$KCA=3 - Evaluations of the approximating functions FA(KA;X), 1< KA< NA, are extremely

difficult (they at least require O(n?) complicated or O(n?®) simple operations).

The option $KCA=2 is default. An additional useful piece of information is the analytical complexity
(conditioning) which is specified by the macrovariable SKSA:

$KSA=1 - The approximating functions FA(KA;X), 1< KA< NA, are smooth and well-
conditioned.

$KSA=2 - The approximating functions FA(KA;X), 1< KA< NA, are smooth but ill-
conditioned.

$KSA=3 - The approximating functions FA(KA;X), 1< KA< NA, are nonsmooth.

The option $KSA=1 is default.
If some of the approximating functions are linear and have the form

NF
FA(KA;X) = > AG((KA — 1)« NF + 1)  X(I)

I=1
we can specify them separately. Then the number of linear approximating functions must be specified by
using the statement $NAL=number_of_linear_functions (default value is $NAL=0). We always suppose
that the first NAL approximating functions are linear. Then the coefficients AG((KA-1)«NF+1), I< KA<
NAL, 1< I< NF, are specified using the macrovariable $INPUT, and the macrovariables $FMODELA
or $FMODELAS, $GMODELA or $GMODELAS, $HMODELA or SHMODELAS are used only for the
specification of the nonlinear approximating functions FA(KA;X), NAL<KA< NA.

2.6. Specification of the approximating functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix AG. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case we use the option $JACA="S’ which means that the sparsity
pattern 1s specified. All other specifications remain the same as in the case of dense problems. The
sparsity pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer
vectors TAG and JAG are used where TAG(KA), 1< KA< NA+1, are pointers and JAG(K), 1< K<
TAG(NA+1)-1, are indices of nonzero elements. Nonzero elements are ordered by the gradients of the
approximating functions. The number of nonzero elements must be specified by using the statement
$MA=number_of_elements. For example, if we have the gradients
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GA(LX) =[g74,0 ,0 g7y,
GA(2;X) = [0 ,935,0 ,g34],
GA(3;X) =0 ,0 ,g33,0 ],
GA(4;X) = [g4), 935 945, 0 ],

GA(G;X) = [0 ,0 ,g25, g24],

and the Jacoblan matrix

91141 ;0 ,0 ) gfél

0 ,g§42 ;0 ag§44
AGX)=| o 0 ¢4 0
95141 ’95142 agf:s ;0

0 0 Lgdy g

then we have to set:

$NA=H
$MA=10
$ADD(INPUT)
IAG(1)=1; IAG(2)=3; IAG(3)=5
IAG(4)=6; IAG(5)=9; IAG(6)=11
JAG(1)=1; JAG(2)=4; JAG(3)=2; JAG(4)=4; JAG(5)=3
JAG(6)=1; JAG(T)=2; JAG(8)=3; JAG(9)=3; JAG(10)=4
$ENDADD

As in the case of the dense problem, the first derivatives of the approximating functions can be specified
by using the macrovariables $§GMODELA or $§GMODELAS. If $JACA="S’, only nonzero elements of the
gradients are specified. For the above example the specifications have the form

$SET(GMODELA)
IF (KA.EQ.1) THEN
GA(1) = OFA(1;X)/0X(1)
GA(4) = OFA(1;X)/0X(4)
ELSE IF (KA.EQ.2) THEN
GA(2) = OFA(2;X)/0X(2)
GA(4) = OFA(2;X)/0X(4)
ELSE IF (KA.EQ.3) THEN
A(3) = OFA(3;X)/0X(3)
ELSE IF (KA.EQ.4) THEN
GA(1) = OFA(4;X)/0X(1)
GA(2) = OFA(4;X)/0X(2)
GA(3) = OFA(4;X)/0X(3)

>}

ELSE
GA(3) = OFA(5:X)/0X(3)
GA(4) = OFA(5:X)/0X(4)
ENDIF
SENDSET

19



or

$SET(GMODELAS)

AG(1) = GFA(1:X)/9X(1)
AG(2) = OFA(1:X)/0X(4)
AG(3) = OFA(2:X)/0X(2)
AG(4) = OFA(2:X)/0X(4)
AG(5) = OFA(3;X)/0X(3)
AG(6) = OFA(4:X)/0X(1)
AG(7) = OFA(4;X)/0X(2)
AG(8) = OFA(4;X)/0X(3)
AG(9) = OFA(5;X)/0X(3)
AG(10) = 9FA(5;X)/0X(4)

$ENDSET

As in the case of the dense problem, the second derivatives of the approximating functions can
be specified by using the macrovariables SHMODELA or $HMODELAS. If $JACA="S’, only nonzero

elements of the Hessian matrices are specified. For the above example the specifications have the form

$SET(HMODELA)
IF (KA.EQ.1) THEN
HA( ) = 0?FA(1;X)/9X(1)?
HA(2) = §°FA(1;X)/0X(1)0X(4)
HA(3) = 0°FA(1;X)/0X(4)?
ELSE IF (KA.EQ.2) THEN
HA(1) = 0°FA(2;X)/0X(2)?
A(2) = 9?FA(2;X)/0X(2)0X(4)
HA(3) = 0°FA(2;X)/0X(4)?
ELSE IF (KA.EQ.3) THEN
HA(1) = 0°FA(3;X)/0X(3)?
ELSE IF (KA.EQ.4) THEN
HA(1) = 0°FA(4;X)/0X(1)?
HA(2) = 0°FA(4;X)/0X(1)0X(2)
(3) = 9?FA(4;X)/0X(2)?
A(4) = 9?FA(4X)/0X(1)0X(3)
(5) = 9*FA(4;X)/0X(2)9X(3)
(6) = 9*FA(4;X)/0X(3)?
ELSE
HA(1) = 0°FA(5;X)/0X(3)?
HA(2) = 0°FA(5;X)/0X(3)0X(4)
HA(3) = 0°FA(5;X)/0X(4)?
ENDIF
$ENDSET
$SET(HMODELAS)
AH( ) = O?FA(1;X)/9X(1)?
AH(2) = §°FA(1;X)/0X(1)0X(4)
AH(3) = 0?FA(1;X)/0X(4)*
AH(4) = 62FA(2,X)/8X(2)2
AH(5) = 9°FA(2;X)/0X(2)0X(4)
AH(6) = §°FA(2;X)/0X(4)?
AH(7) = 82FA(3;X)/9X(3)?
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AH(8) = 92FA(4;X)/0X(1)?
AH(9) = 92FA(4;X)/0X(1)8X(2)
AH(10) = 82FA(4;X)/0X(2)?
AH(11) = 92FA(4:X)/0X(1)0X(3)
AH(12) = 92FA(4:X)/0X(2)0X(3)
AH(13) = 92FA(4;X)/0X(3)?
AH(14) = 82FA(5;X)/0X(3)?
AH(15) = 92FA(5:X)/0X(3)0X(4)
AH(16) = 82FA(5;X)/0X(4)?
$ENDSET

Note that the dimensions of arrays HA or AH must be specified by the statement $MHA =dimension_of_HA
or $MAH=dimension of _AH.

If some of the approximating functions are linear (i.e. if SNAL>0) and if $JACA="S’, then the
coefficients AG(K), 1< K< TAG(NAL+1)—1 (constant part of the sparse Jacobian matrix), must be
specified by using the macrovariable $INPUT. If the matrix given in the above example is the constant
sparse Jacobian matrix, we use this specification:

SADD(INPUT)
AG(1)=gih; AG(2)=g7y; AG(3)=gs%; AG(4)=g%,
AG(5)=g55; AG(6)=g11; AG(T)=gs; AG(8)=gss
AG(9)=gés; AG(10)=g2,

$ENDADD

There is another possibility which can be useful when all approximating functions are linear. It is based
on the usage of special procedure UKMAI1 which serves for a direct input of individual Jacobian matrix
elements. The procedure UKMAIL is formally called by using the statement

CALL SUKMAIL(K,LGAKI) or  $SETAG(K,I,GAKI)

where K is an index of a given approximating function (a row of the Jacobian matrix), I is an index of
a given variable (a column of the Jacobian matrix), and GAKI is the numerical value of the element
IFA(K;X)/0X(I). For the example given above we can write:

$ADD(INPUT)
$SETAG(1,1,92)
$SETAG(1,4,9%,)
$SETAG(2,2,94)
$SETAG(2,4,g2 )
$SETAG(3, 3,g3 )
$SETAG (4, ,g41)
$SETAG(4,2,g42)
$SETAG(4, 3,g4 )
$SETAG(5,3,94,)
$SETAG (5,4,94,)

$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the fields IAG
and JAG beforehand.

If we use the option $JACA="S’, then we can specify a form of the objective function sparse Hessian
matrix. There are four possibilities:
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SHESF="D’ - Dense Hessian matrix.

$HESF="B’ - Partitioned sparse Hessian matrix. This matrix is a sum of simple Hessian matrices
which correspond to the individual approximating functions. Only nonzero blocks are
stored.

$HESF="S’ - General sparse Hessian matrix (the same as the model function Hessian matrix
corresponding to the option SHESF="S").

$HESF="N’ - Hessian matrix is not used.

This specification only serves for an internal realization of optimization methods and has no influence on
the user’s input. The default option is SHESF="D’.

2.7. Objective functions for optimization of dynamical systems

If we set SMODEL="DF’, then we suppose that the objective function F(X) has this form:

TAMAX
F(X) = / FA(X, YA(TA), TA) dTA + FF(X, YA(TAMAX), TAMAX)
TAMIN

where FA(X,YA(TA),TA) is asmooth subintegral function and FF(X,YA(TAMAX), TAMAX) is a smooth

terminal function. At the same time

dYA(KE; TA)
dTA

where FE(KE;X,YA(TA),TA), 1< KE< NE, are smooth state functions and FY(KE;X), 1< KE< NE,
are smooth initial functions.
If we set SMODEL="DQ’, then we suppose the objective function F(X) has the form:

= FE(KE; X, YA(TA), TA), YA(KE; TAMIN) = FY(KE; X)

1 TAMAX NE
F(X) = —/ > WE(KE; TA) * (YA(KE; TA) — YE(KE; TA))? dTA
2 TAMIN KE=1
1 NE
+5 3" EW(KE) * (YA(KE; TAMAX) — EY(KE))?
KE=1

At the same time

dYA(KE; TA)
dTA

where FE(KE;X,YA(TA),TA), 1< KE< NE, are smooth state functions and FY(KE;X), 1< KE< NE,
are smooth initial functions.
If we set SMODEL="NO’, then we consider that the initial value problem

= FE(KE; X, YA(TA), TA), YA(KE; TAMIN) = FY(KE; X)

dYA(KE; TA)
dTA
is given where FE(KE;YA(TA),TA), 1< KE< NE, are smooth state functions.

= FE(KE; YA(TA), TA), YA(KE; TAMIN)

In all the above cases, the statement $NE=number_of_differential_equations must be used for the
specification of number of differential equations NE.
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2.8. Specification of the state functions

The state functions FE(KE;X,YA(TA),TA), 1< KE< NE, must be defined by the user either directly
in the full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The
values of the state functions are specified by using the macrovariables $FMODELE or $FMODELES:

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
(for a given index KE, a given vector of variables X,

a given vector of state variables YA(TA) and a given time TA)
$ENDSET

or

$SET(FMODELES)
EF(1) = value FE(1;X,YA(TA),TA)
EF(2) = value FE(2;X,YA(TA),TA)

EF(NE) = value FE(NE;X,YA(TA), TA)
$ENDSET

The first derivatives of the state functions according to the variables are specified by using the macrovari-

ables $GMODELE or $GMODELES:

$SET(GMODELE)
GE(1) = derivative 9FE(KE;X,YA(TA),TA)/0X(1)
GE(2) = derivative 9FE(KE;X,YA(TA),TA)/0X(2)
GE(NF) = derivative 9FE(KE;X,YA(TA),TA)/0X(NF)
(for a given index KE, a given vector of variables X,

a given vector of state variables YA(TA) and a given time TA)
$ENDSET

or

$SET(GMODELES)
EG(1) = derivative 0FE(1;X,YA(TA),TA)/0X(1)
EG(2) = derivative OFE(1;X,YA(TA),TA)/0X(2)

EG(NF) = derivative 9FE(1;X,YA(TA),TA)/0X(NF)
EG(NF+1) = derivative 9FE(2;X,YA(TA),TA)/0X(1)
EG(NF42) = derivative OFE(2;X,YA(TA),TA)/0X(2)

EG(NE*NF) = derivative FE(NE;X,YA(TA),TA)/0X(NF)
$ENDSET

The first derivatives of the state functions according to the state variables are specified by using the
macrovariables SDMODELE or $DMODELES:

$SET(DMODELE)
DE(1) = derivative OFE(KE;X,YA(TA), TA)/0YA(1)
DE(2) = derivative OFE(KE;X,YA(TA), TA)/0YA(2)
DE(NE) = derivative 9FE(KE;X,YA(TA), TA)/0YA(NE)

(for a given index KE, a given vector of variables X,
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a given vector of state variables YA(TA) and a given time TA)
$ENDSET

or

$SET(DMODELES)
ED(1) = derivative 9FE(1;X,YA(TA), TA)/0YA(1)
ED(2) = derivative OFE(1;X,YA(TA), TA)/0YA(2)
ED(NE) = derivative 9FE(1;X,YA(TA),TA)/0YA(NE)
ED(NE+1) = derivative OFE(2;X,YA(TA),TA)/0YA(1)
ED(NE42) = derivative OFE(2;X,YA(TA),TA)/0YA(2)

ED(NE«NE) = derivative OFE(NE;X,YA(TA),TA)/0YA(NE)
$ENDSET

If it is advantageous to compute the first derivatives of the state functions FE(KE;X,YA(TA),TA),
1< KE< NE, together with their values, we can replace the set of models $FMODELE, $GMODELE,
$DMODELE by the common model SFGDMODELE and the set of models $FMODELES, $GMODELES,
$DMODELES by the common model $FGDMODELES. Partially we can replace the models $FMOD-
ELE, SGMODELE or $SFMODELE, $DMODELE or $GMODELE, $DMODELE by the common models
$FGMODELE or $FDMODELE or $GDMODELE, respectively. Similarly we can replace the models
$FMODELES, $GMODELES or $SFMODELES, $DMODELES or $GMODELES, $DMODELES by the
common models $FGMODELES or $FDMODELES or $§GDMODELES, respectively.

If SMODEL="DQ’, we have to define the functions WE(KE;TA) and YE(KE;TA), 1< KE< NE, for
a given index KE and a given time TA. These functions can be specified by using the macrovariable
SFMODELE together with the state function FE(KE;X,YA(TA),TA):

$SET(FMODELE)

FE = value FE(KE;X,YA(TA),TA)

WE = value WE(KE;TA)

YE = value YE(KE;TA)

(for a given index KE, a given vector of variables X,

a given vector of state variables YA(TA) and a given time TA)
$ENDSET

The default values WE(KE;TA)=1 and YE(KE;TA)=0 cannot be specified, they are supposed automat-
ically.

2.9. Specification of the initial functions

The initial functions FY(KE;X), 1< KE< NE, must be defined by the user either directly in the full
dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of
the initial functions are specified by using the macrovariables $FMODELY or $FMODELYS:

$SET(FMODELY)
FE = value FY(KE;X)
(for a given index KE and a given vector of variables X)

$ENDSET
or

$SET(FMODELYS)
EF(1) = value FY(1;X)
EF(2) = value FY(2;X)
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EF(NE) = value FY(NE;X)
$ENDSET

The first derivatives of the initial functions according to the variables are specified by using the macrovari-

ables $SGMODELY or $GMODELYS:

$SET(GMODELY)
GE(1) = derivative 0FY(KE;X)/0X(1)
GE(2) = derivative 0FY(KE;X)/0X(2)

GE(NF) = derivative 0FY(KE;X)/0X(NF)
(for a given index KE and a given vector of variables X)

$ENDSET
or

$SET(GMODELYS)
EG(1) = derivative 0FY(1;X)/0X(1)
EG(2) = derivative 0FY(1;X)/0X(2)

EG(NF) = derivative 9FY(1;X)/0X(NF)
EG(NF+1) = derivative 0FY(2;X)/0X(1)
EG(NF+42) = derivative 0FY(2;X)/0X(2)

EG(NE*NF) = derivative 0FY(NE;X)/0X(NF)
$ENDSET

If it is advantageous to compute the first derivatives of the initial functions FY(KE;X), 1< KE<Z
NE, together with their values, we can replace the set of models $FMODELY, $GMODELY by the
common model $FGMODELY and the set of models SFMODELYS, $GMODELYS by the common model
$FGMODELYS.

If the initial values YA(KE;TAMIN), 1< KE< NE, do not depend on the variables X(I), 1< I< NF,
they can be specified by using the macrovariable SINPUT:

$ADD(INPUT)
YA(1) = initial value YA(1,TAMIN)
YA(2) = initial value YA(2, TAMIN)

YA(NE) = initial value YA(NE, TAMIN)
$ENDADD

2.10. Specification of the subintegral function
If SMODEL="DT”, the subintegral function FA(X,YA(TA),TA) must be defined by the user either

directly in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed)
mode. The value of the subintegral function is specified by using the macrovariable SFMODELA:

$SET(FMODELA)
FA = value FA(X,YA(TA),TA)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET
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The first derivatives of the subintegral function according to the variables are specified by using the

macrovariable §GMODELA:

$SET(GMODELA)
GA(1) = derivative 9FA(X,YA(TA),TA)/0X(1)
GA(2) = derivative 9FA(X,YA(TA),TA)/0X(2)

GA(NF) = derivative 9FA(X,YA(TA),TA)/0X(NF)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

The first derivatives of the subintegral function according to the state variables are specified by using the
macrovariable SDMODELA:

$SET(DMODELA)
DA(1) = derivative IFA(X,YA(TA),TA)/OYA(1)
DA(2) = derivative IFA(X,YA(TA),TA)/0YA(2)

DA(NE) = derivative 9FA(X,YA(TA),TA)/0YA(NE)
(for a given vector of variables X, a given vector of state variables YA(TA)
and a given time TA)

$ENDSET

If it is advantageous to compute the first derivatives of the subintegral function FA(X,YA(TA),TA)
together with its value, we can replace the set of models $FMODELA, $§GMODELA, $DMODELA by
the common model SFGDMODELA. Partially we can replace the models $FMODELA, $SGMODELA
or $FMODELA, $DMODELA or $SGMODELA, $DMODELA by the common models $FGMODELA or
$FDMODELA or $GDMODELA, respectively.

If SMODEL="DQ’ and the objective function contains an integral part, we have to set $MOD-
ELA="YES’ and define the functions WE(KE;TA) and YE(KE;TA), 1< KE< NE, by using the macrovari-
able $FMODELE.

2.11. Specification of the terminal function

If SMODEL="DF’, the terminal function FF(X,YA(TAMAX), TAMAX) must be defined by the user
either directly in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed)
mode. The value of the terminal function is specified by using the macrovariable $FMODELF:

$SET(FMODELF)
FF = value FF(X,YA(TAMAX), TAMAX)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

The first derivatives of the terminal function according to the variables are specified by using the
macrovariable SGMODELF:

$SET(GMODELF)
GF(1) = derivative 9FF(X,YA(TAMAX),TAMAX)/0X(1)
GF(2) = derivative 9FF(X,YA(TAMAX),TAMAX)/0X(2)

GF(NF) = derivative OFF(X,YA(TAMAX), TAMAX)/0X(NF)
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(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)
$ENDSET

The first derivatives of the terminal function according to the state variables are specified by using the
macrovariable SDMODELF:

$SET(DMODELF)
DF(1) = derivative OFF(X,YA(TAMAX) TAMAX)/0YA(1)
DF(2) = derivative OFF(X,YA(TAMAX) TAMAX)/0YA(2)

DF(NE) = derivative JFF(X,YA(TAMAX),TAMAX)/9YA(NE)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

If it is advantageous to compute the first derivatives of the terminal function FF(X,YA(TAMAX), TAMAX)
together with its value, we can replace the set of models SFMODELF, $GMODELF, $SDMODELF by
the common model $FGDMODELF. Partially we can replace the models $FMODELF, $GMODELF
or SFMODELF, $DMODELF or $GMODELF, $SDMODELF by the common models $FGMODELF or
$FDMODELF or $GDMODELF, respectively.

If SMODEL="DQ’ and the objective function contains a terminal part, we have to set $MOD-
ELF="YES’ and define the coefficients EW(KE) and EY(KE), 1< KE< NE, by using the macrovariable
$INPUT:

$ADD(INPUT)
EW(1) = value EW(1); EY(1) = value EY(1)
EW(2) = value EW(2); EY(2) = value EY(2)
EW(NE) = value EW(NE); EY(NE) = value EY(NE)
$ENDADD

2.12. Optimization with general constraints

If there are no general constraints we set $KBC=0. In the opposite case we set $KBC=1 or $KBC=2.
If SKBC=1 or $KBC=2, then

FC(KC;X) - unbounded I ICG(KC) =0
CL(KC) < TFC(KC;X) LI IC(KC) =1

C(KC;X) < CU(KCO) , I IC(KC) = 2
CL(KC) < FC(KC;X) < CU(KC) I IC(KC) = 3
CL(KC) = FC(KC;X) = CU(KC) I ICG(KC) =5

where 1< KC< NC. The option $KBC=2 must be chosen if IC(KC)=3 for at least one index 1< KC<
NC. Then two different fields XL(K) and XU(KC), 1< KC< NC are declared. In the opposite case we
set $KBC=1 and only one common field XL(KC)=XU(KC), 1< KC< NC is declared. The number of
constraints NC must be specified by using the statement $NC=number_of functions.

The types of general constraints IC(KC), 1< KC< NC, and lower and upper bounds XL(KC) and
XU(KC), 1< KC< NC, can be specified by using the macrovariable $INPUT. The default values are
IC(KC)=3 and XL(KC)=XU(KC)=0, 1< KC< NC. For example:

$KBF=2; $NC=3
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$ADD(INPUT)
IC(1)=1; CL(1)=ct
IC(2)=1; CL(2)=ck
L
3

$ENDADD

2.13. Specification of the constraint functions (dense problems)

The constraint functions FC(KC;X), 1< KC< NC, must be defined by the user either directly in the
full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. The values
of the constraint functions are specified by using the macrovariables SFMODELC or $FMODELCS:

$SET(FMODELC)

FC = value FC(KC;X)

(for a given index KC and given values of variables X(I), 1< I< NF)
$ENDSET

or

$SET(FMODELCS)
CF(1) = value FC(1;X)
CF(2) = value FC(2;X)
CF(NC) = value FC(NC;X)
$ENDSET

The first derivatives of the constraint functions are specified by using the macrovariables $§GMODELC
or $§GMODELCS:

$SET(GMODELC)
GC(1) = derivative dFC(KC;X)/dX(1)
GC(2) = derivative dFC(KC;X)/0X(2)

GC(NF) = derivative 0FC(KC;X)/0X(NF)
(for a given index KC and given values of variables X(I), 1< I< NF)
$ENDSET

or
$SET(GMODELCS)

CG(1) = derivative dFC(1;X)/0X(1)
CG(2) = derivative 9FC(1;X)/0X(2)

CG(NTF) = derivative 0FC(1;X)/0X(NF)
CG(NF+1) = derivative 9FC(2;X)/0X(1)
CG(NF+2) = derivative 9FC(2;X)/0X(2)

CG(NC«*NF) = derivative 90FC(NC;X)/0X(NF)
$ENDSET

The second derivatives of the constraint functions are specified by using the macrovariables SHMODELC
or SHMODELCS. If $JACC="D’, the Hessian matrices are assumed to be dense and we only specify their
upper half:
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$SET(HMODELC)

HC(1) = derivative 9?FC(KC;X)/0X(1)?
HC(2) = derivative 9?FC(KC;X)/0X(1)0X(2)
HC(3) = derivative 9?FC(KC;X)/0X(2)?
HC(4) = derivative 9?FC(KC;X)/0X(1)9X(3)
HC(5) = derivative 9?FC(KC;X)/0X(2)0X(3)
HC(6) = derivative 9?FC(KC;X)/0X(3)?

HC(NF+(NF+1)/2) = derivative ?FC(KC;X)/0X(NF)?
(for a given index KC and given values of variables X(I), 1< I< NF)

$ENDSET
or

$SET(HMODELCS)
CH(1) = derivative 9?FC(1;X)/0X(1)?
CH(2) = derivative 9?FC(1;X)/0X(1)0X(2)
CH(3) = derivative 9?FC(1;X)/0X(2)?
CH(4) = derivative 9?FC(1;X)/0X(1)0X(3)
CH(5) = derivative 9?FC(1;X)/0X(2)0X(3)
CH(6) = derivative 9?FC(1;X)/0X(3)?
CH(NF+(NF+1)/2) = derivative 9?FC(1;X)/0X(NF)?
CH(NF+(NF+1)/2+1) = derivative 9*FC(2;X)/0X(1)?
CH(NF*(NF+1)/242) = derivative 0°FC(2;X)/0X(1)0X(2)
CH(NF+(NF+1)/2+3) = derivative 9?FC(2;X)/0X(2)?

CH(NC*NF*(NF+1)/2) = derivative §?FC(NC;X)/0X(NF)?
$ENDSET

If the macrovariables $SGMODELC and $GMODELCS or $HMODELC and $SHMODELCS are not
defined, we suppose that the first or the second derivatives of the constraint functions are not given
analytically. In this case, they are computed numerically, by using the UFO system routines whenever it
is required. If it is advantageous to compute the first derivatives of the constraint functions FC(KC;X), 1<
KC< NC, together with their values, we can replace the set of models SFMODELC, $GMODELC by the
common model SFGMODELC and the set of models $FMODELCS, $GMODELCS by the common model
$FGMODELCS. Similarly we can replace the set of models $SFMODELC, $GMODELC, SHMODELC by
the common model $FGHMODELC and the set of models $FMODELCS, $GMODELCS, $HMODELCS
by the common model $SFGHMODELCS.

To improve the efficiency of the computation, we can specify some additional information about
the constraint functions FC(KC;X), 1< KC< NC. The first piece of information, useful for an automatic
choice of the optimization method, is the computational complexity specified by the macrovariable $KCC:

$KCC=1 - Evaluations of the constraint functions FC(KC;X), 1< KC< NC, are very easy (they
require O(n) simple operations at most).
$KCC= 2 - Evaluations of the constraint functions FC(KC;X), 1< KC< NC, are of medium

complexity (they at least require O(n) complicated operations and O(n?) simple op-
erations at most).

$KCC= 3 - Evaluations of the constraint functions FC(KC;X), 1< KC< NC, are extremely
difficult (they at least require O(n?) complicated or O(n?®) simple operations).

The option $KCC=2 is default.
If some of the constraint functions are linear and have the form
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NF
FC(KC;X) = 3 CG((KC — 1)« NF + 1)+ X(T)

I=1
we can specify them separately. Then the number of linear constraint functions must be specified by
using the statement SNCL=number_of_linear functions (default value is $NCL=0). We always suppose
that the first NCL constraint functions are linear. Then the coefficients CG((IKC-1)«NF+1I), 1< KC<
NCL, 1< I< NF, are specified by using the macrovariable SINPUT and the macrovariables SFMODELC
or $FMODELCS, $GMODELC or $§GMODELCS, $SHMODELC or $SHMODELCS are used only for the
specification of the nonlinear constraint functions FC(KC;X), NCL<KC< NC.

2.14. Specification of the constraint functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix CG. This possibility decreases the computational time and storage requirements for
large-scale optimization problems. In this case, we use option $JACC="S" which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Jacobian matrix is specified by using the macrovariable SINPUT. Two integer vectors ICG
and JCG are used where ICG(KC), 1< KC< NC+1, are pointers and JCG(K), 1< K< ICG(NC+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the constraint functions.
The number of nonzero elements must be specified by using the statement $MC=number_of_elements.
The number of nonzero elements could be greater than is needed (twice say) since it is used for the
declaration of working fields. For example, if we have the gradients

GC(1;X) = [gf1,0 ,0 , g3,
GC(2;X) = [0 , 95,0 , g5i],
GC(3;X) =10 ,0 ,953,0 ],
GC(4;X) = 951, 942, 93,0 ],

GC(5;X) =10 ,0 , g5, g5,

and the Jacoblan matrix

glcl ’ 0 3 0 y 914
0 3 g202 ’ 0 ’ gZC4
CG(X) = 0 ,0 ,gg% ,0
gfl 3 ng 3 gégS 3 %
0 ,0 y 953 954
then we have to set:
$NC=H
$MC=20 (the minimum required value is MC=10)
SADD(INPUT)

ICG(1)=1; ICG(2)=3; ICG(3)=5

ICG(4)=6; ICG(5)=9; ICG(6)=11

JCG(1)=1; JCG(2)=4; JCG(3)=2; JCG(4)=4; JCG(5)=3
JCG(6)=1; JCG(T)=2; JCG(8)=3; JCG(9)=3; JCG(10)=4
$ENDADD
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As in the case of the dense problem, the first derivatives of the constraint functions can be specified
by using the macrovariables SGMODELC or $§GMODELCS. If $JACC="S’, only the nonzero elements

of the gradients are specified. For the above example the specification has the form:

$SET(GMODELC)

IF (KC.EQ.1) THEN
GC(1) = 9FC(1;X)/0X(1)
GC(4) = 9FC(1;X)/0X(4)

ELSE IF (KC.EQ.2) THEN
GC(2) = 9FC(2;X)/0X(2)
GC(4) = 9FC(2;X)/0X(4)

ELSE IF (KC.EQ.3) THEN
GO(3) = OFC(3;X)/0X(3)

ELSE IF (KC.EQ.4) THEN
GC(1) = 9FC(4;X)/0X(1)
GC(2) = 9FC(4;X)/0X(2)
GO(3) = OFC(4;X)/0X(3)

ENDIF

SENDSET

$SET(GMODELCS)
CG(1) = OFC(1;X)/0X(1)
CG(2) = OFC(1;X)/0X(4)
CG(3) = OFC(2;X)/0X(2)
CG(4) = OFC(2;X)/X(4)
CG(5) = OFC(3:X)/IX(3)
CG(6) = OFC(4;X)/0X(1)
CG(7) = OFC(4;X)/0X(2)
CG(8) = OFC(4;X)/IX(3)
CG(9) = OFC(5:X)/IX(3)
CG(10) = GFC(5;X)/0X(4)

SENDSET

As in the case of the dense problem, the second derivatives of the approximating functions can
be specified by using the macrovariables SHMODELC or $SHMODELCS. If $JACC="S’, only nonzero

elements of the Hessian matrices are specified. For the above example the specifications have the form

$SET(HMODELC)
IF (KC.EQ.1) THEN
HC(1) = 8°FC(1;X)/0X(1)?
HC(2) = 8°FC(1:X)/0X(1)9X(4)
HC(3) = 0°FC(1;X)/0X(4)?
ELSE IF (KC.EQ.2) THEN
HC(1) = 0°FC(2:X)/0X(2)?
HC(2) = 8°FC(2:X)/0X(2)X(4)
HC(3) = 0°FC(2:X)/0X(4)?
ELSE IF (KC.EQ.3) THEN
HC(1) = 9°FC(3:X)/0X(3)?
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ELSE IF (KC.EQ.4) THEN
HC(1) = 0?°FC(4;X)/0X(1)?
HC(2) = 0?°FC(4;X)/0X(1)9X(2)
HC(3) = 0?°FC(4;X)/0X(2)?
HC(4) = 0?°FC(4;X)/0X(1)9X(3)
HC(5) = §°FC(4;X)/9X(2)9X(3)
HC(6) = §°FC(4;X)/9X(3)?
ELSE
HC(1) = §°FC(5;X)/9X(3)?
HC(2) = §°FC(5;X)/9X(3)9X(4)
HC(3) = 9*FC(5;X) /90X (4)?
ENDIF
$ENDSET
$SET(HMODELCS)
CH( ) = 0?FC(1;X)/0X(1)?
CH(2) = 0?°FC(1;X)/0X(1)0X(4)
CH(3) = 8°FC(1;X)/9X(4)?
CH(4) = 62FC(2,X)/6X(2)2
CH(5) = 0?FC(2;X)/0X(2)0X(4)
CH(6) = §°FC(2;X)/9X(4)?
CH(7) = 92PC(3;X)/9X(3)?
CH(8) = §?FC(4;X)/9X(1)?
CH(9) = &* FC(4 X)/9X(1)0X(2)
CH(10) = §*FC(4;X)/0X(2)?
CH(11) = §*FC(4;X)/9X(1)0X(3)
CH(12) = §*FC(4;X)/9X(2)0X(3)
CH(13) = 9?FC(4;X)/0X(3)?
CH(14) = 9?FC(5;X)/0X(3)?
CH(15) = 9?FC(5;X)/0X(3)0X(4)
CH(16) = 9?FC(5;X)/0X(4)?

$ENDSET

Note that the dimensions of arrays HC or CH must be specified by the statement $MHC=dimension_of HC
or $MCH=dimension_of_CH.

If some of the constraint functions are linear (i.e. if $NCL>0) and if $JACC="S’, then the coefficients
CG(K), 1< KK ICG(NCL+1)—1 (constant part of the sparse Jacobian matrix), must be specified by using
the macrovariable $INPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use this specification:

SADD(INPUT)
CG(1)=gf); CG(2)=g%; CG(3)=g52; CG(4)=g%,
CG(5)=g53; CG(6)=gf; CG(T)=g%2; CG(8)=yf
CG(9)=g55; CG(10)=g§,

$ENDADD

There is another possibility which can be useful when all constraint functions are linear. It 1s based on
the usage of a special procedure UKMCI1 which serves for a direct input of individual Jacobian matrix

elements. The procedure UKMCI1 is formally called by using the statement

CALL SUKMCIL(K,LGCKI) or  $SETCG(K,LGCKI)
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where K is an index of a given constraint function (a row of the Jacobian matrix), T is an index of
a given variable (a column of the Jacobian matrix), and GCKI is a numerical value of the element
IFC(K;X)/0X(T). For the example given above we can write:

$ADD(INPUT)
$SETCG(1,1,4%)
$SETCG(1,4,4S,
$SETCG(2,2,g22
$SETCG(2,4,g24
$SETCG(3, 3,g33
$SETCG(4,1,45,
$SETCG(4,2,g42
$SETCG(4, 3,g43
$SETCG(5,3,95,

$SETCG(5,4,95,

$ENDADD

)
)
)
)
0)
)
)
)
)

The main advantage of the last possibility is the fact that it is not necessary to specify the fields ICG
and JCG beforehand. If the number of the constraints are very large, then we can use a slightly more
complicated procedure UKMCI2 which uses dynamic structures and therefore works more quickly. The
procedure UKMCI2 is formally called by using the statement

CALL SUKMCI2(K,L,GCKI)

where K is an index of a given constraint function (a row of the Jacobian matrix), I is an index of a given
variable (a column of the Jacobian matrix), GCKI is the numerical value of the element OFC(K;X)/dX(T)
and LCG is an auxiliary working field.

2.15. Additional specifications concerning optimization problems

Useful specifications, which can improve the computational efficiency and robustness of the optimiza-
tion methods, are a lower bound for the objective function value and an upper bound for the stepsize.
Both of these values depend on the definition of the objective function and can be specified by the
statements $FMIN=lower_bound (for the objective function value) and $XMAX=upper_bound (for the
stepsize). We recommend a definition of $FMIN whenever it is possible, and a definition of $XMAX
whenever the objective function contains the exponential functions. If the objective function is a sum
of powers (or a sum of squares), then automatically SFMIN=0. The default option for the maximum
stepsize is $XMAX=1000.

If there are no general constraints and if the number of variables is not greater than 20, then we can
use global optimization methods. A decision between local and global optimization is effected by means
of macrovariable SEXTREM:

$EXTREM="L’ - A local extremum is found, which usually contains the starting point in its region of

attractivity.
$EXTREM="G’ - All extrema in the given region are found and a global extremum is determined.

The default option is SEXTREM="L". If $EXTREM="G’, we cannot use the common models $FG-
MODELF and $FGHMODELF for a common specification of the value | the gradient and the Hessian
matrix of the model function. Similarly we cannot use the models SFGMODELA or $FGMODELAS and
$FGHMODELA or SFGHMODELAS for a common specification of the approximating functions.

The global optimization is performed over a bounded region specified by lower and upper bounds
XL(I) and XU(I), 1< I< NF. If these bounds are not specified (using the macrovariable $INPUT),
they are computed from the initial values of variables and from the given maximum stepsize, so that
XL(D)=X(I)-XMAX and XU(I)=X(I)+XMAX, 1< I< NF. The maximum stepsize is specified, as in
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the case given above, using the statement $XMAX=maximumstepsize. The default option is again
$XMAX=1000.

Additional useful specifications, concerning the solution precision, are bounds used in termination
criteria. These bounds can be specified by the macrovariables $TOLX, $TOLF, $TOLB, $TOLG, $TOLC
and MIC, MIT, MFV:

$TOLX - lower bound for a relative change of variables
$TOLF - lower bound for a relative change of function values
$TOLB - lower bound for the objective function value

$TOLG - lower bound for the objective function gradient norm
$TOLC - lower bound for the violated constraint functions

$MIC - maximum number of penalty function changes
$MIT - maximum number of iterations
$MFV - maximum number of function evaluations

The default values are $TOLX="1.0D-8", $TOLF="1.0D-16’, $TOLB="-1.0D60’, $TOLG="1.0D-6",
$TOLC="1.0D-6" and MIC=5, MIT=500, MFV=1000.
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3. Optimization methods in the UFO system

The UFO system has a modular structure. All optimization methods can be set up using the indi-
vidual simple modules. For example, the sequential quadratic programming variable metric methods for
nonlinearly constrained optimization problems are set up by using the modules for an objective func-
tion evaluation, penalty function definition, direction determination, quadratic programming solution,
stepsize selection, and variable metric update. The optimization methods contained in the UFO system
can be roughly divided into two groups. The first group contains methods for unconstrained and lin-
early constrained optimization problems, while the second group contains methods for general nonlinear
programming problems. Methods for general nonlinear programming problems; i.e. for problems with
nonlinear constraints, are classified by their realization form which is determined by using the macrovari-

able $FORM:

$FORM="SQ’ - Sequential (or recursive) quadratic programming methods for general dense prob-
lems.

$FORM="SE’ - Inexact sequential (or recursive) quadratic programming methods for sparse equality
constrained problems.

$FORM="SI’ - Inexact interior point methods for sparse equality and inequality constrained prob-

lems.

Sections 3.1 - 3.20 concern methods for unconstrained and linearly constrained problems. These methods
do not use the macrovariable §FORM for a classification. Methods for general nonlinear programming
problems are described in Sections 3.21 - 3.23. The basic parts of optimization methods are described in

Sections 3.24 - 3.28. Section 3.29 is devoted to global optimization methods.
Methods for unconstrained and linearly constrained problems contained in the UFO system can be
partitioned into several classes which are specified by using the macrovariable $CLASS:

$CLASS="HM’ - Heuristic methods for small-size problems. This class contains the pattern search
method and the simplex method.

$CLASS="CD’ - Conjugate direction methods which use no matrices. This class contains conjugate
direction methods and variable metric methods with limited storage based on the
Strang recursions.

$SCLASS="VM’ - Variable metric methods which use an approximation of the Hessian matrix which
i1s updated in each iteration.

$CLASS="VL’ - Variable metric methods with limited storage based on compact variable metric
updates.

$CLASS="VR’ - I\)/ariable metric methods with limited storage based on reduced Hessians.

$CLASS="MN’ - Modified Newton methods which use the Hessian matrix computed either analyti-
cally or numerically.

$CLASS="TN’ - Truncated Newton methods based on the difference approximation of directional

$CLASS="GN’ El?\?[lgc&llitﬁ\é%SGauss—Newton methods for nonlinear least squares problems which use the
normal equation matrix as an approximation of the Hessian matrix. These methods
are also realized by using the Jacobian matrix representation.

$CLASS="QN’ - Quasi-Newton methods for nonlinear least squares problems and nonlinear equations.

$CLASS="QL’ - Quasi-Newton methods with limited storage for sparse nonlinear least squares prob-
lems and sparse nonlinear equations.

$CLASS="QB’ - Quasi-Newton and Brent methods for nonlinear equations.

$CLASS="LP’ - Simplex type methods for linear programming problems.

$CLASS="LI’ - Interior point methods for linear programming problems.

$CLASS="QP’ - Simplex type methods for quadratic programming problems.

$CLASS="QI’ - Interior point methods for quadratic programming problems.

$CLASS="BM’ - Proximal bundle methods for nonsmooth optimization.

$CLASS="BN’ - Bundle-Newton methods for nonsmooth optimization.
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$CLASS="VB’ - Variable metric bundle methods for nonsmooth optimization.

The individual methods from the above classes can be chosen by using additional specifications.
The most important ones, concerning direction determination and stepsize selection, are the type of the
method, the kind of the matrix decomposition and the number of the method. The type of the method
is specified by the macrovariable $TYPE:

$TYPE="L’ - Line search methods.

$TYPE="G&’ - General trust region methods.

$TYPE="T" - Special trust region methods for nonlinear least squares problems.
$TYPE="M’ - Modified Marquardt methods for nonlinear least squares problems.
$TYPE="F’ - SQP filter methods for nonlinear programing problems.
$TYPE="P’ - Pattern search method of Hooke and Jeeves.

$TYPE="S’ - Simplex method of Nelder and Mead.

The kind of the matrix decomposition is specified by the macrovariable SDECOMP:

$DECOMP="M’ - The symmetric matrix is used as an input for the direction determination.

