
UFO 2000. Interactive System for Universal Functional Optimization

Lukšan, Ladislav
2000

Dostupný z http://www.nusl.cz/ntk/nusl-33971

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 10.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33971
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

UFO ����

Interactive System for Universal Functional

Optimization

L�Luk�san� M�T�uma� M��Si�ska� J�Vl�cek� N�Rame�sov�a

Technical report No� ���

December ����

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	�
� Prague 	� Czech Republic

phone�
���
�� �		���� fax�
���
�� 	�	��	�
e�mail� uivt�uivt�cas�cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

UFO ����

Interactive System for Universal Functional

Optimization �

L�Luk�san� M�T�uma� M��Si�ska� J�Vl�cek� N�Rame�sov�a

Technical report No� ���

December ����

Abstract

This report contains a description of the interactive system for universal functional

optimization UFO� version �����

Keywords

�This work was supported under grant No� ����������� given by the Czech Republic Grant Agency

Contents

�� Introduction to the UFO system �
���� Philosophy of the UFO system �
���� Execution of the UFO system � 	
��
� The UFO versions for PC computers �
���� The UFO versions for UNIX workstations �
��	� Suggestions for beginners �

�� Problems solved using the UFO system �
���� Speci
cation of variables ��
���� Speci
cation of the model function �dense problems� ��
��
� Speci
cation of the model function �sparse problems� ��
���� Objective functions for discrete approximation �	
��	� Speci
cation of the approximating functions �dense problems� ��
���� Speci
cation of the approximating functions �sparse problems� ��
���� Objective functions for optimization of dynamical systems ��
���� Speci
cation of the state functions �

���� Speci
cation of the initial functions ��
�����Speci
cation of the subintegral function �	
�����Speci
cation of the terminal function ��
�����Optimization with general constraints ��
���
�Speci
cation of the constraint functions �dense problems� ��
�����Speci
cation of the constraint functions �sparse problems�
�
���	�Additional speci
cations concerning optimization problems �

� Optimization methods in the UFO system �
	

��� Heuristic methods �
�

��� Conjugate direction methods �
�

�
� Variable metric methods �
�

��� Variable metric methods with limited storage based on compact variable metric updates � � � � � � � ��

�	� Variable metric methods with limited storage based on reduced Hessians ��

��� Modi
ed Newton methods ��

��� Truncated Newton methods �

��� Modi
ed Gauss�Newton methods for nonlinear least squares and nonlinear equations � � � � � � � � � � �

��� Quasi�Newton methods for nonlinear least squares and nonlinear equations ��

���� Quasi�Newton methods with limited storage for nonlinear equations ��

����Truncated Newton methods for nonlinear equations ��

����Modi
ed Brent method for nonlinear equations � 	�

��
�Simplex type methods for linear programming problems � 	�

����Interior point methods for linear programming problems � 	�

��	�Simplex type methods for quadratic programming problems � 	�

����Interior point methods for quadratic programming problems � 	�

����Proximal bundle methods for nonsmooth optimization � 	�

����Bundle�Newton methods for nonsmooth optimization � 	

����Variable metric bundle methods for nonsmooth optimization � 	

����Methods for minimax problems � 	

����Recursive quadratic programming methods for dense general nonlinear programming
problems � 	�

����Recursive quadratic programming methods for sparse equality constrained nonlinear
programming problems � 		

�

��
�Interior point methods for sparse equality and inequality constrained nonlinear
programming problems � 	�

����Methods for initial value problems for ordinary di�erential equations ��

��	�Methods for direction determination ��

����Methods for stepsize selection �

����Methods for numerical di�erentiation ��

����Methods for objective function evaluation in the case of dynamical systems optimization � � � � � � �	

����Global optimization methods �	

�� Input possibilities in the UFO system ��
���� The UFO control language ��
���� The batch mode �

��
� The text dialogue mode ��
���� The graphic dialogue mode ��

	� Output possibilities in the UFO system ��
	��� Basic screen output ��
	��� Extended screen output ��
	�
� Graphic screen output ��
	��� Text
le output �	
	�	� User supplied output ��
	��� Storing
nal results ��
	��� Other output
les ��
	��� Error messages ��

�� Special tools of the UFO system ��
���� Checking external subroutines ��
���� Testing optimization methods ��
��
� Interface to the CUTE collection ��

�� Applications of the UFO system �examples� �	
���� Optimization with simple bounds �	
���� Minimization of the sum of squares ��
��
� Minimax approximation ��
���� Nonsmooth optimization ��
��	� Optimization with linear constraints ���
���� Minimax approximation with linear constraints ���
���� Optimization with nonlinear constraints �nonlinear programming� ��

���� Global optimization ��	
���� Large�scale optimization �sparse Hessian matrix� ���
�����Large�scale optimization �sparse Jacobian matrix� ���
�����Large�scale sum of squares optimization �sparse Jacobian matrix� ���
�����Large�scale nonlinear equations ���
���
�Large�scale linear programming ��

�����Large�scale quadratic programming ��

���	�Large�scale optimization with linear constraints ��	
�����Large�scale optimization with nonlinear equality constraints ���
�����Large�scale optimization with nonlinear equality and inequality constraints ���
�����Optimization of dynamical systems � general integral criterion ���
�����Optimization of dynamical systems � special integral criterion ���
�����Initial value problem for ordinary di�erential equations ���

�

�� Model examples for demonstration of graphic output �
�
���� Nonlinear regression �
�
���� Nonlinear minimax optimization �

��
� Transformer network design �
�
���� Global optimization �
�
��	� Nonsmooth optimization �
	
���� Nonlinear equations �
	
���� Ordinary di�erential equations �
�
���� The Lorenz attractor �
�

References �
�

Index of macrovariables ���

Appendix A� Demonstration of the full dialogue mode ���

Appendix B� The BEL interpreter ���
B��� General description ���
B��� List of instructions ���
B�
� Special characters ��

B��� Description of instructions ��

Appendix C� Graphical screen output ��	
C��� Nonlinear regression ��	
C��� Nonlinear minimax optimization ���
C�
� Transformer network design ���
C��� Global optimization ��	
C�	� Nonsmooth optimization ���
C��� The Rosenbrock function ���
C��� Ordinary di�erential equations ���
C��� The Lorenz attractor ���

�� Introduction to the UFO system

The universal functional optimization �UFO� system is an interactive modular system for solving both
dense medium�size and sparse large�scale optimization problems� The UFO system can be used for the
following applications�

�� Formulation and solution of particular optimization problems that are described in chapter ��

�� Preparation of specialized optimization routines �or subroutines� based on methods described in
chapter
�

� Designing and testing new optimization methods� The UFO system is a very useful tool for opti�
mization algorithms development�

The special realization of the UFO system described in the subsequent text makes this system portable
and extensible and we continue with its further development�

���� Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems� An
optimization problem solution is processed in four phases� In the
rst phase the optimization problem is
speci
ed and an optimization method is selected� This can be made in three di�erent ways�

�� The full dialogue mode� The problem speci
cation and the method selection are realized by using
a conversation between the user and the UFO system�

�� The batch mode� The problem speci
cation and the method selection are realized by using the
UFO control language� An input
le written in the UFO control language has to be prepared and
stored�

� The combined mode� Only a part of the speci
cation is written in the input
le� The rest of the
speci
cation is obtained as in the dialogue mode� This possibility is usually the best one since the
problem functions can be de
ned beforehand by using a convenient text editor�

The second phase is realized by using the UFO preprocessor� This preprocessor is written in the Fortran
�� language and its output is a Fortran �� control program� This conception is very advantageous for
the following reasons�

�� The Fortran �� �full ANSI norm� is a su�ciently high and portable programming language� More�
over� this language is very suitable for numerical computations� and a broad class of subroutines is
available in this
eld�

�� A control program� generated by the UFO preprocessor� calls for necessary modules only and
its speci
cation is very easy� Moreover� control program global declarations are determined by
the problem size� which decreases storage requirements� This way overcomes an impossibility of
dynamical declarations in the Fortran �� language�

� The UFO system is open� When a new class of optimization problems or optimization methods
has to be included� one only needs to change the system templates and prepare new modules� The
control program is composed of individual modules by using speci
cations in the
rst phase� This
fact allows us to create a great number of various optimization methods and their modi
cations�

In the third phase� the control program is translated by using a Fortran �� compiler and a
nal program
is linked by using library modules� In the fourth phase� the
nal program is executed and thus results
which can be viewed by using extensive output means are obtained�

�

The above conception is enabled by a special form of source modules� These modules usually consist
of two parts� the interface template and the Fortran �� realization� The interface template is used by
the UFO preprocessor only and it serves for the control program generation �the part of control program
corresponding to a given module is coded in the template�� These templates also contain knowledge
bases for an automatic selection of the optimization method� If the UFO system has to be extended then
usually only templates� which do not need to be compiled� are changed� Besides interface templates�
which are a part of source modules� special templates controlling the UFO preprocessor exist� A batch
input
le written in the UFO control language is one of these special templates�
The UFO macroprocessor works in two stages� In the
rst pass� the
le P�TMP is created� This
le is

a control program ancestor containing some macroinstructions and macrovariables which are replaced in
the second pass� The control program P�FOR is the result of the second pass�

���� Execution of the UFO system

The UFO system contains three basic procedures GENER� COMPIL and UFOGO� The UFO preprocessor
is called if the statement

GENER input name

is typed� Then the control program� written in the Fortran �� language� is obtained� Furthermore� the
compilation of the control program� followed by its loading and executing� is started if the statement

COMPIL output name

is typed� Finally� all the UFO system phases are performed if the statement

UFOGO problem name

is typed� Here input name is the
rst part of the batch
le name input name�UFO that is used as
a batch input for the control program generation� output name is the
rst part of the text
le name
output name�OUT that is used as a text output from the UFO system and problem name is the
rst
part of both the batch
le name problem name�UFO and the text
le name problem name�OUT� All these
names have to be typed with capital letters in UNIX versions of the UFO system� If GENER and UFOGO

statements do not contain a
le name speci
cation� then a full dialogue mode is considered �the batch
le
name is STANDARD�UFO in this case� and the standard text
le name is P�OUT� If COMPIL statement does
not contain a
le name speci
cation� then the standard text
le name is P�OUT� The UFOGO statement
has the same meaning as two consecutive statements GENER and COMPIL�
First we show how the batch mode proceeds� We suppose that the model function has the form

fF �x� � ����x�� � x��
� � �x� � ��

�

�the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we prepare the batch
input
le P�UFO of the form

�SET�INPUT�

X�������	D
� X�	�� ��
D

�ENDSET

�SET�FMODELF�

FF���
D	��X�����	�X�	����	
�X������
D
���	

�ENDSET

�NF�	

�MOUT��

�NOUT��

�BATCH

�STANDARD

and type the statement UFOGO P� then the following results appear in the output
le P�OUT

	

CLASS � VM � LI� UPDATE � B MODEL � FF HESF � D NF � 	

 NIT� �
 NFV� ��� NFG�
 NDC�
 NCG�
 F� ��
�D��� G� ��	�D�
�

FF � ��
����	�		D���

X � ��

��D

� ��

���D

�

�in a PC computer�� Batch
les are written in the UFO control language� This language is described
in section ���� Here we note that a certain experience with the UFO control language can be obtained by
using the demo�
les PROB
��UFO�� � �� PROB	
�UFO� These demo�
les contain �� test problems described
in chapter �� We can solve them by using the statements UFOGO PROB
��� � �� UFOGO PROB	
�
Besides the batch mode� we can use the full dialogue mode� The full dialogue mode is started if we use

the statement UFOGO �without a batch input
le speci
cation�� Full dialogue modes �text and graphic�
are described in sections ��
 and ���� An example which demonstrates the text dialogue mode applied to
the Rosenbrock function is given in Appendix A�
Besides basic output
les� the UFO system produces additional
les which can contain some useful

information� A list of the most important UFO
les follows�

P�UFO � Batch input
le�
P�TMP � Temporary
le containing a control program ancestor generated in the
rst pass of the

UFO macroprocessor�
P�FOR � Control program generated in the second pass of the UFO macroprocessor �UNIX versions

use the
le P�F in this case��
P�OUT � Text input
le�
P�DAT � Stored values of problem variables�
P�DIM � Dimensions of basic problem vectors and matrices�
P�SIF � Messages of the SIF decoder�
P�I � Template given by the SIF decoder�

���� The UFO versions for PC computers

There are two UFO versions for PC computers� The MS DOS version requires the Microsoft Fortran
Power Station compiler version ��� and it uses the DOS graphic system for the graphic dialogue �Section
���� and the graphic screen output �Section 	�
�� The Windows ���� NT� ����� version requires the
Digital Visual Fortran compiler version 	 and higher but it does not contain graphical possibilities at
present� Of course� the UFO system can also be used for PC computers with other compilers� In
this case� the UNIX version of the UFO system has to be applied with procedures GENER� COMPIL and
UFOGO modi
ed for the compiler used� The PC versions are distributed by using the
les UFODOS�ZIP
and UFOWIN�ZIP� which contain templates ��I� sample input
les ��UFO� sample output
les ��OUT�
procedures ��BAT� programs ��EXE and other important
les together with the subdirectory F�	� which
contains libraries ��LIB� The installation of the UFO system is carried out by putting the ��ZIP
le into
the directory UFO and by using the routine PKUNZIP� If the connection to the CUTE test environment
is required� then the subdirectory UFO has to be created and the ��SIF
les from the CUTE collection
�page http���www�cse�clrc�ac�uk�Activity�CUTE� have to be copied into this subdirectory�
The PC versions of the UFO system are provided with the special UFO environment� which makes

the use of the UFO system easy� The UFO environment is called by using the statement UFO �program
UFO�EXE�� It is controlled by using the �pull�down� menu� The main menu is activated by pressing key
�F���� The UFO environment contains a source program editor whose control is similar to the Word
Star editor and� therefore� to the most commonly used source program editors under the MS DOS system�
All signi
cant statements of the source program editor are available from the UFO environment menu�
Since the UFO environment menu is clearly understood we do not describe it �the description is given

in ������� We only show the usual way for operating input
les� When the batch mode input
le is
prepared by using the source program editor we press key �F��� and
nd the command Run� in the
UFO environment menu� This command starts the UFO preprocessor and its action corresponds to the
statement UFOGO �with the input
le which is loaded in the source program editor�� An easier possibility

�

is pressing keys �Alt���� Similarly� pressing keys �Alt��� has the same e�ect as the statement GENER
�with the input
le which is loaded in the source program editor�� Furthermore� if the control program
P�FOR is loaded in the source program editor� pressing keys �Alt�
� has the same e�ect as the statement
COMPIL and pressing keys �Alt�	� causes an exit from the UFO environment�

���� The UFO versions for UNIX workstations

The UNIX versions of the UFO system are distributed by using the
les ufo�tar�gz� for�tar�gz�
bel�tar�gz and the procedure instal� File ufo�tar�gz contains templates ��I� sample input
les
��UFO� sample output
les ��OUT� procedures and other important
les� File for�tar�gz contains the
UFO source modules ��F� File bel�tar�gz contains the BEL �UFO preprocessor� source modules ��F�
The installation of the UFO system is carried out by putting these
les into the directory ufo and by using
the statements instal SGI� instal DIG� instal SUN and instal HP� for Silicon Graphic� Digital� Sun
and Hewlett Packard workstations� respectively �the Fortran �� compiler is assumed�� If the connection
to the CUTE test environment is required� then the subdirectory ufo has to be created and the ��SIF

les from the CUTE collection �page http���www�cse�clrc�ac�uk�Activity�CUTE� have to be copied
into this subdirectory� The UNIX versions of the UFO system do not contain graphical possibilities at
present�

���� Suggestions for beginners
If we want to solve a particular optimization problem� then the best way for understanding the UFO

system is to
nd a similar problem in the list of sample problems �Chapter ��� This sample problem
can be solved typing UFOGO PROBxx �xx is the number of the sample problem�� After solving the sample
problem� we can modify the batch input
le PROBxx�BAT to describe our problem� Basic suggestions
concerning the description of optimization problems are given in Chapter � and the most important
features of the UFO control language are described in Chapter �� Optimization methods need not be
selected by user� the system automatically chooses a suitable method� On the other hand� if the user
is familiar with optimization methods� then the method can be selected by using suggestions given in
Chapter
� Information about output possibilities can be found in Chapters 	 and special tools of the
UFO system are described in Chapter ��

�

�� Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an
objective function F � Rn � R over a set X � Rn� The objective function can have several forms
determined using the macrovariable �MODEL�

�MODEL��FF� � General optimization� In this case

F �x� � �fF �x�

where fF � Rn � R is a real valued� so�called model function

�MODEL��FL� � Linear optimization� In this case

F �x� � � �fF �
nX
i��

gFi xi�

where fF � gFi � � � i � n� are real coe�cients�

�MODEL��FQ� � Quadratic optimization� In this case

F �x� � � �fF �
nX
i��

�gFi �
�

�

nX
j��

hFijxj�xi�

where fF � gFi � � � i � n�� hFij� � � i � n� � � j � n� are real coe�cients�

�MODEL��AF� � Sum of function minimization� In this case

F �x� �
nAX
k��

fAk �x�

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AQ� � Sum of square minimization� In this case

F �x� �
nAX
k��

jfAk �x�j
�

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AP� � Sum of power minimization� In this case

F �x� �
nAX
k��

jfAk �x�j
r

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions

and � � r �� is a real exponent�

�MODEL��AM� � Minimization of maximum �minimax�� In this case

F �x� � max
��k�nA

jfAk �x�j

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions�

�

�MODEL��DF� � Minimization of the general integral criterion with respect to the state equations� In
this case

F �x� �

Z tmax
A

tmin
A

fA�x� yA�x� tA�� tA� dtA � fF �x� yA�x� t
max
A �� tmax

A �

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fA � Rn�nE�� � R is a real valued� smooth� so�called subintegral function� fF �
Rn�nE�� � R is a real valued� smooth� so�called terminal function� fE � Rn�nE�� �
RnE is a real valued� smooth� so�called state function and fY � Rn � RnE is a real
valued� smooth� so�called initial function�

�MODEL��DQ� � Minimization of the sum of square integral criterion with respect to the state equa�
tions� In this case

F �x� �
�
�

Z tmax
A

tmin
A

nEX
i��

wE
i �tA��y

A
i �x� tA�� yEi �tA��

� dtA �
�
�

nEX
i��

wE
i �y

A
i �x� t

max
A �� yEi �

�

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fE � Rn�nE�� � RnE is a real valued� smooth� so�called state function and
fY � Rn � RnE is a real valued� smooth� so�called initial function�

�MODEL��DE� � Solving an initial value problem for a system of ordinary di�erential equations� In
this case

dyA�tA�
dtA

� fE �yA�tA�� tA�� y
A�tmin

A � � ymin
A

where fE � RnE�� � RnE is a real valued� smooth� so�called state function�

�MODEL��NE� � Solving a system of nonlinear functional equations

fAk �x� � �� � � k � nA

where nA � n ��MODEL��NE� is equivalent to �MODEL��AQ� if nA � n��

The model function fF � Rn � R can have several types of Hessian matrices speci
ed by the
macrovariable �HESF�

�HESF��D� � Dense Hessian matrix�
�HESF��S� � Sparse Hessian matrix with a general pattern�
�HESF��N� � Hessian matrix is not used�

The default option is �HESF��D�� The approximating functions fAk � R
n � R� � � k � nA� can have

several types of Jacobian matrices speci
ed by the macrovariable �JACA�

�JACA��D� � Dense Jacobian matrix�
�JACA��S� � Sparse Jacobian matrix with a general pattern�
�JACA��N� � Jacobian matrix is not used�

If the approximating functions are used then we can choose several types of the Hessian matrix represen�

�

tation� These types are again speci
ed by the macrovariable �HESF�

�HESF��D� � Dense Hessian matrix�
�HESF��S� � Sparse Hessian matrix with a general pattern�
�HESF��B� � Sparse Hessian matrix with a partitioned pattern
�HESF��N� � Hessian matrix is not used�

If �JACA��D�� then it must be either �HESF��D� or �HESF��N�� If �JACA��S�� we can specify all types
of Hessian matrices ��HESF��D�� �HESF��S�� �HESF��B�� �HESF��N��� The representation �HESF��B�
usually leads to more expensive matrix operations� Therefore� we recommend to prefer the choice
�HESF��S� against the choice �HESF��B��

The subintegral function� the terminal function� the state function and the initial function� which
appeared in the case of dynamical systems optimization� are considered to be dense� Therefore we cannot
use the speci
cations �HESF��S� or �HESF��B� in this case�
The set X � Rn can be the whole Rn �unconstrained case� or de
ned by box constraints

xLi � xi if i � I�

xi � xUi if i � I�

xLi � xi � xUi if i � I�

xLi � xi if i � I�

where I� � I� � I� � I� � fi � N � � � i � ng� or by general linear constraints

cLk �
nX
i��

gCkixi if k � L�

nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi if k � L�

where gCki� � � k � nC � � � i � n� are real coe�cients and L� � L� � L� � L� � fk � N � � � k � nCg�
or by general nonlinear constraints

cLk � fCk �x� if k � N�

fCk �x� � cUk if k � N�

cLk � fCk �x� � cUk if k � N�

cLk � fCk �x� if k � N�

where fCk � R
n � R� � � k � nC� are real valued� smooth� so�called constraint functions and N� � N� �

N� �N� � fk � N � � � k � nCg� The constraint functions fCk � R
n � R� � � k � nC � can have several

types of Jacobian matrices speci
ed by the macrovariable �JACC�

��

�JACC��D� � Dense Jacobian matrix�
�JACC��S� � Sparse Jacobian matrix with a general pattern�

If �JACC��D�� then it must be �HESF��D� or �HESF��N�� If �JACC��S�� then it must be �HESF��S�
or �HESF��N��

There are several limitations in the current version of the UFO system�

�� Minimization of maximum �minimax� and nonsmooth optimization are not implemented in the
sparse case�

�� Minimization of dynamical systems is not implemented in the sparse case�

� Usually the UFO system serves for local optimization� Global optimization can be used only for
relatively small �n � ��� dense problems that are unconstrained or contain box constraints�

These limitations will be consecutively removed in subsequent versions of the UFO system�
In the rest of this report we will use the notation NF� NA� NC instead of n� nA� nC and X� FF�X��

GF�X�� HF�X�� FA�KA�X�� GA�KA�X�� FC�KC�X�� GC�KC�X� instead of x� fF �x�� gF �x�� hF �x�� fAk �x��
gAk �x�� f

C
k �x�� g

C
k �x�� This new notation corresponds to that of the variables and of the
elds in the UFO

system�

���� Speci�cation of variables

First we must specify the number of variables using the statement �NF�number of variables� If there
are no box constraints we set �KBF��� In the opposite case we set �KBF�� or �KBF��� If �KBF��
or �KBF��� then