SDECOMP="G’ - The LDLT decomposition without permutations is used as an input for the direction
determination. This decomposition is usually obtained by the Gill-Murray algorithm
[50].

$DECOMP="S’ - The LDLT decomposition with permutations is used as an input for the direc-

tion determination. This decomposition is usually obtained by the Schnabel-Eskow
algorithm [130].

$SDECOMP="B’ - The block LDLT decomposition with permutations is used as an input for the
direction determination. This decomposition is usually obtained by the Bunch-Parlett
algorithm [15].

$DECOMP="T - The inverse of a symmetric matrix is used as an input for the direction determination.

$DECOMP="R’ - the RT R decomposition without permutations is used as an input for the direction
determination. This decomposition is usually obtained by the recursive QR factor-
ization [72].

$DECOMP="C" - The RTR decomposition with permutations is used as an input for the direction
determination. This decomposition 1s usually obtained by an application of the rank
revealing algorithm [18].

$DECOMP="A" - The rectangular matrix is used as an input for the direction determination.

$DECOMP="Q” - The QR decomposition of a rectangular matrix without permutations is used as
an input for the direction determination. This decomposition is usually obtained by

using the Householder reflection with the explicitly stored orthogonal matrix Q.
$DECOMP="E’ - The general square matrix is used as an input for the direction determination in the

case NA=NF (system of nonlinear equations).

If SFORM="SE’, we have additional possibilities for a representation of matrices in the direction deter-
mination:

$DECOMP="K’ - The indefinite Karush-Kuhn-Tucker matrix i1s used as an input for the direction
determination. . o )

$DECOMP="72Z" - The null space representation based on orthogonal projection is used as an input for
the direction determination. ] )

$DECOMP="G’ - The range space representation based on the Schur complement is used as an input

for the direction determination.

If SFORM="SI", we have the following possibility for a representation of matrices in the direction deter-
mination:
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$DECOMP="T - The interior point Karush-Kuhn-Tucker matrix is used as an input for the direction
determination.

The macrovariable SDECOMP is also used for the selection of conjugate direction methods. In this case
it does not concern the kind of matrix decomposition.

The serial number of the method is specified by the macrovariable SNUMBER. It determines an
individual realization of the direction determination.

Additional information about specifications $TYPE, $SDECOMP, $NUMBER is given in Section 3.25.

All options used for the method selection have default values, which follows from the knowledge bases
coded in the individual templates. Therefore they need not be specified by the user. The possibilities we
describe can be of service to users who are familiar with optimization methods.

Almost all optimization methods have different realizations for three different representations of the
objective function. If $HESF="D’, dense variants can be used for either unconstrained problems or
box constrained problems or linearly constrained problems (with dense linear constraints specified by
STACC="D’). If SHESF="S’, sparse variants can be used for either unconstrained problems or box con-
strained problems or linearly constrained problems (with sparse linear constraints specified by $JACC="5").
If $JACA="S" and $SHESF="B’, partitioned variants can be used for either unconstrained problems or box
constrained problems. Partitioned variants of optimization methods are usually less efficient due to the
more expensive matrix operations. Therefore we recommend preferring sparse variants to the partitioned
ones.

3.1. Heuristic methods

Heuristic (or comparative) methods are specified by the statement $CLASS="HM’. These methods
can only be used for small-size problems (with 10 variables at most). The main advantage of the heuristic
methods 1s that they do not require continuity of the objective function.

The individual heuristic methods are specified by the macrovariable $TYPE:

$TYPE="P’ - Pattern search method of Hooke and Jeeves [64].
$TYPE="S’ - Simplex method of Nelder and Mead [114].

The default value is $TYPE="P".

3.2. Conjugate direction methods

Conjugate direction methods are specified by the statement SCLASS="CD’. These methods are very
efficient for large problems with computationally simple objective functions ($KCF=1 or $KCA=1). The
main advantage of conjugate direction methods is that no matrices are used (implicitly $HESF="N").
This fact highly decreases storage requirements.

The individual conjugate direction methods are specified by the macrovariable $DECOMP:

$DECOMP="C" - Conjugate gradient methods. These methods are the simplest ones of all conju-
gate direction methods and they require the fewest storage requirements. However,
they usually consume a greater number of function evaluations then other conjugate

direction methods. o )
$DECOMP="V’ - Variable metric methods with limited storage based on the Strang recursions. These

methods allow us to prescribe storage requirements using the number of VM steps
(the number of necessary used vectors is approximately twice as great a number of
VM steps). The number of VM steps is specified by the macrovariable $MF. Variable
metric methods with limited storage usually consume fewer function evaluations then
conjugate gradient methods.

There are two families of conjugate gradient methods implemented in the UFO system:
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$NUMBER=1 - Basic conjugate gradient methods described in [81]. The individual methods are

specified by using the macrovariables SMET, $MET1 and $MET?2.
$NUMBER=2 - Generalized conjugate gradient methods introduced in [67]. The individual methods

are specified by using the macrovariable SMET1.
If SMET=0, then the steepest descent method is used. If $MET=1, the Fletcher-Reeves method [41] is

used. If SMET=2, the Polak-Ribiere method [120] is used. If SMET=3, the Hestenes-Stiefel method [62]
is used. The macrovariable SMET1 specifies the restart procedure as it is described in [81]. If SMET1=1,
a restarted CG method with a positive parameter is used. If SMET1=2, a bounded CG method with a
positive parameter is used. If SMET1=3, a bounded CG method with a positive lower bound is used. If
$MET1=4, a CG method with the Powell restart is used. If $MET1=5, a CG method with the test on
conjugacy is used. If SMET1=6, a CG method with the test on orthogonality is used. The macrovariable
SMET?2 specifies the scaling parameter as is described in [81] ($MET2=1 for suppressed scaling and
SMET2=2 for scaling in each iteration).
Similarly, the UFO system contains two variable metric methods with limited storage:

$NUMBER=1 - The BFGS method with limited storage described in [115]. The default number of
VM steps is $SMF=5.
$NUMBER=2 - The extended BFGS method with limited storage described in [68]. The default

number of VM steps is $MF=3.

Both these methods are realized by using various scaling techniques [76] specified by the macrovariable
$METI1. If SMET1=1, the scaling is suppressed. If $MET1=2, the scalar scaling is used. If $MET1=3,
the diagonal scaling is used. If $MET1=4, the scalar and diagonal scalings are used simultaneously.

Possible specifications (type-decomp-number) for the conjugate direction methods in the uncon-
strained case are these:

L-C1, L-V-1,
L-C2, LV-2.

The default choice is L-C-1. Conjugate direction methods can also be used for sparse linear constraints

when $JACC="S".
3.3. Variable metric methods

Variable metric methods are specified by the statement $CLASS="VM’. These methods are most
commonly used for either unconstrained or linearly constrained optimizations. Variable metric methods
use a symmetric (usually positive definite) matrix which is updated in every iteration in such a way
that it approximates the Hessian matrix of the objective function as precisely as possible. In the UFO
system, the variable metric methods are realized in three different forms (for SHESF="D’, $HESF="S’
and $SHESF="B’) depending on the Hessian matrix specification.

There are two families of variable metric methods for dense problems ($HESF="D’) which are distin-
guished using the macrovariable §UPDATE:

$SUPDATE="B’ - The Broyden family [12]. Variable metric methods from this family are the most
commonly used ones since they are very robust and efficient.
SUPDATE="D’ - The Davidon family [26]. Variable metric methods from this family are similar to

the previous ones. The only difference 1s that projections into the new subspace are
computed. This guarantees the quadratic termination property even in the case of an
imperfect line search.

The default value is $UPDATE="B’.
Individual variable metric methods are specified by using the macrovariables SMET, $MET1, $MET2
and $MET3. The macrovariable $MET determines the variable metric update. If $MET=1, the BFGS
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method [12], [36], [54], [132] is used. If $SMET=2, the DFP method [25], [40] is used. If $SMET=3, the
Hoshino method [65] is used. If SMET=4, the safeguarded rank-one method [80] is used. If $MET=5,
the optimally conditioned method [26] is used. If $MET=6, the rank-one based method [80] from the
preconvex part of the Broyden family is used. If SMET=7, the variationally derived method [83] from the
preconvex part of the Broyden family is used. If $MET=8, the heuristic method [86] is used. If $MET=9,
the method [155] derived from the matrix decomposition is used. If $MET=10, the method [156] which
minimizes the angle between the direction vector and the negative gradient is used. If $MET=11, the
method [86] which minimizes the norm of the direction vector is used. If SMET=12, the least prior
deviation method [108] is used. The default value is $SMET=1. If we specify $SDECOMP="M’, we can
only use the values $MET=1,2,3 4.

The macrovariable $MET1 determines the Oren (scaling) parameter [117]. If SMET1=1, no scaling
is used. If SMET1=2, the initial scaling [133] is used. If SMET1=3, the controlled scaling [83] is used. If
$MET1=4, the simple controlled scaling [91] is used. If $MET1=5, the scaling in each iteration is used.
The default value is $SMET1=3. The scaling parameter is determined by using heuristic rules given in
[86].

The macrovariable SMET2 determines the value of the Biggs (nonquadratic model) parameter [4]. Tf
$MET2=1, the unit value is used. If SMET2=2 the Spedicato value [134] is used. If SMET2=3, the
modified Spedicato value [86] is used. If SMET2=4, the value determined from the homogeneous model
[86] is used. If SMET2=5, the value determined from the cubic model [5] is used. The default value is
$MET2=2.

The macrovariable S MET3 determines the Powell correction [124]. If SMET3=1, the Powell correction
is suppressed (the strong update elimination). If §MET3=2, the Powell correction is suppressed (the weak
update elimination). If $MET3=3, the Powell correction is applied. The default value is $MET3=1.

Possible specifications (type-decomposition-number) for dense variable metric methods in the uncon-
strained case are these:

L-G-1, L-S1, LB-1, LI1, L-M-I,
L-M-3,

G-G-1, G-S-1, G-B-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-M-2,
G-M-3,

G-M-4,

G-M-5,

G-M-7.

The default choice is L-1-1. In both the box constrained and the linearly constrained cases we cannot use
specifications with $DECOMP="B’.

If the Hessian matrix is sparse with a general pattern ($HESF=’S"), the sparse variable metric meth-
ods, which preserve this pattern, are used. If $DECOMP="M’, the individual variable metric updates
(or families) are specified by using the macrovariable §UPDATE:

$UPDATE="M’ - The simple Marwil projection update [104]. This update can only be used if $DE-

SUPDATE="G’ —C('I)‘}l\l/ipfra(lz\é[i(.)ned Marwil projection update [148]. This update can only be used if
$DECOMP="M’ and $NUMBER=3.

SUPDATE="T" - The fractioned Toint projection update (the best method given in [148]). This
update can only be used if $DECOMP="M’ and $NUMBER=3.

$SUPDATE="B’ - The partitioned variable metric updates from the Broyden family [58]. These up-

dates can only be used if $MODEL="AF’ or $MODEL="AQ’ or SMODEL="AP’.

The default value is $UPDATE="M".

Fractioned updates with specifications SUPDATE="G’ or $UPDATE="T" can only be used in the
unconstrained case. If SUPDATE="B’, the particular update is specified by using the macrovariable
$MET. If SMET=1, the BFGS method is used. If S MET=2, the DFP method is used. If $MET=3, the
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Hoshino method is used. If $MET=4, the safeguarded rank-one method is used. The default value is
$MET=1.

If $DECOMP="G’, less eflicient sparse product form updates from the Broyden family are used. In
this case, the particular update is specified by using the macrovariable $MET. If $SMET=1, the BFGS
method is used. If $SMET=2, the DFP method is used. If $MET=3, the Hoshino method is used. The
default value is $SMET=1.

Possible specifications (type-decomposition-number) for sparse variable metric methods in the uncon-
strained case are these:

L-G-1, L-M-1,
L-M-3,
G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-7.

The default choice is L-M-3. In the box constrained case, only the choice $DECOMP="M’ is permitted.
The fractioned updates (SUPDATE="T" and SUPDATE="G’) can only be used if $DECOMP="M’ and
$NUMBER=3.

If the Hessian matrix is sparse with a partitioned pattern (SHESF="B’), only the partitioned variable
metric updates, specified by the choice SUPDATE="B’, can be used. These updates are the same as
in the case when the Hessian matrix is sparse with a general pattern, but the partitioned realization is
usually less efficient than the general one due to the more expensive matrix operations.

Possible specifications (type-decomposition-number) for partitioned variable metric methods in the
unconstrained case are these:

L-M-3,
G-M-3.

The default choice 1s L-M-3.

3.4. Variable metric methods with limited storage based on compact variable metric updates

Variable metric methods with limited storage based on compact variable metric updates are specified
by the statement $CLASS="VL’. The number of VM steps is specified by the macrovariable $MF (the
default value is SMF=5). Variable metric methods with limited storage based on compact variable
metric updates use several small-size matrices which are updated in every iteration in such a way that
their product approximates the Hessian matrix as precisely as possible [17].

Individual variable metric methods with limited storage are specified by using the macrovariables
$MET and $MET1. The macrovariable SMET determines the variable metric update. If $MET=1, the
BFGS method [12], [36], [54], [132] is used. If SMET=4, the safeguarded rank-one method [80] is used.
The macrovariable SMET1 determines the scaling technique. If $SMET1=1, scaling is suppressed. If
$MET1=2, the scalar scaling is used.

Possible specifications (type-decomposition-number) for variable metric methods based on compact
variable metric updates with limited storage are these:

L1-1,
L-M-3,
G-M-3,
G-M-4,
G-M-5,
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3.5. Variable metric methods with limited storage based on reduced Hessians

Variable metric methods with limited storage based on reduced Hessians are specified by the statement
$CLASS="VR’. The number of VM steps is specified by the macrovariable SMF (the default value is
$MF=5). Variable metric methods with limited storage based on reduced Hessians use a small-size
matrix which is updated in every iteration in such a way that it approximates the reduced Hessian
matrix as precisely as possible [53].

Individual variable metric methods with limited storage are specified by using the macrovariables
$MET, $SMET1, and $MET2. The macrovariable $MET determines the variable metric update. If
SMET=1, the BFGS method [12], [36], [54], [132] is used. If $MET=2, the DFP method [25], [40] is
used. If SMET=3, the Hoshino method [65] is used. If $MET=4, the safeguarded rank-one method [30]
is used. If SMET=5, the optimally conditioned method [26] is used. If SMET=6, the rank-one based
method [80] from the preconvex part of the Broyden family is used. If SMET=T7, the variationally derived
method [83] from the preconvex part of the Broyden family is used. If $MET=8, the heuristic method
[86] is used. If SMET=9, the method [155] derived from the matrix decomposition is used. If $MET=10,
the method [156] which minimizes the angle between the direction vector and the negative gradient is
used. The default value is $SMET=1.

The macrovariable $MET1 determines the Oren (scaling) parameter [117]. If SMET1=1, no scaling
is used. If SMET1=2, the initial scaling [133] is used. If SMET1=3, the controlled scaling [83] is used. If
$MET1=4, the simple controlled scaling [91] is used. If $MET1=5, the scaling in each iteration is used.
The default value is $SMET1=3. The scaling parameter is determined by using heuristic rules given in
[86].

The macrovariable SMET2 determines the value of the Biggs (nonquadratic model) parameter [4]. Tf
$MET2=1, the unit value is used. If SMET2=2 the Spedicato value [134] is used. If SMET2=3, the
modified Spedicato value [86] is used. If SMET2=4, the value determined from the homogeneous model
[86] is used. If SMET2=5, the value determined from the cubic model [5] is used. The default value is
$MET2=2.

The macrovariable S MET3 determines the Powell correction [124]. If SMET3=1, the Powell correction
is suppressed (the strong update elimination). If §MET3=2, the Powell correction is suppressed (the weak
update elimination). If SMET3=3, the Powell correction is applied.

Possible specifications (type-decomposition-number) for variable metric methods with limited storage
based on reduced Hessians are these:

L-R-1.

3.6. Modified Newton methods

Modified Newton methods are specified by the statement $CLASS="MN’. These methods use the
Hessian matrix of the objective function which i1s computed either analytically or numerically. The UFO
system performs a numerical computation of the Hessian matrix automatically whenever the macrovari-
able SHMODELF (or $SFGHMODELT) is not defined. Modified Newton methods are realized in three
different forms (for SHESF="D’, SHESF="S’ and $HESF="B’) depending on the Hessian matrix specifi-
cation. Even if the modified Newton methods can be realized as line search methods ($TYPE="L’), it is
more advantageous to realize them as trust region methods ($STYPE="G").

If the Hessian matrix is dense (SHESF="D’), all second derivatives have to be given analytically or they
are computed numerically by using differences of gradients. Possible specifications (type-decomposition-
number) for dense modified Newton methods in the unconstrained case are these:
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L-G-1, L-S1, L-B1, LMI,
L-G2, 1L-S2 LB2 LM?2,
L-M-3,
G-G-1, G-S1, GB1, GMI,
G-G-2, G-S2 GB2 GM2,
G-M-3,
G-M-4,
G-M-5,
G-M-T.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot
use specifications with $DECOMP="S" and $DECOMP="B’. The choice L-G-1 differs from the choice
L-G-2. The last one corresponds to the combination of both the Newton and the conjugate gradient
methods.

If the Hessian matrix is sparse with a general pattern ($HESF="S’), we have two possibilities. Tf
$MODEL="FF’, only the structurally nonzero second order derivatives have to be given analytically by
using the prescribed pattern. The numerical computation of the second derivatives 1s based on the fact
that a substantially lower number of differences has to be used in comparison with the dense case. The
determination of suitable differences is a combinatorial problem equivalent to a graph coloring problem
[19], [20]. If SMODEL="AF’ or $MODEL="AQ’ or $SMODEL="AP’, only the nonzero second derivatives
of the approximating functions have to be given analytically by using the prescribed pattern. The numer-
ical computation of the second derivatives i1s based on the fact that the approximating functions depend
on a minor number of variables so that the number of differences is substantially lower in comparison to
the dense case.

If SMODEL="AQ’ (sum of squares), the combination [89] of both the modified Newton and the
modified Gauss-Newton methods can be used. This choice is possible by using the macrovariable SMET.
If SMET=1, the modified Newton method is used. If $MET=2, then the combined method is used. The
default value is $SMET=2.

Possible specifications (type-decomposition-number) for sparse modified Newton methods in the un-
constrained case are these:

L-G-1, L-M-1,
L-M-3,
G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-7.

The default choice is G-M-3. In the box constrained case, only the choice SDECOMP="M’ is permitted.

If the Hessian matrix is sparse with a partitioned pattern (SHESF="B’), a computation of the second
order derivatives i1s the same as in the case when the Hessian matrix is sparse with a general pattern, but
the partitioned realization is usually less efficient than the general one due to the more expensive matrix
operations.

If SMODEL="AQ’ (sum of squares), the combination of both the modified Newton and the modified
Gauss-Newton methods can be used. This choice is possible by using the macrovariable $SMET like
the dense case. Possible specifications (type-decomposition-number) for partitioned modified Newton
methods in the unconstrained case are these:

L-M-3,
G-M-3.
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The default choice i1s G-M-3.

3.7. Truncated Newton methods

Truncated Newton methods are specified by the statement $CLASS="TN’. These methods differ
from modified Newton methods in that the directional derivatives are determined by the numerical
differentiation instead of the sparse Hessian matrix multiplication. Truncated Newton methods are very
efficient for large problems with computationally simple objective functions ($KCF=1 or $KCA=1). The
main advantage of truncated Newton methods is that no matrices are used (implicitly SHESF="N"). This
fact highly decreases storage requirements.

Truncated Newton methods are implemented either as line search methods or as trust region methods
and are based on the conjugate gradient subalgorithm. Possible specifications (type-decomposition-
number) for truncated Newton methods are these:

L-M-3,
G-M-3,
G-M-4,
G-M-5.

The default choice i1s G-M-3.

3.8. Modified Gauss-Newton methods for nonlinear least squares and nonlinear equations

Modified Gauss-Newton methods are specified by the statement $CLASS="GN’. These methods are
special optimization methods for either nonlinear least squares (SMODEL="AQ’) or nonlinear least pow-
ers (SMODEL="AP’) problems. Modified Gauss-Newton methods are based on the fact that the first
term in the Hessian matrix expression, the so-called normal equation matrix, depending on the first
derivatives of the approximating functions only is a good approximation of the whole Hessian matrix.
The second term in the Hessian matrix expression can be approximated by using the variable metric
updates.

Modified Gauss-Newton methods are realized in four different forms (for SHESF="D’, $HESF="S",
SHESF="B’, SHESF="N’) depending on the Hessian matrix specification. Although the modified Gauss-
Newton methods can be realized as the line search methods ($TYPE="L"), it is more advantageous to
realize them as the trust region methods ($TYPE="G").

If the Hessian matrix is specified to be dense (SHESF="D’), then the normal equation matrix is also
dense. In this case, we can use hybrid methods with dense updates:

SUPDATE="N’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).
$SUPDATE="S’ - The Dennis structured approach [30] is used. The second part of the Hessian matrix

is approximated by using modified variable metric updates. This part is added to
the normal equation matrix if the conditions for leaving the modified Gauss-Newton

method are satisfied.
$UPDATE="F’ - The Fletcher hybrid approach [3], [42] is used. The Hessian matrix is approximated

either by the normal equation matrix or by the matrix obtained by using the variable
metric updates. The decision between the two cases is based on the rate of the

function value decrease and on the normal equation matrix conditioning.
SUPDATE="B’ - A variable metric update from the Broyden class is applied either to the normal

equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [89].

The default value is SUPDATE="N".
Individual variable metric updates from the above families are specified by using the macrovariable

$MET. If SMET=1, the BFGS method is used. If S MET=2, the DFP method is used. If $MET=3, the
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Hoshino method is used. If SMET=4, the original (unsafeguarded) rank-one method is used. The value
$MET=4 is only allowed if SUPDATE="S" and is the default in this case. The value $SMET=1 is the
default in the other cases.

Variable metric updates (SUPDATE=F or SUPDATE="B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated), as is described in [89]. A decision between these possibilities is mediated by the
macrovariable $MOT1. If $MOT1=0, the cumulative update is used. If $MOT1=1, the simple update
1s used.

In the dense case, the modified Gauss-Newton methods can be realized with additional special matrix
decompositions which cannot be used in other cases. If $DECOMP="R’, the recursive QR decomposi-
tion [120] is used with an additional correction of the upper triangular matrix R. If $DECOMP="C",
this matrix R can moreover be changed by using the rank revealing algorithm [18] which can improve
its conditioning. Possible specifications (type-decomposition-number) for dense modified Gauss-Newton
methods in the unconstrained case are these:

L-G-1, L-S1, L-B-l, LR, L-C-1, LM-I,

L-M-3,

G-G-1, G-S1, G-B1, G-R1, GC-1, GM-I,

G-G-2, G-S2, G-B2 GR2 GC2 GM2,

G-M-3,

G-M-4,

G-M-5,

G-M-7,

T-G-1, T-S-1, T-R-1, T-C-1, T-M-1,
T-G-2,

T-S-7, T-C-7, T-M-7,

M-M-1.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot use
specifications $DECOMP="S’, $DECOMP="R’, $DECOMP="C". If $DECOMP="S’ or $DECOMP="C",
then variable metric updates cannot be used (SUPDATE="N"). The specification SUPDATE="S’ can only
be used if SDECOMP="M".

If the Hessian matrix is specified to be sparse with a general pattern ($HESF="S"), the normal equation
matrix has the same structure. In this case, we can use hybrid methods with sparse updates:

SUPDATE="N’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).
$SUPDATE="S’ - The Dennis structured approach [30] is used. The second part of the Hessian matrix

is approximated by using modified variable metric updates. This part is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method

are satisfied. ) ) ) )
$UPDATE="D’ - The Brown-Dennis structured approach [14] is used. The Hessian matrices of approx-

imating functions are approximated by using variable metric updates. These matrices
serve for approximating the second part of the Hessian matrix which i1s added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method

are satisfied. . ] ) )
SUPDATE="B’ - A variable metric update from the Broyden class is applied either to the normal

equation matrix or to the previous approximation of the Hessian matrix if conditions

for leaving the modified Gauss-Newton method are satisfied [89].
SUPDATE="M’ - A sparse update based on the Marwil projection is applied either to the normal

equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [89].

The default value is SUPDATE="N".
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Individual variable metric updates from the above families are specified by using the macrovari-
able $MET as in the dense case. The value $MET=4 is only allowed if either §UPDATE="S’ or $UP-
DATE="D’, and is the default in this case. The value SMET=1 is the default in the other cases excepting
the case SUPDATE="M’ in which the macrovariable $MET is not utilized.

Variable metric updates (SUPDATE=M or §UPDATE="B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated). A decision between these possibilities is mediated by the macrovariable $MOT1
similarly as in the dense case.

If $UPDATE="D’, we can use several switches for utilizing variable metric updates specified by the
macrovariable $MOT2. If $MOT2=0, the Fletcher and Xu switch [42] is used. If $MOT2=1, a modifi-
cation of the Fletcher and Xu switch is used. If $MOT2=2, the Denis and Welsch switch [33] is used. If
$MOT2=3, the Ramsin and Wedin switch [126] is used. The default value is $MOT2=0.

Possible specifications (type-decomposition-number) for sparse Gauss-Newton methods in the uncon-
strained case are these:

L-G-1, L-M-1,
L-M-3,
G-G-1, G-M-1,
G-G-2, G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-T,
T-G-1, T-M-1,
T-M-7,
M-M-1.

The default choice is G-M-3. In the box constrained case, only the choice SDECOMP="M’ is permitted.
If the Hessian matrix is specified to be sparse with a partitioned pattern ($HESF="B’), the normal
equation matrix has the same structure. If that is the case, then we can use hybrid methods with
partitioned updates SUPDATE="N’, §UPDATE="S’, SUPDATE="D’, $§UPDATE="F’, SUPDATE="B’,
whose details have already been explained above. Note that the partitioned realization is usually less
efficient than the general one due to the more expensive matrix operations.
Possible specifications (type-decomposition-number) for partitioned Gauss-Newton methods are these:

L-M-3,
G-M-3.

The default choice is G-M-3.

If the Hessian matrix is not specified ($HESF='N’"), the normal equation matrix is not used. The
Jacobian matrix, defining a linear least squares problem, is utilized in each iteration instead. Such so-
called normal equation free Gauss-Newton methods are realized in two different forms (for $SJACA="D’
and $JACA="S’) depending on the Jacobian matrix specification.

If the Jacobian matrix is specified to be dense ($JACA="D’), then we cannot use hybrid methods
with variable metric updates (only the specification SUPDATE="NO is permitted). Moreover, dense,
normal equation free Gauss-Newton methods can only be used in the unconstrained case.

Possible specifications (type-decomposition-number) for dense, normal equation free, Gauss-Newton
methods are these:
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L-Q1, L-Al, LEI,

L-A-3, LES3,
L-A4, L-FEA,
L-E-5,
G-Q-1, G-A-1l, G-EI,
G-Q-2, G-E-2,
G-A-3, G-E-3,
G-A4, G-EA,
G-E-5,

G-A-T.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification SDECOMP="E’ can only be used if NA=NF (system of nonlinear equations).

If the Jacobian matrix is specified to be sparse (3JACA=’S"), we can use hybrid methods with simple
variable metric updates:

SUPDATE="N’ - No update is used. The method utilizes the original Jacobian matrix.

$UPDATE="V’ - The simple factorized BFGS update [89] is used. The second order information is
approximated by the unsymmetric rank-one update of the Jacobian matrix.

$UPDATE="R’ - The simple factorized rank-one update [89] is used. The second order information

is approximated by the addition of a dense row to the Jacobian matrix.

If SUPDATE="V’ or §UPDATE="R’, we can use several switches for utilizing variable metric updates,
specified by the macrovariable $MOT2 as in the case of the specification $HESF="S" described above.
The default value is $MOT2=0.

The main advantage of sparse, normal equation free, Gauss-Newton methods consists in the fact that
the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row. If this
is the case, then the classical Gauss-Newton methods cannot be used. On the other hand, the normal
equation matrix often has a lower number of nonzero elements than the Jacobian one. Consequently, the
classical Gauss-Newton methods are more efficient in this case.

Possible specifications (type-decomposition-number) for sparse, normal equation free, Gauss-Newton
methods are these:

L-A-1, LEI,
L-A-3, LES3,
L-A4, LEA,

L-E-5,
G-A-1, G-E-1,

G-E-2,
G-A-3, G-E-3,
G-A4, G-EA,

G-E-5,
G-A-T.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $DECOMP="E’ can only be used if NA=NF (system of nonlinear equations). The choice
L-E-1 differs from the choice L-E-2. The last one corresponds to the incomplete LU decomposition.

3.9. Quasi-Newton methods for nonlinear least squares and nonlinear equations

Quasi-Newton methods are specified by the statement $CLASS="QN’. These methods are special op-
timization methods for nonlinear least squares (SMODEL="AQ’) problems including systems of nonlinear
equations (SMODEL="NE’) when the first derivatives are not specified analytically (the macrovariable
$GMODELA is not defined). Quasi-Newton methods use a rectangular matrix which is updated in every
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iteration in such a way that it approximates the Jacobian matrix as precisely as possible. In the UFO
system, the quasi-Newton methods are realized in two different forms (for $JACA="D’ and $JACA="S")
depending on the Jacobian matrix specification.

There are two possibilities for dense problems ($JACA='D’) which are distinguished by using the
macrovariable SUPDATE:

SUPDATE="N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.
$SUPDATE="B’ - The Broyden family [13] of rank-one updates is used in almost all iterations. Only

after the restart is the Jacobian matrix approximated numerically by using differences.

When $UPDATE="B’, the individual quasi-Newton methods are specified by using the macrovariable
SMET. If SMET=1, the first (good) Broyden update [13] is used. If $MET=2, the second Broyden
update [13] is used. If SMET=3, the second Greenstadt update [136] is used. If $MET=4, the first
Greenstadt update [136] is used. If SMET=5, the first Todd OC update [69] is used. If SMET=6, the
first Todd OCX update [69] is used. If SMET=7, the second Todd OC update [69] is used. If MET=8,
the second Todd OCX update [69] is used. The default value is S MET=1. Dense quasi-Newton methods
can only be used in the unconstrained case.
Possible specifications (type-decomposition-number) for dense quasi-Newton methods are these:

L-Q1, L-Al, LEI,

L-A-3, LES3,
L-A4, L-FEA,
L-E-5,
G-Q-1, G-A-1l, G-EI,
G-Q-2, G-E-2,
G-A-3, G-E-3,
G-A4, G-EA,
G-E-5,

G-A-T.

The default choice is G-Q-3. The specification $DECOMP="E’ can only be used if NA=NF (system of
nonlinear equations).

If the Jacobian matrix is sparse with a general pattern ($JACA=’S’), there are two possibilities for
computing an approximation of the Jacobian matrix by the differences. These possibilities are distin-
guished by using the macrovariable SNUMDER:

$NUMDER=1 - Derivatives of individual approximating functions are computed.
$NUMDER=2 - The Coleman-More [21] graph coloring algorithm is used.

Moreover, various sparse quasi-Newton updates which preserve the pattern of the Jacobian matrix can
be used.

If SNUMDER=1, there are three choices of the quasi-Newton updates which are specified by the
macrovariable SUPDATE:

SUPDATE="N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.

SUPDATE="B’ - Sparse quasi-Newton updates are used in almost all iterations. Only after the restart
is the Jacobian matrix approximated numerically by using differences.

$SUPDATE="S’ - Modified Newton methods such as the row scaling update are used in almost all

iterations. Only after the restart 1s the Jacobian matrix approximated numerically
by using differences.
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If SNUMDER=2, there are four choices of the quasi-Newton updates which are specified by the
macrovariable SUPDATE:

SUPDATE="N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.

$SUPDATE="B’ - Sparse quasi-Newton updates [131] are used in almost all iterations. Only after the
restart is the Jacobian matrix approximated numerically by using differences.

$SUPDATE="S’ - Modified Newton methods such as the row scaling update are used in almost all

iterations. Only after the restart 1s the Jacobian matrix approximated numerically
by using differences.
SUPDATE="C’ - Cyclic column determination methods are used in almost all iterations. Only after

the restart is the Jacobian matrix approximated numerically by using differences.

When $UPDATE="B’, the individual quasi-Newton methods are specified by using the macrovariable
SMET. If SMET=1, the Schubert update [131] is used. If $MET=2, the Bogle-Perkins update [10] is
used. If $MET=3, the column update [105] is used. When SUPDATE="S" and $MET=0, the modified
Newton method is used. When $UPDATE="S’ and $MET=1, the row scaling update [105] is used.
When SUPDATE="C’ and $MET=0, the cyclic column determination method [74] is used. When $UP-
DATE="S’ and $MET=1, the cyclic column determination method [74] is used followed by the Schubert
update [131].
Possible specifications (type-decomposition-number) for sparse quasi-Newton methods are these:

L-A-1, LEI,
L-A-3, LES3,
L-A4, LEA,

L-E-5,
G-A-1, G-E-1,

G-E-2,
G-A-3, G-E-3,
G-A4, G-EA,

G-E-5,
G-A-T.

The default choice is G-A-3 for the least squares problems and G-E-3 for systems of nonlinear equations.
The specification $DECOMP="E’ can only be used if NA=NF (system of nonlinear equations). The
choice L-E-1 differs from the choice L-E-2. The latter corresponds to the incomplete LU decomposition.

3.10. Quasi-Newton methods with limited storage for nonlinear equations

Quasi-Newton methods with limited storage are specified by the statement $CLASS="QL’. The num-
ber of QN steps is specified by the macrovariable $MF (the default value is SMF=5). These methods
are special methods for solving sparse systems of nonlinear equations (SMODEL="NE’) when the first
derivatives are not specified analytically (the macrovariable SGMODELA is not defined). Therefore only
the case NA=NF is permitted. Quasi-Newton methods with limited storage use an initial approximation
of the sparse Jacobian matrix together with several small-size matrices which are updated in every iter-
ation in such a way that their product approximates the Jacobian matrix as precisely as possible [17].
There are two possibilities which are distinguished by using the macrovariable $UPDATE:

SUPDATE="N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.
$SUPDATE="B’ - The Broyden good update of rank-one with limited storage [17] is used in almost all

iterations. Only after the restart 1s the Jacobian matrix approximated numerically
by using differences.
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Possible specifications (type-decomposition-number) for quasi-Newton methods with limited storage
are these:

L-A-3, LES3,
L-A4, LEA,
L-E-5,
G-A-3, G-E-3,
G-A4, G-EA,
G-E-5,

The default choice is G-E-3.

Besides the quasi-Newton methods with limited storage, this class contains inverse column scaling
methods which are chosen by using the specification $DECOMP="T". There are two possibilities which
are distinguished by using the macrovariable SUPDATE:

SUPDATE="N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.
$SUPDATE="B’ - The inverse column scaling update [106] is used in almost all iterations. Only after

the restart is the Jacobian matrix approximated numerically by using differences.
Possible specifications (type-decomposition-number) for inverse column scaling methods are these:

LI,
L13.

If $NUMBER=1, then a complete LU decomposition is used. If $§NUMBER=3, then a combination of
direct and iterative methods is used. The default value is $NUMBER=3.

3.11. Truncated Newton methods for nonlinear equations

Truncated Newton methods are specified by the statement $CLASS="TN’. These methods are special
methods for solving systems of nonlinear equations (SMODEL="NE’) when the first derivatives are not
specified analytically (the macrovariable §GMODELA is not defined). Therefore only the case NA=NF
is permitted. Truncated Newton methods differ from quasi-Newton methods in that the sparse Jacobian
matrix multiplication is replaced by the numerical differentiation. These methods are very efficient for
large problems with computationally simple functions in nonlinear equations ($KCA=1). The main
advantage of the truncated Newton methods is that matrices are not used (implicitly $JACA="N"). This
fact highly decreases storage requirements.

Truncated Newton methods are implemented either as the line search methods or as the trust region
methods and are based on the smoothed CGS subalgorithm. This subalgorithm can be preconditioned
by using the tridiagonal decomposition. This possibility is determined by the macrovariable $MOS2. If
$MOS2=0, the tridiagonal decomposition is not used. If $MOS2=1, the tridiagonal decomposition is
used before the iterative process. If $MOS2=2, the tridiagonal decomposition is used as a preconditioner.
If $MOS2=3, both previous cases are assumed. The default value is $MOS2=0.

Possible specifications (type-decomposition-number) for truncated Newton methods are these:

L-E-3,
L-E-4,
L-E-5,
G-E-3,
G-E-A,
G-E-5.

The default choice 1s G-E-3.
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3.12. Quasi-Newton and Brent methods for nonlinear equations

Quasi-Newton and Brent methods are specified by the statement SCLASS="QB’. These methods are
special simple methods for solving dense systems of nonlinear equations (SMODEL="NE’) when the first
derivatives are not specified analytically (the macrovariable SGMODELA is not defined). Therefore, only
the case NA=NF is permitted. Individual methods are selected using the macrovariable $§NUMBER:

$SNUMBER=1 - The Brent method described in [?].
$NUMBER=3 - The simple Newton method (this method can also be used if the macrovariable
$GMODELA is defined).

The default value is SNUMBER=3.

3.13. Simplex type methods for linear programming problems

Simplex type methods for linear programming problems are specified by the statement $SCLASS="LP".
These methods are realized in two different forms (for SJACC="D’ and $JACC=S") depending on the
constraint Jacobian matrix specification.

If the constraint Jacobian matrix is dense ($JACC="D’), we can use two different linear programming
methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [49]),
which is a special implementation of the steepest descent reduced gradient method.
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation

of the steepest descent projected gradient method.

Possible specifications (type-number) for dense linear programming methods are L-1 and L-2. The
default choice is L-1.

If the constraint Jacobian matrix is sparse (3JACC=’S"), we can use two different linear programming
methods based on the active set strategy: one linear programming method :

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method which is described in
[147].
$SNUMBER=2 - Primal projected steepest descent (range-space) method.

A possible specification (type-number) for sparse linear programming methods are L-1 and L-2. The
default choice is L-2.

3.14. Interior point methods for linear programming problems

Interior point methods for linear programming problems are specified by using the statement $CLASS="LI".
These methods, based on an infeasible primal-dual predictor-corrector strategy, can be used only in the
sparse case when $JACC="S’. Moreover, only the standard LP constraints Az = b, x > 0 can be consid-
ered at present. Individual methods are chosen by using the macrovariable $MLP:

$MLP=1 - The first algorithm of Miao [107].
$MLP=1 - The second algorithm of Miao [107].
$MLP=3 - The Mizuno algorithm [109].

All these methods can be realized in three forms depending on the way of solving the linear generalized

Karush-Kuhn-Tucker system:

$NUMBER=1 - Direct solution based on the Gill-Murray decomposition applied to the Schur com-
plement.
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$NUMBER=2 - Direct solution based on the Bunch-Parlett decomposition applied to the original

Karush-Kuhn-Tucker system.
$NUMBER=3 - Iterative solution based on the conjugate gradient method applied to the Schur

complement.

Possible specifications (type-number) for interior point methods are L-1, -2 and L-3. The default
choice is L-1.

3.15. Simplex type methods for quadratic programming problems

Simplex type methods for quadratic programming problems are specified by using the statement
$CLASS="QP’. These methods are realized in two different forms (for $JACC="D’ and $JACC=’S")
depending on the constraint Jacobian matrix specification.

If the constraint Jacobian matrix is dense (3JACC="D’), we can use three different quadratic pro-
gramming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [51])
which is a special implementation of the Newton reduced gradient method.

$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [38])
which is a special implementation of the Newton projected gradient method.

$NUMBER=3 - Dual projected gradient (range-space) method (like the method proposed in [55]).

Possible specifications (type-number) for dense quadratic programming methods are L-1, L-2, and L-3.
The default choice is L-1.

If the constraint Jacobian matrix is sparse ($JACC="S"), we can use two different quadratic program-
ming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method which is described in
[147].
$NUMBER=2 - Primal projected conjugate gradient (range-space) method.

A possible specification (type-number) for sparse quadratic programming methods are L-1 and L-2.
The default choice is L-2.

3.16. Interior point methods for quadratic programming problems

Interior point methods for quadratic programming problems are specified by using the statement
$CLASS="QI’. These primal-dual methods, based on the logarithmic barrier function and iterative solu-
tion of the indefinite Karush-Kuhn-Tucker system, can be used only in the sparse case when $JACC="S’.
Interior point methods for quadratic programming problems are in fact the same as methods with the
choices $TYPE="L’ and $DECOMP="T" described in Section 3.23.

Two realizations are possible, which are specified by the macrovariable SNUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [35] of the indefinite Karush-
Kuhn-Tucker system is used.
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$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOS1,
$MOS2 and $MOS3. The macrovariable $MOS1 specifies the precision control. If
$MOS1=0, the precision control is suppressed. If $MOS1=1, a precision guarantee-
ing descent direction is used together with the basic choice of the penalty parameter.
The default value is $MOS1=0. The macrovariable $MOS?2 specifies a preconditioning
technique. If $MOS2=0, preconditioning is suppressed. If ABS($MOS2)=1, the in-
definite preconditioner [96] based on a diagonal approximation of the Hessian matrix
is used in the normal equation form. If $MOS2 is positive, a complete Gill-Murray de-
composition is used. If $M OS2 is negative, an incomplete Gill-Murray decomposition
is used. The default value is $MOS2=1. The macrovariable $MOS3 specifies residual
smoothing of the conjugate gradient method. If $MOS3=0, the residual smoothing is
suppressed. If $MOS3=1, a simple one-dimensional residual smoothing is used. The

default value is $MOS3=0.
The default value is SNUMBER="3".

Possible specifications (type-decomposition-number) for inexact recursive quadratic programming
methods for equality constrained nonlinear programming problems are -1 and L-3. The default choice

1s L-3.

3.17. Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimization problems are specified by the statement $CLASS
="BM’. These methods use a solution of the special quadratic programming subproblem derived from the
cutting plane approach [152]. This subproblem is in fact the same as in the recursive quadratic program-
ming methods for minimax problems. Proximal bundle methods are realized only for unconstrained or
linearly constrained dense problems ($JACA="D"). The special quadratic programming subproblem can
be solved by using the following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [77].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the Newton projected gradient method.

The special quadratic programming subproblem is defined in such a way that it has a diagonal Hessian
matrix. There are several methods for computing the diagonal weight coefficients, which are selected
by using the macrovariables $MOS and $MES2. If $MOS=1 and $MES2=1, the weights are updated
using curvature of the one-dimensional quadratic function. If $MOS=1 and $MES2=2, the weights are
updated using the minimum position estimate (suitable for polyhedral and nearly polyhedral functions).
If $MOS=2, the weights are updated using the quasi-Newton condition.

Proximal bundle methods are only realized as line search methods in two modifications which are
specified by the macrovariable SMEX. If SMEX=0, a convex version is assumed. If SMEX=1, a nonconvex
version is assumed and we can define a measure of nonconvexity using the macrovariable $ETA5. The
default value is $ETA5=0.25. Another important parameter is the maximum stepsize defined by the
macrovariable $XMAX. The maximum stepsize is a safeguard, which guarantees that the new point lies
in the region where the bundle model is valid. The default value is $XMAX=1000. Proximal bundle
methods are sensitive to the values of the above two parameters. Therefore, they should be carefully
tuned.

Possible specifications (type-number) for proximal bundle methods are L-1 and L-2. The default
choice is L-1. Proximal bundle methods can be used when $KSF=3 or $SKSA=3. They can also be used
for minimax problems as is shown in Section 3.20.
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3.18. Bundle-Newton methods for nonsmooth optimization

Bundle-Newton methods for nonsmooth optimization problems are specified by the statement $CLASS
="BN’. These methods use a solution of the special quadratic programming subproblem derived from the
cutting plane approach which contains second order information [94]. This subproblem is in fact the
same as in recursive quadratic programming methods for minimax problems. Bundle-Newton methods
are only realized for unconstrained or linearly constrained dense problems (3JACA="D’). The special
quadratic programming subproblem can be solved by using the following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [77].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the Newton projected gradient method.

The special quadratic programming subproblem has a general (dense) Hessian matrix which is a bundle
approximation of the second-order matrix of the original nonsmooth problem.

Bundle-Newton methods are only realized as line search methods. A nonconvex version is assumed
and we can define a measure of nonconvexity using the macrovariable $ETA5. The default value is
$ETA5=0.25. Another important parameter is the maximum stepsize defined by the macrovariable
$XMAX. The maximum stepsize is a safeguard, which guarantees that the new point lies in the region
where the bundle model is valid. The default value is $XMAX=1000. Proximal bundle methods are
sensitive to the values of the above two parameters. Therefore, they should be carefully tuned.

Possible specifications (type-number) for bundle-Newton methods are L-1 and L-2. The default choice
is L-1. Bundle-Newton methods can be used when $KSF=3 or $KSA=3. They can also be used for
minimax problems as i1s shown in Section 3.20.

3.19. Variable metric bundle methods for nonsmooth optimization

Variable metric bundle methods for nonsmooth optimization problems are specified by the statement
$CLASS =’VB’. These methods are based on a special realization of the BFGS variable metric method.
This realization uses special null steps and restarts. Stepsize selection is based on the polyhedral approx-
imation obtained using bundles of points and subgradients. Variable metric bundle methods are realized
only for unconstrained or linearly constrained dense problems (3JACA="D’). They need not solve any
quadratic programming subproblem.

Variable metric bundle methods are only realized as line search methods in two modifications which
are specified by the macrovariable SMEX. If $MEX=0, a convex version [97] is assumed. If $MEX=1, a
nonconvex version [153] is assumed and we can define a measure of nonconvexity using the macrovariable
$ETAbL. The default value is $ETA5=0.25. Another important parameter is the maximum stepsize
defined by the macrovariable $XMAX. The maximum stepsize is a safeguard, which guarantees that
the new point lies in the region where the bundle model is valid. The default value is $XMAX=1000.
Variable metric bundle methods are sensitive to the values of the above two parameters. Therefore, they
should be carefully tuned.

Possible specifications (type-number) for variable metric bundle methods are L-1 and L-2. The default
choice is L-1. Variable metric bundle methods can be used when $KSF=3 or $KSA=3. They can also be
used for minimax problems as is shown in Section 3.20.

3.20. Methods for minimax problems.

Minimax problems are specified by the choice $MODEL="AM’. These problems can be solved using
six classes of methods:

$CLASS="BM’ - Proximal bundle methods.
$CLASS="BN’ - Bundle-Newton methods.
$CLASS="VB’ - Variable metric bundle methods.
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$CLASS="VM’ - Recursive quadratic programming variable metric methods [100]. An approximation
of the Lagrangian function Hessian matrix is updated in each iteration using the
variable metric updates belonging to the Broyden family.

$CLASS="MN’ - Recursive quadratic programming modified Newton methods. The Lagrangian func-
tion Hessian matrix is computed in each iteration either analytically or numerically.
$CLASS="LP’ - Recursive linear programming methods.

The default value is $CLASS="VM’.

Even if the minimax problems can be solved by using bundle methods described in Sections 3.17 - 3.19,
it is more efficient to use the recursive quadratic programming methods that utilize a special structure of
the minimax problem. Recursive quadratic programming methods are realized in three different forms:

$TYPE="L’ - Line search methods.
$TYPE="G’ - General trust region methods.
$TYPE="C’ - General trust region methods with second order corrections [43].

If $TYPE="L’, the special line search method ($MES=5), described in [78], can be used.
The special quadratic programming subproblem, which is derived from the minimax problem, can be
solved by using two different methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [77].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the Newton projected gradient method.

Recursive quadratic programming variable metric methods use the same updates as methods with
the choices $DECOMP="G’ and $UPDATE="B’ described in Section 3.3 (values SMET=1 - $MET=12
can be used). Similarly, recursive quadratic programming modified Newton methods correspond to the
methods with the choice $DECOMP="G’ described in Section 3.6 (the Gill-Murray decomposition is
used).

Recursive linear programming methods are realized as trust region methods with box constrained
subproblems. The special linear programming subproblem, which is derived from the minimax problem,
is solved by a primal projected gradient (range-space) method which is a special implementation of the
steepest descent method.

All of the above methods are only realized for dense unconstrained or linearly constrained problems.
A possible specifications (type-number) for recursive quadratic programming methods are these:

L1,
L-2,
G-1,
G-2,
C-1,
C-2.

The default choice is L-1. A possible specification (type-number) for recursive linear programming meth-
ods is G-1.
3.21. Recursive quadratic programming methods for dense general nonlinear programming
problems

Recursive quadratic programming methods for dense general nonlinear programming problems are

specified by the statement $FORM="SQ’. These methods belong to the two following classes:

SCLASS="VM’ - Recursive quadratic programming variable metric methods. An approximation of
the Lagrangian function Hessian matrix is updated in each iteration using variable
metric updates.
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$CLASS="MN’ - Recursive quadratic programming modified Newton methods. The Lagrangian func-
tion Hessian matrix is computed in each iteration either analytically or numerically.

The default value is $CLASS="VM’. Variable metric methods are the same as in Section 3.3 with the
choice SDECOMP="G’ and $UPDATE="B’ (values SMET=1 - $MET=12 can be used). Similarly, mod-
ified Newton methods are the same as in Section 3.6 with the choice $DECOMP="G’ (the Gill-Murray
decomposition is used).

Recursive quadratic programming methods for dense general nonlinear programming problems are
realized as line search methods ($TYPE="L’) with the l;-exact penalty function. They are like the
methods proposed in [124]. The special line search method ($MES=5) for /j-exact penalty function
can be used successfully. The quadratic programming subproblem can be solved by using two different
methods:

$NUMBER=1 - Dual projected gradient (range-space) method (like the method proposed in [55]).
$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [38])
which is a special implementation of the Newton projected gradient method.

Possible specifications (type-number) for these methods are L-1 and L-2. The default choice is L-1.

3.22. Recursive quadratic programming methods for sparse equality constrained nonlinear
programming problems

Recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems are specified by the statement $SFORM="SE’. These methods, which are intended for large
problems, belong to the following classes:

SCLASS="VM’ - Recursive quadratic programming variable metric methods. An approximation of
the Lagrangian function Hessian matrix is updated in each iteration using variable

metric updates.
$CLASS="VL’ - Recursive quadratic programming variable metric methods with limited storage

based on compact representations of variable metric updates. The number of VM
steps is specified by the macrovariable $MF (the default value is $MF=5). Variable
metric methods with limited storage use several small-size matrices which are updated
in every iteration in such a way that their product approximates the Lagrangian

function Hessian matrix as precisely as possible [17].
$SCLASS="MN’ - Inexact recursive quadratic programming modified Newton methods. The La-

grangian function Hessian matrix is computed in each iteration either analytically
or numerically.

The default value is $CLASS="MN’.
If $CLASS="VM’, the individual variable metric updates (or families) are specified by using the
macrovariable SUPDATE:

$UPDATE="M’ - The simple Marwil projection update [104].
$SUPDATE="B’ - The partitioned variable metric updates from the Broyden family [58]. These up-
dates can only be used if $MODEL="AF’ or $MODEL="AQ’ or SMODEL="AP’.

The default value is $UPDATE="M". If SUPDATE="B’, the particular update is specified by using the
macrovariable SMET. If $SMET=1, the BFGS method is used. If $SMET=2, the DFP method is used.
If $MET=3, the Hoshino method is used. If $MET=4, the safeguarded rank-one method is used. The
default value is $SMET=1.

If SCLASS="VL’, two variable metric updates with limited storage, belonging to the Broyden family,
can be used. These updates are specified by using the macrovariable SMET. If $MET=1, then the
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BFGS method is used. If $MET=4, then the safeguarded rank-one method is used. The default value is
$MET=1.

Recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems are realized in three different ways which are specified by using the macrovariable $TYPE:

$TYPE="L’ - Line search methods. These methods can use five different merit functions for the
stepsize selection. Individual merit functions are determined by using the macrovari-
able $MEP. If SMEP=0, no merit function is used. If $MEP=1, the Powell [; exact
penalty function is used. If $MEP=2, the [, augmented Lagrangian function is used.
If SMEP=3, the /; augmented Lagrangian function is used. If $MEP=4, the Han I;
exact penalty function is used. If SMEP=5, the Schittkowski augmented Lagrangian
function is used. The default value is SMEP=2.

$TYPE="F’ - SQP filter methods [44]. These methods are based on a special multicriterial decision
and do not use any merit function.
$TYPE="G’ - Trust region methods. These methods use two direction determination subproblems

[34], [71], [98]. The vertical subproblem, solved by using the dog-leg method, serves
for a sufficient decrease of constraint violations. The horizontal subproblem, solved
by a special realization of the conjugate gradient method, serves for minimization of
a quadratic approximation of a particular merit function. Individual merit functions
are determined by using the macrovariable SMEP. If $SMEP=0, no merit function
is used. If SMEP=1, the Powell /; exact penalty function is used. If SMEP=2,
the [5 augmented Lagrangian function is used. If $MEP=3, the /; augmented La-
grangian function is used. If $MEP=4, the Han [; exact penalty function is used.
If SMEP=5, the Schittkowski augmented Lagrangian function is used. The default
value is SMEP=2.

The default value is $TYPE="L".
If $TYPE="L’ or $TYPE="F’, the direction vector can be computed in three different ways, which
are specified by using the macrovariable $DECOMP:

$DECOMP="K’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [96].
$DECOMP="72Z" - The direction vector is decomposed into two parts. The vertical part is computed

directly from the constraint violation. The horizontal part, lying in the null-space, is
computed iteratively by using a special realization of the conjugate gradient method.
Instead of projecting into the null-space, either the augmented system or an orthog-
onal projection matrix, both determined from a range-space basis, are used [66].

$DECOMP="G’ - The direction vector is determined directly from the Lagrangian multipliers, which
are determined iteratively by using the conjugate gradient method in the range space
using the Schur complement.

The default value is $DECOMP="K".
If $DECOMP="K’, five realizations are possible, which are specified by the macrovariable SNUMBER.:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [35] of the indefinite Karush-
Kuhn-Tucker system is used.
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$NUMBER=3

$NUMBER=4

$NUMBER=5

$NUMBER=6

- An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOS1,
$MOS2, $MOS3 and $MOS4. The macrovariable $MOS1 specifies the precision con-
trol. If $MOS1=0, the precision control is suppressed. If $§MOS1=1, a precision guar-
anteeing descent direction is used together with the basic choice of the penalty param-
eter. The default value is $MOS1=0. The macrovariable $MOS2 specifies a precondi-
tioning technique. If $MOS2=0, preconditioning is suppressed. If ABS($MOS2)=
the indefinite preconditioner [96] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form. If ABS($MOS2)=2, the indefinite pre-
conditioner [96] based on a diagonal approximation of the Hessian matrix is used
in the augmented system form. If ABS($MOS2)=3, the indefinite preconditioner
[96] based on a diagonal perturbation of the Schur complement is used. If $MOS2
is positive, a complete Gill-Murray decomposition is used. If $MOS2 is negative,
an incomplete Gill-Murray decomposition is used. The default value is $MOS2=1.
The macrovariable $MOS3 specifies residual smoothing of the conjugate gradient
method. If $MOS3=0, the residual smoothing is suppressed. If $MOS3=1, a simple
one-dimensional residual smoothing is used. The default value is $MOS3=0. The
macrovariable $MOS4 specifies the choice of the initial direction. If $MOS4=0, the
zero initial direction is used. If $MOS4=1, the vertical initial direction is used. The
default value is $MOS4=0.

- An inexact preconditioned conjugate residual (PCR) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conjugate
residual method depends on specifications given by the macrovariables $MOS1 and
$MOS2, which have the same meaning as in case SNUMBER=3. The default values
are $MOS1=0 and $MOS2=1.

- An inexact symmetric preconditioned quasi-minimum residual (PQMR) method for
the indefinite Karush-Kuhn-Tucker system 1s applied which uses a special determi-
nation of the required precision. The particular realization of the inexact symmetric
preconditioned quasi-minimum residual method depends on specifications given by
the macrovariables $MOS1 and $MOS2, which have the same meaning as in case

$NUMBER=3. The default values are $MOS1=0 and $MOS2=1.

- An inexact nonsymmetric preconditioned conjugate gradient squared (PCGS)
method for the indefinite Karush-Kuhn-Tucker system is applied which uses a spe-
cial determination of the required precision. The particular realization of the inexact
nonsymmetric preconditioned conjugate gradient squared method depends on speci-
fications given by the macrovariables $MOS1, $MOS2 and $MOS3, which have the
same meaning as in case SNUMBER=3. The default values are $MOS1=0, $MOS2=1
and $MOS3=0.

The default value is $NUMBER="3".
If $SDECOMP="7’, only one realization is possible, which is specified by the macrovariable SNUMBER.:
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$NUMBER=3 - An inexact null-space preconditioned conjugate gradient (NPCG) method for the de-
termination of the horizontal direction is applied which uses a special determination
of the required precision. A particular realization of the null-space preconditioned
conjugate gradient method depends on the specifications given by the macrovariables
$MOS1 and $MOS2. The macrovariable $MOS1 specifies the precision control and
the choice of the penalty parameter. If $MOS1=0, the precision control is suppressed.
If $MOS1=1, a precision guaranteeing descent direction is used together with the ba-
sic choice of the penalty parameter. If $MOS1=2, a precision guaranteeing descent
direction is used together with an extended choice of the penalty parameter, based on
the condition of positive definitness. The default value is $MOS1=0. The macrovari-
able $MOS2 specifies a way for computing the preconditioner. If ABS($MOS2)=1,
the preconditioner is computed by using the orthogonal projection matrix determined
from a range-space basis. If ABS($MOS2)=2, the preconditioner is computed by us-
ing the augmented system determined from a range-space basis. If $MOS2 is positive,
a diagonal approximation of the Hessian matrix is used. If $MOS2 is negative the
unit approximation of the Hessian matrix is used. The default value is $MOS2=1.

If SDECOMP="G’, two realizations are possible, which are specified by the macrovariable SNUMBER:

$NUMBER=3 - The sparse Gill-Murray decomposition of the Lagrangian function Hessian matrix
followed by a range-space smoothed conjugate gradient (RSCG) method for a positive
definite range space system is applied which uses a special determination of the re-
quired precision. The particular realization of the preconditioned conjugate gradient
method depends on specifications given by the macrovariables $MOS1, $MOS2 and
$MOS3. The macrovariable $MOS1 specifies the precision control and the choice
of the penalty parameter. If $MOS1=0, the precision control is suppressed. If
$MOS1=1, a precision guaranteeing descent direction is used. The default value
is $MOS1=1. The macrovariable $MOS2 specifies a preconditioning technique. If
$MOS2=0, the preconditioning is suppressed. If ABS($MOS2)=1, the positive defi-
nite preconditioner [96] based on a diagonal approximation of the Hessian matrix is
used. If ABS($MOS2)=2, the polynomial preconditioner [113] based on a decomposi-
tion of the normal equation is used. If $M OS2 is positive, a complete Gill-Murray de-
composition is used. If $M OS2 is negative, an incomplete Gill-Murray decomposition
is used. The default value is $MOS2=1. The macrovariable $MOS3 specifies residual
smoothing of the conjugate gradient method. If $MOS3=0, the residual smoothing is
suppressed. If $MOS3=1, then a simple one-dimensional residual smoothing is used.

The default value is $MOS3=1. o . . . .
$NUMBER=4 - The sparse Bunch-Parlett decomposition of the Lagrangian function Hessian matrix

followed by a range-space smoothed conjugate gradient (RSCG) method for an indef-
inite range space system 1s applied which uses a special determination of the precision
required. The particular realization of the smoothed conjugate gradient method de-
pends on specifications given by the macrovariables $MOS1 and $MOS3, which have
the same meaning as in case SNUMBER=3. The default values are $MOS1=1 and
$MOS3=1.

The default value is $NUMBER="3".

If $TYPE="G’, only the specifications SDECOMP="Z" and $NUMBER="3" are possible, which cor-
responds to the trust region conjugate gradient (TRCG) method. The macrovariable $MOS2 specifies
a way for computing the projection step. If $MOS2=1, the projection step is computed by using the
orthogonal projection matrix determined from a range-space basis. If $MOS2=2, the projection step is
computed by using the augmented system determined from a range-space basis.

If $TYPE="L’, the UFO system allows us to choose a second order correction for overcoming the
Maratos effect and various Lagrange multipliers updates. This is affected by the macrovariables SMEP1
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and $MEP2. The macrovariable $SMEP1 specifies a second order correction. If $SMEP1=1, the second
order correction is suppressed. If $MEP1=2, the second order correction is determined as being a least
squares solution of the shifted constraint system. The default value is $MEP1=1. The macrovariable
$MEP2 specifies estimates of Lagrange multipliers at the beginning of each iteration. If $MEP2=1, the
initial estimate is taken from the previous iteration. If SMEP2=2, the initial estimate is determined as
being a least squares solution of the first part of the Karush-Kuhn-Tucker system. The default value is
$MEP2=1.

Possible specifications (type-decomposition-number) for inexact recursive quadratic programming
methods for equality constrained nonlinear programming problems are these:

L-K-1,
L K3, LZ3, LG-3,
L-K-4, L-G-4,
L-K-5,
L-K-6,
F-K-1,

F-Z-2,
FK3, FZ3 FG3,
F-K-4, F-GA,
F-K-6,

G-Z-3.

The default choice is L-K-3. The choice SDECOMP="G’ cannot be used for variable metric methods
with limited storage ($CLASS="VL’).

3.23. Interior point methods for sparse equality and inequality constrained nonlinear pro-
gramming problems

Interior point methods for sparse equality and inequality constrained nonlinear programming problems
are specified by the statement $FORM="SI’. These methods, which are intended for large problems,
belong to the following class:

$CLASS="MN’ - Inexact interior point modified Newton methods. The Lagrangian function Hessian
matrix is computed in each iteration either analytically or numerically.

Interior point methods for sparse equality and inequality constrained nonlinear programming problems
are realized in two different ways which are specified by using the macrovariable $TYPE:

$TYPE="L’ - Line search methods. These methods can use five different merit functions for the
stepsize selection. Individual merit functions are determined by using the macrovari-
able $SMEP. If SMEP=0, no merit function is used. If $MEP=2, the l; augmented
Lagrangian function is used. The default value is $SMEP=0.

$STYPE="F’ - SQP filter methods [44]. These methods are based on a special multicriterial decision

and do not use any merit function.

The default value is $TYPE="L".
The direction vector can be computed in the way, which is specified by using the macrovariable

$DECOMP:

$DECOMP="T - The direction vector 1s determined as a solution of the indefinite Karush-Kuhn-
Tucker system [96].

Two realizations are possible, which are specified by the macrovariable SNUMBER:
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$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [35] of the indefinite Karush-
Kuhn-Tucker system is used.

$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOS1,
$MOS2 and $MOS3. The macrovariable $MOS1 specifies the precision control. If
$MOS1=0, the precision control is suppressed. If $MOS1=1, a precision guarantee-
ing descent direction is used together with the basic choice of the penalty parameter.
The default value is $MOS1=0. The macrovariable $MOS?2 specifies a preconditioning
technique. If $MOS2=0, preconditioning is suppressed. If ABS($MOS2)=1, the in-
definite preconditioner [96] based on a diagonal approximation of the Hessian matrix
is used in the normal equation form. If $MOS2 is positive, a complete Gill-Murray de-
composition is used. If $M OS2 is negative, an incomplete Gill-Murray decomposition
is used. The default value is $MOS2=1. The macrovariable $MOS3 specifies residual
smoothing of the conjugate gradient method. If $MOS3=0, the residual smoothing is
suppressed. If $MOS3=1, a simple one-dimensional residual smoothing is used. The

default value is $MOS3=0.
The default value is SNUMBER="3".

Possible specifications (type-decomposition-number) for inexact recursive quadratic programming
methods for equality constrained nonlinear programming problems are these:

LI,
L13.

The default choice 1s L-I-3.

3.24. Methods for initial value problems for ordinary differential equations

Methods for initial value problems for ordinary differential equations are specified by using the
macrovariable $SOLVER. The UFO system contains five types of integration methods:

$SOLVER="DP5’ - The Dormand and Prince method of the fifth order with a stepsize control for nonstiff

problems.
$SOLVER="DP&’ - The Dormand and Prince method of the eighth order with a stepsize control for

nonstiff problems.
$SOLVER="EX1’ - The extrapolation method with a stepsize control, based on the midpoint rule, for

nonstiff problems.
$SOLVER="RD5’ - The Radau method of the fifth order with a stepsize control for stiff problems.

$SOLVER="RS4’ - The Rosenbrock method of the fourth order with a stepsize control for stiff problems.

The default value is $SOLVER="DP&’. These methods, described in [60], use a stepsize control based on
a local truncation error.

A solution to the initial value problem for ordinary differential equations can be stored for subsequent
processing. The extent of the data stored is determined by using the macrovariable SMED. If SMED=0,
then no data are stored. If $SMED=1, the data in all solution steps are stored. If $MED=2, the data
in equidistant mesh points are stored. The number of mesh points is specified by using the statement
$NA=number_of_mesh_points in the last case.

3.25. Methods for direction determination

Optimization methods, contained in the UFO system, are usually implemented in such a way that
they use the same modules for direction determination. These modules, realized with different kinds
of matrix decomposition, are distinguished by using the macrovariables $TYPE and $NUMBER. The
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meaning of the specification $TYPE has been explained above. Now we will explain the specification

$NUMBER.

If $TYPE="L", then line search methods are supposed. In this case, relatively simple procedures are
used for direction determination. There are five possibilities:

$NUMBER=1

$NUMBER=2

$NUMBER=3

$NUMBER=4

$NUMBER=5

- Direct methods for solving linear systems based on various matrix decompositions.
These decompositions are interesting, especially in the sparse case. The Gill-Murray
decomposition [50] of the Hessian matrix is applied if SDECOMP="M’ and $MOS2=0
or if SDECOMP="G’. The Schnabel-Eskow decomposition [130] of the Hessian matrix
is used if SDECOMP="M’ and $MOS2=1 or if $§DECOMP="S’. The Choleski decom-
position of the Hessian matrix is utilized if $DECOMP="R’ or $DECOMP="C’. The
Bunch-Parlett decomposition [15] of the Hessian matrix is applied if $DECOMP="B".
The inverse matrix is used if $DECOMP="T". The orthogonal QR decomposition [149]
of the Jacobian matrix is utilized if $DECOMP="A" or $DECOMP="Q’. The com-
plete LU decomposition [27] of the Jacobian matrix is applied if $DECOMP="E’.
Moreover, symbolic decomposition is always determined before the iterative process
in the sparse case, so that only numerical computations with known factors are carried

out in the subsequent iterations.
- An alternative possibility to the previous case. The direct solution is combined with

a conjugate gradient direction if the Hessian matrix is indefinite. This possibility can

be advantageously used in connection with the modified Newton method.
- Inexact iterative methods. The conjugate gradient method [29] for solving linear

systems with the Hessian matrix is applied if $DECOMP="M’. The CGLS method
[119] for solving linear least squares problems with the Jacobian matrix is used if
$DECOMP="A’. The smoothed CGS method [145] for solving linear systems with
the Jacobian matrix is utilized if $DECOMP="E’. The precision is specified by the
macrovariable $MOS. If $MOS=1, simple strategy is used. If $MOS=2, the geo-
metric decreasing strategy is used. If $MOS=3, the harmonic decreasing strategy
is used. If $SDECOMP="M’ and $HESF=’'S’, the conjugate gradient method can
be preconditioned by using the incomplete Gill-Murray (IGM) decomposition. This
possibility is specified by the macrovariable $MOS2. If $MOS2=0, preconditioning
is suppressed. If $MOS2=1, the IGM decomposition is used. Similarly, if $DE-
COMP="E’ and $JACA="S’, the smoothed CGS method can be preconditioned by
using either the incomplete LU (ILU) decomposition or the SSOR iteration. This
possibility is specified by the macrovariable $MOS2. If $MOS2=0, preconditioning is
suppressed. If $MOS2=1, the ILU decomposition is used. If $MOS2=2, the SSOR

iteration is used. o
- Inexact iterative methods. The LSQR method [119] for solving linear least squares

problems with the Jacobian matrix is applied if $SDECOMP="A’. The GMRES
method [129] for solving linear systems with the Jacobian matrix is used if $DE-
COMP="E’. The precision is specified by the macrovariable $MOS as in the previous
case.

- Inexact iterative methods. The smoothed BICGSTAB method [151] for solving linear
systems with the sparse Jacobian matrix is used if SDECOMP="E’. The precision is
specified by the macrovariable $MOS as in the previous case.

If the line search method is used then a descent property of the determined direction is tested. If

—sTg>eo |l slllgll

where s7g is the directional derivative, s is the direction, and g¢ is the objective function gradient, then
the direction is accepted. In the opposite case the optimization method is restarted. The value ¢y is
specified using the macrovariable $EPSO0.
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If $TYPE="G’, then trust region methods are supposed. The initial trust region radius can be
specified by the statement $XDEL=trust_region_radius, but the default automatically derived value is
recommended. The trust region methods can be internally scaled. This way is very advantageous

for nonlinear regression problems containing exponentials. The trust region scaling is specified by the
macrovariable $MOS1. If $MOS1=1, no scaling is performed. If $MOS1=2, the scaling coefficients are
derived from the normal equation matrix diagonal elements [85]. There are six possibilities:

$NUMBER=1

$NUMBER=2

$NUMBER=3

$NUMBER=4

- So-called single dog-leg methods based on various matrix decompositions. These
decompositions are interesting especially in the sparse case. The Gill-Murray decom-
position [50] of the Hessian matrix is applied if $DECOMP="M" and $MOS2=0 or if
$DECOMP="G’. The Schnabel-Eskow decomposition [130] is used if SDECOMP="M"
and $MOS2=1 or if $DECOMP="S’. The Choleski decomposition of the Hessian ma-
trix is utilized if $DECOMP="R’ or $DECOMP="C’. The Bunch-Parlett decompo-
sition [15] of the Hessian matrix is applied if $DECOMP="B’. The orthogonal QR
decomposition [149] of the Jacobian matrix is utilized if $DECOMP="A’ or $DE-
COMP="Q’. The complete LU decomposition [27] of the Jacobian matrix is applied
if $DECOMP="E’. Moreover, symbolic decomposition is always determined before the
iterative process in the sparse case, so that only numerical computations with known
factors are carried out in the subsequent iterations. The individual dog-leg methods
are specified by the macrovariable $MOS. If SMOS=1, the single dog-leg method [121]
is used. If $MOS=2, the double dog-leg method [31] is used. If $MOS=3, the triple

dog-leg method is used. If $MOS=4, the optimum dog-leg method [16] is used.
- An alternative possibility to the previous case. The so-called multiple dog-leg

methods (combinations of single dog-leg methods and conjugate gradient meth-
ods) [88] are supposed. The number of dog-leg steps is specified by the statement

$MOS=number _of steps.
- Tterative trust region methods. The conjugate gradient trust region method [138]

with the Hessian matrix is applied if SDECOMP="M’. The CGLS trust region method
[84] with the Jacobian matrix is used if $DECOMP="A’. The smoothed CGS trust
region method [93] with the Jacobian matrix is utilized if SDECOMP="E’. The preci-
sion is specified by the macrovariable $MOS. If $MOS=1, the simple strategy is used.
If $MOS=2, the geometric decreasing strategy is used. If $MOS=3, the harmonic de-
creasing strategy is used. If SDECOMP="M’ and SHESF="S’, the conjugate gradient
method can be preconditioned by using the incomplete Gill-Murray (IGM) decompo-
sition. This possibility is specified by the macrovariable $MQOS2. If $MOS2=0, pre-
conditioning is suppressed. If $MOS2=1, the IGM decomposition is used. Similarly, if
$DECOMP="E’ and $JACA="S’, the smoothed CGS method can be preconditioned
by using either the incomplete LU (ILU) decomposition or the SSOR iteration. This
possibility is specified by the macrovariable $MOS2. If $MOS2=0, preconditioning is
suppressed. If $MOS2=1, the ILU decomposition is used. If $MOS2=2, the SSOR

iteration is used. ) )
- Iterative trust region methods. The combined Lanczos and CG trust region method

[88] with the Hessian matrix is applied if $DECOMP="M’. The LSQR trust region
method [84] with the Jacobian matrix is used if $DECOMP="A’. The GMRES trust
region method [93] with the Jacobian matrix is utilized if SDECOMP="E’. The preci-
sion is specified by the macrovariable $MOS as in the previous case. Iterative methods
can be again preconditioned. This possibility is specified by the macrovariable $M OS2
as in the previous case.
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$NUMBER=5 - Iterative trust region methods. The combined CG and Lanczos trust region method
[88] with the Hessian matrix is applied if SDECOMP="M". The smoothed BICGSTAB
trust region method [93] with the Jacobian matrix is utilized if $DECOMP="E". The
precision is specified by the macrovariable $MOS as in the previous case. Iterative
methods can be again preconditioned. This possibility is specified by the macrovari-

able $MOS2 as in the previous case.
$NUMBER=7 - An optimum locally constrained trust region method [112]. The Gill-Murray decom-

position [50] of the Hessian matrix is applied if $DECOMP="M’ and $MOS2=0. The
Schnabel-Eskow decomposition [130] of the Hessian matrix is used if SDECOMP="M"
and $MOS2=1 or if SDECOMP="S’. The special augmented Jacobian matrix is used
if SDECOMP="A".

If $TYPE="T", only the specifications $NUMBER=1, $NUMBER=2 and $NUMBER=T can be used.
These specifications have the same meaning as in the case $TYPE="G’, but the implementation is simpler.
If SNUMBER=7, the simplified optimum locally constrained trust region method [85] is used.

If STYPE="M’, only the specification $NUMBER=1 can be used. In this case a modified Marquardt
method proposed by Fletcher [37] is applied.

3.26. Methods for stepsize selection

Stepsize selection is a very important part of optimization methods. The UFO system contains two
types of stepsize selection procedures: line search methods and trust region methods. Line search methods
are realized in two modifications specified by the macrovariable $SEARCH:

$SEARCH="B’ - Basic line search methods based on various interpolation and extrapolation formulas.
$SEARCH="M’ - Mixed line search methods which control the maximum stepsize like the trust region
methods.

The choice of individual line search procedures is influenced by the order of directional derivatives
being used. This order can be specified by the macrovariable $KDS. The value of the macrovariable $KDS
is usually derived internally from the order of analytically supplied partial derivatives. If this order is
zero, then always $KDS=0. In the opposite case, the value of the macrovariable $KDS can be specified by
the user. If $KDS=0, only the function values are used during the line search. If $KDS=1, the function
values and the first directional derivatives are used. If $KDS=2 then, in addition, the Hessian matrices
or their approximations are computed during the line search (this case is very useful for a line search
implementation of modified Gauss-Newton methods).

The particular interpolation and extrapolation rule is specified by the macrovariable SMES. If $KDS=0,
we have the following possibilities:

$MES=1 - The uniformly increasing extrapolation or bisection interpolation is used.

$MES=2 - Two point quadratic extrapolation or interpolation is used.

$MES=3 - Three point quadratic extrapolation or interpolation is used.

$MES=4 - Three point cubic extrapolation or interpolation is used.

$MES=5 - Special extrapolation or interpolation is used based on the special form of the ob-

jective function.

If $KDS=1 or $KDS=2, the following possibilities, based on the first directional derivatives, can be used:

$MES=1 - The uniformly increasing extrapolation or bisection interpolation is used.
$MES=2 - Quadratic extrapolation or interpolation (with one directional derivative) is used.
$MES=3 - Quadratic extrapolation or interpolation (with two directional derivatives) is used.
SMES=4 - Cubic extrapolation or interpolation [25] is used.

$MES=5 - Conic extrapolation or interpolation [6] is used.
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More detailed specifications concerning the line search selection can be chosen using macrovariables

$MES1, SMES2, $SMES3:

$MES1=1 - Constant extrapolation is used.

$MES1=2 - Extrapolation specified by the macrovariable $MES is used.
$MES1=3 - Extrapolation 1s suppressed.

$MES2=1 - Standard line search termination criterion is used.

SMES2=2 - Special termination criterion for nonconvex functions is used.
$MES2=3 - Line search 1s terminated after at least two function evaluations.
$MES3=1 - Safeguard against rounding errors is suppressed.

$MES3=2 - The first level of safeguard 1s used.

$MES3=3 - The second level of safeguard is used.

Another useful specification for the line search selection is a termination criterion which 1s determined
by using the macrovariable K TERS:

$KTERS<0 - The nonmonotone line search procedure proposed in [59] is used. The absolute value
of the macrovariable $KTERS, which cannot be greater then 10, gives the number of
nonmonotone steps.

$KTERS=1 - Perfect stepsize. The relative precision of the stepsize parameter is given by the
value SEPS3.

$KTERS=2 - The Goldstein stepsize [56]. The termination precision is given by the value $EPSI.

$KTERS=3 - The Curry-Altman stepsize [24] (Wolfe conditions). The termination precision is
given by the values SEPS1 and SEPS2.

$SKTRES=4 - The extended Curry-Altman stepsize [39] (strict Wolfe conditions). The termination
precision is given by the values $EPS1 and $EPS2.

$KTERS=5 - The Armijo stepsize [2]. The termination is given by the value $EPSI.

$KTERS=6 - The first stepsize. The stepsize selection is terminated after the first function eval-
uation.

The last useful specification for the line search methods is the initial stepsize choice which is determined
by the macrovariable $INITS. The initial stepsize is usually computed by the rule

a = min(ey, —Cz(AF/STg))

where sT g is the initial directional derivative and AF = F — F,,;, or AF = Fyq — F if the value of
the macrovariable $SINITS is positive or negative respectively. The absolute value of the macrovariable
$INITS determines coefficients ¢; and ¢o If [INITS|=1, then ¢; = 1 and ¢5 = 0. If |INITS|=2, then ¢; = 1
and ¢y = 4. If |INTTS|=3, then ¢; = 1 and ¢ = 2. If [INITS|=4, then ¢; = 0 and ¢3 = 2.

Trust region methods are also realized in two modifications specified by the macrovariable $SSEARCH:

$SEARCH="B’ - The basic trust region methods with stepsize control based on the comparison of
both the actual and the predicted function decreases.
$SEARCH="M’ - Mixed trust region methods which use interpolation formulas for stepsize reduction

like the line search methods [116].

Trust region methods are also influenced by using the macrovariable K TERS. If $KTERS<0, then
nonmonotone trust region procedure proposed in [28] is used. The absolute value of the macrovariable
$KTERS, which cannot be greater then 10, gives the number of nonmonotone steps.

3.27. Methods for numerical differentiation

The UFO system computes derivatives of the model function (of the approximating functions, of the
constraint funcions) numerically whenever they are not given analytically. This is made possible by the
macroprocessor which generates a corresponding part of the control program. The main problem of a
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numerical differentiation is a difference determination which has to be chosen in such a way that the
total influence of both the cancellation and the roundoff error i1s as small as possible. There are three
possibilities in the UFO system which are distinguished by using the macrovatiable $MCG:

SMCG=0 - The simple difference determination described in [32] is used.
$MCG=1 - The optimum difference determination proposed in [52] is used.
SMCG=2 - The optimum difference determination proposed in [140] is used.

The default option is $MCG=2. The above possibilities are used for a computation of the model function
first order derivatives. The others (second order derivatives or derivatives of the approximating functions
and constraint functions) are always computed with the simple difference determination.

3.28. Methods for objective function evaluation in the case of dynamical systems optimiza-
tion

If either SMODEL="DF’ or $MODEL="DQ’, the objective function is computed from the solution of
an initial value problem for ordinary differential equations. The initial value problem is solved and the
integral criterion is evaluated by using integration methods specified by the macrovariable $SOLVER as
is described above. If the partial derivatives of all the functions used are given analytically, the gradient

of the objective function is computed by integration methods. There are two possibilities specified by
the macrovariable $SYSTEM:

$SYSTEM="F’ - Forward integration using an augmented system of ordinary differential equations.
$SYSTEM="B’ - Backward integration using the adjoint system of ordinary differential equations.

The default value is $SYSTEM="F". In the case of modified Gauss-Newton methods ($CLASS="GN’),
an approximation of the Hessian matrix is also computed by using forward integration of an augmented
system.

3.29. Global optimization methods

Global optimization methods are used if SEXTREM="G" is specified. The global optimization meth-
ods use local optimization methods for finding local minima. Therefore the particular local optimization
method has to be chosen by using the macrovariables $CLASS and $TYPE and others. Individual global
optimization methods are specified by using the macrovariables $GCLASS and $GTYPE. The UFO
system contains four classes of global optimization methods:

$GCLASS=1 - Random search methods. These methods are simple and robust, but less efficient.

$GCLASS=2 - Continuation methods. These methods use some penalty functions which are ad-
justed after reaching an arbitrary local minimum so that another local minimum is
found.

$GCLASS=3 - Clustering methods. These methods are based on randomly generated sample points

which are processed using clustering algorithms to determine attractivity regions
(clusters) of the individual minima. The attractivity regions (clusters) obtained are

not searched repeatedly.
$GCLASS=4 - Multi-level methods. Modern stochastic methods which involve a combination of

sampling and local search techniques. These methods combine strong theoretical
properties with an attractive computational behaviour. These methods are simpler
but more efficient than the clustering methods.

If $GCLASS=1, we can choose four types of global optimization methods:
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$GTYPE=1

$GTYPE=2

$GTYPE=3

$GTYPE=4

If $GCLASS=2,

$GTYPE=1

$GTYPE=2

$GTYPE=3

If $GCLASS=3,

$GTYPE=1

$GTYPE=2

If $GCLASS=4,

- Single-start methods. Random points, uniformly distributed in a given region, are
generated and a local minimization method is started from the point with the lowest

function value. ) ) o ) ) )
- Multi-start methods. Random points, uniformly distributed in a given region, are

generated and local minimization is started from every point. The local minima

obtained are compared and selected.
- Modified multi-start methods. Random points, distributed in a given region uni-

formly, are generated and local minimization is started whenever a point is found

which has a lower function value than that reached up to date.
- Bayesian reduced multi-start methods [7]. Random samples of points are repeatedly

generated. Every random sample is reduced and local minimization is started from
all points belonging to the reduced sample. Obtained local minima are compared
and selected. This process 1s repeated while the Bayesian termination criterion is not
satisfied.

then we can choose three types of global optimization methods:

- Tunneling function methods [73]. These methods consist of two phases: a local
minimization phase and a tunneling phase. The starting point for the second phase
is the local minimum. At the end of the tunneling phase a new point is found which

has a function value equal or lower than the starting point.
- Combined tunneling function and random search methods. In this case a random

search is used in the tunneling phase if the minimization of a tunneling function has

failed to find a new starting point.
- Filled function methods [46], [47]. The idea of filled function methods is based on

a filled function. This function has a maximum in the point of a known minimum of
the objective function. On the other hand, this function does not have minimizers or
saddle points in any basin of a higher minimizer of the objective function, but it does
have a minimizer or a saddle point in a basin of a lower minimizer of the objective
function.

we can choose two types of global optimization methods:

- Density clustering method [8]. Density clustering refers to a class of clustering
techniques by using nonparametric probability density estimates to form clusters. All
unclustered points from a reduced sample, which are within the threshold distance

from the seed point, are added to the cluster.
- Single linkage clustering method [8]. In this case, the next two clusters to be merged

are those for which the distance between the nearest points is the smallest. When
this distance becomes larger than the threshold distance, the procedure is stopped.
Starting with each point in a separate cluster, the points at distances smaller than
the threshold distance are linked. A cluster is recognized as a set of points linked
together.

we can choose three types of global optimization methods:
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$GTYPE=1 - multi-level single linkage method [128]. In this case, the function values of the
sample points are used in a very simple manner to obtain a very powerful method.
The local search procedure is applied to every sample point, except if there is another
sample point within the critical distance which has a smaller function value. Clusters
can be constructed by associating a point with a local minimum, if there exists a
chain of points linking it to that minimum. This is done so that the distance between
each successive pair is, at most, equal to the critical distance and the function value
is decreasing along the chain. A point in this way could be assigned to more than one
minimuim.