X�I� � unbounded � if IX�I� � �
XL�I� � X�I� � if IX�I� � �

X�I� � XU�I� � if IX�I� � �
XL�I� � X�I� � XU�I� � if IX�I� �

X�I� � constant � if IX�I� � 	

where �� I� NF� The option �KBF�� must be chosen if IX�I��
 for at least one index �� I� NF� Then
two di�erent
elds XL�I� and XU�I�� �� I� NF are declared� In the opposite case we set �KBF�� and
only one common
eld XL�I��XU�I�� � � I� NF is declared�
The initial values of variables X�I�� �� I� NF� types of box constraints IX�I�� �� I� NF� and lower

and upper bounds XL�I� and XU�I�� �� I� NF� can be speci
ed using macrovariable �INPUT� The
default values are IX�I��� and XL�I��XU�I���� �� I� NF� For example�

�KBF��� �NF��
�SET�INPUT�
X����x�
X����x�� IX������ XL����xL�
X�
��x�� IX�
��
� XL�
��xL� � XU�
��x

U
�

X����x�� IX����	
�ENDSET

The UFO system allows us to use a scaling of variables �for instance if the values of variables di�er
very much in their magnitude�� We set�

��

�NORMF�� � Scaling parameters XN�I�� �� I� NF� are determined automatically so that
X�I��XN�I���� ��I�NF� for the initial values of variables�

�NORMF�� � Scaling parameters must be speci
ed by the user by means of the macrovariable
�INPUT�

The scaling of variables is recommended only in exceptional cases since it increases the computational
time and storage requirements� The scaling of variables is suppressed if �NORMF�� �this value is
default�� The scaling of variables is not permitted in the case of general constraints �if KBC����

���� Speci�cation of the model function �dense problems	

If the macrovariable �MODEL is not speci
ed or if �MODEL��FF�� then the objective function is
de
ned by the formula

F�X� � � FF�X� if �IEXT � � �minimization�
or

F�X� � � FF�X� if �IEXT � � �maximization�

Option �IEXT�� is default�
The model function FF�X� must be de
ned by the user either directly in the full dialogue mode� or

by using corresponding macrovariables in the batch �or mixed� mode� The value of the model function
is speci
ed by using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�
�for given values of variables X�I�� �� I� NF�

�ENDSET

The
rst derivatives of the model function are speci
ed by using the macrovariable �GMODELF�

�SET�GMODELF�
GF��� � derivative �FF�X�� �X���
GF��� � derivative �FF�X�� �X���
 !
GF�NF� � derivative �FF�X�� �X�NF�
�for given values of variables X�I�� ��I�NF�

�ENDSET
The second derivatives of the model function are speci
ed by using the macrovariable �HMODELF� If
�HESF��D�� the Hessian matrix is assumed to be dense and we specify only its upper half�

�SET�HMODELF�
HF��� � derivative ��FF�X�� �X����

HF��� � derivative ��FF�X�� �X����X���
HF�
� � derivative ��FF�X�� �X����

HF��� � derivative ��FF�X�� �X��� �X�
�
HF�	� � derivative ��FF�X�� �X��� �X�
�
HF��� � derivative ��FF�X�� �X�
��

 !
HF�NF	�NF������ � derivative ��FF�X�� �X�NF��

�for given values of variables X�I�� ��I�NF�
�ENDSET

If the macrovariables �GMODELF or �HMODELF are not de
ned� we suppose that the
rst or the
second derivatives of the model function are not given analytically� In this case� they are computed
numerically by using the UFO system routines whenever it is required� If it is advantageous to compute
the
rst derivatives of the model function FF�X� together with its value� we can replace the set of models

��

�FMODELF� �GMODELF by the common model �FGMODELF� Similarly we can replace the set of
models �FMODELF� �GMODELF� �HMODELF by the common model �FGHMODELF�
To improve the e�ciency of the computation� we can specify additional information about the model

function FF�X�� The
rst piece of information� useful for an automatic choice of the optimizationmethod�
is the computational complexity speci
ed by the macrovariable �KCF�

�KCF�� � Evaluation of the model function FF�X� is very easy �it requires O�n� simple oper�
ations at most��

�KCF�� � Evaluation of the model function FF�X� is of medium complexity �it at least requires
O�n� complicated operations and O�n�� simple operations at most��

�KCF�
 � Evaluation of the model function FF�X� is extremely di�cult �it at least requires
O�n�� complicated or O�n�� simple operations��

The option �KCF�� is default� An additional useful piece of information is the analytical complexity
�di�erentiability and conditioning�� which is speci
ed by the macrovariable �KSF�

�KSF�� � The model function FF�X� is smooth and well�conditioned�
�KSF�� � The model function FF�X� is smooth but ill�conditioned�
�KSF�
 � The model function FF�X� is nonsmooth�

The option �KSF�� is default� Other speci
cations which can improve the computational e�ciency and
robustness of optimizationmethods are a lower bound of the objective function values and an upper bound
of the stepsize� Both these values depend on the de
nition of the objective function and can be speci
ed
by the statements �FMIN�lower bound �for the objective function� and �XMAX�upper bound �for the
stepsize�� We recommend a de
nition of �FMIN whenever it is possible and a de
nition of �XMAX
whenever the objective function contains exponentials�
If �MODEL��FL�� we suppose the model function to be linear of the form

FF�X� � FF �
NFX
I��

GF�I� 	X�I�

In this case we need not specify the value and the
rst derivatives of the model function by the macrovari�
ables �FMODELF and �GMODELF as in the general case� Instead� we must specify the coe�cients FF
�constant value� and GF�I�� �� I� NF� �constant gradient� using the macrovariable �INPUT�

�ADD�INPUT�
FF � constant value
GF��� � constant derivative �FF�X���X���
GF��� � constant derivative �FF�X���X���
 !
GF�NF� � constant derivative �FF�X���X�NF�

�ENDADD

If �MODEL��FL�� we usually assume that either box constraints or general linear constraints are given�
In this case the optimization problem is the linear programming problem�
If �MODEL��FQ�� we suppose the model function to be quadratic of the form

FF�X� � FF �
NFX
I��

GF�I� 	X�I� �
�

�

NFX
I��

NFX
J��

HF�K� 	X�I� 	X�J�

where K�MAX�I�J�	�MAX�I�J�������MIN�I�J�� In this case we need not specify the value� the
rst
derivatives and the second derivatives of the model function by the macrovariables �FMODELF� �GMOD�
ELF and �HMODELF as in the general case� The coe�cients FF �constant value� and GF�I�� �� I�
NF� �constant gradient� are speci
ed in the same way as in the linear case� The coe�cients HF�K�� ��
K� NF	�NF������ �the constant Hessian matrix� must be speci
ed using the macrovariable �INPUT�
If �HESF��D�� the Hessian matrix is assumed to be dense and we specify only its upper half�

�

�ADD�INPUT�
HF��� � constant derivative ��FF�X���X����

HF��� � constant derivative ��FF�X���X���� X���
HF�
� � constant derivative ��FF�X���X����

HF��� � constant derivative ��FF�X���X���� X�
�
HF�	� � constant derivative ��FF�X���X���� X�
�
HF��� � constant derivative ��FF�X���X�
��

HF�NF"�NF������ � constant derivative ��FF�X���X�NF��

�ENDADD

If �MODEL��FQ�� we usually assume that either box constraints or general constraints are given� In
this case the optimization problem is the quadratic programming problem�
If the model function is linear or quadratic� then the options �KCF and �KSF need not be de
ned

since they are not used�

���� Speci�cation of the model function �sparse problems	

The UFO system contains optimization methods which take into account the sparsity pattern of the
Hessian matrix HF� This possibility decreases the computational time and storage requirements for large�
scale optimization problems� In this case we use the option �HESF��S� which means that the sparsity
pattern is speci
ed� All other speci
cations remain the same as in the case of dense problems� The sparsity
pattern of the Hessian matrix is speci
ed by using the macrovariable �INPUT� Two integer vectors IH
and JH are used where IH�I�� �� I� NF��� are pointers and JH�K�� �� K� M� are indices of nonzero
elements� Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in
rows� The number of nonzero elements must be speci
ed using the statement �M�number of elements�
The number of nonzero elements could be greater than is required �twice say� since it is used for the
declaration of working
elds� For example� if we have the Hessian matrix