$GTYPE=2 - Multi-level mode analysis method [128]. This method is a generalization of the mode
analysis method. The region is partitioned into cells. After the sample reduction, it
is determined which cells contain enough points to be “full”. For each full cell the
function value of the cell is defined to be equal to the smallest function value of any of
the sample points in the cell. Finally, for every full cell, local minimization is applied

except if a cell has a neighbouring cell which is full and has a smaller function value.
$GTYPE=3 - Modified multi-level single linkage method. This is a multi level single linkage

method with some modifications which are described in [128].

The number of points randomly generated in the given region can be specified by using the macrovari-
able SMNRND. The default value is usually 100+20*NF. Since it depends on the number of variables
and for NF>20 it is too large, we recommend to use global optimization methods up to 20 variables only.
If we use clustering or multi level single linkage methods (§GCLASS=3 or $§GCLASS=4), we can specify
additional parameters.

$SMNLMIN - Maximum considered number of local minima. The default value is 504+20*NF.

$GAMA - Reduction of random sample (typically 0.1D0 - 0.2D0). A greater value of GAMA
usually leads to a greater number of local minima, but it requires a greater amount
of work.

$SIGMA - Parameter of cluster or single linkage termination (typically 1 - 8).
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4. Input possibilities in the UFO system

The UFO system has many input possibilities including interactive dialogues. These input possibilities
can be divided into three basic groups which are batch mode, text dialogue mode and graphic dialogue
mode. Batch and dialogue modes can be combined. The basic means for the batch and combined modes
is the UFO control language.

4.1. The UFO control language

The form of the control program can be determined by using the statements of the UFO control
language. The UFO control language is based on the batch editing language (BEL) [141] that described
in Appendix B. The UFO control language contains four types of instructions:

1. Standard Fortran 77 instructions which can be written in the free format.

2. Fortran 77 instructions containing macrovariables. These instructions get a final form after the first
pass of the UFO preprocessor.

3. Substitutions and directives. These macroinstructions control the UFO preprocessor execution.

4. Special substitutions. These macroinstructions are special tools of the UFO control language that
realize the most useful sets of single instructions.

Standard Fortran 77 instructions used in the UFO control language have some extensions and limita-
tions. The main extension is the free format. The instructions may not have a limited length, they can
be written everywhere in the input file and if they are written in the same line, the character ’;” is used
to separate the instructions. The continuation of an instruction is specified by character & ’. The main
limitation concerns the application of instructions in the control program. Therefore, statement numbers
greater than 9999 cannot be used, comments can be introduced by character '+ only and the only con-
tinuation character can be '& . Also, it is recommended to use identifiers beginning with character "W’
which are not used in the UFO system

Macrovariables used in the UFO system begin with character ’$’ and are supposed to be of the
type character. Their values are always in the form of a string of characters which can be sometimes
interpreted as an integer or a real or a logical constant. The chief significance of the macrovariables is
their use in substituting their values for their names in the Fortran 77 statements. In this case we place
the macrovariable (beginning with ’$’) in the text, but if it is followed by a letter or digit we have to use
brackets. For example if we write

$FLOAT W(100)
or
CALL UD$HESF$TYPE$SDECOMPSNUMBER

or

X(1)=1.08(P)0

and if the values of $FLOAT, $HESF, $TYPE, $DECOMP, $NUMBER and $P are 'REAL#8" (this
is default), 'D’, 'L’, G’ ’1” and ’D’ (this is default), we get REAL*8 W(100) or CALL UDDLGI, or
X(1)=1.0DO0 respectively, after the UFO preprocessor application. The values of macrovariables can be
defined and changed by assignments or by special directives as will be shown later.

Substitutions and directives are very important for the UFO control language since they make the
substitutions of texts, definitions and changes of macrovariables, branching, loops, etc., possible. We
briefly describe the most useful of them. A more detailed description is given in Appendix B.

1. Assignment: The assignment of a string of characters for a macrovariable is specified by the
macroinstruction $MACRO="value’. For example, we have to set SHESF="D’, $TYPE="L’, $DE-
COMP="G’, $SNUMBER=I1 (the integers do not need to be substituted as strings) to obtain the
result given above.
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. Insertion of a text: If we write

$SET(MACRO) or $ADD(MACRO)
text text

$ENDSET $ENDADD

then a given text (that can contain a large number of Fortran 77 statements) is inserted into the
macrovariable SMACRO. The macroinstruction $SET is used for the definition of a new macrovari-
able. The macroinstruction $ADD appends a new text into the old macrovariable so that it can be
used repeatedly.

. Logical substitutions: The macrovariables $INT, SREAL, $LOG and $DEF have logical values. If
we write SINT(MACRO) (or SREAL(MACRO) or $LOG(MACRQ)), the resulting value is either
TRUE., if the value of the macrovariable $MACRO is an integer constant (or real constant or
logical constant), or .FALSE. in the opposite case. If we write $SDEF(MACRO), the value of
$DEFT is either .TRUE., if the macrovariable SMACRO was previously defined (by the substitution
$MACRO="value’ or by using macroinstructions $SET and $ADD), or .FALSE. in the opposite case.
This possibility can be used for branching. If we use the directive SERASE(MACRO), the previously
defined macrovariable SMACRO becomes undefined (so that $DEF(MACRO)=.FALSE.).

. List of items macrovariables: Values of macrovariables can be lists of items, i.e. they can have
a more complicated form $MACRO="item_1 \item_2\.. \itemn’ where every item corresponds to
one value. The list of items macrovariables use pointers which point out the current items. The
current item can be obtained by the substitution $DATA(MACRO) which also moves the pointer
to the next item. The directive SRESTORE(MACRO) returns the pointer to the first item.

. Branching: This possibility is very similar to the branching in the Fortran 77 language:

$IF (condition)
statements
SELSEIF (condition)
statements
$ELSE
statements

$ENDIF

Conditions can be logical constants .TRUE., .FALSE., or logical macrovariables SINT(MACRO),
SREAL(MACRO), SLOG(MACRO)), $DEF(MACRO), or they can have a form of comparisons
MACRO=MACROI1, MACRO="value’ etc. (besides the relation =, we can also use other relations
< or > or <= or >= or <>). Branching is used in the UFO preprocessor stage and has an influence
on the form of the control program.

. Loops: The basic looping directives have the following form (similarly as in the Fortran 77 or Pascal
languages):

$DO(MACRO:INDEX1,INDEX?,INDEX3)
statements
SENDDO

or
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SREPEAT
statements

SUNTIL(condition)
For example if we set $NF=2, $NC=3 and write

$DO(I=1,NF,1)
$DO(J=1,NC,1)
CALL $SETCG($1,$J,$1.0D0+$J.0D0)
$ENDDO
$ENDDO

then the UFO preprocessor generates the sequence

$SETCG
$SETCG
$SETCG
$SETCG
$SETCG
$SETCG

1,1,1.0D0+1.0D0)
1,2,1.0D0+2.0D0)
1,3,1.0D0+3.0D0)
2,1,2.0D0+1.0D0)
2,2,2.0D0+2.0D0)
2,3,2.0D0+3.0D0)

P S o o N S

Similarly, if we set SFLOAT="REAL*8’ $N=20, SMACRO="X($N)\G(SN)\H($N,$N)\.END.’, and

write
$REPEAT
$I="DATA(MACRO)’
$FLOAT $1
SUNTIL(I="END.")

then the UFO preprocessor generates the sequence

REAL*8 X(20)
REAL*8 G(20)
REAL*S H(20,20)

7. File substitutions: Suppose we have a file with a name file_ name.extension. Then we can include
it into the control program by using the macroinstructions

SINCLUDE(file_name.extension’)
or
$SUBST(*file_name.extension’)

The main difference between these possibilities is that the directive $INCLUDE includes a text
without change (it has to be a regular Fortran 77 text with a fixed format) while the directive
$SUBST substitutes a text executed consecutively by the UFO preprocessor (so that it can con-
tain the macrovariables and macroinstructions and be written in the free format). Moreover, the
directives $SUBST can be nested. This possibility is widely used for control program generation
by using nested templates. If the included file has the name file_ name.I, we can use a simpler form
without extension. For example, the file UZLINS.I can be substituted by using the macroinstruction

$SUBST('UZLINS").
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8. Special substitutions: Besides macroinstructions of the batch editing language BEL, the UFO
control language contains special substitutions which realize sets of instructions and are useful for
controlling the UFO preprocessor:

$BATCH - Switch to the batch mode.

$DIALOGUE - Switch to the default dialogue mode (text or graphic).

$TDIALOGUE - Switch to the text dialogue mode.

$GDIALOGUE - Switch to the graphic dialogue mode.

$GLOBAL - Global declarations.

SINITIATION - Initiation of the global variables.

$INPUT - User supplied input.

$OouUTPUT - User supplied output.

$METHOD - Generation of the optimization method.

$MODERASE - Cancellation of the current model.

SMETERASE - Cancellation of the current method.

$VARERASE - Clearing the common variables.

$TSTART - Start of the time measurement.

$TSTOP - Termination of the time measurement and print of the measured time.
$SEND - End of the optimization block.

$STANDARD - Standard optimization block: The macroinstruction $STANDARD substi-

tutes the sequence of macroinstructions $GLOBAL, $INITIATION, $MOD-
ERASE, $INPUT, SMETHOD, SOUTPUT, $TSTOP.

Moreover $UYTES1, $UYTES2, $SUYTES3, $UOTES4, SUKMAIl $UKMCI1 $SUKMCI2 are simplified
substitutions of subroutines UYTES1, UYTES2, UYTES3, UOTES4, UKMAIl, UKMCI1, UKMCI2
respectively and SSETAG, $SETCG are simplified calling statements (sections 2.6 and 2.14).

We have described the basic possibilities of the UFO control language that are sufficient for preparing
the batch input file. More details are given in subsequent chapters and especially in Appendix B. The
following example demonstrates the use of the UFO control language for the solution to three collections
of optimization problems by two selected methods.

$REM ——————————————— basic parameters —-—-——-—————————=

$TOLX="1.0$P-10’; $TOLF=’1.0$P-15’; $TOLG=’1.0$P-5’; $MIT=800; $MFV=1200
$K0OUT=0; $LOUT=1; $MOUT=1

$BATCH
$GLOBAL
$ADD (INTEGER, *\IAG($NA+1)\JAG($MA) )

$REM ——————————————— the first method --———————————-

$MODEL="AF’; $JACA="S’; $HESF=’S’; $NF=100; $NA=500; $MA=2000; $M=9000
$SET(INPUT)
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CALL EIUB14(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT,IEXT,IERR)
IF(IERR.NE.O) GO TO 7777
$ENDSET
$SET (FMODELA)
CALL EAFU14(NF,KA,X,FA,NEXT)
$ENDSET
$SET (GMODELA)
CALL EAGU14(NF,KA,X,GA,NEXT)
$ENDSET

$INITIATION
$MODERASE
CALL $UYTES1
DO 7777 NEXT=1,15
CALL $UYTES2
$INPUT
$METHOD
CALL $UYTES3
7777 CONTINUE

$METERASE
$CLASS="GN’; $TYPE="L’; $DECOMP="M’; $NUMBER=3; $UPDATE='D’

$REM ——————————————— the second model --————————————-

$MODEL="AQ’; $JACA=’S’; $HESF=’S’; $NF=100; $NA=500; $MA=2000; $M=9000
$SET (INPUT)
CALL EIUB15(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT-15,IEXT,IERR)
IF(IERR.NE.O) GO TO 8888
$ENDSET
$SET (FMODELA)
CALL EAFU15(NF,KA,X,FA,NEXT-15)
$ENDSET
$SET (GMODELA)
CALL EAGU15(NF,KA,X,GA,NEXT-15)
$ENDSET

$INITIATION
$MODERASE
DO 8888 NEXT=16,37
CALL $UYTES2
$INPUT
$METHOD
CALL $UYTES3
8888 CONTINUE
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$REM ——————————————— the third model --———-——--———-—

$SET (INPUT)
CALL EIUB18(NF,NA,MA,X,IAG,JAG,FMIN,XMAX,NEXT-37,IEXT,IERR)
IF(IERR.NE.O) GO TO 9999
$ENDSET
$SET (FMODELA)
CALL EAFU18(NF,KA,X,FA,NEXT-37)
$ENDSET
$SET (GMODELA)
CALL EAGU18(NF,KA,X,GA,NEXT-37)
$ENDSET

$INITIATION
$MODERASE
DO 9999 NEXT=38,65
CALL $UYTES2
$INPUT
$METHOD
CALL $UYTES3
9999 CONTINUE

CALL $UOTES4
$END

4.2. The batch mode

A switch to the batch mode is realized by using the special substitution $BATCH. If we want to
process either the batch mode or the mixed mode we have to prepare a batch input file written in the
UFO control language. This input file prescribes the structure of the control program. If a macrovari-
able 1s used, it has to be one defined previously. Therefore definitions of macrovariables usually lie at
the beginning of the input file. Many macrovariables serve for defining a given optimization problem.
The most important among them are the macrovariable $INPUT which determines initial input values
(user supplied input) and macrovariables which define problem functions, specifically the model (or ob-
jective) function, approximating functions for nonlinear approximation, constrain functions for nonlinear
programming, state functions, initial functions and the terminal function for optimization of dynamical
systems. These functions are specified by using special macrovariables whose names consist of three
parts. The first part can contain letters F, G, D, H or their combinations:

F - Function value.

G - Gradient with respect to basic variables.

D - Gradient with respect to state variables.

H - Hessian matrix with respect to basic variables.

FG - Function value and gradient with respect to basic variables.

FD - Function value and gradient with respect to state variables.

GD - Gradient with respect to basic variables and gradient with respect to state variables.

FGD - Function value, gradient with respect to basic variables and gradient with respect to state
variables.
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FGH

- Function value, gradient with respect to basic variables and Hessian matrix with respect to
basic variables.

The second part always has the form MODEL. The third part can contain letters F, A, C, E,; Y and also
an additional letter S:

F - The model function or the terminal function.
A - The selected approximating function.

AS - All approximating functions.

C - The selected constraint function.

CS - All constraint functions.

E - The selected state function.

ES - All state functions.

Y - The selected initial function.

YS - All initial functions.

The following combinations are possible:

$FMODELF $FMODELA $FMODELC $FMODELE $FMODELY
$FMODELAS $FMODELCS $FMODELES $FMODELYS
$GMODELF $GMODELA $GMODELC $GMODELE $GMODELY
$GMODELAS $GMODELCS $GMODELES $GMODELYS
$DMODELF $DMODELA $DMODELE
$DMODELES
$HMODELF $HMODELA $HMODELC
$HMODELAS $HMODELCS
$FGMODELF SFGMODELA $FGMODELC $FGMODELE $SFGMODELY
$SFGMODELAS $SFGMODELCS $FGMODELES $FGMODELYS
$FDMODELF $FDMODELA $FDMODELE
$FDMODELES
$GDMODELF $GDMODELA $GDMODELE
$GDMODELES
$FGDMODELF $FGDMODELA $SFGDMODELE
$FGDMODELES
$FGHMODELF S$FGHMODELA  $FGHMODELC

$SFGHMODELAS $FGHMODELCS

The choice of a suitable way for problem function definitions is ambiguous and problem dependent.
We can only give several remarks:

1. The basic and most general way is the use of different macrovariables for different quantities (val-
ues, gradients, Hessian matrices) together with an independent evaluation of individual functions
(the last letter is different from S). This way saves the computer storage and frequently also the
computational time.

2. Sometimes, evaluations of gradients require function values. In this case, it can be advantageous
to compute values and gradients simultaneously. A similar consideration also holds for Hessian
matrices.

3. Even if simultaneous evaluations of all approximating (constraint, state, initial) functions increase
storage requirements, it can be advantageous if there are complicated computations common for
all such functions, and also if a problem has a low dimension or a sparse structure. It is frequently
advantageous for the evaluation of state and initial functions when the dynamical systems are
optimized.
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4. Tf the gradients of approximating (constraint, state, initial) functions are computed simultaneously
(the last letter is equal to S), then also function values have to be computed simultaneously. Simi-
larly if the Hessian matrices are computed simultaneously, then also function values and gradients
have to be computed simultaneously.

A simple example of a batch input file was shown in section 1.2. We repeat it here with some explanations:

$SET (INPUT)
X(1)=-1.2D0; X(2)= 1.0DO

$ENDSET

$SET (FMODELF)
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)—-1.0D0) **2

$ENDSET

$NF=2

$NOUT=1

$BATCH

$STANDARD

By using the macrovariable SINPUT, we specify the initial values of variables x; = —1.2 and z» = 1.0. By
using the macrovariable SFMODELF, we specify the model function value (the model function gradient
is not specified, it will be computed numerically). The macrovariable $NT defines the number of variables
and $NOUT is a print specification. The macroinstruction $BATCH switches the mode to the batch mode.
The macroinstruction $SSTANDARD defines the standard form of the control program. Descriptions of
more complicated problems are shown in chapter 5.

In the above example, a direct definition of a model function value is used. We can also use indirect
specifications by means of the Fortran 77 subroutines or the files prepared beforehand. Suppose that the
model function value is defined by using the subroutine EFFUO1 or is specified in the file FVAL.FOR. Then
we can write:

$SET(FMODELF)
CALL EFFU01(NF X ,FF,NEXT)
$ENDSET
or
$SET(FMODELF)
$INCLUDE(’FVAL.FOR’)
$ENDSET
or
$SET(FMODELF)
$SUBST('FVAL.FOR’)
$ENDSET

The last possibility is useful if the model function value specification is written in a free format or it
contains the BEL macroinstructions.
If we need to utilize user supplied subroutines, we can include them into the control program using

the macrovariable $SUBROUTINES:
$SET(SUBROUTINES)

user supplied subroutines

$ENDSET

In this case, some exceptions laid on the text of user supplied subroutines forced by the UFO preprocessor
have to be satisfied. All comments have to begin with character "*’, the continuation line has to begin
with character ’&’, character ’$’ has to be replaced by ’$$” and character ’;” does not have to be present.

The batch input file should also contain optimization method selection. Fortunately, this selection
is not critical since the optimization method can be chosen automatically by using knowledge bases
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contained in the UFO system templates. Here we will only demonstrate some possibilities. The greatest
influence on the optimization method selection have the following macrovariables:

$CLASS - Class of optimization methods (heuristic, conjugate gradient, variable metric, vari-
able metric with limited storage, modified Newton, truncated Newton, Gauss-Newton,
quasi-Newton, quasi-Newton with limited storage, proximal bundle, bundle-Newton).

$TYPE - Type of optimization methods (line search, trust region, SQP filter).

$DECOMP - Type of matrix decomposition (original matrix, Choleski decomposition, inversion).
$NUMBER - Individual methods for direction determination (various direct, various iterative).
$SUPDATE - Type of variable metric or quasi-Newton update.

A more detailed description of these choices together with other choices (SMET, $SMET1, $MET2, SMET3,
SMES, $MES1, $MES2, $MES3, $MOS, $MOS1, $MOS2, $MOS3) is given in section 3.

4.3. The text dialogue mode

A switch to the text dialogue mode is realized by using the special substitution $TDIALOGUE. This
is equivalent to the substitution $DIALOGUE in the UNIX version of the UFO system. If this is the case,
a sequence of questions appear on the screen in the text form. Each question, which is placed in its own
frame, consists of the macrovariable description usually followed by the list of its possible values. The
name of a macrovariable together with its default value is written on the top of the frame. We have two
possibilities for an answer. First, the required value can be entered from the keyboard. Secondly, we can
press ENTER to choose the default value. After the assignment of a value to the macrovariable, a new
question immediately appears on the screen until the last one i1s exhausted. The dialogue mode can be
terminated by entering character ’!” from the keyboard. We demonstrate four questions as an example:

? INPUT () ?

USER SUPPLIED INPUT:

HERE THE STARTING POINT, BOUNDS FOR VARIABLES,
TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,
AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

Here a user supplied input is expected. This is a text which should be entered from the keyboard.

? MODEL (FF) ?
TYPE OF OBJECTIVE FUNCTION

FF - GENERAL FUNCTION

FL - LINEAR FUNCTION

FQ - QUADRATIC FUNCTION

AF - SUM OF FUNCTIONS

AQ - SUM OF SQUARES

AP - SUM OF POWERS

AM - MINIMAX

DF - DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION

DQ - DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO - MODEL IS NOT SPECIFIED
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Here an optimization model, i.e. a type of the objective function, is chosen. We have 10 possibilities, FF,
FL, FQ, AF, AQ, AP, AM, DF, DQ, NO. The default value of the macrovariable SMODEL corresponding
to the general objective function is FF. By pressing ENTER, the default value FF is accepted.

? NF (0) ?
NUMBER OF VARIABLES

Here the number of variables is expected. This is a positive integer. No default value is offered, i.e. we
have to set a value. If this value is not a positive integer, the answer is ignored and the same question
appears on the screen.

? FMIN (-1.0D 60) ?
LOWER BOUND FOR FUNCTION VALUE

Here a real constant is expected. By pressing ENTER the default value -1.0D 60 is accepted.
More details concerning a text dialogue mode are given in Appendix A, where a complete text dialogue
concerning unconstrained minimization of the Rosenbrock function is shown.

4.4. The graphic dialogue mode

The graphic dialogue mode can be used only on PC computers under the MS DOS system. This
possibility is not allowed on the UNIX workstations. A switch to the graphic dialogue mode is realized
by using the special substitution $§GDIALOGUE. This is an equivalent to the substitution $DIALOGUE
in the PC version of the UFO system. If this is the case, a sequence of screens follows. Each screen
realizes one question which is in fact the same as that in the text dialogue mode. Nevertheless, the graph
dialogue mode has several advantages over the text one:

1. Information is better arranged on the screen.

2. The window for typing answers is in fact a simple editor. Therefore the text can be easily corrected
and a movement controlled by arrows is possible.

3. Application of the special UFO editor is possible for realizing more complicated answers. The UFO
editor works with multiple windows so that an answer can be set up from several sources. Therefore
a convenient utility of the batch mode can also be used in the dialogue mode.

To compare text and graphic dialogue modes, we again demonstrate the above four questions:
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USER SUPPLIED INPUT:

HERE THE STARTING POINT, BOUNDS FOR VARIABLES,
TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,
AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

Type string for  INPUT:

E - using the UFO EDITOR [ALT+5 returns to dialogue]

! - end of dialogue

Here a user supplied input is expected. This is a text which should be written into the window displayed
on the screen (followed by pressing ENTER). If this text is more complicated, we can use the UFO editor
by typing character ’E’ and pressing ENTER. The return from the UFO editor to the graphic dialogue

is realized by pressing <alt-b> (section 1.3). The dialogue mode can be terminated by typing character
1" and pressing ENTER.

TYPE OF OBJECTIVE FUNCTION
FF - GENERAL FUNCTION
FL - LINEAR FUNCTION
FQ - QUADBATIC FUNCTION
AF - SUM OF FUNCTIONS
AQ - SUM OF SQUARES
AP - S5UM OF POWERS
AM - MINIMAX
DF - DIFFERENTIAL S%Y5TEM WITH INTEGRAL CRITERION
DO - DIFERBENTIAL 5% 5TEM WITH INTEGRAL OF SQUARES
NO - MODEL IS NOT SPECIFIED

Type your choice for MODEL: FF

or press ENTER for default

! - end of dialogue

Here an optimization model, i.e. a type of the objective function, is chosen. We have 10 possibilities, FF,
FL,FQ, AF, AQ, AP, AM, DF, DQ, NO. The default value of the macrovariable S MODEL, corresponding

78



to the general objective function, is FF. By pressing ENTER, the default value FF is accepted. If we
want to choose a different possibility, it has to be written into the two-character window, followed by
pressing ENTER. The dialogue mode can be terminated by typing character ’!” and pressing ENTER.

NUMBER OF YARIABLES
Type integer for  NF:
Positive value is required - no default

! - end of dialogue

Here the number of variables is expected. This is a positive integer. No default value is offered, i.e. we
have to enter any value. If this value is not a positive integer, the answer is ignored and another answer
is expected. The dialogue mode can be terminated by typing character '!” and pressing ENTER.

LOWER BOUND FOR FUNCTION VALUE
Type real for FMIN: -1.0D 60
or press ENTER for default

! - end of dialogue

Here a real constant is expected. By pressing ENTER the default value -1.0D 60 is accepted. If we want
to choose a different value, it has to be written into the twenty-character window, followed by pressing
ENTER. The dialogue mode can be terminated by typing character ’!” and pressing ENTER.
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5. OQutput possibilities in the UFO system

The UFO system has many output possibilities including graphic pictures. These output possibilities
can be divided into five basic groups.

5.1. Basic screen output

The basic screen output can be used only if SGRAPH="N" and $DISPLAY="N". In this case, individual
rows corresponding to the iterations and the final results are printed on the screen consequently. A
print level of the screen output is determined by using the macrovariables $MOUT and $NOUT. The
macrovariable $MOUT can have the following values:

$MOUT= 0 - Screen output is suppressed.

$MOUT=2 1 - Standard output. The final results appear on the screen.

$MOUT== 2 - Extended output. Additional information from every iteration appears on the screen.

$MOUT=4£ 3 - Extended output. Additional final results of linear or quadratic programming sub-
problems appear on the screen.

$MOUT==% 4 - Extended output. Additional information from every iteration of linear or quadratic

programming subproblems appears on the screen.

If $MOUT>0, a standard line of the final results is printed, while if $MOUT<0 then a modified line of
the final results, containing the termination criterion, is printed.
The macrovariable NOUT can have the following values:

$NOUT= O - Short final results (scalar variables) appear on the screen.
$NOUT= 1- Extended final results (vectors) appear on the screen.

5.2. Extended screen output

If we want to use an extended screen output, we have to set $DISPLAY="Y’ (the default value
is $DISPLAY="N’). This type of screen output consists of text pages which correspond to individual
iterations and the final results. The final results are divided into several groups which can be displayed
successively. We can change the displayed group by typing particular characters from the keyboard.

Change of the displayed group of the final results:

F - (function) : Value of the objective function and statistics.

V - (variables) : Values of variables if NF>0 (with their bounds if KBF>0).

A - (approximation) : Values of approximating functions if NA>0 (with their prescribed values if
KBA>0). Values of selected components of a solution of the set of ordinary dif-
ferential equations at the prescribed mesh points if NE>0.

C - (constraints) : Values of constraint functions if NC>0 (with their bounds if KBC>0).

D - (data) : Data which specify the problem solved (sizes of problem and additional specifica-
tions).

O - (options) : Options which specify the method used.

Exit:

Q - (quit) : Exit from the extended screen output.

After typing each character we must use ENTER.
Besides these possibilities we can stop every iteration for scanning the iterative process. It is specified
if we set $SCAN="Y’ (the default value is $SCAN="N"). If $SCAN="N’| the output of iterations is

suppressed. Scanning of the iterative process can be terminated by using character *!” from the keyboard.
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5.3. Graphic screen output

The graphic screen output can be used only on PC computers under the MS DOS system. This
possibility 1s not allowed on the UNIX workstations. If we want to use a graphic screen output, we
have to set SGRAPH="Y" (the default value is §GRAPH="N"). In this case, both iterations and the final
results appear in the graphic mode. In general, the graphic screen output is a sequence of screens which
can be examined successively in a required order. A change of the screen is carried out by using the menu
given on the top of this screen. We have three possibilities. First, the character displayed as a capital
at the menu item can immediately be typed from the keyboard. Secondly, we can use characters — and
— which realize movement in the top menu. The underlined menu item is then selected by pressing
ENTER. Finally, we can apply a mouse click to the menu item. In the subsequent graphic screen output
description, we focus our attention to the first possibility without a loss of generality.

The graphic form of the final results can be specified in detail by using macrovariables $PATH (’N’-
no, 'Y'- yes, 'E’- extended), $SMAP ("N’- no, 'Y’- yes, 'E’- extended), $HIL (’N’- no, "Y'~ yes) and $ISO
(’N’- no, Y’- yes). The final results are divided into several groups which can be displayed successively.
We can change the displayed group by typing particular characters from the keyboard.

Change of the displayed group of the final results:

F - (function) : Value of the objective function and statistics.

V - (variables) : Values of variables if NF>0 (with their bounds if KBF>0).

A - (approximation) : Values of approximating functions if NA>0 (with their prescribed values if
KBA>0). Values of selected components of a solution of the set of ordinary dif-
ferential equations at the prescribed mesh points if NE>0.

C - (constraints) : Values of constraint functions if NC>0 (with their bounds if KBC>0).

D - (data) : Data which specify the problem solved (sizes of problem and additional specifica-
tions).

O - (options) : Options which specify the method used.

T - (path) : Values of the objective function and selected variables (we can change these vari-

ables during the graphic output, if we have specified SPATH="E’) in the last NPA
iterations (only if $PATH="Y’ or $PATH="E").

Exit:
Q - (quit) : Exit from the graphic output.
X - (exit) : Exit from the UFO system.

Besides these possibilities we can stop every iteration for scanning the iterative process. It is specified
if we set $SCAN="Y" (the default value is $SCAN="N’). In every iteration, we can choose one of the
possibilities F, V, A; C, D, O as in the case above. If we have chosen either V (variables) or A (approxi-
mation) or C (constraints), the intermediate results can be displayed graphicly by typing G (graph) from
the keyboard. In all these cases we can execute a single iteration by typing SPACE merely. We can also
execute all iterations until the k-th one by typing J (jump) and entering the number k. Finally, by typing
U (automatic), all remaining iterations are executed without scanning.

Besides text representations in the graphic mode, which are essentially like the ones in the extended
screen output (with the choice $DISPLAY="Y"), we can chose several types of graphic data representation.

a) Graphic picture:

If we have chosen either V (variables) or A (approximation) or C (constraints), the results can be
displayed graphicly by typing G (graph) from the keyboard. A graphic picture appears on the screen in
this case. It contains either values of variables with indices I, 1 < T < NF, or values of the approximating
functions with indices KA, 1 < KA < NA, or values of the constraint functions with indices KC, 1 <
KC < NC. If we have chosen A (approximation) in the case of NE>0, the graphic picture contains a
component (with the index VAR) of a solution of the set of ordinary differential equations at the mesh
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points AT(KA), 1 < KA < NA. We have to define the index VAR from the keyboard in this case. The
graphic picture can be changed by typing the particular characters from the keyboard.

Change of representation:

V - (values) : Values are drawn.

O - (ordinates) : Values and ordinates from zero axis are drawn.
C - (curve) : Values are connected by a curve.

M - (mixed) : Curve and ordinates are drawn.

Change of graph (if either KBF>0 or KBA>0 or KBC>0):

F - (functions) : Either values of variables X(T), 1 <T < NF, or values of the approximating func-
tions AF(KA), 1 < KA < NA| or values of the constraint functions CF(KC), 1 <

KC < NC, are demonstrated.
A - (approximation) : Either values of variables X(I) together with their bounds XL(I) and XU(I), 1

< T < NF, or values of the approximating functions AF(KA) together with their
prescribed values AM(KA) , 1 < KA < NA| or values of the constraint functions
CF(KC) together with their bounds CL(KC) and CU(KC), 1 < KC < NC, are

) demonstrated. ) ) )
D - (differences) : Either the differences between variables and their bounds or the differences be-

tween the approximating functions and their prescribed values or the differences
between the constraint functions and their bounds are demonstrated.

Continuation (if either NF > 200 or NA > 200 or NC > 200):

P - (previous) : Previous set of at most 200 values 1s drawn.
N - (next) : Next set of at most 200 values is drawn.

Choice of the next displayed iteration (only if $SCAN="Y"):

J - (jump) : The iterative process is stopped at the k-th iteration. Number £ is read from the
keyboard.
U - (automatic) : All remaining iterations are executed without scanning.

New graph or return:

W - (new) : This possibility can be used only if NE>0. Then a new component (with a new
index VAR) of a solution of the set of ordinary differential equations is drawn. We

have to define a new index VAR from the keyboard in this case.
Q - (quit) : Return to the displayed group of final results.

If we have chosen F (function) as a group of final results, we can use additional graphic representations.
b) Two-dimensional orbit:

If NE>1, we can draw an orbit of two components of a solution of the set of ordinary differential
equations by typing G (graph) from the keyboard. We have to define an index VAR for every selected
component of a solution (according to the text appeared on the screen). The two-dimensional orbit can
be changed by typing particular characters from the keyboard.

Change of the orbit:

V - (values) : Values are drawn.
C - (curves) : Values are connected by a curve.

New orbit or return:

W - (new) : New components of a solution of the set of ordinary differential equations are
drawn. We have to define new two indices from the keyboard in this case.
Q - (quit) : Return to the displayed group of final results.
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¢) Three-dimensional orbit:

If NE>2, then we can draw an orbit of three components of a solution of the set of ordinary differential
equations by typing I (picture) from the keyboard. We have to define an index VAR for every selected
component of a solution (according to the text appeared on the screen). The three-dimensional orbit can
be changed by typing particular characters from the keyboard.

Change of the orbit:

V - (values) : Values are drawn.

C - (curves) : Values are connected by a curve.

O - (rotate) : Rotation of values or curves about a vertical axis by a subsequently entered angle
T - (tilt) : ']%ifﬁing rotated values or curves by a subsequently entered angle Dtheta.

A - (axes) : Drawing a picture with rotated and tilted axes.

S - (scale) : Scaling of rotated and tilted values or curves to make full use of the screen.

New orbit or return:

W - (new) : New components of a solution of the set of ordinary differential equations are
drawn. We have to define new three indices from the keyboard in this case.
Q - (quit) : Return to the displayed group of final results.

d) Coloured map of the objective function:

If we have specified either SMAP="Y’ or $MAP="E’ (default value is $MAP="N’), we can draw a
coloured map of the objective function by typing M (map) from the keyboard. This picture can be
changed by typing particular characters from the keyboard.

Change of the map:

L - (linear) : Linear scale of the coloured map.

G - (logarithmic) : Logarithmic scale of the coloured map.

R - (refinement) : Refinement of the coloured map.

B - (back) : Back refinement of the coloured map.

N - (inverse) : Coloured map of the objective function negation.

Another type of picture, new map or return:

H - (hills) : Drawing an objective function surface with respect to visibility (only if $HIL="Y"
is specified).

S - (isolines) : Drawing contours of the objective function (only if $ISO="Y" is specified).

W - (new) : Selection of new variables and drawing a new coloured map.

Q - (quit) : Return to the displayed group of final results.

If we set $SMAP="Y’, one picture for two variables is drawn. If we set SMAP="E’, three pictures
for all combinations of two from three variables are drawn. In both cases we have to define, from the
keyboard, an index VAR and bounds XL(VAR), XU(VAR) for every variable used (according to the text
appeared on the screen). Note that the choice SMAP="E’ excludes the choices $HIL="Y" and $ISO="Y’
so that the other pictures cannot be used.

e) Objective function surface:

If we have specified $HIL="Y" (default value is $HIL="N’), we can draw an objective function surface
with respect to visibility by typing H (hills) from the keyboard. This picture can be changed by typing
particular characters from the keyboard.

Change of the surface:

L - (linear) : Linear scale of the surface.
G - (logarithmic) : Logarithmic scale of the surface.
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R - (refinement) : Refinement of the surface.

B - (back) : Back refinement of the surface.

O - (rotate) : Rotation of the surface about a vertical axis by a subsequently entered angle Dfi.
T - (tilt) : Tilting the rotated surface by a subsequently entered angle Dtheta.

F - (face) : Facing the rotated surface (drawing the rotated surface without tilting).

N - (inverse) : Surface of the objective function negation.

Another type of picture, new surface or return:

M - (map) : Drawing a coloured map of the objective function (only if SMAP="Y" is specified).
S - (isolines) : Drawing contours of the objective function (only if $ISO="Y" is specified).

W - (new) : Selection of new variables and drawing new surface.

Q - (quit) : Return to the displayed group of final results.

Before drawing the objective function surface we have to define, from the keyboard, an index VAR
and bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared on the screen).

f) Objective function contours:

If we have specified $ISO="Y" (default value is $ISO="N’), we can draw an objective function contours
by typing S (isolines) from the keyboard. This picture can be changed by typing particular characters
from the keyboard.

Change of contours:

L - (linear) : Linear scale of contours.

G - (logarithmic) : Logarithmic scale of contours.

R - (refinement) : Refinement of contours.

B - (back) : Back refinement of contours.

O - (colour) : Colouring of contours and used levels.

N - (inverse) : Inverse colouring of contours and used levels.

Another type of picture, new contours or return:

M - (map) : Drawing a coloured map of the objective function (only if SMAP="Y" is specified).

H - (hills) : Drawing an objective function surface with respect to visibility (only if $HIL="Y"
is specified).

W - (new) : Selection of new variables and drawing a new surface.

Q - (quit) : Return to the displayed group of final results.

g) Graphic path of the objective function and selected variables:

If we have chosen T (path), we can display the values of the objective function as a function graph
by typing G (graph) or draw the objective function contours with the path in the last NPA iterations by
typing S (isolines). The graph can be changed in the same way as in a).

Change of contours:

L - (linear) : Linear scale of contours.

G - (logarithmic) : Logarithmic scale of contours.

R - (refinement) : Refinement of contours.

B - (back) : Back refinement of contours.

Z - (zoom) : Zoom of the path for the number of last iterations entered.

Another type of picture, new contours or return:

W - (new) : Selection of new variables and drawing new contours (only if we have specified
SPATH="E’).
Q - (quit) : Return to the displayed group of final results.
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Before drawing the objective function contours we have to define, from the keyboard, an index VAR
and bounds XL(VAR), XU(VAR) for every variable used (according to the text appeared on the screen).

5.4. Text file output

The UFO system contains a great number of text file output procedures which are controlled by
using the macrovariables $KOUT, $KOUT1, $KOUT2, $KOUT3, and $SLOUT. These text file output
procedures are useful especially for debugging new optimization methods. The UFO system works with
the output file P.0OUT. The Fortran number of this output file defines the common variable IWR. The
macrovariables $KOUT, $KOUT1, $KOUT2, $KOUT3 determines what is printed and the macrovariable
$LOUT has an influence on the extent of the print.

The macrovariable $KOUT can have the following values:

$KOUT= O - Text file output is suppressed (the file P.OUT is empty) :

$KOUT=+1 - Standard output. The heading and the final results are printed together with selected
information in each accepted iteration.

$KOUT= =+ 2 - Extended output. Additional information, obtained from stepsize selection, is printed.

$KOUT= =+ 3 - Extended output. Additional information, obtained from direction determination and
variable metric update, is printed.

$KOUT= =+ 4 - Extended output. Additional information, obtained from linear constraint addition
and deletion, is printed.

$KOUT=+5 - Extended output. Additional information, obtained from numerical differentiation, is
printed.

If $KOUT >0, a standard heading is printed while if $KOUT <0, an extended heading, containing problem
specifications and optimization options, is printed.

The selection of iterations accepted for print is controlled by the contents of the macrovariables
$KOUTI, $KOUT2, $KOUT3. If KOUT1< KOUT2, only the iterations whose numbers are between
KOUT1 and KOUT?2 are assumed, but the KOUT3—1 ones are always omitted (KOUT1 is a lower bound,
KOUT?2 is an upper bound and KOUT3 is a step). Similarly, if KOUT1>KOUT2, only the iterations
whose numbers are smaller than KOUT?2 or greater than KOUT1 are assumed, but the KOUT3—1 ones
are always omitted. If $KOUT3=0, no iterations are assumed.

While the macrovariable $KOUT specifies which information is printed, the macrovariable $L.OUT
specifies how much information is printed:

SLOUT= O - Basic output. The basic information (1 row if $KOUT=1) is printed in each accepted
iteration,

$LOUT==1 - Extended output. Additional scalars, together with the vector of variables, are
printed.

$LOUT==+ 2 - Extended output. Additional vectors (usually gradients) are printed.

$LOUT==+ 3 - Extended output. Additional matrices (usually Hessian matrices) are printed.

$SLOUT=4+ 4 - The most extended output. All useful data are printed.

If $SLOUT>0, the basic part of the information is printed. If SLOUT<0, a more extensive part of the
information is printed.

The macrovariable $SLOUT has an additional significance. If $KOUT=0 and $LOUT>0, a copy of
the basic screen output is provided. If $KOUT=0 and $SLOUT<0, paper saving print is assumed. In the
last case, only several rows are printed for every solution. This type of output is useful for simultaneous
tests of optimization methods.

To show a typical basic output which corresponds to the choices $KOUT=1, $KOUT3=0 and $LOUT=0
we propose the following results from unconstrained optimization:
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UNCONSTRAINED MINIMIZATION USING UFO SYSTEM
OPTIMIZATION SUBROUTINE : U1FDU1

DIRECTION DETERMINATION : UDDLI1

STEP SIZE DETERMINATION : USOLO1

FUNCTION DETERMINATION : UF1FO1

GRADIENT DETERMINATION : UFOGS2

H MATRIX DETERMINATION :

VARIABLE METRIC UPDATE : UUDBI1

PROBLEM

NF = 2 KDF= 0 KSF= 1 KCF= 2 KBF= 0 ISNF= 1 NORMF= 0O
NA = O NAL= 0 MAL= O KDA=-1 KSA= 0 KCA= 0 KBA= 0 ISNA= O NORMA= O
NC = 0 NCL= 0 MCL= 0 KDC=-1 KSC= 0 KCC= 0 KBC= 0 ISNC= O NORMC= O

FINAL RESULTS

FF= -.3072281498D+03
X = -.6228926480D+01 .4363683132D+01

TERMINATION: ITERM=4 GRAD TOL F=-.307D+03 G= .480D-06 D= .148D-07

STATISTICS

NIT = 14 NDEC = 0
NFV = 58 NAV = 0 NCV = 0 NRES = 6
NFG = O NAG =0 NCG =0 NREM =0
NFH = O NAH =0 NCH =0 NADD =0

Here the optimization subroutines used are listed on the top followed by problem specifications. After brief
results, the termination causes are written. The termination cause ITERM=4 (GRAD TOL) corresponds
to the attainment of the required gradient norm, F is the objective function value, G is the maximum
absolute value of gradient elements and D is the maximum relative change of variables. The statistics
contains the number of iterations NIT, the number of decompositions NDEC, the number of restarts
NRES, the number of constraint deletions or additions NREM or NADD respectively, and a set of data
concerns numbers (N) of model function (F) or approximating functions (A) or constraint functions (C)
values (V) or gradients (G) or Hessian matrices (H) evaluations respectively.

5.5. User supplied output

The UFO system allows utilizing both the user supplied output subroutines and the post-processing
subroutines. These subroutines can be inserted in the control program by using the macrovariable

$OUTPUT:

$SET(OUTPUT)
Calling the user supplied output subroutines.
Calling the post-processing subroutines.

$ENDSET
The parameters of the user supplied output subroutines and the post-processing subroutines must satisfy

the UFO conventions. For example, the vector of variables, the model function value and the model
function gradient must be denoted X, FF and GF, respectively (see chapter 2).
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5.6. Storing final results

If we set SOUTPUTDATA="Y", the final values of variables X(I), 1< I< NF, are stored in file P.DAT.
Similarly, if we set SINPUTDATA="Y", the values of variables X(T), 1< I< NF, from file P.DAT are used
as input data for a new optimization process.

5.7. Other output files

The UFO system uses two other output files P.DIM and P.SIF which contain additional information
about the problem solved. File P.DIM shows us the problem dimension. It contains the numbers of
variables, approximating functions, constraints and also numbers of nonzero elements in sparse structures.
For example, if we apply the UFO system to the input file TSIF21.UFO, then the file P.DIM contains the
following text:

PROBLEM: NEXT = 0

NUMBER OF VARIABLES: NF = 450
NUMBER OF CONSTRAINTS: NC = 360
NUMBER OF NONZERO ELEMENTS: MC = 1576
NUMBER OF NONZERO ELEMENTS: MHC = 55
NUMBER OF NONZERO ELEMENTS: MCH = 4736
NUMBER OF NONZERO ELEMENTS: M = 2779

File P.SIF contains information concerning SIF files of the CUTE collection (section 6.3). This file is
generated by the SIF decoder. For example, if we apply the UFO system to the input file TSIF21.UFO,
the file P.SIF contains the following text:

Problem name: BRITGAS

The objective function uses 1 nonlinear group
There are 360 nonlinear equality constraints

There are 426 variables bounded only from below
There are 24 variables bounded from below and above

5.8. Error messages

If we use the specification SMOUT>0 (basic screen output), then nonstandard terminations are
indicated. The message consists of three parts: the name of a critical subroutine, the number of a
message, and an explanation text. For example, if the number of iterations is exceeded, we obtain the
following message:

0 NIT= 500 NFV=2545 NFG= 0 NDC=1556 NCG= 0 F= .122D+06 G= .112D+05
UYFUT1: (-2) MAXIMUM NUMBER OF ITERATIONS

Error messages are very useful especially in case the problem dimension is invalid. For example, if the
number of nonzero elements in the Jacobian matrix is specified incorrectly, then we obtain the message:

0 NIT= 0 NFV= 0 NFG= 0 NDC= 0 NCG= 0 F= .000D+00 G= .000D+00
UZLMIN: (78) LACK OF SPACE : MA TOO SMALL
ACTUAL VALUE: 298 - DECLARED VALUE: 250

Here UZLMIN is a subroutine where an error was detected, 78 is the error number and MA TOO SMALL
is the explanation. In this case, additional information (ACTUAL VALUE and DECLARED VALUE) is
given.

The following table presents all UFO error messages (error numbers and explanations):
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MAXIMUM NUMBER OF FUNCTION EVALUATIONS : MFV TOO SMALL
MAXIMUM NUMBER OF ITERATIONS : MIT TOO SMALL

MAXIMUM NUMBER OF CYCLES : MIC TOO SMALL

BAD DECOMPOSITION

BAD INTERVAL IN THE OLC DIRECTION DETERMINATION
MAXIMUM NUMBER OF STEPS IN THE OLC DIRECTION DETERMINATION
BREAKDOWN IN THE ITERATIVE METHOD

BREAKDOWN IN THE ITERATIVE METHOD

MAXIMUM NUMBER OF REDUCTIONS

NEGATIVE DIRECTIONAL DERIVATIVE

BAD INTERVAL FOR INTERPOLATION

BAD PREDICTION IN THE TRUST REGION METHOD

RESTART

FEASIBLE SOLUTION DOES NOT EXIST

BOUNDED SOLUTION DOES NOT EXIST

FEASIBLE SOLUTION DOES NOT EXIST

FEASIBLE TRUST REGION DOES NOT EXIST

INVALID SITUATION IN CONSTRAINT HANDLING

INVALID SITUATION IN CONSTRAINT HANDLING

LACK OF SPACE IN CONSTRAINT HANDLING : MMAX TOO SMALL
LACK OF SPACE IN CONSTRAINT HANDLING : MMAX TOO SMALL
BAD INPUT DATA

BAD INPUT DATA

UXSGFM: NAU IS DECLARED TOO SMALL

UXSGFM: NZ IS DECLARED TOO SMALL

UXSGFM: JACOBIAN MATRIX IS TOO UNSTABLE

UXSGFM: JACOBIAN MATRIX IS SINGULAR

UXSGFM: NZ IS TOO SMALL FOR THE FACTOR

UXSGFM: NAU IS TOO SMALL FOR THE FACTOR

UXSGFM: NZ IS TOO SMALL FOR DATA MANIPULATIONS AFTER FACTORIZATION
UXSGFM: COLUMN SCHEME FOR THE FACTOR IS NOT CREATED: LACK OF SPACE

BAD INPUT DATA

BAD INPUT DATA

UXSGUM: NAU IS DECLARED TOO SMALL

UXSGUM: JACOBIAN MATRIX IS SINGULAR

UXSGUM: FACTOR IS BADLY CONDITIONED

UXSGUM: LITTLE SPACE FOR L-UPDATES

UXSGUM: JACOBIAN MATRIX SINGULARITY IS FACED

UNBOUNDENESS IS FACED

UKLTS3: ROWS ARE NOT SPECIFIED

UKLTS3: COLUMNS ARE NOT SPECIFIED

UKLTS3: TYPE IS NOT SPECIFIED

UKLTS3: TYPC IS NOT DEFINED

LACK OF SPACE FOR THE CHOLESKI FACTOR : MMAX TOO SMALL

LACK OF SPACE FOR A SYMBOLIC FACTORIZATION : MMAX TOO SMALL
LACK OF SPACE FOR THE FILL-IN

LACK OF SPACE FOR NUMERICAL DIFFERENTIATION : M TOO SMALL
STRUCTURAL SINGULARITY DURING INCOMPLETE LU FACTORIZATION
INVALID STRUCTURE FOR INCOMPLETE LU FACTORIZATION

LACK OF SPACE IN NUMERICAL DIFFERENTIATION : NVAR TOO SMALL

LACK OF SPACE IN THE INCOMPLETE DECOMPOSITION : MMAX TOO SMALL

LACK OF SPACE IN THE SCHUR COMPLEMENT : MMAX TOO SMALL
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50
51
52
53
54
55
56
b7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

LACK OF SPACE FOR THE FACTOR

INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS
LACK OF SPACE IN THE FRONTAL SCHEME

ERROR IN THE FRONTAL SCHEME

LACK OF SPACE IN THE FRONTAL SCHEME

ERROR IN THE FRONTAL SCHEME

LACK OF SPACE IN THE INTEGER FIELD

LACK OF SPACE IN THE REAL FIELD

ZERO INDEX

DIMENSION ERROR

LACK OF SPACE IN THE WORKING FIELD

INVALID MATRIX ORDER

NUMBER OF NONZEROS SMALLER THAN ZERO

INVALID ENTRIES IN THE INPUT MATRIX
INCONSISTENT MEMORY

LACK OF SPACE IN THE INTEGER FIELD : MMAX TOO SMALL
LACK OF SPACE IN THE REAL FIELD : MMAX TOO SMALL
INVALID LU FACTORS

MAXIMUM INTEGER TOO SMALL

INVALID INPUTS

ZERO PIVOT WHEN DEFINITENESS IS DECLARED
CHANGE IN SIGN OF PIVOT ENCOUNTERED
SINGULARITY DETECTED

NONZERO ELEMENT IGNORED

PIVOT HAS DIFFERENT SIGN FROM THE PREVIOUS ONE
LACK OF SPACE : M TOO SMALL

LACK OF SPACE : MAH TOO SMALL

LACK OF SPACE : MCH TOO SMALL

LACK OF SPACE : MA TOO SMALL

LACK OF SPACE : MC TOO SMALL

LACK OF SPACE : NF TOO SMALL

LACK OF SPACE : NA TOO SMALL

LACK OF SPACE : NC TOO SMALL

SIMPLE BOUNDS ARE NOT PERMITTED

INEQUALITY CONSTRASINTS ARE NOT PERMITTED

TOO MANY DENSE ROWS : ND TOO SMALL

LACK OF SPACE : MHA TOO SMALL

LACK OF SPACE : MHC TOO SMALL

LINEAR DEPENDENCE OF ACTIVE CONSTRAINTS
INFEASIBLE SOLUTION

MAXIMUM NUMBER OF SIMPLEX ITERATIONS : MIS TOO SMALL
DIFFERENTIAL EQUATION IS UNSTABLE

MAXIMUM NUMBER OF INTEGRATION STEPS EXCEEDED
TOO SMALL INTEGRATION STEP

DIFFERENTIAL EQUATION IS STIFF

SINGULAR JACOBIAN IN TMPLICIT INTEGRATION METHOD
LACK OF SPACE IN DIFFERENTIAL EQUATION SOLVER
LACK OF SPACE : MMAX TOO SMALL

MAXIMUM NUMBER OF MINOR CYCLES : MIQ TOO SMALL
MAXIMUM NUMBER OF MAJOR CYCLES : MAQ TOO SMALL
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6. Special tools of the UFO system

The UFO system contains special tools that facilitate the user’s activity. There are tools for checking
the correctness of optimization problems and for testing optimization methods.

6.1. Checking external subroutines

The values, gradients, Hessian matrices of the model function or the approximating functions or the
constraint functions are specified by using the macrovariables $SFMODELF, SGMODELF, SHMODELF
or $FMODELA, $GMODELA, $SHMODELA or $SFMODELC, $SGMODELC, $HMODELC, respectively.
Sometimes the correctness of these models needs to be checked up. If this is the case, then both the
analytical and the numerical differentiation can be compared. The checking of optimization problems can
be specified by using the macrovariable $TEST. If $TEST="N", no checking is performed. If $TEST="Y",
both the analytical and the numerical differentiation are executed before optimization is started (at the
initial starting point) and the derivatives obtained are printed. Only the derivatives that are analytically
specified (the first, the second) are checked. If STEST="A’] the checking is performed after the opti-
mization is finished (at the final optimum point). Finally, if §TEST="0’, only checking is performed and
optimization is not started. The output of checking an optimization problem has the following form:

STANDARD TEST OF EXTERNAL SUBROUTINES

PROBLEM

NF = 2 KDF = 2 KSF =1 KCF = 2 NORMF = 0
NA =0 NAL =0 MAL =0 KDA = -1 KSA =0 KCA =0 ©NORMA =0
NC=3 NCL=0 MCL=0 KDC = 1 KSC =0 KCC =2 NORMC =0
PARAMETERS

X = -.2000000000D+01 .1000000000D+01

DERIVATIVES

FF A = .9090000000D+03

GF N = —-.2405999822D+04  -.6000004263D+03

GF A = -.2406000000D+04 -.6000000000D+03

HF N = .4402000148D+04 .8000000070D+03 .2000000002D+03
HF A = .4402000000D+04 .8000000000D+03 .2000000000D+03
FC A = -.1000000000D+01

GC N = .1000000000D+01 .2000000032D+01

GC A = .1000000000D+01 .2000000000D+01

FC A = .5000000000D+01

GC N = -.4000000070D+01 .9999999930D+00

GC A = -.4000000000D+01 .1000000000D+01

FC A = .5000000000D+01

GC N = -.4000000070D+01 .2000000042D+01

GC A = -.4000000000D+01 .2000000000D+01
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Here the letter N’ indicates a numerical differentiation and the letter A’ indicates an analytical
differentiation.

6.2. Testing optimization methods

The UFO system contains a great number of subroutines (collections of test problems) which serve
for testing optimization methods. All of these subroutines begin with letter 'E’ (external). The input
subroutines have the second letter I’ and the third letter "U’ or 'L’ or "N’ for unconstrained or linearly
constrained or nonlinearly constrained problems, respectively. The model specification subroutines have
the second letter 'F” or A’ or ’C” or ’E’ or 'Y’ for a model function or approximating functions or
constraint functions or state functions or initial functions, respectively, and the third letter 'F’ or 'G’
or 'H’ for values or gradients or Hessian matrices. The fourth letter is always "U” or "D’ or ’S’ or
‘B’ for universal or dense or sparse or partitioned problems; respectively. The last two digits specify
individual test problems collections. When we want to carry out a test of the method selected, we use
the specifications $SCOLLECTION="Y" and $NEXT=number_of_test_problems in the input batch file.

Tests corresponding to individual test problems collections are realized by using the following test
input files:

TESTO1%.UFO - tests for unconstrained optimization (25 dense problems from [22], [80]). External
subroutines EIUDO1, EFFUO1, EFGUO1, EFHDO1 are used.

TESTO02%.UFO - tests for the sum of squares minimization (30 dense problems from [111]). External
subroutines EIUD02, EAFU02, EAGUO2, EAHDO2 are used.

TESTO03%.UFO - tests for linearly constrained optimization (15 dense problems from [63]). External
subroutines EILD03, EFFU03, EFGUO3 are used.

TESTO04*.UFO - tests for medium-size linear programming (6 dense problems). External subroutine
EILDO4 is used.

TESTO5%.UFO - tests for medium-size quadratic programming (5 dense problems). External subrou-
tine EILDOS5 is used.

TESTO06+.UFO - tests for minimax (25 dense problems from [101]). External subroutines EIUDOS,
EAFU06, EAGUO6, EAHDO6 are used.

TESTO7*.UFO - tests for inequality constrained nonlinear programming (34 dense problems from
[63]). External subroutines EINDO7, EFFUO7, EFGUO7, ECFUO7, ECGUO7 are used.

TESTO08+.UFO - tests for equality constrained nonlinear programming (31 dense problems from [63]).
External subroutines EIND08, EFFU08, EFGU0O8, ECFU08, ECGUO8 are used.

TEST09%.UFO - tests for unconstrained global optimization (13 problems from [157]). External
subroutines EIUD09, EFFU09, EFGUO9 are used.

TEST10%.UFO - tests for unconstrained optimization (15 sparse problems from [98]). External sub-
routines EIUS10, EFFU10, EFGU10, EFHS10 are used.

TEST11*.UFO - tests for large-scale linear programming (18 sparse problems). External subroutine
EILS11 is used.

TEST12%.UFO - tests for large-scale quadratic programming (11 sparse problems). External subrou-
tine EILS12 is used.

TEST13*.UFO - tests for linearly constrained optimization (6 sparse problems). External subroutines
EILS13, EFFU13, EFGU13 are used.

TEST14x.UFO - tests for the sum of functions minimization (22 sparse problems from [98]). External
subroutines EIUB14, EAFU14, EAGU14 are used.

TEST15%.UFO - tests for the sum of squares minimization (24 sparse problems from [98]). External
subroutines EIUB15, EAFU15, EAGU15 are used.

TEST16*.UFO - tests for nonlinear equations solutions (32 dense problems). External subroutines
EIUD16, EAFU16, EAGU16 are used.

TEST17*.UFO - tests for nonlinear equations solutions (30 dense problems). External subroutines

EIUD17, EAFU17, EAGU17 are used.
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TEST18+.UFO

TEST19+.UFO

TEST20+.UFO

TEST21«.UFO

TEST22+.UFO

TEST23+.UFO

TEST24+.UFO

TEST25+.UFO

TEST26+.UFO

TEST27+.UFO

TEST28+.UFO

TEST29+.UFO

TEST30«.UFO

TEST31«.UFO

TEST32+.UFO

TEST33«+.UFO

TEST34+.UF0

TEST35+.UF0

TEST36+.UF0

TEST37+.UFO

- tests for nonlinear equations (32 sparse problems from [98]). External subroutines
EIUB18, EAFU18, EAGU18 are used.

- tests for nonsmooth unconstrained optimization (25 dense problems from [101]).
External subroutines EIUD19, EFFU19, EFGU19, EFHD19 are used.

- tests for equality constrained sparse nonlinear programming (18 sparse problems
from [101]). External subroutines EIUB20, EIUS20, EIND20, EINS20, EFFU20, EFGU20,
EAFU20, EAGU20, ECFU20, ECGU20 are used.

- tests for inequality constrained sparse nonlinear programming (1 dense problem).
External subroutines EIUS21, EINS21, EFFU21, EFGU21, ECFU21, ECGU21 are used.

- tests for linearly constrained minimax optimization (15 dense problems from [101]).
External subroutines EIUD22, EAFU22, EAGU22, EAHD22 are used.

- extended tests for unconstrained optimization (74 dense problems from [98]). Ex-
ternal subroutines EIUD23, EFFU23, EFGU23 are used.

- extended tests for the sum of squares minimization (115 dense problems from [22],
[80], [98], [111]). External subroutines EIUD24, EAFU24, EAGU24 are used.

- extended tests for the sum of functions minimization (74 sparse problems from [98]).
External subroutines EIUB25, EAFU25, EAGU25 are used.

- extended tests for the sum of squares minimization (52 sparse problems from [98]).
External subroutines EIUB26, EAFU26, EAGU26 are used.

- extended tests for the sum of squares minimization (82 dense problems from [98]).
External subroutines EIUD27, EAFU27, EAGU27 are used.

- extended tests for unconstrained optimization (90 dense problems from [22], [80],
[98], [111]). External subroutines EIUD28, EFFU28, EFGU28 are used.

- tests for nonsmooth unconstrained optimization (31 dense problems). External
subroutines EIUD29, EFFU29, EFGU29, EFBU29 are used.

- tests for optimization of dynamical systems (4 dense problems). External subrou-
tines EIUD30, EEFU30, EEGU30, EYFU30, EYGU30 are used.

- tests for differential equations (6 dense problems). External subroutines EIUD31,
EEFU31 are used.

- tests for the sum of squares minimization (6 dense problems from [82]). External
subroutines EIUD32, EAFU32, EAGU32 are used.

- tests for the sum of squares minimization (6 dense problems from [82]). External
subroutines EIUD33, EAFU33, EAGU33 are used.

- tests for large-scale linear programming (18 sparse problems). External subroutine
EINS20 is used.

- tests for large-scale quadratic programming (8 sparse problems). External subrou-
tine EIQS35 is used.

- extended tests for nonlinear equations solutions (94 dense problems). External
subroutines EIUD36, EAFU36, EAGU36 are used.

- extended tests for nonlinear equations solutions (64 dense problems). External
subroutines EIUD37, EAFU37, EAGU37 are used.

In these input files, all necessary macrovariables are defined and the external subroutines are called. The
external subroutines with the last two digits 01, ..., 37 are briefly described in the text files EO1.TXT,
..., E37.TXT. The external subroutines with the last two digits 01, ..., 22 contain original test problems.
The remaining external subroutines are their various combinations.

To demonstrate the use of the test input file we perform a test of the sum of squares minimization
by using a hybrid method realized as a trust region method. The test input file TEST02.UFO has the

following form:

$SET(INPUT)

CALL EIUDO2(NF,NA,NAL,X,FMIN,XMAX,NEXT,IEXT,IERR)
IF(IERR.NE. 0) GO TO $$ENDTEST

$ENDSET
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$SET (FMODELA)
CALL EAFUO2(NF,KA,X,FA,NEXT)
$ENDSET
$NF=12
$NA=400
$K0UT=0
$L0UT=1
$MOUT=-1
$MIT=500
$MFV=10000
$MODEL="AQ"’
$CLASS="GN’
$TYPE="G’
$DECOMP="M’
$NUMBER=7
$UPDATE="F"’
$TOLX="1.0$P-8’
$TOLF="1.0$P-16"
$TOLB="1.0$P-16"
$TOLG="1.0$P-6"
$COLLECTION="Y"’
$NEXT=30
$BATCH
$STANDARD

The result (screen output) obtained has the following form (each row corresponds to one test problem
and the last row is the summary):

CLASS = GN - GM7 UPDATE = F MODEL = AQ HESF = D NF = 12
1 NIT= 12 NFV= 41 NFG= 0 FV BOUND F= .2465190329E-31 G= .222D-15
2 NIT= 21 NFV= 72 NFG= 0O GRAD TOL F= 24.49212684 G= .727D-07
3 NIT= 33 NFV= 102 NFG= 0 FV BOUND F= .2035558620E-22 G= .581D-06
4 NIT= 14 NFV= 47 NFG= 0 FV BOUND F= .0000000000 G= .000D+00
5 NIT= 6 NFV= 21 NFG= 0 GRAD TOL F= .1422635916E-15 G= .807D-07
6 NIT= 12 NFV= 63 NFG= 0 LARGE F= 62.18109118 G= .111D-05
US0GO1: ( 6) MAXIMUM NUMBER OF REDUCTIONS
7 NIT= 7 NFV= 32 NFG= 0 FV BOUND F= .3435033782E-26 G= .817D-12
8 NIT= 5 NFV= 24 NFG= 0 GRAD TOL F= .4107438653E-02 G= .293D-08
9 NIT= 1 NFV= 8 NFG= 0 GRAD TOL F= .5639663969E-08 G= .177D-07
10 NIT= 124 NFV= bO7 NFG= 0 STEP TOL F= 43.97292759 G= .148D-02
11 NIT= 69 NFV= 287 NFG= 0 FV BOUND F= .4579830844E-19 G= .660D-06
12 NIT= 12 NFV= 53 NFG= 0 FV BOUND F= .1132907169E-20 G= .599D-10
13 NIT= 10 NFV= 55 NFG= 0 GRAD TOL F= .1686647891E-09 G= .247D-06
14 NIT= 41 NFV= 218 NFG= 0 FV BOUND F= .1029734226E-23 G= .235D-10
15 NIT= 11 NFV= 62 NFG= 0 GRAD TOL F= .1537528024E-03 G= .511D-06
16 NIT= 24 NFV= 165 NFG= 0 LARGE F= 42911.10081 G= .248D-03
US0GO1: ( 6) MAXIMUM NUMBER OF REDUCTIONS
17 NIT= 22 NFV= 139 NFG= 0 GRAD TOL F= .2732447349E-04 G= .278D-07
18 NIT= 17 NFV= 128 NFG= 0 FV BOUND F= .2781024866E-18 G= .103D-08
19 NIT= 13 NFV= 169 NFG= 0 GRAD TOL F= .2192388901E-01 G= .375D-07
20 NIT= 9 NFV= 130 NFG= 0 GRAD TOL F= .2361269447E-09 G= .259D-06
21 NIT= 12 NFV= 171 NFG= 0 FV BOUND F= .3845696913E-29 G= .220D-13
22 NIT= 10 NFV= 143 NFG= 0 GRAD TOL F= .5059943798E-09 G= .247D-06
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23 NIT= 20 NFV= 277 NFG= 0 GRAD TOL F= .4392990273E-04 G= .196D-06
24 NIT= 24 NFV= 334 NFG= 0 GRAD TOL F= .3081017822E-03 G= .354D-06
25 NIT= 10 NFV= 143 NFG= 0 FV BOUND F= .1248755103E-25 G= .190D-11
26 NIT= 9 NFV= 133 NFG= 0 GRAD TOL F= .1376154725E-06 G= .491D-07
27 NIT= 6 NFV= 91 NFG= 0 FV BOUND F= .9462508091E-18 G= .139D-08
28 NIT= 7 NFV= 104 NFG= 0 GRAD TOL F= .2107336641E-10 G= .379D-06
29 NIT= 2 NFV= 39 NFG= 0 GRAD TOL F= .7987672380E-13 G= .203D-06
30 NIT= 5 NFV= 78 NFG= 0 FV BOUND F= .2322757795E-26 G= .181D-12
TOTAL  NIT= 568 NFV= 3836 NFG= 0 NDC= 1420 * 28
NCG= 0 NRS= 3 NAD= 0 NRM= 0

6.3. Interface to the CUTE collection

The CUTE collection [11] is the most famous set of problems for testing optimization methods. These
problems are written in the special so-called SIF format. Therefore a SIF decoder is necessary. Such a
decoder is part of the CUTE collection, but this version can only be used for a relatively small set of
optimization codes (e.g. for the LANCELOT [23] code). Since the UFO system has a special nature, the
original SIF decoder had to be modified. This modification consists in replacing the subroutine SDLANC
by the subroutine SDUFO and in preparing new interface subroutines STUBXX, SIUDXX, SIUSXX, SINBXX,
SINDXX, SINSXX, SFFUXX, SFGUXX, SFFGUX, SCFUXX, SCGUXX, SCFGUX, SAFUXX, SAGUXX, SAFGUX (instead of
USETUP, UFN, UGR, CSETUP, CFN, CGR etc.).

The CUTE collection is not distributed with the UFO system. The SIF files together with SIF
decoder subroutines have to be obtained from their authors (they are also available on the INTERNET
address http://www.dci.clrc.ac.uk/Activity/CUTE). The special interface subroutines listed above
are exceptions. They are contained in the library CUTELIB.LIB.

If we want to use a SIF file for testing the UFO system methods, it suffices to write the macroinstruc-
tion $SIF="SIF _file_name’ in the input batch file. For example, if we want to use problem DTOC3 for
testing recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems, then the problem specification (input batch file) has the following form.

$SIF=’"DTOC3’
$FORM="SE’
$MOUT=2
$BATCH
$STANDARD

Here DTOC3 is a name of the SIF file and SE is the form of recursive quadratic programming methods
(section 3.20). The problem solution (basic screen output) has this form.

NIC= O NIT= 0 NFV= 1 NFG= 8 F= .000D+00 C= .150D+02 G= .000D+00
NIC= O NIT= 1 NFV= 2 NFG= 16 F= .235D+03 C= .295D-14 G= .739D-14
0 NIC= O NIT= 2 NFV= 2 NFG= 16 F= .235D+03 C= .295D-14 G= .739D-14

The form of additional output files P.DIM and P.SIF is shown in section 5.7.

If the sparsity pattern contains a relatively great number of nonzero elements, then default dimensions
(e.g. $M, SMA, SMAH, SMHA, $MC, $MCH, $SMHC) might be too small and therefore they must be
specified in the input batch file.
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7. Application of the UFO system (examples)

Before the solution of a given problem, the input file containing the problem description and other
specifications for the macroprocessor must usually be prepared. This input file can contain only the
macroinstruction $STANDARD (input file STANDARD.UFO). Then a full dialogue is processed. However,
a more advantageous possibility is to prepare an input file containing the problem description while a
method selection is left to the dialogue. Moreover, since a method selection can be made automatically
by using knowledge bases coded in UFO templates, the batch mode i1s recommended.

When writing input file instructions, we have to observe some conventions. Since a control program
contains a great number of common variables, we recommend using variables beginning with the letter
"W’ for the problem description to avoid their double use. Real variables of this type should be declared
at the beginning of the control program by the statement $FLOAT (for example $FLOAT W W1, W2).
Simple integers 1,J,K,I. need not be declared. We recommend using statement numbers smaller than
10000 for the problem description to avoid their double use.

The basic implementation of the UFO system 1s in a double precision arithmetic. Therefore usually
$FLOAT="REAL*8’ and $P="D’. We recommend writing real constants always in the form of $P or D
specification (for example 1.0$P 2, 4.0$P-1 or 1.0D 2, 4.0D-1) since the conversions from a single precision,
which depend on a compiler, can be incorrect. Instead of constants 0.0D0, 0.5D0, 1.0D0, 2.0D0, 3.0D0,
4.0D0, 5.0D0, 1.0D1, we can use the common variables ZERO, HALF, ONE, TWO, THREE, FOUR,
FIVE, TEN, which contain corresponding values.

In the following text, we demonstrate the application of the UFO system to 20 typical problems.
Every example consists of the problem description, the problem specification (input file), comments to
the problem specification and the problem solution (basic screen output) obtained on a PC computer. All
input files contain the necessary data and can be used in the batch mode. These input files are included
into the UFO system as the demo-files PROBO1.UFQ,. .. ,PROB20.UFO.

7.1. Optimization with simple bounds

a) Problem description:
Suppose we have to find a local maximum of the objective function

1
F(z) = E<H$Z> -2
with simple bounds 0 < z; < i for 1 < <mn, where n = 5. The starting point is ; = 2 for 1 < ¢ < n. The
solution point is #; = ¢ for 1 < i < n and the corresponding maximum value of the objective function is

F=-1.0.
b) Problem specification (input file):

$FLOAT W
$SET (INPUT)
DO 1 I=1,NF
X(I)=2.D0 ; XL(I)=0.DO ; XU(I)=DBLE(I) ; IX(I)=3
1 CONTINUE
$ENDSET
$SET (FGMODELF)
W=1.DO
DO 2 I=1,NF
W=W*X(I)/DBLE(I)
2 CONTINUE
FF=W-2.D0
DO 3 I=1,NF
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GF(I)=W/X(I)

3 CONTINUE
$ENDSET
$IEXT=1

$NF=5

$KBF=2
$MOUT=2
$NOUT=1
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values and the simple bounds for variables.
By using the macrovariable $SFGMODELF we specify analytically the value and the gradient of the model
function. Because we look for a maximum, we set $IEXT=1.

d) Problem solution (basic screen output):

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5
NIT= 0 NFV= 1 NFG= 1 F= 1.866666667 = .667D-01
NIT= 1 NFV= 4 NFG= 4 F= 1.550000000 G= .150D+00
NIT= 2 NFV= 7 NFG= 7 F= 1.200000000 G= .200D+00
NIT= 3 NFV= 9 NFG= 9 F= 1.000000000 G= .000D+00
0 NIT= 3 NFV= 9 NFG= 9 NDC= 0 NCG= 0 F= .100D+01 G= .000D+00
FF = -.1000000000D+01
X = .1000000000D+01 .2000000000D+01 .3000000000D+01 .4000000000D+01
.5000000000D+01

7.2. Minimization of the sum of squares

a) problem description:
Suppose we have to find a local minimum of the objective function

F(x) =

N | —

m

_ _ _ 2
E (x4e it 4 T2l 4 oo T8l yi)
i=1

where m = 20, t; = i/10 and y; = e~ —5e710% 4-3¢=% for 1 < 7 < m. The starting point is z; = 1,25 =
2,23 =1,2z4 = 1,25 = 1,26 = 1. The solution point is z;1 = 1,2, = 10,23 =4, 24 = 1,25 = 5,26 = 3 and
the corresponding minimum value of the objective function is # = 0.0

b) Problem specification (input file):

$FLOAT W,WA,WB,WC
$SET (INPUT)
X(1)=1.D0 ; X(2)=2.D0 ; X(3)=1.DO
X(4)=1.D0 ; X(5)=1.D0 ; X(6)=1.DO
DO 1 KA=1,NA
W=0.1DO*DBLE(KA)
AM(KA)=EXP(-W)-5.DO*EXP(-1.0D1%W)+3.DO*EXP (-4 .DO*W)
1 CONTINUE
XMAX=1.D1
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FMIN=0.DO

$ENDSET

$SET (FMODELA)
W=0.1DO*FLOAT (KA)
WA=EXP (-W*X(1))
WB=EXP (-W*X(2))
WC=EXP (-W*X(3))

FA=X(4)*WA-X(5)*WB+X(6)*WC

$ENDSET
$NF=6
$NA=20
$NAL=0
$KBA=1
$MOS1=1
$MOUT=2
$NOUT=1
$MODEL="AQ"’
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the vector AM
containing values y;,1 < ¢ < m. Since the approximating functions contain exponentials, we define
the maximum stepsize $XMAX=10. By using the macrovariable $FGMODELA we specify analytically
the values of the approximating function. The gradients of the approximating functions are computed
numerically. For the sum of squares minimization we set SMODEL="AQ’. The specification $KBA=1
indicates that the vector AM is used.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = N MODEL =
NIT= 0 NFV= 7 NFG= 0 F=
NIT= 1 NFV= 14 NFG= 0 F=
NIT= 2 NFV= 21 NFG= 0 F=
NIT= 3 NFV= 29 NFG= 0 F=
NIT= 4 NFV= 36 NFG= 0 F=
NIT= 5 NFV= 43 NFG= 0 F=
NIT= 6 NFV= 50 NFG= 0 F=
NIT= 7 NFV= 57 NFG= 0 F=
NIT= 8 NFV= 65 NFG= 0 F=
NIT= 9 NFV= 73 NFG= 0 F=
NIT= 10 NFV= 80 NFG= 0 F=
NIT= 11 NFV= 87 NFG= 0 F=
NIT= 12 NFV= 94 NFG= 0 F=
NIT= 13 NFV= 101 NFG= 0 F=
NIT= 14 NFV= 108 NFG= 0 F=
NIT= 15 NFV= 115 NFG= 0 F=

0 NIT= 15 NFV= 115 NFG= 0 NDC=
F = .4024797848D-23
X = .4000000000D+01 .1000000000D+02
.5000000000D+01 .1000000000D+01
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AQ HESF = D NF = 6
.4652437783 = .875D+00
.1956020933 G= .239D+00
.1720414281 G= .464D+00
.7987956309E-01 G= .208D+00
.4318860089E-01 G= .202D+00
.1259503177E-01 G= .178D+00
.9578438809E-02 G= .173D+00
.1688533763E-02 G= .992D-01
.7788403751E-04 G= .732D-02
.5354727158E-04 G= .354D-03
.2747378136E-04 G= .962D-03
.1684586259E-04 G= .930D-02
.1118448887E-04 G= .781D-02
.2628745917E-05 G= .391D-02
.5403804942E-11 G= .636D-05
.4024797848E-23 G= .570D-11
50 NCG= 0 F= .402D-23 G= .570D-11
.1000000000D+01 .3000000000D+01



7.3. Minimax approximation

a) Problem description:

Suppose we have to find a local minimum of the objective function

1+ e
max | 3 3
1<i<m 1—|—til‘3—|—til‘4—|—til‘5

F(z) = = il

where m = 21, t; = (i—1)/10—1 and y; = e~ for 1 < i < m. The starting pointis z; = 0.5, x5 = 0, z3
0, z4 = 0, 5 = 0. The solution point 18 1 = 0.9998, x5 = 0.2536, 23 = —0.7466, x4 = 0.2452, z5 =
—0.3749 and the corresponding minimum value of the objective function is ' = 0.000122371.

b) Problem specification (input file):

$FLOAT W

$SET (INPUT)
X(1)=0.5D0 ; X(2)=0.0D0 ; X(3)=0.0DO
X(4)=0.0D0 ; X(5)=0.0DO

$ENDSET

$SET (FMODELA)
W=0.1DO*DBLE(KA-1)-1.0DO
FA=(X(1)+W*X(2))/(1.0DO+W* (X (3)+W*(X(4)+W*X(5))))-EXP(W)

$ENDSET

$MODEL="AM’

$NF=5

$NA=21

$NAL=0

$MOUT=2

$NOUT=1

$BATCH

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable SINPUT we specify the initial values of variables. By using the macrovari-
able SFMODELA we specify analytically the values of the approximating functions. The gradients of the
approximating functions are computed numerically. For minimax approximation we set SMODEL="AM’.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AM HESF = D NF = 5
NIT= 0 NFV= 6 NFG= 0 F= 2.218281828 = .100D+61
NIT= 1 NFV= 13 NFG= 0 F= .42b3776766 G= .783D+00
NIT= 2 NFV= 19 NFG= 0 F= .8271275531E-01 G= .223D+00
NIT= 3 NFV= 25 NFG= 0 F= .1256835312E-01 G= .114D+00
NIT= 4 NFV= 31 NFG= 0 F= .6693249612E-02 G= .290D-01
NIT= 5 NFV= 37 NFG= 0 F= .6441286142E-02 G= .891D-02
NIT= 6 NFV= 43 NFG= 0 F= .1963725138E-02 G= .667D-01
NIT= 7 NFV= 49 NFG= 0 F= .2258132005E-03 G= .299D-01
NIT= 8 NFV= 55 NFG= 0 F= .1226123794E-03 G= .145D-03
NIT= 9 NFV= 61 NFG= 0 F= .1223712533E-03 G= .463D-07

0 NIT= 9 NFV= 61 NFG= 0 NDC= 0 NCG= 0 F= .122D-03 G= .463D-07
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.1223712533D-03
.9998776287D+00 .2535884404D+00 -.7466075717D+00 .2452015019D+00
-.3749029100D-01

b
1]

7.4. Nonsmooth optimization

a) Problem description:

Suppose we have to find a local minimum of the objective function

7
F(J:):—x1—|—2*(1‘%—|—x§—1)—|—Z|x%—|—x§—1|

The starting point is 1 = —1, 3 = —1.. The solution point is 1 = 1, z3 = 0, and the corresponding
minimum value of the objective function is ' = —1.0.

b) Problem specification (input file):

$FLOAT W

$SET (INPUT)
X(1)=-1.D0
X(2)=-1.D0

$ENDSET

$SET (FGMODELF)
W=X(1)**2+X(2)**2-1.D0
FF=-X(1)+2.DO*W+1.75D0*ABS (W)
W=SIGN(3.5%$P 0,W)+4.DO
GF(1)=W*X(1)-1.D0
GF(2)=W*X(2)

$ENDSET

$NF=2

$KSF=3

$MOUT=2

$NOUT=1

$BATCH

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable SINPUT we specify the initial values of variables. By using the macrovari-
able $FGMODELF we specify analytically the value and the gradient of the objective function. For
nonsmooth optimization we set $KSF=3.

d) Problem solution (basic screen output):

CLASS = BM - L11 UPDATE = N MODEL = FF HESF = D NF = 2
NIT= 0 NFV= 1 NFG= 1 F= 4.750000000 = .100D+61
NIT= 1 NFV= 3 NFG= 3 F= -.3788888889 G= .850D+01
NIT= 2 NFV= 4 NFG= 4 F= -.6061514369 G= .933D+00
NIT= 3 NFV= 5 NFG= 5 F= 9.250000000 G= .802D+00
NIT= 4 NFV= 6 NFG= 6 F= -.7284826639 G= .802D+00
NIT= 5 NFV= 7 NFG= 7 F= .8708184712 G= .348D+00
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NIT= 6 NFV= 8 NFG= 8 F= -.8275709577 G= .722D+00
NIT= 7 NFV= 9 NFG= 9 F= -.8436035754 G= .162D+00
NIT= 8 NFV= 10 NFG= 10 F= -.9986081259 G= .984D-01
NIT= 9 NFV= 11 NFG= 11 F= -.9980886265 G= .114D+00
NIT= 10 NFV= 12 NFG= 12 F= -.9992851884 G= .501D+00
NIT= 11 NFV= 13 NFG= 13 F= -.9999999867 G= .530D-01
NIT= 12 NFV= 14 NFG= 14 F= -.9999922205 G= .454D-05
NIT= 13 NFV= 15 NFG= 15 F= -1.000000000 G= .986D-07
0 NIT= 13 NFV= 15 NFG= 15 NDC= 0 NCG= 0 F=-.100D+01 G= .986D-07
FF = -.1000000000D+01
X = .1000000000D+01 .0000000000D+00

7.5. Optimization with linear constraints
a) problem specification:

Suppose we have to find a local minimum of the objective function

F(z) = (21— 22)" + (23 = 1)* + (24 = )" + (25 = 1)°

over the set given by the linear constraints

1+ xot+x3+4rs=17

r3+ bxs =6

The starting point 18 1 = 10, 3 = 7, 3 = 2, 4 = 3, x5 = 0.8. The solution point is z; = 1, 2 =
1, 2;3=1, za =1, z5 = 1 and the corresponding minimum value of the objective function is ' = 0.0

b) Problem specification (input file):

$SET (INPUT)
X(1)= 1.D1 ; X(2)= 7.D0 ; X(3)= 2.DO
X(4)=-3.D0 ; X(5)=0.8DO
IC(1)=5 ; CL(1)=7.DO
€CG(1)=1.D0 ; €G(2)=1.D0 ; C€G(3)=1.DO
CG(4)=4.D0 ; CG(5)=0.DO
IC(2)=5 ; CL(2)=6.D0
CG(6)=0.D0 ; €G(7)=0.DO0 ; CG(8)=1.DO
CG(9)=0.D0 ; €G(10)=5.D0O
FMIN =0.DO
$ENDSET
$SET (FMODELF)
FF=(X(1)-X(2))**2+(X(3)-1.D0)**2+ &
(X(4)-1.D0)**4+(X(5)-1.D0)*%*8
$ENDSET
$SET (GMODELF)
GF(1)= 2.D0*(X(1)-X(2))
GF(2)=-2.D0*(X(1)-X(2))
GF(3)= 2.D0*(X(3)-1.D0)
GF(4)= 4.DO*(X(4)-1.D0)**3
GF(5)= 6.D0*(X(5)-1.D0)**5
$ENDSET
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$NF=5
$NC=2
$NCL=2
$KBC=1
$MOUT=2
$NOUT=1
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable SINPUT we specify the initial values of variables and the types and
values of the general linear constraints. Since there are only equality constraints, we can specify only
the left sides (CL(1) and CL(2)) and we can set $KBC=1. The specification $FMIN=0 is used, since
the objective function value cannot be smaller then zero. By using the macrovariable SFMODELF we
specify analytically the value of the model function. By using the macrovariable §GMODELF we specify
analytically the gradient of the model function.

d) Problem solution (basic screen output):

CLASS = VM - LG1 UPDATE = B MODEL = FF HESF = D NF = 5
NIT= 0 NFV= 1 NFG= 1 F= 266.0000640 = .853D+02
NIT= 1 NFV= 2 NFG= 2 F= 23.36590202 G= .911D+01
NIT= 2 NFV= 3 NFG= 3 F= 9.082029409 G= .573D+01
NIT= 3 NFV= 4 NFG= 4 F= 1.180947507 G= .213D+01
NIT= 4 NFV= 5 NFG= 5 F= .3278298455 G= .713D+00
NIT= 5 NFV= 6 NFG= 6 F= .1969059589 G= .356D+00
NIT= 6 NFV= 7 NFG= 7 F= .6972244149E-01 G= .176D+00
NIT= 7 NFV= 8 NFG= 8 F= .1791441524E-01 G= .115D+00
NIT= 8 NFV= 9 NFG= 9 F= .5643511948E-02 G= .887D-01
NIT= 9 NFV= 10 NFG= 10 F= .2190093826E-02 G= .438D-01
NIT= 10 NFV= 11 NFG= 11 F= .8383567168E-03 G= .639D-02
NIT= 11 NFV= 12 NFG= 12 F= .1933645225E-03 G= .101D-01
NIT= 12 NFV= 13 NFG= 13 F= .b495677142E-04 G= .137D-02
NIT= 13 NFV= 14 NFG= 14 F= .1463468059E-04 G= .117D-02
NIT= 14 NFV= 15 NFG= 15 F= .4872666765E-05 G= .220D-02
NIT= 15 NFV= 16 NFG= 16 F= .1203915690E-05 G= .118D-02
NIT= 16 NFV= 17 NFG= 17 F= .7914796148E-06 G= .108D-02
NIT= 17 NFV= 18 NFG= 18 F= .3667838398E-06 G= .403D-03
NIT= 18 NFV= 19 NFG= 19 F= .8991537030E-07 G= .133D-03
NIT= 19 NFV= 20 NFG= 20 F= .272B797538E-07 G= .111D-04
NIT= 20 NFV= 21 NFG= 21 F= .8421079674E-08 G= .900D-04
NIT= 21 NFV= 22 NFG= 22 F= .b133532765E-08 G= .150D-03
NIT= 22 NFV= 23 NFG= 23 F= .1721213276E-08 G= .246D-04
NIT= 23 NFV= 24 NFG= 24 F= .1038625095E-08 G= .772D-05
NIT= 24 NFV= 25 NFG= 26 F= .2779608772E-09 G= .207D-04
NIT= 25 NFV= 26 NFG= 26 F= .8280118186E-10 G= .122D-04
NIT= 26 NFV= 27 NFG= 27 F= .3182013288E-10 G= .291D-05
NIT= 27 NFV= 28 NFG= 28 F= .6044149143E-11 G= .801D-06

0 NIT= 27 NFV= 28 NFG= 28 NDC= 0 NCG= 0 F= .604D-11 G= .801D-06

FF = .6044149143D-11

X = .1003116995D+01 .1003116712D+01 .9999997424D+00 .9984416378D+00
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.1000000052D+01

7.6. Minimax approximation with linear constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F(z) = max(fi(z), fa(2), fz(x))
with
Jfi(z) = —exp(zy — x2)
fa(x) = sinh(z; — 1) -1
f3(x) = —log(z2) — 1

over the set given by the box constraint x5 > 1/100 and the linear constraint

1
xl—xz—l——ZO.

100 2
The starting point is 1 = —1, 25 = 1/100. The solution point is 1 = 1.5264, 25 = 0.5763 and the
corresponding minimum value of the objective function is F' = —0.448910.
b) Problem specification (input file):
$SET(INPUT)
X(1)=-1.D 0 ; IX(1)=0

X(2)= 1.D-2 ; XL(2)= 1.D-2 ; IX(2)=1
CL(1)=-5.D-1 ; IC(1)=1

€G(1)=5.D-2 ; €G(2)=-1.D 0

$ENDSET

$SET (FMODELA)
IF (KA.EQ.1) FA=-EXP(X(1)-X(2))
IF (KA.EQ.2) FA= SINH(X(1)-1.D0)-1.DO
IF (KA.EQ.3) FA=-LOG(X(2))-1.D0

$ENDSET

$MODEL="AM’

$IEXT=-1

$NF=2

$NA=3

$NC=1

$NCL=1

$KBF=1

$KBC=1

$MOUT=2

$NOUT=1

$BATCH

$STANDARD

¢) Comments on the problem specification:
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By using the macrovariable $INPUT we specify the initial values of variables and the types and values
of both the box constraints and the general linear constraints. Since there are only one-sided constraints,
we specify only the left sides (XL(2) and CL(1)) and we can set SKBF=1 and $KBC=1. By using
the macrovariable $FMODELA we specify analytically the values of the approximating functions. The
gradients of the approximating functions are computed numerically. For minimax approximation we set

$MODEL="AM’ and SIEXT=-1.

d) Problem solution (basic screen output):

CLASS = VM - LQ1 UPDATE = B MODEL = AM HESF = D NF = 2
NIT= 0 NFV= 3 NFG= 0 F= 3.605170186 = .100D+61
NIT= 1 NFV= 6 NFG= 0 F= 1.978554385 G= .363D+00
NIT= 2 NFV= 9 NFG= 0 F= .6817245960 G= .487D+00
NIT= 3 NFV= 12 NFG= 0 F= -.2766372000 G= .595D+00
NIT= 4 NFV= 15 NFG= 0 F= -.3855019085 G= .356D+00
NIT= 5 NFV= 18 NFG= 0 F= -.4366539074 G= .936D-01
NIT= 6 NFV= 21 NFG= 0 F= -.4488815345 G= .159D-02
NIT= 7 NFV= 24 NFG= 0 F= -.4489107859 G= .358D-05

0 NIT= 8 NFV= 24 NFG= 0 NDC= 0 NCG= 0 F=-.449D+00 G= .203D-10
= -.4489107859D+00

F
X = .1526434615D+01 .5763217308D+00

7.7. Optimization with nonlinear constraints (nonlinear programming)
a) Problem description:

Suppose we have to find a local maximum of the objective function

F(z) = 2123

over the set given by the simple bounds #; > 0, &3 > 0, 5 > 0, 7 > 0 and by the nonlinear constraints
(w4 —w6)” + (w5 —w7)” > 4

L3Lg — L2y

>1
\/xg + x%
r3xg — Xa2X7 Z 1
\/xg + x%
r123+ (x2 — 21)x5 — 324 1
(2 = 21)” + 23
r123+ (X2 — 21)x7 — T3xs 1

(z2 —z1) + 23

The starting point 18 21 = 3.0, 2 = 0.0, z3 = 2.0, 4 = —1.5, x5 = 1.5, 26 = 5.0, 7 = 0.0. The
solution point is z; = 4.828, z» = 0.000, 23 = 4.828, x4 = 1.000, x5 = 2.414, zg = 2.414, =7 = 1.000
and the corresponding minimum value of the objective function is F' = 23.3137.

b) Problem specification (input file):
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$FLOAT W

$SET (INPUT)
X(1)= 3.0D0 ; XL(1)= 0.0D0 ; IX(1)=1
X(2)= 0.0D0
X(3)= 2.0D0 ; XL(3)= 0.0D0 ; IX(3)=1
X(4)=-1.5D0
X(5)= 1.5D0 ; XL(5)= 1.0D0 ; IX(5)= 1
X(6)= 5.0D0

X(7)= 0.0D0 ; XL(7)= 1.0D0 ; IX(7)= 1
CL(1)=4.0D0 ; IC(1)=1
CL(2)=1.0D0 ; IC(2)=1
CL(3)=1.0D0 ; IC(3)=1
CL(4)=1.0D0 ; IC(4)=1
CL(5)=1.0D0 ; IC(5)=1

$ENDSET

$SET (FMODELF)
FF=X(1)*X(3)

$ENDSET

$SET (FMODELC)

IF (KC.LE.O) THEN
ELSE IF (KC.EQ.1) THEN
FC=(X(4)-X(6))**x2+(X(5)-X(7) ) **2
ELSE IF (KC.EQ.2) THEN
W=SQRT (X (2)**2+X (3)**2)
FC=(X(3)*X(4)-X(2)*X(5)) /W
ELSE IF (KC.EQ.3) THEN
W=SQRT (X (2)**2+X (3)**2)
FC=(X(3)*X(6)-X(2)*X(7))/W
ELSE IF (KC.EQ.4) THEN
W=SQRT((X(2)-X(1))**2+X(3)**2)
FC=(X(1)#X(3)+(X(2)-X(1))*X(5)-X(3)*X(4))/W
ELSE IF (KC.EQ.5) THEN
W=SQRT((X(2)-X(1))**2+X(3)**2)
FC=(X(1)#X(3)+(X(2)-X(1))*X(7)-X(3)*X(6))/W
ENDIF
$ENDSET
$NF=7
$NC=5
$NCL=0
$KBF=1
$KBC=1
$MOUT=2
$NOUT=1
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $SINPUT we specify the initial values and simple bounds for variables
and the types and values of the general constraints. Since there are only one-sided simple bounds and
one-sided general constraints, we set $KBF=1 and $KBC=1. By using the macrovariable §FMODELF
we specify analytically the value of the model function. The gradient of the model function is computed
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numerically.

d) Problem solution (basic screen output):

CLASS = VM - LN1 UPDATE = N MODEL = FF HESF = D NF = 7
NIC= O NIT= 0 NFV= 8 NFG= 0 F= .600D+01 C= .294D+01 G= .000D+00
NIC= O NIT= 1 NFV= 19 NFG= 0 F= .340D+02 C= .961D+00 G= .267D+01
NIC= O NIT= 2 NFV= 31 NFG= 0 F= .291D+02 C= .807D-01 G= .107D+01
NIC= O NIT= 3 NFV= 43 NFG= 0 F= .247D+02 C= .168D-01 G= .104D+01
NIC= O NIT= 4 NFV= 55 NFG= 0 F= .237D+02 C= .356D-01 G= .704D+00
NIC= O NIT= 5 NFV= 68 NFG= 0 F= .235D+02 C= .472D-01 G= .949D+00
NIC= O NIT= 6 NFV= 81 NFG= 0 F= .233D+02 C= .104D-02 G= .240D+00
NIC= O NIT= 7 NFV= 94 NFG= 0 F= .233D+02 C= .238D-04 G= .795D-01
NIC= O NIT= 8 NFV= 107 NFG= 0 F= .233D+02 C= .394D-05 G= .288D-01
NIC= O NIT= 9 NFV= 120 NFG= 0 F= .233D+02 C= .129D-04 G= .194D-01
NIC= O NIT= 10 NFV= 133 NFG= 0 F= .233D+02 C= .672D-07 G= .885D-03
NIC= O NIT= 11 NFV= 145 NFG= 0 F= .233D+02 C= .187D-08 G= .228D-03
NIC= O NIT= 12 NFV= 158 NFG= 0 F= .233D+02 C= .402D-12 G= .215D-05
0 NIC= O NIT= 13 NFV= 158 NFG= 0 F= .233D+02 C= .402D-12 G= .252D-06
FF = .2331370850D+02
X = .4828427122D+01 .2703575049D-06 .4828427128D+01 .1000000135D+01

.2414213603D+01 .2414213657D+01 .1000000000D+01

7.8. Global optimization
a) Problem description:

Suppose we have to find the global minimum of the objective function

F(x) = (21— 3)% (21 +5)° + (w2 — 2)* (w2 + 3)* — 2ia}

over the set given by the inequalities —12 < z; < 10 and —12 < x5 < 10. The starting point is ; = 0,
z3 = 0. The solution point is 1 = —7.3300, 22 = —6.4475 and the global minimum value of the objective
function is F' = —806.077.

b) Problem specification (input file):

$SET (INPUT)
XL(1)=-12.D0 ; XU(1)=10.D0O
XL(2)=-12.D0 ; XU(2)=10.D0

$ENDSET

$SET (FMODELF)
FF=((X(1)-3.D0)*(X(1)+5.D0) ) **2+ &

((X(2)-2.D0)*(X(2)+3.D0) ) **x2—(X(1)*X(2) ) **2

$ENDSET

$NF=2

$MOUT=1

$NOUT=1

$EXTREN="G"’

$BATCH

$STANDARD
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¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds defining the investigated region. By using
the macrovariable $FMODELF we specify analytically the value of the model function. The gradient
of the model function is computed numerically. Since we require to find the global minimum we set

$EXTREM="G".

d) Problem solution (basic screen output):

CLASS = VM - LIt UPDATE = B MODEL = FF HESF = D NF = 2
0 NIT= 55 NFV= 657 NEX= 4 F= -.806D+03

EXTREM 1

F = -.8060772623D+03

X = -.7329989942D+01 -.6447506480D+01

EXTREM 2 :

F = -.3072281498D+03

X = -.6228926443D+01 .4363683088D+01

EXTREM 3 :

F = -.1504539067D+03

X = .3836710587D+01 -.4317610609D+01

EXTREM 4 :

F = -.5795091449D+02

X = .3368245253D+01 .2827173277D+01

7.9. Large scale optimization (sparse Hessian matrix)
a) Problem description:
Suppose we have to find a local minimum of the objective function

F(z) = Z((3 — 2u)a; — i1 — i1 + 1)2, Tppr =20=0
i=1
where n = 100. The starting point is z; = —1 for 1 < ¢ < n. The minimum value of the objective function

is F=0.0

b) Problem specification (input file):

$FLOAT A
$SET(INPUT)

DO 1 I=1,NF
X(I)=-1.0DO
J=2%(I-1)+1
IH(I)=J
JH(J)=1
JH(J+1)=I+1

1 CONTINUE

IH(NF+1)=2%NF

$ENDSET
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$SET (FMODELF)
FF=0.0D0O
DO 2 J=1,NF
A=(3.0D0-2.0D0*X(J))*X(J)+1.0DO
IF (J.GT.1) A=A-X(J-1)
IF (J.LT.NF) A=4-X(J+1)
FF=FF+A*A
2 CONTINUE
$ENDSET
$SET (GMODELF)
GF(1)=0.0D0
DO 3 J=1,NF
A=(3.0D0-2.0D0*X(J))*X(J)+1.0DO
IF (J.GT.1) A=A-X(J-1)
IF (J.LT.NF) A=4-X(J+1)
A=A+A
GF(J)=GF(J)+A*(3.0D0-4.0D0*X(J))
IF (J.GT.1) GF(J-1)=GF(J-1)-A
IF (J.LT.NF) GF(J+1)=-4
3 CONTINUE
$ENDSET
$NF=100
$M=1000
$MOUT=2
$HESF=’S’
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern
of the Hessian matrix. The sparse Hessian matrix, indicated by the statement $HESF="S’, is tridiagonal so
that the number of its upper half nonzero elements is 24«NF—1=199. We set $M =500, since a greater space
is needed for sparse matrix processing. By using the macrovariable §FMODELF we specify analytically
the value of the model function. By using the macrovariable §GMODELF we specify analytically the

gradient of the model function.

d) problem solution (basic screen output):

CLASS = MN - GM3 UPDATE = N MODEL = FF HESF = S

NIT= 0 NFV= 1 NFG= 4 F=
NIT= 1 NFV= 2 NFG= 8 F=
NIT= 2 NFV= 3 NFG= 12 F=
NIT= 3 NFV= 4 NFG= 16 F=
NIT= 4 NFV= 5 NFG= 20 F=
NIT= 5 NFV= 6 NFG= 24 F=
NIT= 6 NFV= 7 NFG= 28 F=
NIT= 7 NFV= 8 NFG= 32 F=
NIT= 8 NFV= 9 NFG= 36 F=
NIT= 9 NFV= 10 NFG= 40 F=
0 NIT= 9 NFV= 10 NFG= 40 NDC=

410.0000000
51.26265737
6.162928937
.2405291932
.7598786985E-03
.2442230672E-05
.3898601533E-07
.1062176733E-09
.5393507093E-12
.3871095331E-14
0 NCG= 2 F=
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NF = 100
= .380D+02
G= .123D+02
G= .694D+01
G= .141D+01
G= .122D+00
G= .636D-02
G= .822D-03
G= .481D-04
G= .401D-05
G= .271D-06
.387D-14 G=



7.10. Large-scale optimization (sparse Jacobian matrix)
a) Problem description:

Suppose we have to find a local minimum of the objective function

Fle)= " f'a)

where n=100 and

A = (B=2w)w —aig+1)° Li=1
fZA(l‘) = ((3—21‘2')1‘2'—1‘2'_1—1‘“_1—1—1)2 2<i<n-1
fZA(l‘) = ((3 —2ui)e; — a1 + 1)2 ,i=n
The starting point 18 ; = —1 for 1 < ¢ < n. The minimum value of the objective function is F = 0.0

(This problem is equivalent to the previous problem).

b) Problem specification (input file):

$FLOAT WA
$SET (INPUT)
DO 1 I=1,NF
X(I)=-1.0D0
1 CONTINUE
L=1
DO 2 I=1,NF
IAG(I)=L
IF (I.GT.1) THEN
JAG(L)=I-1
L=L+1
ENDIF
JAG(L)=I
L=L+1
IF (I.LT.NF) THEN
JAG(L)=I+1
L=L+1
ENDIF
2 CONTINUE
IAG(NF+1)=L
$ENDSET
$SET (FMODELA)
WA=(3.0D0-2.0D0*X(KA) )*X(KA)+1.0DO
IF (KA.GT. 1) WA=WA-X(KA-1)
IF (KA.LT.NF) WA=WA-X(KA+1)
FA=WA*WA
$ENDSET
$SET (GMODELA)
WA=(3.0D0-2.0D0*X(KA) )*X(KA)+1.0DO
IF (KA.GT. 1) WA=WA-X(KA-1)
IF (KA.LT.NF) WA=WA-X(KA+1)
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WA=WA+WA
GA(KA)=WA*(3.0D0-4.0D0*X(K4))
IF (KA.GT. 1) GA(KA-1)=-WA
IF (KA.LT.NF) GA(KA+1)=-WA

$ENDSET

$NF=100

$NA=100

$MA=300

$M=600

$MOUT=2

$MODEL="AF"’

$JACA="S’

$HESF=’B’

$FMIN="0.0$P 0’

$BATCH

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix. The sparse Jacobian matrix, indicated by the statement $JACA="S’, is tridiag-
onal and the number of its nonzero elements is 3+*NF—2=298. Therefore we set $MA=300. Since we use
the partitioned Hessian matrix indicated by the statement SHESF="B’, we must specify the number of its
nonzero elements (it is 6xNF—2). Therefore we set $M=600. By using the macrovariable SFMODELA we
specify analytically the values of the approximating functions. By using the macrovariable SGMODELA
we specify analytically the gradients of the approximating functions. For the sum of values minimization
we set SMODEL="AF".

d) problem solution (basic screen output):

CLASS = VM - LM3 UPDATE = B MODEL = AF HESF = B NF = 100
NIT= 0 NFV= 1 NFG= 1 F= 410.0000000 = .380D+02
NIT= 1 NFV= 2 NFG= 2 F= 56.19847311 G= .887D+01
NIT= 2 NFV= 3 NFG= 3 F= 33.51055573 G= .597D+01
NIT= 3 NFV= 5 NFG= b F= 8.212655678 G= .709D+01
NIT= 4 NFV= 7 NFG= 7 F= 1.405304652 G= .448D+01
NIT= 5 NFV= 8 NFG= 8 F= .1546538446 G= .147D+01
NIT= 6 NFV= 9 NFG= 9 F= .8654952764E-02 G= .276D+00
NIT= 7 NFV= 10 NFG= 10 F= .5809356546E-03 G= .115D+00
NIT= 8 NFV= 11 NFG= 11 F= .1714867549E-04 G= .187D-01
NIT= 9 NFV= 12 NFG= 12 F= .1059237179E-05 G= .423D-02
NIT= 10 NFV= 13 NFG= 13 F= .4823394334E-07 G= .105D-02
NIT= 11 NFV= 14 NFG= 14 F= .1475859572E-08 G= .217D-03
NIT= 12 NFV= 15 NFG= 15 F= .1093278164E-10 G= .129D-04
NIT= 13 NFV= 16 NFG= 16 F= .1983979791E-12 G= .131D-05
NIT= 14 NFV= 17 NFG= 17 F= .1844060681E-13 G= .667D-06

0 NIT= 14 NFV= 17 NFG= 17 NDC= 0 NCG= 4 F= .184D-13 G= .667D-06

7.11. Large-scale sum of squares optimization (sparse Jacobian matrix)
a) Problem description:

Suppose we have to find a local minimum of the objective function
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where n = 100 and

) = (3—2w)ei—wig+1 ci=1
ZA(l‘) = B—-2z)w;—xi1—wipa+1 ,2<i<n—1
fZA(l‘) = 3—2zx)m;—ax;1+1 ,i=n
The starting point 18 ; = —1 for 1 < ¢ < n. The minimum value of the objective function is F = 0.0

(This problem is equivalent to the previous problem).

b) Problem specification (input file):

$SET (INPUT)
DO 1 I=1,NF
X(I)=-1.0D0
1 CONTINUE
L=1
DO 2 I=1,NA
IAG(I)=L
IF (I.GT.1) THEN
JAG(L)=I-1
L=L+1
ENDIF
JAG(L)=I
L=L+1
IF (I.LT.NA) THEN
JAG(L)=I+1
L=L+1
ENDIF
2 CONTINUE
IAG(NA+1)=L
$ENDSET
$SET (FMODELA)
I=KA
FA=(3.0D0-2.0D0*X(I))*X(I)+1.0D0
IF (I.GT.1) FA=FA-X(I-1)
IF (I.LT.NA) FA=FA-X(I+1)
$ENDSET
$SET (GMODELA)
I=KA
GA(I)=3.0D0-4.0D0*X(I)
IF (I.GT.1) GA(I-1)=-1.0DO
IF (I.LT.NA) GA(I+1)=-1.0DO
$ENDSET
$NF=100
$NA=100
$MA=300

110



$M=600
$MOUT=2
$MODEL="AQ"’
$JACA="S’
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix. The sparse Jacobian matrix, indicated by the statement $JACA="S’, is tridiag-
onal and the number of its nonzero elements is 3+NF—2=298. Therefore we set $MA=300. Since we do
not use the sparse Hessian matrix, we do not specify the number of its nonzero elements. By using the
macrovariable $FMODELA we specify analytically the values of the approximating functions. By using
the macrovariable SGMODELA we specify analytically the gradients of the approximating functions. For
the sum-of-squares minimization we set $SMODEL="AQ’.

d) problem solution (basic screen output):

CLASS = GN - GE3 UPDATE = N MODEL = AQ HESF = N NF = 100
NIT= 0 NFV= 1 NFG= 1 F= 205.0000000 G= .190D+02
NIT= 1 NFV= 2 NFG= 2 F= 6.361704571 G= .230D+01
NIT= 2 NFV= 3 NFG= 3 F= .2275266679E-01 G= .118D+00
NIT= 3 NFV= 4 NFG= 4 F= .4866007329E-06 G= .532D-03
NIT= 4 NFV= 5 NFG= 5 F= .2346349433E-15 G= .128D-07
0 NIT= 4 NFV= 5 NFG= 5 NDC= 4 NCG= 0 F= .235D-15 G= .128D-07

7.12. Large-scale nonlinear equations
a) Problem description:

Suppose we have to solve the system of the nonlinear equations

) = B—2x)r; -2 +1=0 yi=1
) = B—2w)r;i—wig—xi+1=0 2<i<n—1
fZA(l‘) = 3-2w)x;—wi—1+1=0 ,1=n
where n=100. The starting point is z; = —1 for 1 < ¢ < n. The minimum value of the objective function

is F' = 0.0 (This problem is equivalent to the previous problem).

b) Problem specification (input file):

$SET (INPUT)
DO 1 I=1,NF
X(I)=-1.0D0
1 CONTINUE
$ENDSET
$SET (FMODELA)
I=KA
FA=(3.0D0-2.0D0*X(I))*X(I)+1.0D0
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IF (I.GT.1) FA=FA-X(I-1)
IF (I.LT.NA) FA=FA-X(I+1)

$ENDSET

$NF=100

$NA=100

$MOUT=2

$MODEL="NE’

$JACA="N’

$BATCH

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable SINPUT we specify the initial values of variables. By using the macrovari-
able $FMODELA we specify analytically the values of functions in the nonlinear equations. For solving
nonlinear equations we set SMODEL="AQ’.

d) problem solution (basic screen output):

CLASS = TN - GE3 UPDATE = N MODEL = AQ HESF = N NF = 100
NIT= 0 NFV= 1 F= 205.0000000
NIT= 1 NFV= 7 F= 5.259558960
NIT= 2 NFV= 14 F= .1625254125E-01
NIT= 3 NFV= 21 F= .2498485030E-06
NIT= 4 NFV= 28 F= .6201104372E-16
0 NIT= 4 NFV= 28 NDC= 4 NCG= 1 F= .620D-16

7.13. Large-scale linear programming
a) Problem description:

Suppose we have to find the global maximum of the linear function

i=1

with simple bounds —20 < z; < 20, 1 < #; < n, and linear constraints

—Ti+XTip1 —Tipp =1, 1 <i<ngc

where n = 20 and n¢ = 18. The starting point is not given. The maximum value of the linear objective
function is F = 7.0

b) Problem specification (input file):

$SET(INPUT)
DO 1 I=1,NF
IX(I)=3
XL(I)=-2.0D1
XU(I)=2.0D1
GF(I)=FLOAT((-1)**I)
1 CONTINUE
DO 2 KC=1,NC
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IC(X
CL(K

C)=5
C)=FLOAT(KC)

$SETCG(KC,KC,—1.0D0)
$SETCG (KC,KC+1, 1.0D0)
$SETCG (KC,KC+2,-1.0D0)

2 CONTIN
$ENDSET
$IEXT=1
$NF=20
$NC=18
$NCL=18
$MC=54
$KBF=2
$KBC=1
$MOUT=2
$NOUT=1
$MODEL="
$JACC="S
$BATCH

UE

FL’

)

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables and the sparsity pattern
with numerical values of the constraint Jacobian matrix. We use the procedure UKMCI1. The sparse
Jacobian matrix, indicated by the statement $JACC="S’, is tridiagonal and the number of its nonzero
elements is 3%(NF—2)=>54. Therefore, we set SMC=54. The option SMODEL="FL’ indicates the linear

programming problem.

d) Problem solution (basic screen output):

CLASS =
NUMITR=
NUMITR=
NUMITR=
NUMITR=
NUMITR=
NUMITR=
NUMITR=
NUMITR=

0 NIC

FF
X

LP - LN1 UPDATE = N MODEL = FL HESF = N NF = 20

1 INEW= 20 IOLD= 15 KINP= 0 IU= 48 = .980D+04

2 INEW= 19 IOLD= 20 KINP= 0 IU= 49 F= .208D+04

3 INEW= 0 IOLD= 20 KINP= 0 IU= 49 F= .000D+00

3 NEL= 3 NREF= 1 KINP= 0 IU= 49 F= .000D+00 ITERL= 1

1 INEW= 15 IOLD= 19 KINP= 0 IU= 49 F= .900D+01

2 INEW= 20 IOLD= 18 KINP= 0 IU= 48 F= .700D+01

3 INEW= 0 IOLD= 18 KINP= 0 IU= 48 F= .700D+01

3 NEL= 3 NREF= 1 KINP= 0 IU= 48 F= .700D+01 ITERL= 2
= 0 NIT= 6 NFV= 2 NFG= 0 F=-.700D+01 C= .000D+00 G= .000D+00
.7000000000D+01
.2000000000D+01 .0000000000D+00 .1000000000D+01 -.1000000000D+01
.5000000000D+01 -.8000000000D+01 -.8000000000D+01 -.6000000000D+01
.5000000000D+01 -.7000000000D+01 -.1100000000D+02 -.1400000000D+02
.1400000000D+02 -.1200000000D+02 -.1100000000D+02 -.1300000000D+02
.1700000000D+02 =-.2000000000D+02 -.2000000000D+02 -.1800000000D+02

7.14. Large-scale quadratic programming

a) Problem description:

Suppose we have to find the global minimum of the quadratic function
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1
F(z) = 5(21‘% + ol 20k 4w — 2wiws 4 2w3wy) —x1 — 3o+ X3 — 74
with simple bounds z; > 0 for 1 < ¢ < n and linear constraints

0 +2ro+ 23+ 24 <5,
Jr) 4+ w2+ 223+ 24

< 4
209+ 823 >

3

The starting point is #; = 1/2 for 1 < i < n.. The minimum value of the quadratic objective function is

I'=—4.681818.

b) Problem specification (input file):

$SET (INPUT)
DO 1 I=1,NF
X(I)= 0.5D0
XL(I)=0.0DO
IX(I)=1

1 CONTINUE
GF(1)=-1.0D0; GF(2)=-3.0D0; GF(3)= 1.0D0; GF(4)=-1.0DO
IH(1)= 1; IH(2)= 3; IH(3)= 4; IH(4)= 6; IH( 5)=7
JH(1)= 1; JH(2)= 3; JH(3)= 2; JH(4)= 3; JH( 5)= 4; JH(6)= 4
HF(1)= 2.0D0; HF(2)=-1.0D0; HF(3)= 1.0D0
HF(4)= 2.0D0; HF(5)= 1.0D0; HF(6)= 1.0D0
IC(1)=2; Ic(2)=2; Ic(3)=1
CL(1)= 5.0D0; CL(2)= 4.0D0; CL(3)= 3.0DO
ICG(1)=1; ICG(2)=5; ICG(3)=9; ICG(4)=11
JCG(1)=1; JCG(2)=2; JCG(3)=3; JCG(4)=4; JCG( 5)=1
JCG(6)=2; JCG(T7)=3; JCG(8)=4; JCG(9)=2; JCG(10)=3
CG(1)= 1.0D0; CG(2)= 2.0D0; CG(3)= 1.0D0; CG(4)= 1.0D0; CG( 5)= 3.0DO
CG(6)= 1.0D0; CG(7)= 2.0D0; CG(8)=-1.0D0; CG(9)= 2.0D0; CG(10)= 8.0DO

$ENDSET

$NF=4

$NC=3

$NCL=3

$MC=10

$M=100

$KBF=1

$KBC=1

$MOUT=2

$NOUT=1

$MODEL="FQ’

$JACC=’S"

$HESF=’S’

$BATCH

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables, the sparsity pattern with
numerical values of the model Hessian matrix, and the sparsity pattern with numerical values of the
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constraint Jacobian matrix. The sparse Hessian matrix is indicated by the statement SHESF="S". We
set $M=100 as a sufficiently large dimension for the working fields.
indicated by the statement $JACC="S’ and the number of its nonzero elements is $MC=10. The option
$MODEL="FQ’ indicates the quadratic programming problem.

d) Problem solution (basic screen output):

CLASS = QP - LN2 UPDATE = N MODEL =
MODE = 1 NRED = 0 N = 4 IOLD
MODE = 1 NRED = 1 N = 3 IOLD
MODE = 1 NRED = 2 N = 2 IOLD
MODE = 1 NRED = 3 N = 2 IOLD
MODE = 1 NRED = 4 N = 2 IOLD
MODE = 1 NRED = 4 N = 3 IOLD
MODE = 1 NRED = 5 N = 2 IOLD
MODE = 1 NRED = 6 N = 2 IOLD
MODE = 1 NRED = 7 N = 2 IOLD
0 NIC= O NIT= 7 NFV= 2 NFG= 0
FF = -.4681818182D+01
X = .2727272727D+00 .2090909091D+01

FQ

F=-.468D+01 C=

.0000000000D+00

HESF = S NF
INEW =
INEW =
INEW = -
INEW =
INEW =
INEW =
INEW =
INEW =
0 INEW =

OO OO O OO0

7.15. Large-scale optimization with linear constraints

a) Problem description:

0

w w

O r O OO

0

The sparse Jacobian matrix is

= 4

ADDITION
ADDITION

DELETION
ADDITION

.000D+00 G= .000D+00

.5454545455D+00

The problem we have solved is in fact the Hock and Schittkowski problem number 119 (see [44]) which
has 16 variables and 8 linear constraints. The minimum value of the objective function is F' = 244.899.

b) Problem specification (input field):

$FLOAT WI,WJ

$SET(INPUT)

DO 1 I=1,NF

X(I)=10.0D0; XL(I)=0.0DO; XU(I)=5.0D0; IX(I)=3

1 CONTINUE
IH( 1)=
IH( 6)=2
IH(11)=3
IH(16)=4
JH( 1)=
JH( 6)=
JH(10)=
JH(15)=
JH(19)=
JH(24)=
JH(27)=
JH(30)=
JH(33)=
JH(36)=1
JH(38)=1
JH(40)=1
JH(42)=1

1;
4;
8;
6;
1;

>

©O© 0 ~N O 0 WwN

0;
1;
2;
3;

IH( 2)= 6;
IH( 7)=27;
IH(12)=40;
IH(17)=47;
JH( 2)= 4;
JH( 7)= 3;
JH(11)= T7;
JH(16)= T7;
JH(20)= 6;
JH(25)= 8;
JH(28)=11;
JH(31)=10;
JH(34)=12;
JH(37)=14;
JH(39)=13;
JH(41)=14;
JH(43)=14;

IH( 3)=10;
IH( 8)=30;
IH(13)=42;

JH( 3)= 7;
JH( 8)= T7;
JH(12)= 9;
JH(17)=11;
JH(21)=10;
JH(26)=15;
JH(29)=13;
JH(32)=15;
JH(35)=16;

IH( 4)
IH( 9)
IH(14)

JH( 4)
JH( 9)
JH(13)
JH(18)
JH(22)

=15;
=33;
=44,

= 8;
=10;
=10;
=15;
=12;
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IH( 5)=19
IH(10)=36
IH(15)=45
JH( B)=16
JH(14)=14

JH(23)=186



JH(44)=14;
JH(45)=15;
JH(46)=16;
DO 2 I=1,NC
I1¢(I)=5
CONTINUE
CL(1)= 2.5D0
CL(2)= 1.1DO
CL(3)=-3.1D0
CL(4)=-3.5D0
CL(5)= 1.3DO
CL(6)= 2.1DO
CL(7)= 2.3D0
CL(8)=-1.5D0
$SETCG (1,
$SETCG (1,
$SETCG (1,
$SETCG (1,
$SETCG (1,
$SETCG (1,
$SETCG (1,
$SETCG (1,
$SETCG (1,
$SETCG(2,
$SETCG(2,
$SETCG(2,
$SETCG(2,
$SETCG(2, 7,
$SETCG(2, 10,
$SETCG(3, 1,
$SETCG(3, 2,
$SETCG(3, 5,
$SETCG(3, 6,
$SETCG(3, 8,
$SETCG(3, 11,
$SETCG(4, 1,
2,
3,
4,
6,
7,

e e e e .

-

e e e e .

-

~N Ok W, O 00N WN

$SETCG (4,
$SETCG (4,
$SETCG (4,
$SETCG (4,
$SETCG (4,
$SETCG(4,12,
$SETCG(5, 4,
$SETCG(5, 5,
$SETCG(5, 6,
$SETCG(5, 7,
$SETCG(5, 8,
$SETCG(5,13,
$SETCG(8, 2,
$SETCG(8, 3,
$SETCG(8, 5,
$SETCG(8, 6,

R O O OO OO OO

| I 1
[ = S

O = »r O

1
0
0
1

-1.
-1
0
-0
-1.
-0
1
-1
1
0.
-0.
-0

1
-1
-0.

1.

1.

.22D0)
.20D0)
.19D0)
.25D0)
.15D0)
.11D0)
.12D0)
.13D0)
.00D0)
.46D0)
.30D0)
.82D0)
.15D0)
.80D0)
.00D0)
.29D0)
.89D0)
.16D0)
.96D0)
.49D0)
.00D0)

10D0)

.08D0)
.95D0)
.54D0)

78D0)

.41D0)
.00D0)
.43D0)
.51D0)

59D0)
33D0)

.43D0)
.00D0)
.72D0)

33D0)
62D0)
24D0)
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$SETCG(6, 7, 0.21D0)
$SETCG(6, 8,-0.26D0)
$SETCG(6,14, 1.00D0)
$SETCG(7, 1, 1.12D0)
$SETCG(7, 4, 0.31D0)
$SETCG(7, 7, 1.12D0)
$SETCG(7, 9,-0.36D0)
$SETCG(7,15, 1.00D0)
$SETCG(8, 2, 0.45D0)
$SETCG(8, 3, 0.26D0)
$SETCG(8, 4,-1.10D0)
$SETCG(8, 5, 0.58D0)
$SETCG(8, 7,-1.03D0)
$SETCG(8, 8, 0.10D0)
$SETCG(8,16, 1.00D0)
$ENDSET
$SET (FGMODELF)
FF=0.0D0O
DO 3 I=1,NF
GF(I)=0.0D0
3 CONTINUE
DO 5 I=1,NF
WI=X(I)*(X(I)+1.0D0)+1.0DO
K1=IH(I)
K2=IH(I+1)-1
DO 4 K=K1,K2
J=JH(K)
WI=X(J)*(X(J)+1.0D0)+1.0DO
FF=FF+WI*WJ
GF(I)=GF(I)+(2.0D0*X(I)+1.0D0)*WJ
GF(J)=GF(J)+WI*(2.0D0*X(J)+1.0D0)
4 CONTINUE
5 CONTINUE
$ENDSET
$NF=16
$M=200
$NC=8
$NCL=8
$MC=54
$KBF=2
$KBC=1
$MOUT=2
$NOUT=1
$JACC=’S"
$HESF=’S’
$ADD (INTEGER, *\IH($NF+1)\JH($M) )
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the bounds for variables, the sparsity pattern with
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numerical values of the model Hessian matrix, and the sparsity pattern with numerical values of the
constraint Jacobian matrix. We use the procedure UKMCI1. The sparse Hessian matrix is indicated by
the statement $HESF="S’. The sparse Jacobian matrix is indicated by the statement $JACC="S’. The
option $MODEL="FF’ indicates a general objective function. By using the macrovariable SFGMODELF
we specify analytically the value and the gradient of the model function. Since the Hessian structure
appears in the gradient definition and the conjugate gradient method is used as default, we have to

declare files IH and JH.

d) Problem solution (basic screen output):

CLASS = CD - LC1 UPDATE = N MODEL = FF HESF = N NF = 16

NIT= 0 NFV= 1 NFG= 1 F= 6318.492582 = .000D+00

NIT= 1 NFV= 3 NFG= 3 F= 4814.710061 G= .000D+00

NIT= 2 NFV= 4 NFG= 4 F= 3584.460640 G= .293D+01

NIT= 3 NFV= 5 NFG= 5 F= 3506.282573 G= .544D+03

NIT= 4 NFV= 8 NFG= 8 F= 1887.324185 G= .171D+03

NIT= 5 NFV= 9 NFG= 9 F= 654.74376156 G= .445D+02

NIT= 6 NFV= 10 NFG= 10 F= 341.8186624 G= .484D+01

NIT= 7 NFV= 11 NFG= 11 F= 313.7362910 G= .634D+01

NIT= 8 NFV= 12 NFG= 12 F= 288.1967005 G= .281D+01

NIT= 9 NFV= 13 NFG= 13 F= 250.0377363 G= .808D+01

NIT= 10 NFV= 15 NFG= 15 F= 245.0427300 G= .237D+01

NIT= 11 NFV= 17 NFG= 17 F= 244.8997708 G= .347D-01

NIT= 12 NFV= 19 NFG= 19 F= 244.8996976 G= .174D-02

NIT= 13 NFV= 21 NFG= 21 F= 244.8996975 G= .272D-03

NIT= 14 NFV= 23 NFG= 23 F= 244.8996975 G= .860D-06

0 NIT= 14 NFV= 23 NFG= 23 NDC= 0 NCG= 0 F= .245D+03 G= .860D-06

FF = .2448996975D+03
X = .3984734987D-01 .7919831513D+00 .2028703518D+00 .8443579338D+00

.1269906444D+01 .9347387223D+00 .1681961949D+01 .1553008745D+00
.1567870329D+01 -.4549423462D-14 -.1919595591D-14 .4278076897D-15
.6602040882D+00 .2269087313D-15 .6742559445D+00 -.4145543553D-14

7.16. Large-scale optimization with nonlinear equality constraints
a) Problem description:
Suppose we have to find a local minimum of the objective function

n

Fla) =3 (fA )"

i=1
where n = 100 and

fAx) = (3—2w)e; —xip +1 Ji=1
fZA(l‘) = B—-2z)w;—xi1—wipa+1 ,2<i<n—1
fZA(l‘) = 3—2zx)m;—ax;1+1 ,i=n

over the set given by the nonlinear equality constraints
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SxZ(xZZ —wi—1) —2(1 —z;) + 4(2; — x?_l_l) +al | — o wi — l‘?_l_z =0,3<i<n-2
The starting point is z; = —1, 1 <7 < n. The minimum value of the objective function is F' = 5.29056.

b) Problem specification (input file):

$FLOAT WA,WB
$SET (INPUT)
DO 1 I=1,NF
X(I)=-1.D0O
1 CONTINUE
M=0
IH(1)=1
DO 2 I=1,NF
M=M+1
JH(M)=1
IF (I.LE.NF-1) THEN
M=M+1
JH(M)=I+1
ENDIF
IF (I.LE.NF-2) THEN
M=M+1
JH(M)=I+2
ENDIF
IH(I+1)=M+1
2 CONTINUE
MC=0
ICG(1)=1
DO 3 I=3,NF-2
MC=MC+1
JCG(MC)=I-2
MC=MC+1
JCG(MC)=I-1
MC=MC+1
JCG(MC)=1
MC=MC+1
JCG(MC)=I+1
MC=MC+1
JCG(MC)=I+2
ICG(I-1)=MC+1
3 CONTINUE
DO 4 KC=1,HlC
IC(KC)=5
CL(KC)=0.D0
4 CONTINUE
$ENDSET
$SET (FMODELF)
FF=0.DO
DO 5 J=1,NF
WA=(3.D0-2.D0*X(J))*X(J)+1.DO
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IF (J.GT. 1) WA=WA-X(J-1)
IF (J.LT.NF) WA=WA-X(J+1)
FF=FF+WA**2

5 CONTINUE

$ENDSET

$SET (GMODELF)
DO 6 J=1,NF
GF(J)=0.D0O

6 CONTINUE
DO 7 J=1,NF
WA=(3.D0-2.D0*X(J))*X(J)+1.D0
IF (J.GT. 1) WA=WA-X(J-1)
IF (J.LT.NF) WA=WA-X(J+1)
WB=2.DO*WA
GF(J)=GF(J)+WB*(3.D0-4.D0*X(J))
IF (J.GT. 1) GF(J-1)=GF(J-1)-WB
IF (J.LT.NF) GF(J+1)=GF(J+1)-WB

7 CONTINUE

$ENDSET

$SET (FMODELC)
K=KC+2
FC=8.D0*X(K)* (X (K)**2-X(K-1))-2.D0*(1.D0-X(K) )+
& 4.DO*(X(K)-X(K+1)**2)+X(K-1)**2-X(K-2)+X(K+1)-
& X(K+2)**2

$ENDSET

$SET (GMODELC)
K=KC+2
GC(K-2)=-1.DO
GC(K-1)=-8.D0*X(K)+2.D0*X(K-1)
GC(K)=24.D0*X (K)**2-8.D0*X(K-1)+6.D0
GC(K+1)=-8.D0*X(K+1)+1.DO0
GC(K+2)=-2.D0*X (K+2)

$ENDSET

$NF=100

$M=1500

$NC=96

$NCL=0

$NCE=NC

$MC=500

$KBC=1

$MOUT=2

$JACC="3"

$HESF="S’

$BATCH

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Hessian matrix, the sparsity pattern of the constraint Jacobian matrix, and the constraint
specifications. The sparse Hessian matrix, indicated by the statement $HESF="S’, is tridiagonal so
that the number of its upper half nonzero elements is 2*NF—1=199. We set $M=1500, since a greater
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space is needed for sparse matrix processing. The sparse Jacobian matrix is indicated by the statement
$JACC="S’. Since there are only the equality constraints, we can specify the right hand sides CL(KC), 1
< KC < NC, and set $SKBC=1. The statement SNCE=NC expresses that all constraints are equalities.
By using the macrovariable $FMODELF we specify analytically the value of the model function. By
using the macrovariable $§GMODELF we specify analytically the gradient of the model function. By
using the macrovariable $SFMODELC we specify analytically the values of the constraint functions. By
using the macrovariable $§GMODELC we specify analytically the gradients of the constraint functions.

d) problem solution (basic screen output):

CLASS = MN - LK3

NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
NIC= O NIT=
0 NIC= O NIT=

UPDATE =

© 0 ~NOoO e WO

P e e
B W N = O

NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=
NFV=

N

1
2
3
4
5
9
1

1
12
13
14
15
16
17
18
18

MODEL = FF
NFG= 10 F=
NFG= 20 F=
NFG= 30 F=
NFG= 40 F=
NFG= 50 F=
NFG= 60 F=-
NFG= 70 F=
NFG= 80 F=
NFG= 90 F=
NFG= 100 F=
NFG= 110 F=
NFG= 120 F=
NFG= 130 F=
NFG= 140 F=
NFG= 140 F=

HESF = S

.410D+03
.374D+04
.587D+03
.269D+03
.966D+02
.557D+02
.295D+01
.533D+01
.530D+01
.529D+01
.529D+01
.529D+01
.529D+01
.529D+01
.529D+01

NF =

.280D+02
.880D+01
.285D+01
.127D+01
.851D+00
.731D+00
.311D+00
.490D-01
.252D-02
.927D-03
.190D-03
.238D-04
.447D-06
.168D-09
.168D-09

100

= .380D+02
G= .126D+02
G= .489D+01
G= .640D+01
G= .890D+01
G= .776D+01
G= .385D+01
G= .850D+00
G= .189D+00
G= .514D-01
G= .111D-01
G= .117D-02
G= .220D-04
G= .824D-08
G= .824D-08

7.17. Large-scale optimization with nonlinear equality and inequality constraints

a) Problem description:

Suppose we have to find a local minimum of the objective function

F(e)

n—2
Z(x?_l + o+ 2x?+1 + i+ 27 —bwi_g — bw; — 2l + 7xi+2)
j=2

where n = 100 over the set given by the nonlinear constraints

2 2, 2 2
et @y F e e+ =2+ 2 — 2y <8,

2 2 2 2
Ti_q 20 + w20, — x5 — x40 <10,

2 2 2
20_y+wij+wi 220 - — x40 <,

mod(k,3) =
mod(k,3) =1
mod(k,3) =2

where j = 2(div(k — 1,3)+ 1), 1 < k < 3(n — 2)/2 (div(k,]) is the integer division and mod(k,{) is the
remainder after integer division). The starting point is #; = 0, 1 < ¢ < n. The minimum value of the
objective function is F' = —1303.79.

b) Problem specification (input file):

$SET (INPUT)
DO 1 I=1,NF
X(I)=0.0D0

1 CONTINUE
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DO 2 I=1,NF
IH(I)=I
JH(I)=I
2 CONTINUE
IH(NF+1)=NF+1
MC=0
KC=0
DO 5 J=1,NC/3
CL(KC+1)=8.0D0
CL(KC+2)=1.0D1
CL(KC+3)=5.0D0
I=2*(J-1)
DO 4 K=1,3
IC(KC+K)=2
ICG(KC+K)=MC+1
DO 3 L=1,4
JCG(MC+L)=I+L
3 CONTINUE
MC=MC+4
4 CONTINUE
KC=KC+3
5 CONTINUE
ICG(NC+1)=MC+1
$ENDSET
$SET (FMODELF)
FF=0.0D0
DO 11 J=2,NF-2,2
FF=FF+X(J-1)**2+X(J) *%2+2.0D0O*X (J+1) #*2+X (J+2) **2&
-5.0D0*X(J-1)-5.0D0*X(J)-2.1D1*X(J+1)+7.0D0*X(J+2)
11 CONTINUE
$ENDSET
$SET (GMODELF)
DO 12 I=1,NF
GF(I)=0.0D0O
12 CONTINUE
DO 13 J=2,NF-2,2
GF(J-1)=GF(J-1)+2.0D0*X(J-1)-5.0D0
GF(J)=GF(J)+2.0D0*X(J)-5.0D0
GF(J+1)=GF(J+1)+4.0D0*X(J+1)-2.1D1
GF(J+2)=GF(J+2)+2.0D0*X(J+2)+7.0D0
13 CONTINUE
$ENDSET
$SET (FMODELC)
J=2*%((KC-1)/3+1)
L=MOD(KC, 3)
GO TO (21,22,23), L+1
21 FC=X(J-1)**2+X(J)**2+X (J+1) #*¥2+X (J+2) **2&
+X(J-1)-X(I)+X(J+1)-X(J+2)
GO TO 24
22 FC=X(J-1)**2+2.0D0*X(J)**2+X(J+1)**2+2.0DO*X (J+2) **2&
-X(J-1)-X(J+2)
GO TO 24
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23 FC=2.0D0*X(J-1)**2+X(J)**2+X(J+1)**2&

+2.0D0*X(J-1)-X(J)-X(J+2)

24 CONTINUE

$ENDSET

$SET (GMODELC)
J=2%((KC-1)/3+1)
L=MOD (XC,3)
GO TO (25,26,27), L+1

25 GC(J-1)=2.0D0*X(J-1)+1.0D0O
GC(J)=2.0D0*X(J)-1.0D0O
GC(J+1)=2.0D0*X(J+1)+1.0D0
GC(J+2)=2.0D0*X(J+2)-1.0D0
GO TO 28

26 GC(J-1)=2.0D0*X(J-1)-1.0D0O
GC(J)=4.0D0*X(J)
GC(J+1)=2.0D0*X(J+1)
GC(J+2)=4.0D0*X(J+2)-1.0D0
GO TO 28

27 GC(J-1)=4.0D0*X(J-1)+2.0D0O
GC(J)=2.0D0*X(J)-1.0D0O
GC(J+1)=2.0D0*X(J+1)
GC(J+2)=-1.0D0

28 CONTINUE

$ENDSET

$NF=100

$M=1000

$NC=147

$NCL=0

$MC=1000

$KBC=1

$MOUT=2

$JACC="3"

$HESF="S’

$BATCH

$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of variables, the sparsity pattern of
the objective Hessian matrix, the sparsity pattern of the constraint Jacobian matrix, and the constraint
specifications. The sparse Hessian matrix, indicated by the statement $HESF="S’| is diagonal so that the
number of its upper half nonzero elements is NF=100. We set $M=1000, since a greater space is needed
for sparse matrix processing. The sparse Jacobian matrix is indicated by the statement $JACC="S’.
Since there are only one sided inequality constraints, we can specify the right hand sides CL(KC), 1
< KC < NC, and set $KBC=1 (we can also specify CU(KC), 1 < KC < NC, and set $KBC=2). By
using the macrovariable SFMODELF we specify analytically the value of the model function. By using
the macrovariable SGMODELF we specify analytically the gradient of the model function. By using the
macrovariable $FMODELC we specify analytically the values of the constraint functions. By using the
macrovariable §GMODELC we specify analytically the gradients of the constraint functions.

d) problem solution (basic screen output):
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CLASS = MN - LI3 UPDATE =
NIC= O NIT= 0 NFV=
NIC= O NIT= 1 NFV=
NIC= O NIT= 2 NFV=
NIC= O NIT= 3 NFV=
NIC= O NIT= 4 NFV=
NIC= O NIT= 5 NFV=
NIC= O NIT= 6 NFV=
NIC= O NIT= 7 NFV=
NIC= O NIT= 8 NFV=
NIC= O NIT= 9 NFV=
NIC= O NIT= 10 NFV=
NIC= O NIT= 11 NFV=
NIC= O NIT= 12 NFV=
NIC= O NIT= 13 NFV=
NIC= O NIT= 14 NFV=
NIC= O NIT= 15 NFV=
NIC= O NIT= 16 NFV=
NIC= O NIT= 17 NFV=
NIC= O NIT= 18 NFV=

0 NIC= O NIT= 19 NFV=

N

O© 0 ~N O 0 WN =

10
11
12
13
14
15
16
17
18
19
19

MODEL = FF
NFG= 7 F=
NFG= 14 F=-
NFG= 21 F=-
NFG= 28 F=-
NFG= 35 F=-
NFG= 42 F=-
NFG= 49 F=-
NFG= 56 F=-
NFG= 63 F=-
NFG= 70 F=-
NFG= 77 F=-
NFG= 84 F=-
NFG= 91 F=-
NFG= 98 F=-
NFG= 105 F=-
NFG= 112 F=-
NFG= 119 F=-
NFG= 126 F=-
NFG= 133 F=-
NFG= 133 F=-

HESF =

.000D+00
.247D+04
.219D+04
.197D+04
.191D+04
.176D+04
.167D+04
.141D+04
.136D+04
.130D+04
.130D+04
.130D+04
.130D+04
.130D+04
.130D+04
.130D+04
.130D+04
.130D+04
.130D+04
.130D+04

S NF =

C= .000D+00
C= .112D+02
C= .107D+02
C= .696D+01
C= .594D+01
C= .402D+01
C= .306D+01
C= .797D+00
C= .311D+00
C= .000D+00
C= .902D-02
C= .704D-02
C= .289D-02
C= .294D-03
C= .368D-04
C= .839D-06
C= .830D-08
C= .825D-10
C= .822D-12
C= .822D-12

7.18. Optimization of dynamical systems - general integral criterion

a) Problem description:

Suppose we have to find a minimum of the objective function

where 7' = 1.5 and where

dy1(t)
dt

dy2(t)
dt

b) Problem specification (input field):

$SET (INPUT)
X(1)=ZERO
TA=ZERO
TAMAX=1.5D O

$ENDSET

$SET (FMODELF)
FF=HALF*(YA(1)**2+YA(2)**2)

$ENDSET

$SET (DMODELF)
DF(1)=YA(1)
DF(2)=YA(2)

$ENDSET

$SET(FMODELA)

ya (1),

(1= g3 (t)ya(t) — pa(t),
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_/0 (2 (1) + y2(1))dt + %(yf(T) +y3(T))

y1(0) = 24

yz(O) =1

.257D+02
.112D+02
.126D+02
.779D+01
.728D+01
.127D+02
.976D+01
.106D+02
.548D+01
.844D+00
.733D+00
.631D+00
.914D-01
.209D-02
.214D-03
.446D-05
.446D-07
.445D-09
.444D-11
.444D-11



FA=HALF*(YA(1)**2+YA(2)**2)
$ENDSET
$SET(DMODELA)

DA(1)=YA(1)

DA(2)=YA(2)
$ENDSET
$SET (FMODELE)

GO TO (1,2) KE
1 FE=YA(2)

GO TO 3
2 FE=-YA(1)+(ONE-YA(1)**2)*YA(2)
3 CONTINUE
$ENDSET
$SET (DMODELE)

GO TO (4,5) KE
4 DE(1)=ZERO

DE(2)=0NE

GO TO 6
5 DE(1)=-ONE-TWO*YA(1)*YA(2)

DE(2)=0NE-YA(1)**2
6 CONTINUE
$ENDSET
$SET (FMODELY)

GO TO (7,8) KE
7 FE=X(1)

GO TO 9
8 FE=0NE
9 CONTINUE
$ENDSET
$SET (GMODELY)

GO TO (10,11) KE
10 GE(1)=0NE
GO TO 12
11 GE(1)=ZERO
12 CONTINUE
$ENDSET
$NF=1
$NE=2
$MODEL="DF"’
$MOUT=2
$NOUT=1
$TOLR="1.0$P-9°
$TOLA="1.0$P-9’
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial value of the variable z; as well as the initial
and terminal times 0 and T, respectively. By using the macrovariables $FMODELA and $DMODELA
we specify the subintegral function and by using the macrovariables $SFMODELF and $SDMODELF we
specify the terminal function. The right hand sides of the differential equations are specified by using the

125



macrovariables SFMODELE and $DMODELE, the while initial values and their derivatives are given by
using the macrovariables SFMODELY and $GMODELY. The option $MODEL="DF’ indicates a general
integral criterion.

d) Problem solution (basic screen output):

CLASS = VM - LIt UPDATE = B MODEL = DF HESF = D NF = 1
NIT= 0 NFV= 1 NFG= 0 = 2.763393900 = .242D+01
NIT= 1 NFV= 3 NFG= 0 F= 1.974913643 G= .513D+00
NIT= 2 NFV= 4 NFG= 0 F= 1.944235577 G= .468D-02
NIT= 3 NFV= 5 NFG= 0 F= 1.944233169 G= .122D-03
NIT= 4 NFV= 6 NFG= 0 F= 1.944233168 G= .205D-07
0 NIT= 4 NFV= 6 NFG= 0 NDC= 0 NCG= 0 F= .194D+01 G= .205D-07
FF = .7671653645D+00
X = .6169838477D+00

7.19. Optimization of dynamical systems - special integral criterion
a) Problem description:

Suppose we have to find a minimum of the objective function

o) =5 [ o= 10+ 0ra

where 7= 1 and where

dy;t(t) = —z1y:(t), 11(0) = 2

b) Problem specification (input field):

$SET (INPUT)
X(1)=2.0D ©
X(2)=0.0D ©
TA=ZERO
TAMAX=0NE

$ENDSET

$SET (FMODELE)
FE=-X(1)*YA(1)**2
YE=0ONE/(ONE+TA)
WE=0NE

$ENDSET

$SET (GDMODELE)
GE(1)=-YA(1)**2
GE(2)=ZERO
DE(1)=-TWO*X(1)*YA(1)

$ENDSET

$SET (FMODELY)
FE=X(2)

$ENDSET

$SET (GMODELY)
GE(1)=ZERO
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GE(2)=0NE
$ENDSET
$MODELA="Y"
$NF=2
$NE=1
$MODEL="DQ’
$CLASS="GN’
$UPDATE="F"’
$MOUT=2
$NOUT=1
$TOLR="1.0$P-9°
$TOLA="1.0$P-9’
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable $INPUT we specify the initial values of the variables z; and zs as
well as the initial and terminal times 0 and T, respectively. The right hand side of the differential
equation is specified by using the macrovariables $FMODELE and $GDMODELE, while the initial
values and their derivatives are given by using the macrovariables SFMODELY and $GMODELY. The
option SMODEL="DQ’ together with $MODELA="Y" indicate a special integral criterion.

d) Problem solution (basic screen output):

CLASS = GN - GM7 UPDATE = F MODEL = DQ HESF = D NF = 2
NIT= 0 NFV= 1 NFG= 1 F= .2500000000 G= .693D+00
NIT= 1 NFV= 3 NFG= 2 F= .3379696559E-01 G= .114D+00
NIT= 2 NFV= 5 NFG= 3 F= .1598937577E-02 G= .613D-02
NIT= 3 NFV= 7 NFG= 4 F= .1195750953E-04 G= .225D-02
NIT= 4 NFV= 9 NFG= 5 F= .1909017677E-08 G= .300D-04
NIT= 5 NFV= 11 NFG= 6 F= .2793082966E-15 G= .200D-08
0 NIT= 5 NFV= 11 NFG= 6 NDC= 7 NCG= 0 F= .279D-15 G= .200D-08
F = .2793082966D-15
X = .9999999725D+00 .9999999990D+00

7.20. Initial value problem for ordinary differential equations
a) Problem description:

Suppose we have to find a solution of the Van der Pol equation
2 = (1), n(0) =2
S = (= O)e() —n (), 1(0)=0
in the interval 0 < ¢ <7 where T = 20.

b) Problem specification (input field):

$SET(INPUT)
YA(1)=2.0DO
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YA(2)=0.0DO
TA=0.0DO
TAMAX=1.0D1
$ENDSET
$SET (FMODELE)

IF (KE.EQ.1) THEN

FE=YA(2)
ELSE

FE=(1.0DO-YA(1)**2)*YA(2)-YA(1)

ENDIF
$ENDSET
$NA=21
$NE=2
$MODEL="DE’
$MED=2
$NOUT=1
$BATCH
$STANDARD

¢) Comments on the problem specification:

By using the macrovariable SINPUT we specify the initial values of the variables 3; and y- as well as
the initial and terminal times 0 and T, respectively. The right hand sides of the differential equations are
specified by using the macrovariable $SFMODELE. The option $MODEL="N" indicates integration of a
system of ordinary differential equations.

d) Problem solution (basic screen output):

CLASS = NO - NNO UPDATE = N MODEL = NO HESF = N NF = 0
0 NSTP= 47 NACC= 35 NREJ= 12 NEV =1228 NEG = 0
1 AT= .0000000000D+00
AY= .2000000000D+01 .0000000000D+00
2 AT= .5000000000D+00
AY= .1837719210D+01 .5345234547D+00
3 AT= .1000000000D+01
AY= .1508144241D+01 .7802180795D+00
4 AT= .1500000000D+01
AY= .1040932817D+01 .1124320556D+01
5 AT= .2000000000D+01
AY= .3233165976D+00 .1832974600D+01
6 AT= .2500000000D+01
AY= -.8409663144D+00 .2677481056D+01
7 AT= .3000000000D+01
AY= -.1866073894D+01 .1021060289D+01
8 AT= .3500000000D+01
AY= -.1981111880D+01 .2780991398D+00
9 AT= .4000000000D+01
AY= -.1741768298D+01 .6246661652D+00
10 AT= .4500000000D+01
AY= -.1369680461D+01 .8749049693D+00
11 AT= .5000000000D+01
AY= -.8370774151D+00 .1307088938D+01
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12

13

14

15

16

17

18

19

20

21

AT=
AY=
AT=
AY=
AT=
AY=
AT=
AY=
AT=
AY=
AT=
AY=
AT=
AY=
AT=
AY= -
AT=

AT=

.5500000000D+01
.1492104708D-01
.6000000000D+01
.1279043316D+01
.6500000000D+01
.1981657547D+01
.7000000000D+01
.1920152630D+01
.7500000000D+01
.1630052536D+01
.8000000000D+01
.1213232754D+01
.8500000000D+01
.5979891894D+00
.9000000000D+01
.4129152480D+00
.9500000000D+01
AY= -,

1638546749D+01

.1000000000D+02
AY= -,

2008340784D+01

.2187559874D+01

.2437814560D+01

.3834607828D+00

.4358385236D+00

.7027644971D+00

.9878137411D+00

.1543326967D+01

.2526902993D+01

.1781241644D+01

.3290648928D-01
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8. Model examples for demonstration of graphic output

Here we introduce several problem specifications (input files) which demonstrate the application of
the graphic screen output. The graphic screen output can be used only on PC computers under the MS
DOS system. This possibility is not allowed on the UNIX workstations.

The input files are included into the UFO system as demo-files PROCO1.UFQ,... PROC08.UFQ. Corre-
sponding graphic pictures are included in the appendix. The data recommended for graphic pictures are
introduced in lines which begin by the directive $REM.

8.1. Nonlinear regression

$SET (INPUT)
LDIM=5
X(1)=7.0D20
X(2)=1.0D4
X(3)=2.2D0
X(4)=1.01D0
X(5)=7.0D17
X(6)=7.0D3
X(7)=1.6D0
X(8)=1.01D0
X(9)=1.0D16
X(10)=4.0D3
X(11)=1.5D0
X(12)=1.01D0
X(13)=2.0D15
X(14)=4.0D3
X(15)=1.3D0
X(16)=1.01D0
X(17)=1.0D16
X(18)=5.0D2
X(19)=1.2D0
X(20)=1.01D0
BETA=5.95D0
CALL BIUDO1(NF,LDIM,NA,X,XL,XU,IX,AT,AM)

$ENDSET

$SET (FMODELA)
CALL BAFUO1(NF,LDIM,KA,NA,X,AT,FA,BETA)

$ENDSET

$SET (GMODELA)
CALL BAGUO1(NF,LDIM,KA,NA,X,AT,GA,BETA)

$ENDSET

$NF=30

$NA=500

$K0UT=0

$KOUT1=0

$K0UT2=100

$KOUT3=1

$L.0UT=0

$MOUT=2

$MIT=100

$MODEL="AQ"’
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$CLASS
$TYPE=
$DECOM
$NUMBE
$UPDAT
$TOLX=
$TOLF=
$TOLB=
$TOLG=
$KBA=1
$KBF=2
$GRAPH
$SCAN=
$BATCH

:’Gl\]”

’G’

P="M’

R=7

E="F’
’1.0$P-16"
’1.0$P-16"
’1.0$P-16"
’1.0$P-6°

=y
'y

$ADD (REAL, *\BETA\AT($NA) )

$ADD(S

UBROUTINES)

SUBROUTINE BIUDO1(N,L,NA,X,XL,XU,IX,AT,AM)
INTEGER N,L,NA,IX(N),I,K

REAL*8 X(N),XL(N),XU(N),AT(NA),AM(NA)
N=4+L

K=0

DO 1 I=1,L

X(K+1)=L0G(X(K+1))

XL(K+1)=LOG(1.0D+0)

XU(K+1)=L0OG(1.0D+40)

IX(K+1)=3

X (XK+2)=L0G(X(K+2))

XL(K+2)=L0OG(1.0D+0)

XU(K+2)=L0G(1.0D+10)

IX(K+2)=3

XL(K+3)=1.0D-2

XU(K+3)=1.0D+2

IX(K+3)=3

XL(K+4)=1.00001D0

XU(K+4)=1.00000D1

IX(K+4)=3

K=K+4

CONTINUE

OPEN (11,FILE=’PROCO1.DAT’,STATUS=’0LD’)
NA=0

NA=NA+1

READ (11,’(2D14.6)’,ERR=3) AT(WNA),AM(NA)
GO TO 2

NA=NA-1

RETURN

END

SUBROUTINE BAFUO1(N,L,KA,NA,X,AT,FA,BETA)
INTEGER N,L,KA,NA

REAL*8 X(N),AT(NA),FA,Q(8),QD(8)

REAL*8 ARG,POM,BK,B6INT,BETA

INTEGER J,K

COMMON /BCOM/ Q,QD
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DATA BK /8.617385D-5/

FA=0.0D O

K=0

DO 1 J=1,L
ARG=X(K+3)/(BK*AT(KA))

IF (KA.EQ.1) THEN
Q(J)=BBINT(AT(KA),ARG)
FA=FA+EXP(X(K+1)+X(K+2)-ARG)
ELSE

POM=X(K+4)-1.0DO
FA=FA+EXP(X(K+1)+X(K+2)-ARG)*
& (1.0D0+(POM/BETA)*EXP(X(K+1))*(BSINT(AT(KA),ARG)-
& Q(J)))**(-X(K+4)/POM)

ENDIF

K=K+4

CONTINUE

RETURN

END

SUBROUTINE BAGUO1(N,L,KA,NA,X,AT,GA,BETA)
INTEGER N,L,KA,NA

REAL*8 X(N),AT(NA),GA(N)

REAL*8 FAC,ARG,POM,POW,BK,B6INT,BSINTD,A,B,C,D,E,F,G
REAL*8 Q(8),QD(8),QQ,QQD,BETA
INTEGER J,K

COMMON /BCOM/ Q,QD

DATA BK /8.617385D-5/

K=0

DO 1 J=1,L

FAC=1.0D0/(BK*AT(KA))
ARG=FAC*X(K+3)

IF (KA.EQ.1) THEN
Q(J)=BBINT(AT(KA),ARG)
QD(J)=FAC*BBINTD(AT(KA),ARG)
QQ=0.0D0

QQD=0.0D0

ELSE

QQ=B6INT(AT(KA),ARG)-Q(J)
QQD=FAC*B6INTD (AT (KA),ARG)-QD(J)
ENDIF

POM=X(K+4)-1.0DO
POW=-X(K+4)/POM
A=EXP(X(K+1)+X(K+2)-ARG)
B=EXP(X(K+1))

G=B*QQ

C=(1.0D0+(POM/BETA) *G)

D=C**P0OW

E=POW#*D/C

F=POM*xPOM
GA(K+1)=A*(D+E*(POM/BETA)*G)
GA(K+2)=4%*D
GA(K+3)=A*(-FAC*D+E*(POM/BETA)+*B*QQD)
GA(K+4)=A*D*(LOG(C)/F+POW*G/ (C*BETA) )
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K=K+4
1 CONTINUE
RETURN
END
FUNCTION BSINT(T,X)
REAL*8 T,X,B6INT
REAL*8 A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6
DATA A1,A2,A3,A4,A5,A6 /41.0D+0, 590.0D+0, 3648.0D+0,
& 9432.0D+0, 8028.0D+0, 720.0D+0/
DATA B1,B2,B3,B4,B5,B6 /42.0D+0, 630.0D+0, 4200.0D+0,
& 12600.0D+0, 15120.0D+0, 5040.0D+0/
BSINT=(1.0D0-(A6+X*(A5+X*(A4+X* (A3+X*(A2+X*(A1+X))))))/
& (BB+X* (B5+X* (B4+X*(B3+X* (B2+X*(B1+X)))))) ) *EXP(-X)*T
RETURN
END
FUNCTION BSINTD(T,X)
REAL*8 T,X,B6INTD
REAL*8 A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6
REAL*8 C1,C2,C3,C4,C5,D1,D2,D3,D4,D5,DIS,DEN,DISD,DEND
DATA A1,A2,A3,A4,A5,A6 /41.0D+0, 590.0D+0, 3648.0D+0,

& 9432.0D+0, 8028.0D+0, 720.0D+0/
DATA B1,B2,B3,B4,B5,B6 /42.0D+0, 630.0D+0, 4200.0D+0,
& 12600.0D+0, 15120.0D+0, 5040.0D+0/
DATA C1,C2,C3,C4,C5 /205.0D+0, 2360.0D+0, 10944 .0D+0,
& 18863.0D+0, 8028.0D+0/
DATA D1,D2,D3,D4,D5 /210.0D+0, 2520.0D+0, 12600.0D+0,
& 25200.0D+0, 15120.0D+0/

DIS=A6+X*(AB+X*(A4+X* (A3+X*(A2+X*(A14X)))))
DEN=B6+X*(B5+X*(B4+X* (B3+X*(B2+X*(B1+X)))))
DISD=C5+X*(C4+X* (C3+X*(C2+X*(C1+6.0D0*X))))
DEND=D5+X*(D4+X* (D3+X* (D2+X*(D1+6.0D0*X))))
BBINTD=((DIS-DISD+DEND*DIS/DEN)/DEN-1.0D0)*EXP(-X)*T
RETURN
END

$ENDADD

$STANDARD

8.2. Nonlinear minimax optimization

$FLOAT W

$SET (INPUT)
X(1)=0.5D0 ; X(2)=0.0D0 ; X(3)=0.0DO
X(4)=0.0D0 ; X(5)=0.0DO

$ENDSET

$SET (FMODELA)
W=0.1DO*DBLE(KA-1)-1.0DO
FA=(X(1)+W*X(2))/(1.0DO+W* (X (3)+W*(X(4)+W*X(5))))-EXP(W)

$ENDSET

$MODEL="AM’

$NF=5

$NA=21
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$NAL=0
$GRAPH="Y’
$MAP="Y’
$HIL="Y’
$1S0="Y’
$PATH="E’
$BATCH
$STANDARD

$REM VAR=1, XL=-5, XU=5
$REM VAR=3, XL=-5, XU=5

8.3. Transformer network design

$SET (INPUT)
NEXT=4
CALL EIUDO6(NF,NA,NAL,X,FMIN,XMAX,NEXT,IEXT,IERR)
$ENDSET
$SET (FMODELA)
CALL EAFUO6(NF,KA,X,FA,NEXT)
$ENDSET
$SET (GMODELA)
CALL EAGUO6(NF,KA,X,GA,NEXT)
$ENDSET
$NF=6
$NA=11
$NAL=0
$MOUT=1
$MODEL="AM’
$GRAPH="Y’
$MAP="Y’
$HIL="Y’
$1S0="Y’
$PATH="E’
$BATCH
$STANDARD

$REM VAR=1, XL=-5, XU=5
$REM VAR=3, XL=-5, XU=5

8.4. Global optimization

$SET (INPUT)

NEXT=4

CALL EIUDO9(NF,XL,XU,NEXT,IERR)
$ENDSET
$SET (FMODELF)

CALL EFFUO09(NF,X,FF,NEXT)
$ENDSET
$NF=4
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$MOUT=1
$GCLASS=1
$GRAPH="Y’
$MAP="Y’
$HIL="Y’
$1S0="Y’
$EXTREN="G"’
$BATCH
$STANDARD

$REM VAR=1, XL=-3.8, XU=3.8
$REM VAR=2, XL=-3.8, XU=3.8

8.5. Nonsmooth optimization

$SET (INPUT)
NEXT=17
CALL EIUD19(NF,X,FMIN,XMAX,NEXT,IEXT,IERR)
MA=NF+3
$ENDSET
$SET (FMODELF)
CALL EFFU19(NF,X,FF,NEXT)
$ENDSET
$SET (GMODELF)
CALL EFGU19(NF,X,GF,NEXT)
$ENDSET
$KSF=3
$NF=30
$MOUT=-1
$MODEL="FF"’
$GRAPH="Y’
$MAP="Y’
$HIL="Y’
$1S0="Y’
$PATH="Y’
$BATCH
$STANDARD

$REM VAR=1, XL=-5, XU=5
$REM VAR=4, XL=-5, XU=5

8.6. The Rosenbrock function

$SET (INPUT)
X(1)=-1.2D0
X(2)= 1.0D0
$ENDSET
$SET (FMODELF)
FF=1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0D0)**2
$ENDSET
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$NF=2
$GRAPH="Y’
$MAP="Y’
$1S0="Y’
$PATH="Y’
$BATCH
$STANDARD

8.7. Ordinary differential equations

$FLOAT W1,W2,W3,W4
$SET (INPUT)
TA=0.0DO
YA(1)=0.994D0
YA(2)=0.0DO
YA(3)=0.0D0
YA(4)=-2.00158510637908252240537862224D0
TAMAX=17.0652165601579625588917206249D0
$ENDSET
$SET (FMODELE)
W1=0.012277471D0
W2=1.D0-W1
W3=(YA(1)+W1)**2+YA(2) **2
W3=W3*SQRT (W3)
WA= (YA(1)-W2)**2+TA(2) **2
W4=W4*SQRT (W4)
GO TO (1,2,3,4) KE
1 FE=YA(3)
GO TO 5
2 FE=YA(4)
GO TO 5
3 FE=YA(1)+2*YA(4)-W2*(YA(1)+W1) /W3-Wi*(YA(1)-W2) /W4
GO TO 5
4 FE=YA(2)-2*YA(3)-W2+YA(2)/W3-W1*YA(2) /W4
5 CONTINUE
$ENDSET
$NE=4
$NA=2000
$MODEL="DE’
$SOLVER="DP5’
$MOUT=-1
$TOLR="1.0$P-9°
$TOLA="1.0$P-9’
$MED=1
$GRAPH="Y’
$BATCH
$STANDARD

136



8.8. The Lorenz attractor

$FLOAT W1,W2,W3

$SET (INPUT)
W1=10.0DO
W2=28.0D0
W3=8.0D0/3.0D0
TA=0.0DO
YA(1)=-8.0D0O
YA(2)= 8.0DO
YA(3)=W2-1.0D0O
TAMAX=50.0D0

$ENDSET

$SET (FMODELE)
GO TO (1,2,3) KE

1 FE=-W1*YA(1)+W1*YA(2)
GO TO 4

2 FE=-YA(1)*YA(3)+W2*YA(1)-YA(2)
GO TO 4

3 FE=YA(1)*YA(2)-W3*YA(3)

4 CONTINUE

$ENDSET

$NE=3

$NA=2000

$MODEL="D’

$SOLVER="DP8’

$MOUT=-1

$TOLR="1.0$P-9°

$TOLA="1.0$P-9’

$MED=1

$GRAPH="Y’

$BATCH

$STANDARD
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Appendix A. Demonstration of the text dialogue mode
Suppose that the model function has the form

fF(l‘) = 100(1‘% — xz)z + (21 — 1)2

(the Rosenbrock function) and the starting point is ;1 = —1.2 and 23 = 1.0. If we type the statement

UFOGO (without batch input file specification), then the following questions (which we supplement together
with answers) appear on the screen.

UFO PREPROCESSOR  V.3.1.

? INPUT () ?

USER SUPPLIED INPUT:

HERE THE STARTING POINT, BOUNDS FOR VARIABLES,

TYPES OF CONSTRAINTS, THE STRUCTURE OF SPARSE PROBLEM,
AND OTHER INPUT DATA HAVE TO BE SPECIFIED.

X(1) = -1.2D0; X(2) = 1.0D0

? GRAPH (N) ?

SPECIFICATION OF GRAPHICAL OUTPUT
N - GRAPHICAL OUTPUT SUPPRESSED
Y - GRAPHICAL OUTPUT REQUIRED

? DISPLAY (N) ?

SPECIFICATION OF EXTENDED SCREEN OUTPUT
N - EXTENDED SCREEN OUTPUT SUPPRESSED
Y - EXTENDED SCREEN OUTPUT REQUIRED

? MODEL (FF) ?

TYPE OF OBJECTIVE FUNCTION
FF - GENERAL FUNCTION
FL - LINEAR FUNCTION
FQ - QUADRATIC FUNCTION
AF - SUM OF FUNCTIONS
AQ - SUM OF SQUARES
AP - SUM OF POWERS
AM - MINIMAX
DF - DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION
DQ - DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES
DE - DIFFERENTIAL EQUATIONS
NE - NONLINEAR EQUATIONS
NO - MODEL IS NOT SPECIFIED
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? NF (0) ?
NUMBER OF VARIABLES

? IEXT (0) ?
TYPE OF EXTREMUM

0 - MINIMUM

1- MAXIMUM

? FMODELF (*) ?
MODEL OF OBJECTIVE FUNCTION

FF = <FORTRAN_EXPRESSION>

FF = 1.0D2#(X(1)**2 - X(2))#+2 + (X(1) - 1.0D0)#%2
7 GMODELF (*) 7

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

GF(1) = <FORTRAN_EXPRESSION>
GF(2) = <FORTRAN_EXPRESSION>

GF(NF) = <FORTRAN_EXPRESSION>

? HMODELF (¥) ?

MODEL OF HESSIAN MATRIX

HF(1) = <FORTRAN_EXPRESSION>
HF(2) = <FORTRAN_EXPRESSION >

HF(M) = <FORTRAN_EXPRESSION >

? KCF (2) ?
COMPLEXITY OF THE OBJECTIVE FUNCTION
1- EASY COMPUTED FUNCTION
2 - REASONABLE BUT NOT EASY COMPUTED FUNCTION
3 - EXTREMELY COMPLICATED FUNCTION

? KSF (1) ?
SMOOTHNESS OF THE OBJECTIVE FUNCTION:
1- SMOOTH AND WELL-CONDITIONED FUNCTION
2 - SMOOTH BUT ILL-CONDITIONED FUNCTION
3 - NONSMOOTH FUNCTION
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? HESF (D) ?
TYPE OF HESSIAN MATRIX:
D - DENSE
S - SPARSE WITH KNOWN (GENERAL) STRUCTURE
N - HESSIAN MATRIX IS NOT USED

? KBF (0) ?
TYPE OF SIMPLE BOUNDS:

0 - NO SIMPLE BOUNDS

1 - ONE SIDED SIMPLE BOUNDS

2 - TWO SIDED SIMPLE BOUNDS

? KBC (0) ?
TYPE OF GENERAL CONSTRAINTS:

0 - NO GENERAL CONSTRAINTS

1- ONE SIDED GENERAL CONSTRAINTS

2 - TWO SIDED GENERAL CONSTRAINTS

? EXTREM (L) ?

TYPE OF OPTIMIZATION
L - LOCAL OPTIMIZATION
G - GLOBAL OPTIMIZATION

? NORMF (0) ?

SCALING SPECIFICATION FOR VARIABLES:
0 - NO SCALING IS PERFORMED

1- SCALING FACTORS ARE DETERMINED AUTOMATICALLY

2 - SCALING FACTORS ARE SUPPLIED BY USER

? INPUTDATA (N) ?
READ INPUT VALUES OF X (Y OR N)

? TEST (N) ?

STANDARD TEST OF EXTERNAL SUBROUTINES:
N -NO TEST
Y - PERFORM TEST BEFORE SOLUTION
A - PERFORM TEST AFTER SOLUTION
O - PERFORM TEST WITHOUT SOLUTION

150




? KOUT (0) ?
LEVEL OF TEXT FILE OUTPUT:

ABS(KOUT)=0 - NO PRINT OR PAPER SAVING PRINT

ABS(KOUT)=1 - STANDARD PRINT OF ITERATIONS

ABS(KOUT)=2 - ADDITIONAL PRINT OF STEPSIZE SELECTION

ABS(KOUT)=3 - ADDITIONAL PRINT OF DIRECTION DETERMINATION

AND VARIABLE METRIC UPDATE

ABS(KOUT)=4 - ADDITINAL PRINT OF CONSTRAINT HANDLING

ABS(KOUT)=5 - ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION
KOUT<0 - ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING

? LOUT (1) ?
LEVEL OF TEXT FILE OUTPUT:
0 - NO PRINT
1- COPY OF THE BASIC SCREEN OUTPUT
-1- PAPER SAVING PRINT

? MOUT (-2) ?
LEVEL OF BASIC SCREEN OUTPUT:
ABS(MOUT)=0 - NO OUTPUT
ABS(MOUT)=1 - FINAL OUTPUT
ABS(MOUT)=2 - ADDITIONAL OUTPUT IN EACH ITERATION
ABS(MOUT)=3 - ADDITIONAL FINAL OUTPUT OF LINEAR OR
QUADRATIC PROGRAMMING
ABS(MOUT)=4 - ADDITIONAL OUTPUT IN EACH ITERATION
OF LINEAR OR QUADRATIC PROGRAMMING
MOUT<0 - FINAL OUTPUT WITH TERMINATION CRITERION

? NOUT (0) ?
LEVEL OF BASIC SCREEN OUTPUT:

0 - BASIC FINAL OUTPUT

1- EXTENDED FINAL OUTPUT

? MSELECT (1) ?

SELECTION OF OPTIMIZATION METHOD
1- AUTOMATICAL SELECTION OF METHOD
2 - MANUAL SELECTION OF METHOD
3 - MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS
4 - MANUAL SELECTION OF METHOD AND ALL PARAMETERS

? LAPACK (N) ?
USE LAPACK SUBROUTINES

N - ONLY UFO SUBROUTINES

Y - CONNECTION TO LAPACK POSSIBLE
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? OUTPUT () ?
USER SUPPLIED OUTPUT:
HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A
SPECIFIC OUTPUT.

? OUTPUTDATA (N) ?
WRITE OUTPUT VALUES OF X (Y OR N)

UFO PREPROCESSOR  STOP

Fach question is represented by one frame which contains the contents of the question (name of
the macrovariable that has to be defined), the default value (in brackets) and an explanation of the
requirement. If no default value is wanted, the corresponding value or text has to be typed. The dialogue
can be ended by pressing the key <!> .

The result of the UFO preprocessor action is the following control program (reported in a slightly
shortened form) consisting of global declarations, input specifications, problem definition, method real-
ization and control variables adjustement:

* ¥ ¥ ¥ ¥
fp
=
@
[ws)
frad
=
[ w]
3]
O
=
[
=¥
[
—3
=
@
=
w0

INTEGER ITIME
INTEGER IMD
INTEGER IX(1)
REAL*8 UXVDOT
REAL#8 GF(2)
REAL*8 X(2)
REAL#8 HD(2)
REAL#8 HF(2*(2+1)/2)
REAL*8 S(2)
REAL*8 ALF
REAL*8 BET
REAL#8 X0(2)
REAL#8 GO(2)
INTEGER IMB

commons placed here were omitted
since they require a large space

* K K X ¥ ¥ X ¥

OPEN (2,FILE="P.0OUT’,STATUS=’UNKNOWN’)
OPEN (3,FILE=’P.DIM’,STATUS=’UNKNOWN’)
CALL UYCLEA
CALL UYINTP
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* ¥ ¥ ¥

* K X X ¥ ¥

1600

11610

CALL UYINT1
CALL UOTES1(’VM’,’L’,’I’,’1’,’B’,’FF

& »,7'D?,NF)

ISR S A i A

X(1)=-1.2D0

X(2)=1.0D0

CALL UYCLST

WRITE(3,’(/’ ’PROBLEM: NEXT =’’,I8)’) NEXT

IF (NF.GT.2) THEN

CALL UOERR2(’UZLMIN’,80,NF,2)

CALL UOERR4

ITERM=-80

TXFU="LACK SPC’

ENDIF

WRITE(3,’(’’NUMBER OF VARIABLES: NF =’°,I8)°) NF

M=NF*(NF+1)/2

IF (ITERM.LT.0) STOP

CALL UYTIM1(ITIME)

NDECF=0

IF (ITERM.NE.O0) GO TO 11200

CALL UOOFU1(NF,NA,NAL,MAL,NC,NCL,MCL,EPSO,EPS1,EPS2,EPS3,EPS4,EPS5
,EPS6,EPS7,EPS8,EPS9,ETAO,ETA1,ETA2,ETA3,ETA4,ETAS,ETA6,ETA7,E
TA8,ETA9,ALF1,ALF2,ALF3,BET1,BET2,BET3,GAM1,GAM2, GAM3,DEL1,DEL
2,DEL3,RPF1,RPF2,RPF3,RGF1,RGF2,RGF3,FMIN, XMAX , XDEL , REXP ,MET, M
ET1,MET2,MET3,MES,MES1,MES2,MES3,M0T, MOT1,M0T2,MOT3,M0OS,MOS1, M
0S2,M0S3,MEP,MEP1,MEP2,MEP3, MEG, MEG1,MEG2,MEG3,MEX,MEX1,MEX2, M
EX3,MED,MED1,MED2,MED3,MCG,MCG1,MFP,MFP1,MPF ,MPF1,MGF , MGF1,MLP
,MLP1,MQP,MQP1,MEQ,MEQ1,MSG,MSG1,KSF,KCF,KSA,KCA,KSC,KCC,KTERS
,INITD,INITS,INITH,IREM,IADD,IRES1,IRES2,MRED,IRAN1,IRAN2,ISAM
1,ISAM2,KINP,IPRN)

VARIABLE METRIC METHOD
TEMPLATE : U1FDU1

ASSIGN 11130 TO IMD
CALL UYPRO1(’UXFU’,1)
CALL UYPRO2(FMIN,FO)
CONTINUE

CALL UF1F01(NF,GF,GF,FF,F)
GOTO (11640,11610,11620) ISB+1
CONTINUE

ASSIGN 11710 TO IMB
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11700 CONTINUE
NFV=NFV+1
FF=1.0D2* (X (1)*%2-X(2))**2+(X(1)-1.0D0)**2
GOTO IMB
11710 CONTINUE
GOTO 11600
11620 CONTINUE
CALL UF0GS2(NF,X,IX,X,GF,FF,HD,R,SNORM,1.0D-15,1.0D-15,2,1)
GOTO (11600,11630) ISB+1
11630 CONTINUE
ASSIGN 11910 TO IMB
GOTO 11700
11910 CONTINUE
GO TO 11620
11640 CONTINUE

* ¥ ¥ ¥

GO TO IMD
11130 CONTINUE
CALL UYTRUG(NF,N,X,GF,GF,UMAX,GMAX)
CALL UO2FU3(NF,M,NA,NC,X,GF,HF,X,X,F,DMAX,GMAX)
CALL UYFUT1(N,F,FO,UMAX,GMAX,DMAX,ITES,IRES1,IRES2,INEW)
IF(ITERM.NE.O) GOTO 11190
11140 CONTINUE
ASSIGN 11140 TO IMD
CALL UUDSD1(N,HF,1)
GOTO (11150,11110) ISB+1
11150 CONTINUE
IF(ITERM.NE.O) GOTO 11190
CALL UYCPSD(NF,IX,HF,HD,MCG1)
CALL UYTRUH(NF,N,X,HF)

DIRECTION DETERMINATION
TEMPLATE : UDGLG1

* ¥ X X ¥ ¥

CALL UOD1D1

IF (IDECF.LT.0) THEN
IDECF=9

INF=0

ENDIF
TDXX(1:4)= "INV °

IF (IDECF.EQ.0) THEN

INVERSION

ALF=ETA2
CALL UXDPGF(N,HF,INF,ALF,BET)
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CALL UXDPGI(N,HF)
NDECF=NDECF+1

IDECF=9

ELSE IF (IDECF.EQ.9) THEN
ELSE

ITERD=-1

TDXX="BAD DEC9’

CALL UOERR1(’UDDLI1’,1)
GO TO 12630

ENDIF

GNORM=SQRT (UXVDOT(N,GF,GF))

NEWTON LIKE STEP

CALL UXDSMM(N,HF,GF,S)
CALL UXVNEG(N,S,S)
INITD=MAX (ABS(INITD),1)
ITERD=1

IF(INF.EQ.0) THEN
TDXX(5:8)=’ POS’
ELSEIF(INF.LT.0) THEN
TDXX(5:8)=’ ZER’

ELSE
TDXX(5:8)=’ NEG’

ENDIF

SNORM=SQRT (UXVDOT(N,S,S))
NRED=INF

CALL UOD1D5(ALF,BET,INF)
12630 CALL UOD1D2(N,GF,S)

* ¥ ¥ ¥

IF (KD.GT.0) P=UXVDOT(N,GF,S)
CALL UD1TL1(NF,N,GF,S,EPSO,ALF1,ALF2,R,P,GNORM,SNORM,RMIN,RMAX , XMA
& X,XDEL,MES, INITD,INITH)
IF(ITERM.NE.O) GOTO 11190
IF(IREST.NE.O) GOTO 11140
CALL UYTRUS(NF,X,X,XO0,GF,GO,S,S,R0,FP,FO,F,P0,P,CMAX,CMAXO)
11170 CONTINUE
ASSIGN 11170 TO IMD
CALL USOLO1(EPS1,RO,RP,R,FO,FP,F,PO,PP,FMIN,FMAX,PARL,PAR2,RMAX ,RM
& IN,SNORM,MODE,KTERS,MES,MES1,MES2, INITS,MRED)
GOTO (11174,11172) ISB+1
11172 CONTINUE
CALL UXVDIR(NF,R,S,XO,X)
GOTO 11110
11174 CONTINUE
IF (ITERS.LE.O) THEN
CALL UYZERO(NF,X,XO,R,F,FO,FF,P,P0O,MOT3)
IF(IDIR.EQ.0) THEN
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11180

11190

11200

13599
*

* ¥ ¥ ¥

* ¥ ¥ X ¥

CALL UYRES1(TSXX)

CALL UYSET1

GO TO 11140

ELSE IF (MOT3.EQ.0) THEN

CALL UYSET1

GO TO 11140

ELSE

ITERD=0

ENDIF

ENDIF

IF(KD.GT.LD) THEN

ASSIGN 11180 TO IMD

GO TO 11110

ENDIF

CONTINUE

TXFU=TUXX

CALL UYUPSD(NF,X,IX,X0,GF,GO,HD,P,MCG1)

CALL UYTRUD(NF,X,X,XO0,GF,GO,R,F,FO,P,P0O,DMAX)

CALL UUDBI1(N,HF,S,X0,GO,R,PO,F,FO,P,1.0D 60,8)

IF(IDIR.EQ.0) THEN

IF(ITERH.NE.O) CALL UYRES1(’UPDATE ’)

GOTO 11130

ELSE

GOTO 11140

ENDIF

CONTINUE

IF(ITERM.LT.0) TXFU=TDXX

CALL UYEPI1(1)

CONTINUE

CALL UOERR3(KOUT,LOUT,MOUT,ITERM,IER)

CALL UO1FU2(NF,NA,NC,X,X,X,X,FF,F,FO,DMAX,GMAX,XMAX ,EPSO,EPS1,EPS2
,EPS3,EPS4,EPS5,BET1,BET2,GAM1,GAM2,ETA1,ETA2,MET ,MET1,MET2,ME
T3,MOT,MOT1,MOT2,MOT3,MES,MES1,MES2, MES3,MOS,M0S1,M0S2,M0S3, IN
ITD,INITS,INITH,IRES1,KTERS,IPRN)

CONTINUE

CALL UYTIM2(ITIME)
CLOSE (2)

CLOSE (3)

END

SUBROUTINE UYINT1

commons placed here were omitted
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* ¥ X X ¥ * ¥ ¥ ¥

* ¥ ¥ ¥

* ¥ ¥ ¥

* ¥ ¥ ¥

since they require a large space

REAL*8 XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S
COMMON/UMCLST/ XDELS,RPF1S,RPF2S,RPF3S,RGF1S,RGF2S,RGF3S
ETAO=1.0D-15

ETA9=1.0D 60

ITR=6

IRD=5

IWR=2

many other assignments follow which were
omitted since they require a large space

END

SUBROUTINE UYINTP

commons placed here were omitted
since they require a large space

NF=2

IEXT=0

KCF=2

KSF=1

KBF=0

KBC=0

NORMF=0

KDF=0

KDA=-1

KDC=-1

KDE=-1

KDY=-1

END

BROYDEN CLASS OF VARIABLE METRIC UPDATES
TEMPLATE : UUDBI1

SUBROUTINE UUDBI1(N,H,S,X0,GO,R,PO,F,FO,P,ETA9,MET)

commons placed here were omitted
since they require a large space

REAL*8 H(N*(N+1)/2),S(N),X0(N),GO(N),R,PO,ETA9
REAL*8 F,FO,P

REAL*8 AA,CC

COMMON /UMFUN1/ AA,CC

REAL*8 UXVDOT,UNFUN1

REAL*8 DIS,POM,POM3,POM4,A,B,C,GAM,RHO,PAR
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REAL*8 DEN

INTEGER IUPDT

LOGICAL L1,L3

EXTERNAL UNFUN1

IF (MET.LE.O) GO TO 22
CALL UQU1D1(N,X0,G0)

IF (IDECF.NE.9) THEN
ITERH=-1

TUXX="BAD DEC9’

CALL UOERR1(’UUDBI2’,1)
GO TO 22

ENDIF
L1=ABS(4).GE.3.0R.ABS(4).EQ.2.AND.NIT.EQ.KIT
L3=.NOT.L1

DETERMINATION OF THE PARAMETERS A, B, C

B=UXVDOT(N,X0,G0)

IF (B.LE.ZERO) THEN
ITERH=2

TUXX=’B - NEG.’

GO TO 22

ENDIF

CALL UXDSMM(N,H,GO,S)
A=UXVDOT(N,GO,S)

IF (A.LE.ZERO) THEN
ITERH=1

TUXX=’A - NEG.’

GO TO 22

ENDIF
IF(MET.GE.4.0R.L1) THEN
IF (ITERD.NE.1) THEN
MET=1

C=ZERO

ELSE

C=-R*PO

IF (C.LE.ZERO) THEN
ITERH=3

TUXX=’C - NEG.’

GO TO 22

ENDIF

ENDIF

ELSE

C=ZERO

ENDIF

DETERMINATION OF THE PARAMETER RHO (NONQUADRATIC PROPERTIES)
IF (FO-F+P.EQ.0) THEN
RHO=0NE

ELSE
RHO=HALF#*B/(FO-F+P)
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ENDIF

IF(RHO.LE.1.0D-2) RHO=0NE
IF(RHO*1.0D-2.GE.ONE) RHO=ONE
AA=A/B

CC=C/B

IUPDT=0

IF (L1) THEN

DETERMINATION OF THE PARAMETER GAM (SELF SCALING)

IF (C.LE.ZERO) THEN
PAR=A/B

POM3=0.8D 0
POM4=8.0D 0

ELSE

PAR=SQRT(4/C)
POM3=0.7D 0
POM4=6.0D 0

ENDIF

GAM=RHO/PAR

IF (NIT.NE.KIT) THEN
L3=GAM.LT.POM3.0R.GAM.GT.POM4
ENDIF

ENDIF

IF (L3) THEN

GAM=ONE

PAR=RHO/GAM

ENDIF

NEW UPDATE

POM=0NE/ (AA*CC)
IF (POM.LT.ONE) THEN
DEN=MAX (POM+1.0D-15,SQRT(C/4))
POM=(DEN-POM) / (ONE-POM)
TUXX="NEW ’
GO TO 20
ENDIF
17 CONTINUE

BFGS UPDATE

POM=0NE
DIS=PAR+AA
CALL UXVDIR(N,-DIS,XO,S,X0)
DIS=0NE/(B*DIS)
CALL UXDSMU(N,H,DIS,X0)
CALL UXDSMU(N,H,-DIS,S)
TUXX=’BFGS )
GO TO 21

20 CONTINUE
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GENERAL UPDATE

DEN=PAR+POM*AA
DIS=POM/DEN
CALL UXDSMU(N,H, (PAR*DIS-ONE)/A,S)
CALL UXVDIR(N,-DIS,S,X0,S)
CALL UXDSMU(N,H,DEN/B,S)

21 CONTINUE
ITERH=0
IF (GAM.EQ.ONE) GO TO 22

* SCALING

CALL UXDSMS(N,H,GAM)
22 CONTINUE
CALL UOU1D2(N,H,S,RHO,GAM,PAR,A,B,C,POM,ETA9)
RETURN
END

The results (screen output) obtained by using this control program have the following form:

0 NIT= 40 NFV= 138 NFG= 0 GRAD TOL F= .5038712822E-13 G= .828D-05
FF = .5038712822D-13
X = .1000000098D+01 .1000000177D+01
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Appendix B. The BEL interpreter

The BEL (Batch Editor Language) interpreter, developed as a part of the UFO project, is especially
determined for the generation of computer programs, batch editing of texts, preparation of print files,
filtering of text files etc. The BEL interpreter allows us to generate a prescribed output file from the
input file (template) which is a mixture of text lines and special instructions.

The UFO system is organized in such a way that a control program does not have to be written
in the FORTRAN language immediately. Instead, the procedure written in the UFO control language
is supplied. By using the installation template, the compiler of the UFO control language (UFOCLP -
UFO Control Language Preprocessor) generates a table of symbols which, together with the user supplied
procedure, is offered to the BEL interpreter. The BEL interpreter then generates the resulting control
program which is written in the FORTRAN language.

B.1. General description

Although the BEL interpreter can be used in various general applications, it was developed especially
for the generation of FORTRAN programs. It is:

1. Interpreter, since instructions contained in the input text are interpreted and immediately realized.
2. Batch editor, since it serves for editing batch files.

3. Macroprocessor, since it makes it possible to define or modify special macrovariables which can be
substituted into the processed text.

The macrovariable can be an integer constant, a logical constant, a string of characters, a set of text
lines, a set of BEL instructions, even a text file.

The BEL interpreter requires an input text file and a table of symbols. The input text file (template)
consists of standard text lines together with the BEL instructions. The table of symbols contains names
and values of the macrovariables used.

The BEL instructions, contained in the input text file, can be of two types:

1. Directives, i.e. control instructions and instructions for manipulation with the table of symbols.
These instructions begin with the special character CHDIR.. In the subsequent text, we will suppose
that CHDIR="%" (’$’ is the default value).

2. Substitutions, i.e.instructions for substituting macrovariables into the text. These instructions
begin with the special character CHSUB. In the subsequent text, we will suppose that CHSUB="§’
(’$’ is the default value).

The BEL interpreter works in the following way:

1. The line of the input file is read.
2. The line is recognized and if the character CHSUB is found, a pertinent substitution is realized.

3. If the first character (different from blank) is CHDIR, the line is a directive line. The recognized
directive is realized.

This process is repeated until the directive $END or the end of the file is found. Note that we suppose
that CHSUB and CHDIR have the same values. This is allowed, since the correct meaning is recognized
from the context.

At the end of this subsection, we stress some specific features and advantages of the BEL interpreter.

1. The substitution is recursive. The depth of recursion only depends on the declared work space size.
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Substitution is allowed in both the text lines and the directives.

The names and values of macrovariables can have an arbitrary length which again only depends on
the declared work space size.

The set of directives is relatively small with a consistent syntax. It contains all important instruc-

tions (SIF-$ELSEIF-$ELSE-SENDIF, $DO-$ENDDO, $SREPEAT-$SUNTIL etc.)

The control parameters (CHDIR, CHSUB etc.) can be changed during the work of the BEL
interpreter. This makes it possible to generate a program written in the BEL language which can

be immediately processed.

6. The BEL interpreter is a fully portable device.

It can be implemented in an arbitrary system

containing FORTRAN 77 compiler.

B.2. List of instructions

Substitutions:

$INTEGER - Substitute by the absolute label computed from the relative label.

SNAME, $(NAME) - Substitute by the value of the macrovariable NAME.

SDATA(NAME) - Substitute by a new item from the list of items which is a value of the macrovari-
able NAME.

SDEF(NAME) - Substitute by . TRUE.” if the macrovariable NAME is defined in the table of
symbols. Otherwise substitute by ".FALSE.’

SINT(NAME) - Substitute by " TRUE.” if the value of the macrovariable NAME is an integer
constant. Otherwise substitute by *.FALSE.’

SLOG(NAME) - Substitute by > TRUE.” if the value of the macrovariable NAME is a logical
constant. Otherwise substitute by *.FALSE.’

SREAL(NAME) - Substitute by > TRUE.” if the value of the macrovariable NAME is a real con-
stant. Otherwise substitute by ".FALSE.’

$$ - Substitute '$’ (replace ’$$’ by ’$’). This makes possible to insert the character
CHSUB into the text.

Directives:

$ADD - Add a value to a macrovariable.

$ADD, $ENDADD - Add text lines to a macrovariable.

$CLEAR - Clear value of a macrovariable which is a list of items type.

$DO, $SENDDO - Cycle.

$ERASE - Erase a macrovariable from the table of symbols.

$EXIT - Termination of the BEL interpreter work.

$HELP, SCHECK
$IF, $ELSEIF,
$ELSE, SENDIF

- Set a default value to a macrovariable which has not been previously defined.

- Conditioned instruction.

$INCLUDE - Insert a macrovariable or a text file into the output file.
$OPTION - Change some optional parameter of the BEL interpreter.
$REM - Remark.

$REPEAT, SUNTIL - Cycle.

$RESTORE - Adjust the list of items pointer to the first item.
$REWIND - Rewind the file on a given unit.

$SET - Set a value to a macrovariable.

$SET, SENDSET - Set text lines to a macrovariable.

$STOP - Termination of the BEL interpreter work.

$SUBST - Substitute a text file into the input file.
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B.3. Special characters

The following special characters are important for the BEL interpreter work:

$ - CHSUB (Substitution Character) - this is the first character in every substitution. If ’$’ should be
inserted into the text, we have to use "$$’.

$ - CHDIR (Directive Character) - if the first character on the line is CHDIR, then the line is a directive
line (CHSUB and CHDIR are distinguished by the context).
& - CHCON (Continuation Character) - if the last character on the line is CHCON, then it is assumed

that the logical line continues on the next physical line.

;- CHEOL (End Of Line Character) - this character specifies the end of the logical line if it does not
coincide with the end of the physical line. This makes it possible to write several logical lines by
using the same physical line.

\ - CHDS (Data Separator Character) - this character separates individual items in the list of items
type macrovariable.

The use of special characters can be demonstrated by the following simple example. Assume that the
input text has the form

$A="Paul\Peter\Jane\Mary’
This is a list of my brothers and sis&
ters:

$DO(I=1,4); $SDATA(A); SENDDO
Then the output from the BEL interpreter has the form

This is a list of my brothers and sisters:
Paul
Peter
Jane
Mary

The special characters can be changed by the directive $OPTION. But no special character has to
be the alphabet or the digit. Moreover, different special characters have to differ (with the exception of
CHSUB and CHDIR).

B.4. Description of instructions

This subsection contains a detailed description of the syntax and action of individual BEL instructions.
The following definitions will be used:

<digit> =0 |1]2]3]..... | 9
<alphabet> == A |B|C|D]|..... | Z
<character> ::= an arbitrary character with the exception of apostrophe

<integer constant> ::= (+ | -) <digit> {<digit>}

<logical constant> ::= .TRUE. | .FALSE.

<macroname> ::= <alphabet> {<alphabet> | <digit>}
<string of characters> ::= ’{<character> | "}

<text> ::= <string of characters> ’{; <string of characters>}

<list of items> ::= <string of characters> ’{\ <string of characters>}

163



Substitutions:
SINTEGER

Syntax:
The type of INTEGER, is an integer constant. Although it can have an arbitrary value, an application
to the control program generation requires it to be positive and lower than LABEL2 (see the directive

$OPTION).

Action:

The integer constant INTEGER is a relative label in a given template. The absolute label, substituted
into the control program, is computed by the formula LABEL=LABEL1+K*LABEL2, where LABEL1
and LABEL2 are options of the BEL interpreter (see the directive SOPTION) and K is a serial number
of the application of the directive $SUBST.

Example:

$10

generates

10010

if the main template is used or

10110

after the first application of the directive $SUBST.
$NAME, $(NAME)

Syntax:

The type of NAME is a macroname. This substitution has two forms, either $NAME or $(NAME). The
latter form is required if the substitution appears inside a continuous string of characters to separate the
NAME from the adjacent text.

Action:
The string '$NAME’ is replaced by the value of the macrovariable NAME.

Example:

SA="UFO’
$A SYSTEM

generates
UFO SYSTEM
$DATA(NAME)

Syntax:
The type of NAME is a macroname.

Action:

The string "$DATA(NAME)’ is replaced by the next item of the list of items which is a value of the
macrovariable NAME. If the next item does not exist, the list of items pointer is returned to the first
item. Additional information is contained in the description of the directive $RESTORE.

Example:

$LIST="ITEMI\ITEM2\ITEM3’
$DATA(LIST)
$DATA(LIST)
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$DATA(LIST)
$DATA(LIST)

generates

ITEMI1
ITEM2
ITEM3
ITEMI1

$DEF(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the macrovariable NAME is defined in the table of symbols, the string *$DEF(NAME)’ is replaced by

the logical constant . TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=10
$DEF(A)

generates
.TRUE.
$INT(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is an integer constant, the string 'SINT(NAME)’ is replaced by
the logical constant . TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=-25
$INT(A)

generates
.TRUE.
$LOG(NAME)

Syntax:
The type of NAME is a macroname.

Action:
If the value of the macrovariable NAME is a logical constant, the string ‘SLOG(NAME)’ is replaced by
the logical constant . TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A=.FALSE.
SLOG(A)

generates

.TRUE.
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$REAL(NAME)

Syntax:
The type of NAME is a macroname.

Action:

If the value of the macrovariable NAME is a real constant (i.e. a string of characters which satisfies
the syntactic rules for FORTRAN real constants), the string 'SREAL(NAME)’ is replaced by the logical
constant . TRUE., otherwise it is replaced by the logical constant .FALSE..

Example:

$A="-0.09D-12’
SREAL(A)

generates
.TRUE.
$$

Action:
The string ’$$’ is replaced by the character ’$’. This substitution allows us to insert the character ’$’ into
the generated text or into the macrovariable.

Example:

$I="NAME’
$$DEF(SI)

generates
SDEF(NAME)
Directives:

$ADD(NAME1,NAME2 or VALUE)

Syntax:
The type of NAME1 and NAME2 is a macroname.
The type of VALUE is an integer constant or a logical constant or a string of characters.

Action:
The value of the macrovariable NAME2 or the VALUE 1s added to the value of the macrovariable NAME1
(the resulting value of the macrovariable NAMEL is $NAMEISNAME?2 in the first case).

Example:

SNAME="TOM’
$ADD(NAME, JONES’)
Name: $SNAME

generates
Name: TOM JONES

$ADD(NAME)
TEXT
$ENDADD

Syntax:
The type of NAME is a macroname.
The type of TEXT is a text.
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Action:
The TEXT 1s added to the value of the macrovariable NAME.

Example:

$SET(A)

Day: 31
SENDSET
SADD(A)

Month: December

Year: 1998
SENDADD

generates

Day: 31
Month: December
Year: 1998

Remark: Only substitutions are realized in the text TEXT (not directives).
$CLEAR(NAME)

Syntax:
The type of NAME is a macroname.

Action:
This directive clears a list-of-items-type value of the macrovariable NAME, i.e. it deletes all duplications
of items. Small and capital letters of items are not distinguished.

Example:

$DECL="N\IX(N)\N\M\ I\J\N\M’
$CLEAR(DECL)
$END="$DATA(DECL)’
$REPEAT

$1="$DATA(DECL)’

INTEGER $I
$UNTIL(I=END)

generates

INTEGER IX(N)
INTEGER M
INTEGER 1
INTEGER. J
INTEGER N

$DO(NAME=INDEX1,INDEX2,INDEX3)
TEXT
$ENDDO

Syntax:

The type of NAME is a macroname.

The type of INDEX1, INDEX2, INDEXS3 is a macroname or an integer constant.
The type of TEXT is a text.

Action:
This directive has a similar meaning as the statement DO in the FORTRAN language:
NAME 1s the cycle counter.
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INDEXT1 is the initial value of the cycle counter.

INDEX2 is the final value of the cycle counter.

INDEX3 is the change of the cycle counter after a cycle step.

If INDEX3 is not present, the default value INDEX1=1 is assumed.

The cycle counter NAME does not have to be changed in the cycle step.

The value INDEX3 does not have to be equal to 0.

The body of the cycle is terminated by $ENDDO.

If INDEX1>INDEX2 and INDEX3>0 or INDEX1<INDEX2 and INDEX3<0, then the cycle is not
realized.

Cycles can be nested. The maximum depth of nested cycles is 20.

Example:

SA="X\Y\Z’

$DO(I1=1,5,2)
A($1,1)=C(SI)+S$DATA(A)

$ENDDO

generates

A(1,1)=C(1)+X
A(3,1)=C(3)+Y
A(5,1)=C(5)+7Z

$ERASE(NAME)

Syntax:
The type of NAME is a macroname.

Action:
The macrovariable NAME is erased from the table of symbols.

Example:

$A=1
$DEF(A)
$ERASE(A)
$DEF(A)

generates

.TRUE.
.FALSE.

$EXIT

Action:

The directive $SEXIT has the same meaning as the end of the file achievement. If the nested files are
processed (see the description of the directive $SUBST), the directive $EXIT realizes return to the higher
level file (if the higher level file does not exist, then $EXIT has the same meaning as $STOP).

$HELP
TEXT
$CHECK(NAME.DEFAULT, TYPE,LEVEL, TRANSFER)

Syntax:

The type of TEXT is a text.

The type of NAME is a macroname.

The type of DEFAULT is either a macroname or an integer constant or a logical constant or a string of
characters.
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The type of TYPE is either a list of items or one of the strings INT (integer), LOG (logical), REAL
(real).

The type of LEVEL is an integer constant.

The type of TRANSFER is a logical constant.

Action:

The text TEXT appears on the screen if the dialogue mode is used. The value of the macrovariable
$NAME is checked to have the type TYPE. If the macrovariable SNAME is not defined or if it has a
wrong value, the value DEFAULT is used. The value of LEVEL gives the lowest level of the dialogue
(1,2,3 or 4) from which the text TEXT appears on the screen. The value of TRANSFER specifies
transfer of the variable SNAME into the control program (YES if transfer is accepted or NO if transfer
is suppressed).

Example:

$HELP
TYPE OF THE HESSIAN MATRIX:
D - DENSE
B - SPARSE WITH KNOWN (PARTITIONED) STRUCTURE
S - SPARSE WITH KNOWN (GENERAL) STRUCTURE
N - HESSIAN MATRIX IN NOT USED
$CHECK(HESF, N’ ’D\B\S\N’,1,NO)

$IF(CONDITION) LINE

Syntax:

The CONDITION can be of the following types:

The type of CONDITION is a macroname and a value of CONDITION is a logical constant.

The type of CONDITION is a logical constant (.TRUE. or .FALSE.).

The type of CONDITION is a string of the form PART1<operator>PART2.

The type of PART1 and PART2 can be a macroname or an integer constant or a logical constant or a
string (values of PART1 and PART?2 have to be of the same type) and <operator> can have the following
forms:

= equal to

<> not equal to

< less than (for integer values only)

<= less than or equal to (for integer values only)

> greater than (for integer values only)

>= greater than or equal to (for integer values only)

LINE 1s either a text line or a directive.

Action:

If the condition CONDITION is satisfied, LINE is inserted into the output file (if it is a text line) or
carried out (if it is a directive). If the values of PART1 and PART2 are strings, then small and capital
letters are not distinguished and blanks are ignored.

Example:

SA=JOH N’
SIF(A="John’) Yes
SIF(A<>"Mary’) No

generates

Yes
No
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$IF (CONDITION1)
TEXT1

$ELSEIF(CONDITION2)
TEXT3

$ELSE
TEXT
$ENDIF

Syntax:
CONDITION1 and CONDITION?2 have the same syntax and meaning as CONDITION in the previous
case. The number of repeated $ELSEIF is not limited, SELSEIF or $ELSE can be omitted.

Action:

This directive has a similar meaning as the conditioned statement IF-ELSEIF-ELSE-ENDIF in the FOR-
TRAN language. The conditioned statements can be nested. The maximum depth of nested conditioned
statements is 20.

Example:

$A=10
$L=.FALSE.
$IF(A=10)
A=A+1
B=B+1
$IF(L)
C=C+1
SENDIF
SELSE
WRITE(*,*) I
SENDIF

generates

A=A+1
B=B+1

$INCLUDE(NAME)

Syntax:
The type of NAME is a macroname.

Action:

The directive SINCLUDE(NAME) is a special case of substitution. This directive makes it possible to
insert (into the generated text) one or more lines, which were previously assigned to the macrovariable
NAME. In contrast to the standard substitution $NAME, the inserted lines are not processed by the
BEL interpreter, so the directives are not carried out.

Example:

$SET(LINES)
SADD(A)
X=Y+ 7
CALL SUB(X)
$ENDADD

$ENDSET
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SINCLUDE(LINES)
generates

SADD(A)
X=Y+ 7
CALL SUB(X)
$ENDADD

$INCLUDE(’FILE’)

Syntax:
The type of FILE is a string.

Action:

The directive SINCLUDE(’FILE’) is a special case of substitution. This directive makes it possible to
insert (into the generated text) the text which is stored in the file with the name FILE. The inserted text
is not processed by the BEL interpreter, so the directives are not carried out.

Example:
SINCLUDE(CC:\UFO\UMCOMN.T)

includes FORTRAN common blocks into the generated text (these common blocks are stored in the file
C:\UFO\UMCOMN . I.

$SOPTION(OPTIONNAME=NAME or VALUE)

Syntax:

OPTIONNAME is a selected name from the table of optional parameters (see below).

The type of NAME is a macroname. The value of NAME has to be an integer constant or a logical
constant or a string of character and has to correspond to the type of OPTIONNAME.

The type of VALUE has to be an integer constant or a logical constant or a string of character and has
to correspond to the type of OPTIONNAME.

Action:
This directive makes us possible to change selected optional parameter of the BEL interpreter. Optional
parameters are contained in the following table.
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Name Type Default  Description

CHDIR char. ¢’ see B.3

CHEOL char. 77 see B.3

CHCON char. &’ see B.3

CHDS char. "\’ see B.3

FN1 char. 7’ first part of the file name

FN2 char. I’ last part of the file name

ILNLEN int. 80 physical length of the input line
OLNLEN int. 80 physical length of the output line
TUNIT int. - No. of the input file unit

OUNIT int. - No. of the output file unit

INUNIT int. - No. of the $INCLUDE files unit
ITUNIT int. - No. of the interactive mode input unit
OIUNIT int. - No. of the interactive mode output unit
DIALOG int. 1 level of dialogue (0 or 1 or 2)
MODERW  int. 1 READ/WRITE mode (1 or 2 or 3)
LABEL1 int. 10000 initial label

LABEL2 int. 100 difference between two consecutive labels
LSUBS log. .TRUE.  substitutions carried out

LOuUT log. TRUE.  output file created

LSMLET log. TRUE.  small letters used in instructions
LFORTO log. .TRUE. output in standard FORTRAN format
LFRFMT  log. TRUE. input in free FORTRAN format

(used only if LFORTO=.TRUE.)
SIFDEC log. FALSE. using the SIF decoder
DIALGR log. FALSE. using the graphic dialogue

$REM

Action:

The rest of the line (following after SREM) is ignored by the BEL interpreter. The directive $REM is
used for remarks.

$SREPEAT
TEXT
$UNTIL(CONDITION)

Syntax:
The type of TEXT is text.
CONDITION has the same syntax and meaning as that in the directive $IF(...).

Action:

This directive has a similar meaning as the statement REPEAT-UNTIL in the PASCAL language:

The cycle is terminated whenever the condition CONDITION is satisfied (at least one realization is
carried out).

Cycles can be nested. The maximum depth of nested cycles is 20.

Example:

$N=20
SREAL="X($N)\G($N)\H($N $N)\.END.’
SREPEAT
$1=$DATA(REAL)
REAL $I
$UNTIL(I=".END.’)
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generates

REAL X(20)
REAL G(20)
REAL H(20,20)

$RESTORE(NAME)

Syntax:
The type of NAME is a macroname.

Action:

The directive SRESTORE(NAME) can only be used if the value of the macrovariable NAME is a list
of items. Such a macrovariable uses a pointer which points out the next called item. The directive
SRESTORE adjust this pointer to point out the first item of the list (if the end of this list is found, the
pointer is adjusted to point out the first item without applying the directive SRESTORE).

Example:

SA="X\Y\Z’
$DATA(A)
$DATA(A)

$SRESTORE(A)
$DATA(A)

generates

X
Y
X

$REWIND(UNIT)

Syntax:
The type of UNIT is an integer constant.

Action:
The file opened on the unit with the number UNIT is rewound, so it can again be read from the first
record (numbering of I/O units is used in the FORTRAN language).

$NAME1 = NAME2 or VALUE
$SET(NAME1 = NAME2 or VALUE)

Syntax:

The type of NAME1 and NAME2 is a macroname.

The type of VALUE is an integer constant or a logical constant or a string of characters.

This directive has two forms. The latter form is used if the macroname is identical with a directive (e.g.

$SET(REM="REMARK’)).

Action:

The new macrovariable with the name NAMEL and the value equal to the value of the macrovariable
NAME2 or constant VALUE is inserted into the table of symbols. If the macrovariable NAMEL has
already been defined in the table of symbols, then it is changed.

$SET(NAME)
TEXT
$ENDSET

Syntax:
The type of NAME is a macroname.
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The type of TEXT is text.

Action:
The macrovariable NAME is inserted into the table of symbols with the value TEXT. If the macrovariable
NAME has already been defined in the table of symbols, then it is changed.

Example:

$SET(INIT)
CALL EIUDOL(NF,X FMIN, XMAX ,NEXT IEXT,IERR)
IF (IERR.NE.0) GO TO $$ENDTEST

$ENDSET

$INIT

generates

CALL EIUDOL(NF,X FMIN, XMAX NEXT IEXT,IERR)
IF (IERR.NE.0) GO TO $ENDTEST

Remark: Only substitutions are realized in the text TEXT (not directives).
$STOP

Action:
The directive $STOP terminates the BEL interpreter work.

$SUBST('FILE)

Syntax:
The type of FILE is a string.

Action:

This directive performs the following actions:

The new reference label is computed (using the parameters LABEL1 and LABELZ2 of the BEL interpreter).
The file with the name FILE is opened.

This file is processed by the BEL interpreter.

The file with the name FILE 1s closed.

The old reference label is restored.

This directive is similar to the directive SINCLUDE(’FILE’). But the inserted text is now processed
by the BEL interpreter. All substitutions and directives are carried out. The directive $SUBST(’FILE’)
serves for dividing large texts into segments and makes it possible to generate texts by using conditioned
branching. This is advantageously used for generation of the control program in the UFO system where
templates corresponding to individual subroutines are such segments.

Example:
$SUBST(’C:\UFO\PROBLEM.UFO’)

inserts a template, written in the UFO control language, into the generated text (this template is stored
in the file C:\UFO\PROBLEM.UFO.
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Appendix C. Graphic screen output

C.1. Nonlinear regression

alues ordin Curve Mixed Fun app Dif Jump alUto Qui

mox Z20Z1E104+04

20000000 +04 o

ABEQOO000+04 o

AODOO0O0 404 o

LB0000000 403 o

Q0000000400

o 20 40 [=[u] f={u] 100 120 140 180 1EQ 200

min Q203120003

enter space to continue

Monlinear regression: lteration 0
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alues ordin Curve Mixed Fun Jump alto Quit

mox Q1000004035

LAEQOO000 405

L0000 000 403

SSEQOO000 405

SF0000000 403 o

Z2EQOO0004+0F o

20000000 +035 - il

ABEQOO0004+0F o

10000000 403 lif il L6

LB0000000 402 o

Q0000000400

o 20 40 [=[u] f={u] 100 120 140 180 1EQ 200

min 318724E0400

enter space to continue

Monlinear regression: lteration b
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alues ordin Curve Mixed Fun app Dif

mox Q1 Z20BED 403

LAEOOO000 403 o

LA0000000 403 o

SSEQOO000 403 o

SF0000000 403 o

Z2EQOO0004+0F o

LEOOOO000 403 o

SABEQOO000 403

AOOOO000 403

LB0000000 402

Q0000000400

o 20 40 [=[u] f={u] 100 120 140 180 1EQ 200

min .2Z878EE10—0E

Monlinear regression: Final solution
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C.2. Nonlinear minimax optimization

Lin Ref ine back cOlor inv neld Map Hill
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Monlinear minimax optimization: Isolines



log Lin Ref ine Back rOtate Tilt Face iNv nel Map i3o0 Quit

Monlinear minimax optimization: Surface
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C.3. Transformer network design

loG 1lin Ref ine back cOlor inv neld Map Hill
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Transformer network design: Isolines
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loG 1lin Ref ine back cOlor inv neld Map Hill

Transformer network design: Isolines
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C.4. Global optimization

loG 1lin Ref ine Back cOlor inv nel Map Hill
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Global optimization: Isolines
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C.5. Nonsmooth optimization

loG 1lin Ref ine Back cOlor inv neld Map Hill
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Monsmooth optimization: Isolines
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C.6. Rosenbrock function
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Rosenbrock function: Path of iterations
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C.7. Ordinary differential equations
alues curve func nel Quit
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Ordinary differential equations: Orbit
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C.8. The Lorenz attractor

alues curve func nel Quit
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The Lorenz attractor: Orbit
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alues Ordin curve Mixed fun Frev Next nel Quit
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The Lorenz attractor: Trajectory
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