HF �

�
BBB�

hF��� hF��� hF��� �� hF��
hF��� hF��� �� hF��� �
hF��� �� hF��� �� hF���
�� hF��� �� hF��� ��
hF��� �� hF��� �� hF��

�
CCCA

then we have to set�

�NF�	
�M��� �the minimum required value is M����
�ADD�INPUT�
IH������ IH����	� IH�
���
IH������ IH�	����� IH������
JH������ JH������ JH�
��
� JH����	� JH�	���
JH������ JH����
� JH����	� JH������ JH�����	

�ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero�
As in the case of the dense problem� the second derivatives of the model function can be speci
ed by

using the macrovariable �HMODELF� If �HESF��S�� only nonzero elements of the upper half �including
the diagonal� of the Hessian matrix are speci
ed� For the above example the speci
cation has the form�

��

�SET�HMODELF�
HF����hF��� HF����h

F
��� HF�
��h

F
��� HF����h

F
��

HF�	��hF��� HF����h
F
��� HF����h

F
��� HF����h

F
��

HF����hF��� HF�����h
F
��

�ENDSET

If the model function is quadratic �i�e� if �MODEL��FQ�� and if �HESF��S�� then the coe�cients
HF�K�� �� K� M� �constant sparse Hessian matrix� must be speci
ed by using the macrovariable �IN�
PUT� If the matrix given in the above example is the constant sparse Hessian matrix� we use the following
speci
cation�

�ADD�INPUT�
HF����hF��� HF����h

F
��� HF�
��h

F
��� HF����h

F
��

HF�	��hF��� HF����h
F
��� HF����h

F
��� HF����h

F
��

HF����hF��� HF�����h
F
��

�ENDADD

���� Objective functions for discrete approximation

If we set �MODEL��AF�� then we suppose that the objective function F�X� has this form�

F�X� �
NAX

KA��

FA�KA�X� if KBA � �

or

F�X� �
NAX

KA��

AW�KA� 	 �FA�KA�X� �AM�KA�� if KBA � �

where FA�KA�X�� �� KA� NA� are approximating functions� This form of the objective function is
very useful in large�scale optimization when the approximating functions FA�KA�X�� �� KA� NA� are
assumed to have sparse gradients�
If we set �MODEL��AP�� then we suppose that the objective function F�X� has this form�

F�X� �
�

R

NAX
KA��

jFA�KA�X�j 	 	R if KBA � �

or

F�X� �
�

R

NAX
KA��

jAW�KA� 	 �FA�KA�X� �AM�KA��j 	 	R if KBA � �

where FA�KA�X�� �� KA� NA� are approximating functions� and R�� is a real exponent� The value
of the exponent is speci
ed by the choice �REXP�R �default value is �REXP���� Since the most used
value of the exponent is R��� and since the computations are the simplest and the most e�cient for such
a choice� we can use the speci
cation �MODEL��AQ� in this case �minimization of the sum of squares��
Moreover� �MODEL��AQ� is formally set whenever we choose �MODEL��AP� and �REXP���
If we set �MODEL��AM�� then we suppose that the objective function F�X� has the form�

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

F�X� � max
��KA�NA

�jFA�KA�X�j� if �IEXT � �

�	

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

for �KBA��� or

F�X� � max
��KA�NA

��AW�KA� 	 �FA�KA�X� �AM�KA��� if �IEXT � ��

F�X� � max
��KA�NA

�jAW�KA� 	 �FA�KA�X� �AM�KA��j� if �IEXT � �

F�X� � max
��KA�NA

��AW�KA� 	 �FA�KA�X� �AM�KA��� if �IEXT � ��

for �KBA��� where FA�KA�X�� �� KA� NA� are approximating functions� The default value is
�IEXT�� �the minimax or the Chebyshev approximation��
The option �KBA serves as a decision between a simple objective function and a more complicated

one� The simple objective function uses no additional
elds while the more complicated one uses two
additional
elds at most� AM and AW� Vector AM usually contains frequently used observations which
can be included into the functions FA�KA�X�� �� KA� NA� in the case of the simple objective function�
Observations AM�KA�� �� KA� NA� are speci
ed by using the macrovariable �INPUT� Their default
values are AM�KA���� �� KA� NA� Vector AW serves for possible scaling speci
ed by the option
�NORMA�

�NORMA�� � No scaling is performed� In this case AW�KA���� �� KA� NA�
�NORMA�� � Scaling parameters are determined automatically so that AW�KA��jAM�KA�j� ��

KA� NA�
�NORMA�� � Scaling parameters must be speci
ed by the user by means of the macrovariable

�INPUT�

The number of approximating functions NA must be speci
ed� in all the above cases� by using the
statement �NA�number of functions�

���� Speci�cation of the approximating functions �dense problems	

The approximating functions FA�KA�X�� �� KA� NA� must be de
ned by the user either directly in
the full dialogue mode or by using corresponding macrovariables in the batch �or mixed� mode� The values
of the approximating functions are speci
ed by using the macrovariables �FMODELA or �FMODELAS�

�SET�FMODELA�
FA � value FA�KA�X�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�FMODELAS�
AF��� � value FA���X�
AF��� � value FA���X�
 !
AF�NA� � value FA�NA�X�

�ENDSET

The
rst derivatives of the approximating functions are speci
ed by using the macrovariables �GMOD�
ELA or �GMODELAS�

��

�SET�GMODELA�
GA��� � derivative �FA�KA�X���X���
GA��� � derivative �FA�KA�X���X���
 !
GA�NF� � derivative �FA�KA�X���X�NF�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�GMODELAS�
AG��� � derivative �FA���X���X���
AG��� � derivative �FA���X���X���
 !
AG�NF� � derivative �FA���X���X�NF�
AG�NF��� � derivative �FA���X���X���
AG�NF��� � derivative �FA���X���X���
 !
AG�NA	NF� � derivative �FA�NA�X���X�NF�

�ENDSET

The second derivatives of the approximating functions are speci
ed by using the macrovariables �HMOD�
ELA or �HMODELAS� If �JACA��D�� the Hessian matrices are assumed to be dense and we specify only
their upper half�

�SET�HMODELA�
HA��� � derivative ��FA�KA�X���X����

HA��� � derivative ��FA�KA�X���X����X���
HA�
� � derivative ��FA�KA�X���X����

HA��� � derivative ��FA�KA�X���X����X�
�
HA�	� � derivative ��FA�KA�X���X����X�
�
HA��� � derivative ��FA�KA�X���X�
��

 !
HA�NF	�NF������ � derivative ��FA�KA�X���X�NF��

�for a given index KA and given values of variables X�I�� �� I� NF�
�ENDSET

or

�SET�HMODELAS�
AH��� � derivative ��FA���X���X����

AH��� � derivative ��FA���X���X����X���
AH�
� � derivative ��FA���X���X����

AH��� � derivative ��FA���X���X����X�
�
AH�	� � derivative ��FA���X���X����X�
�
AH��� � derivative ��FA���X���X�
��

 !
AH�NF	�NF������ � derivative ��FA���X���X�NF��

AH�NF	�NF�������� � derivative ��FA���X���X����

AH�NF	�NF�������� � derivative ��FA���X���X����X���
AH�NF	�NF������
� � derivative ��FA���X���X����

 !
AH�NA	NF	�NF������ � derivative ��FA�NA�X���X�NF��

�ENDSET

��

If the macrovariables �GMODELA and �GMODELAS or �HMODELA and �HMODELAS are not
de
ned� we suppose that the
rst or the second derivatives of the approximating functions are not given
analytically� In this case� they are computed numerically by using the UFO system routines� when�
ever it is required� If it is advantageous to compute the
rst derivatives of the approximating functions
FA�KA�X�� �� KA� NA� together with their values� we can replace the set of models �FMODELA�
�GMODELA by the common model �FGMODELA and the set of models �FMODELAS� �GMODE�
LAS by the common model �FGMODELAS� Similarly we can replace the set of models �FMODELA�
�GMODELA� �HMODELA by the commonmodel �FGHMODELA and the set of models �FMODELAS�
�GMODELAS� �HMODELAS by the common model �FGHMODELAS�
To improve the e�ciency of the computation� we can specify additional information about the approx�

imating functions FA�KA�X�� �� KA� NA� The
rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci
ed by the macrovariable �KCA�

�KCA�� � Evaluations of the approximating functions FA�KA�X�� �� KA� NA� are very easy
�they require O�n� simple operations at most��

�KCA�� � Evaluations of the approximating functions FA�KA�X�� �� KA� NA� are of medium
complexity �they at least require O�n� complicated operations and O�n�� simple op�
erations at most��

�KCA�
 � Evaluations of the approximating functions FA�KA�X�� �� KA� NA� are extremely
di�cult �they at least require O�n�� complicated or O�n�� simple operations��

The option �KCA�� is default� An additional useful piece of information is the analytical complexity
�conditioning� which is speci
ed by the macrovariable �KSA�

�KSA�� � The approximating functions FA�KA�X�� �� KA� NA� are smooth and well�
conditioned�

�KSA�� � The approximating functions FA�KA�X�� �� KA� NA� are smooth but ill�
conditioned�

�KSA�
 � The approximating functions FA�KA�X�� �� KA� NA� are nonsmooth�

The option �KSA�� is default�
If some of the approximating functions are linear and have the form

FA�KA�X� �
NFX
I��

AG��KA� �� 	NF� I� 	X�I�

we can specify them separately� Then the number of linear approximating functions must be speci
ed by
using the statement �NAL�number of linear functions �default value is �NAL���� We always suppose
that the
rst NAL approximating functions are linear� Then the coe�cients AG��KA���	NF�I�� �� KA�
NAL� �� I� NF� are speci
ed using the macrovariable �INPUT� and the macrovariables �FMODELA
or �FMODELAS� �GMODELA or �GMODELAS� �HMODELA or �HMODELAS are used only for the
speci
cation of the nonlinear approximating functions FA�KA�X�� NAL�KA� NA�

��
� Speci�cation of the approximating functions �sparse problems	

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix AG� This possibility decreases the computational time and storage requirements for large�
scale optimization problems� In this case we use the option �JACA��S� which means that the sparsity
pattern is speci
ed� All other speci
cations remain the same as in the case of dense problems� The
sparsity pattern of the Jacobian matrix is speci
ed by using the macrovariable �INPUT� Two integer
vectors IAG and JAG are used where IAG�KA�� �� KA� NA��� are pointers and JAG�K�� �� K�
IAG�NA������ are indices of nonzero elements� Nonzero elements are ordered by the gradients of the
approximating functions� The number of nonzero elements must be speci
ed by using the statement
�MA�number of elements� For example� if we have the gradients

��

GA���X� � �gA��� � � � � gA����

GA���X� � �� � gA��� � � gA����

GA�
�X� � �� � � � gA��� � ��

GA���X� � �gA��� g
A
��� g

A
��� � ��

GA�	�X� � �� � � � gA��� g
A
����

and the Jacobian matrix

AG�X� �

�
BBB�

gA�� � � � � � gA��
� � gA�� � � � gA��
� � � � gA�� � �
gA�� � gA�� � gA�� � �
� � � � gA�� � gA��

�
CCCA

then we have to set�

�NA�	
�MA���
�ADD�INPUT�

IAG������ IAG����
� IAG�
��	
IAG������ IAG�	���� IAG������
JAG������ JAG������ JAG�
���� JAG������ JAG�	��

JAG������ JAG������ JAG����
� JAG����
� JAG������

�ENDADD

As in the case of the dense problem� the
rst derivatives of the approximating functions can be speci
ed
by using the macrovariables �GMODELA or �GMODELAS� If �JACA��S�� only nonzero elements of the
gradients are speci
ed� For the above example the speci
cations have the form

�SET�GMODELA�
IF �KA�EQ��� THEN

GA��� � �FA���X���X���
GA��� � �FA���X���X���

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X���X���
GA��� � �FA���X���X���

ELSE IF �KA�EQ�
� THEN
GA�
� � �FA�
�X���X�
�

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X���X���
GA��� � �FA���X���X���
GA�
� � �FA���X���X�
�

ELSE
GA�
� � �FA�	�X���X�
�
GA��� � �FA�	�X���X���

ENDIF
�ENDSET

��

or

�SET�GMODELAS�
AG��� � �FA���X���X���
AG��� � �FA���X���X���
AG�
� � �FA���X���X���
AG��� � �FA���X���X���
AG�	� � �FA�
�X���X�
�
AG��� � �FA���X���X���
AG��� � �FA���X���X���
AG��� � �FA���X���X�
�
AG��� � �FA�	�X���X�
�
AG���� � �FA�	�X���X���

�ENDSET

As in the case of the dense problem� the second derivatives of the approximating functions can
be speci
ed by using the macrovariables �HMODELA or �HMODELAS� If �JACA��S�� only nonzero
elements of the Hessian matrices are speci
ed� For the above example the speci
cations have the form

�SET�HMODELA�
IF �KA�EQ��� THEN

HA��� � ��FA���X���X����

HA��� � ��FA���X���X����X���
HA�
� � ��FA���X���X����

ELSE IF �KA�EQ��� THEN
HA��� � ��FA���X���X����

HA��� � ��FA���X���X����X���
HA�
� � ��FA���X���X����

ELSE IF �KA�EQ�
� THEN
HA��� � ��FA�
�X���X�
��

ELSE IF �KA�EQ��� THEN
HA��� � ��FA���X���X����

HA��� � ��FA���X���X����X���
HA�
� � ��FA���X���X����

HA��� � ��FA���X���X����X�
�
HA�	� � ��FA���X���X����X�
�
HA��� � ��FA���X���X�
��

ELSE
HA��� � ��FA�	�X���X�
��

HA��� � ��FA�	�X���X�
��X���
HA�
� � ��FA�	�X���X����

ENDIF
�ENDSET

or

�SET�HMODELAS�
AH��� � ��FA���X���X����

AH��� � ��FA���X���X����X���
AH�
� � ��FA���X���X����

AH��� � ��FA���X���X����

AH�	� � ��FA���X���X����X���
AH��� � ��FA���X���X����

AH��� � ��FA�
�X���X�
��

��

AH��� � ��FA���X���X����

AH��� � ��FA���X���X����X���
AH���� � ��FA���X���X����

AH���� � ��FA���X���X����X�
�
AH���� � ��FA���X���X����X�
�
AH��
� � ��FA���X���X�
��

AH���� � ��FA�	�X���X�
��

AH��	� � ��FA�	�X���X�
��X���
AH���� � ��FA�	�X���X����

�ENDSET

Note that the dimensions of arrays HA or AHmust be speci
ed by the statement �MHA�dimension of HA
or �MAH�dimension of AH�
If some of the approximating functions are linear �i�e� if �NAL��� and if �JACA��S�� then the

coe�cients AG�K�� �� K� IAG�NAL����� �constant part of the sparse Jacobian matrix�� must be
speci
ed by using the macrovariable �INPUT� If the matrix given in the above example is the constant
sparse Jacobian matrix� we use this speci
cation�

�ADD�INPUT�
AG����gA��� AG����g

A
��� AG�
��g

A
��� AG����g

A
��

AG�	��gA��� AG����g
A
��� AG����g

A
��� AG����g

A
��

AG����gA��� AG�����g
A
��

�ENDADD

There is another possibility which can be useful when all approximating functions are linear� It is based
on the usage of special procedure UKMAI� which serves for a direct input of individual Jacobian matrix
elements� The procedure UKMAI� is formally called by using the statement

CALL �UKMAI��K�I�GAKI� or �SETAG�K�I�GAKI�

where K is an index of a given approximating function �a row of the Jacobian matrix�� I is an index of
a given variable �a column of the Jacobian matrix�� and GAKI is the numerical value of the element
�FA�K�X���X�I�� For the example given above we can write�

�ADD�INPUT�
�SETAG�����gA���
�SETAG�����gA���
�SETAG�����gA���
�SETAG�����gA���
�SETAG�
�
�gA���
�SETAG�����gA���
�SETAG�����gA���
�SETAG���
�gA���
�SETAG�	�
�gA���
�SETAG�	���gA���

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the
elds IAG
and JAG beforehand�
If we use the option �JACA��S�� then we can specify a form of the objective function sparse Hessian

matrix� There are four possibilities�

��

�HESF��D� � Dense Hessian matrix�
�HESF��B� � Partitioned sparse Hessian matrix� This matrix is a sum of simple Hessian matrices

which correspond to the individual approximating functions� Only nonzero blocks are
stored�

�HESF��S� � General sparse Hessian matrix �the same as the model function Hessian matrix
corresponding to the option �HESF��S���

�HESF��N� � Hessian matrix is not used�

This speci
cation only serves for an internal realization of optimization methods and has no in#uence on
the user�s input� The default option is �HESF��D��

���� Objective functions for optimization of dynamical systems

If we set �MODEL��DF�� then we suppose that the objective function F�X� has this form�

F�X� �

Z TAMAX

TAMIN

FA�X�YA�TA��TA�dTA� FF�X�YA�TAMAX��TAMAX�

where FA�X�YA�TA��TA� is a smooth subintegral function and FF�X�YA�TAMAX��TAMAX� is a smooth
terminal function� At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�
If we set �MODEL��DQ�� then we suppose the objective function F�X� has the form�

F�X� �
�
�

Z TAMAX

TAMIN

NEX
KE��

WE�KE�TA� 	 �YA�KE�TA��YE�KE�TA��� dTA

�
�

�

NEX
KE��

EW�KE� 	 �YA�KE�TAMAX�� EY�KE���

At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�
If we set �MODEL��NO�� then we consider that the initial value problem

dYA�KE�TA�

dTA
� FE�KE�YA�TA��TA�� YA�KE�TAMIN�

is given where FE�KE�YA�TA��TA�� �� KE� NE� are smooth state functions�

In all the above cases� the statement �NE�number of di�erential equations must be used for the
speci
cation of number of di�erential equations NE�

��

���� Speci�cation of the state functions

The state functions FE�KE�X�YA�TA��TA�� �� KE� NE� must be de
ned by the user either directly
in the full dialogue mode or by using corresponding macrovariables in the batch �or mixed� mode� The
values of the state functions are speci
ed by using the macrovariables �FMODELE or �FMODELES�

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
�for a given index KE� a given vector of variables X�
a given vector of state variables YA�TA� and a given time TA�

�ENDSET

or

�SET�FMODELES�
EF��� � value FE���X�YA�TA��TA�
EF��� � value FE���X�YA�TA��TA�
 !
EF�NE� � value FE�NE�X�YA�TA��TA�

�ENDSET

The
rst derivatives of the state functions according to the variables are speci
ed by using the macrovari�
ables �GMODELE or �GMODELES�

�SET�GMODELE�
GE��� � derivative �FE�KE�X�YA�TA��TA���X���
GE��� � derivative �FE�KE�X�YA�TA��TA���X���
 !
GE�NF� � derivative �FE�KE�X�YA�TA��TA���X�NF�
�for a given index KE� a given vector of variables X�
a given vector of state variables YA�TA� and a given time TA�

�ENDSET

or

�SET�GMODELES�
EG��� � derivative �FE���X�YA�TA��TA���X���
EG��� � derivative �FE���X�YA�TA��TA���X���
 !
EG�NF� � derivative �FE���X�YA�TA��TA���X�NF�
EG�NF��� � derivative �FE���X�YA�TA��TA���X���
EG�NF��� � derivative �FE���X�YA�TA��TA���X���
 !
EG�NE	NF� � derivative �FE�NE�X�YA�TA��TA���X�NF�

�ENDSET

The
rst derivatives of the state functions according to the state variables are speci
ed by using the
macrovariables �DMODELE or �DMODELES�

�SET�DMODELE�
DE��� � derivative �FE�KE�X�YA�TA��TA���YA���
DE��� � derivative �FE�KE�X�YA�TA��TA���YA���
 !
DE�NE� � derivative �FE�KE�X�YA�TA��TA���YA�NE�
�for a given index KE� a given vector of variables X�

�

a given vector of state variables YA�TA� and a given time TA�
�ENDSET

or

�SET�DMODELES�
ED��� � derivative �FE���X�YA�TA��TA���YA���
ED��� � derivative �FE���X�YA�TA��TA���YA���
 !
ED�NE� � derivative �FE���X�YA�TA��TA���YA�NE�
ED�NE��� � derivative �FE���X�YA�TA��TA���YA���
ED�NE��� � derivative �FE���X�YA�TA��TA���YA���
 !
ED�NE	NE� � derivative �FE�NE�X�YA�TA��TA���YA�NE�

�ENDSET

If it is advantageous to compute the
rst derivatives of the state functions FE�KE�X�YA�TA��TA��
�� KE� NE� together with their values� we can replace the set of models �FMODELE� �GMODELE�
�DMODELE by the commonmodel �FGDMODELE and the set of models �FMODELES� �GMODELES�
�DMODELES by the common model �FGDMODELES� Partially we can replace the models �FMOD�
ELE� �GMODELE or �FMODELE� �DMODELE or �GMODELE� �DMODELE by the common models
�FGMODELE or �FDMODELE or �GDMODELE� respectively� Similarly we can replace the models
�FMODELES� �GMODELES or �FMODELES� �DMODELES or �GMODELES� �DMODELES by the
common models �FGMODELES or �FDMODELES or �GDMODELES� respectively�
If �MODEL��DQ�� we have to de
ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE� for

a given index KE and a given time TA� These functions can be speci
ed by using the macrovariable
�FMODELE together with the state function FE�KE�X�YA�TA��TA��

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
WE � value WE�KE�TA�
YE � value YE�KE�TA�
�for a given index KE� a given vector of variables X�
a given vector of state variables YA�TA� and a given time TA�

�ENDSET

The default values WE�KE�TA��� and YE�KE�TA��� cannot be speci
ed� they are supposed automat�
ically�

��
� Speci�cation of the initial functions

The initial functions FY�KE�X�� �� KE� NE� must be de
ned by the user either directly in the full
dialogue mode or by using corresponding macrovariables in the batch �or mixed� mode� The values of
the initial functions are speci
ed by using the macrovariables �FMODELY or �FMODELYS�

�SET�FMODELY�
FE � value FY�KE�X�
�for a given index KE and a given vector of variables X�

�ENDSET

or

�SET�FMODELYS�
EF��� � value FY���X�
EF��� � value FY���X�

��

 !
EF�NE� � value FY�NE�X�

�ENDSET

The
rst derivatives of the initial functions according to the variables are speci
ed by using the macrovari�
ables �GMODELY or �GMODELYS�

�SET�GMODELY�
GE��� � derivative �FY�KE�X���X���
GE��� � derivative �FY�KE�X���X���
 !
GE�NF� � derivative �FY�KE�X���X�NF�
�for a given index KE and a given vector of variables X�

�ENDSET

or

�SET�GMODELYS�
EG��� � derivative �FY���X���X���
EG��� � derivative �FY���X���X���
 !
EG�NF� � derivative �FY���X���X�NF�
EG�NF��� � derivative �FY���X���X���
EG�NF��� � derivative �FY���X���X���
 !
EG�NE	NF� � derivative �FY�NE�X���X�NF�

�ENDSET

If it is advantageous to compute the
rst derivatives of the initial functions FY�KE�X�� �� KE�
NE� together with their values� we can replace the set of models �FMODELY� �GMODELY by the
commonmodel �FGMODELY and the set of models �FMODELYS� �GMODELYS by the commonmodel
�FGMODELYS�
If the initial values YA�KE�TAMIN�� �� KE� NE� do not depend on the variables X�I�� �� I� NF�

they can be speci
ed by using the macrovariable �INPUT�

�ADD�INPUT�
YA��� � initial value YA���TAMIN�
YA��� � initial value YA���TAMIN�
 !
YA�NE� � initial value YA�NE�TAMIN�

�ENDADD

����� Speci�cation of the subintegral function

If �MODEL��DF�� the subintegral function FA�X�YA�TA��TA� must be de
ned by the user either
directly in the full dialogue mode� or by using corresponding macrovariables in the batch �or mixed�
mode� The value of the subintegral function is speci
ed by using the macrovariable �FMODELA�

�SET�FMODELA�
FA � value FA�X�YA�TA��TA�
�for a given vector of variables X� a given vector of state variables YA�TA�
and a given time TA�

�ENDSET

�	

The
rst derivatives of the subintegral function according to the variables are speci
ed by using the
macrovariable �GMODELA�

�SET�GMODELA�
GA��� � derivative �FA�X�YA�TA��TA���X���
GA��� � derivative �FA�X�YA�TA��TA���X���
 !
GA�NF� � derivative �FA�X�YA�TA��TA���X�NF�
�for a given vector of variables X� a given vector of state variables YA�TA�
and a given time TA�

�ENDSET

The
rst derivatives of the subintegral function according to the state variables are speci
ed by using the
macrovariable �DMODELA�

�SET�DMODELA�
DA��� � derivative �FA�X�YA�TA��TA���YA���
DA��� � derivative �FA�X�YA�TA��TA���YA���
 !
DA�NE� � derivative �FA�X�YA�TA��TA���YA�NE�
�for a given vector of variables X� a given vector of state variables YA�TA�
and a given time TA�

�ENDSET

If it is advantageous to compute the
rst derivatives of the subintegral function FA�X�YA�TA��TA�
together with its value� we can replace the set of models �FMODELA� �GMODELA� �DMODELA by
the common model �FGDMODELA� Partially we can replace the models �FMODELA� �GMODELA
or �FMODELA� �DMODELA or �GMODELA� �DMODELA by the common models �FGMODELA or
�FDMODELA or �GDMODELA� respectively�
If �MODEL��DQ� and the objective function contains an integral part� we have to set �MOD�

ELA��YES� and de
ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE� by using the macrovari�
able �FMODELE�

����� Speci�cation of the terminal function

If �MODEL��DF�� the terminal function FF�X�YA�TAMAX��TAMAX� must be de
ned by the user
either directly in the full dialogue mode� or by using corresponding macrovariables in the batch �or mixed�
mode� The value of the terminal function is speci
ed by using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�YA�TAMAX��TAMAX�
�for a given vector of variables X� a given vector of state variables YA�TAMAX�
and a given time TAMAX�

�ENDSET

The
rst derivatives of the terminal function according to the variables are speci
ed by using the
macrovariable �GMODELF�

�SET�GMODELF�
GF��� � derivative �FF�X�YA�TAMAX��TAMAX���X���
GF��� � derivative �FF�X�YA�TAMAX��TAMAX���X���
 !
GF�NF� � derivative �FF�X�YA�TAMAX��TAMAX���X�NF�

��

�for a given vector of variables X� a given vector of state variables YA�TAMAX�
and a given time TAMAX�

�ENDSET

The
rst derivatives of the terminal function according to the state variables are speci
ed by using the
macrovariable �DMODELF�

�SET�DMODELF�
DF��� � derivative �FF�X�YA�TAMAX��TAMAX���YA���
DF��� � derivative �FF�X�YA�TAMAX��TAMAX���YA���
 !
DF�NE� � derivative �FF�X�YA�TAMAX��TAMAX���YA�NE�
�for a given vector of variables X� a given vector of state variables YA�TAMAX�
and a given time TAMAX�

�ENDSET

If it is advantageous to compute the
rst derivatives of the terminal function FF�X�YA�TAMAX��TAMAX�
together with its value� we can replace the set of models �FMODELF� �GMODELF� �DMODELF by
the common model �FGDMODELF� Partially we can replace the models �FMODELF� �GMODELF
or �FMODELF� �DMODELF or �GMODELF� �DMODELF by the common models �FGMODELF or
�FDMODELF or �GDMODELF� respectively�
If �MODEL��DQ� and the objective function contains a terminal part� we have to set �MOD�

ELF��YES� and de
ne the coe�cients EW�KE� and EY�KE�� �� KE� NE� by using the macrovariable
�INPUT�

�ADD�INPUT�
EW��� � value EW���� EY��� � value EY���
EW��� � value EW���� EY��� � value EY���
 !
EW�NE� � value EW�NE�� EY�NE� � value EY�NE�

�ENDADD

����� Optimization with general constraints

If there are no general constraints we set �KBC��� In the opposite case we set �KBC�� or �KBC���
If �KBC�� or �KBC��� then

FC�KC�X� � unbounded � if IC�KC� � �
CL�KC� � FC�KC�X� � if IC�KC� � �

FC�KC�X� � CU�KC� � if IC�KC� � �
CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� �

CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� � 	

where �� KC� NC� The option �KBC�� must be chosen if IC�KC��
 for at least one index �� KC�
NC� Then two di�erent
elds XL�K� and XU�KC�� �� KC� NC are declared� In the opposite case we
set �KBC�� and only one common
eld XL�KC��XU�KC�� �� KC� NC is declared� The number of
constraints NC must be speci
ed by using the statement �NC�number of functions�
The types of general constraints IC�KC�� �� KC� NC� and lower and upper bounds XL�KC� and

XU�KC�� �� KC� NC� can be speci
ed by using the macrovariable �INPUT� The default values are
IC�KC��
 and XL�KC��XU�KC���� �� KC� NC� For example�

�KBF��� �NC�

��

�ADD�INPUT�
IC������ CL����cL�
IC������ CL����cL�
IC�
��
� CL�
��cL� � CU�
��c

L
�

�ENDADD

����� Speci�cation of the constraint functions �dense problems	

The constraint functions FC�KC�X�� �� KC� NC� must be de
ned by the user either directly in the
full dialogue mode� or by using corresponding macrovariables in the batch �or mixed� mode� The values
of the constraint functions are speci
ed by using the macrovariables �FMODELC or �FMODELCS�

�SET�FMODELC�
FC � value FC�KC�X�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�FMODELCS�
CF��� � value FC���X�
CF��� � value FC���X�
 !
CF�NC� � value FC�NC�X�

�ENDSET

The
rst derivatives of the constraint functions are speci
ed by using the macrovariables �GMODELC
or �GMODELCS�

�SET�GMODELC�
GC��� � derivative �FC�KC�X���X���
GC��� � derivative �FC�KC�X���X���
 !
GC�NF� � derivative �FC�KC�X���X�NF�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�GMODELCS�
CG��� � derivative �FC���X���X���
CG��� � derivative �FC���X���X���
 !
CG�NF� � derivative �FC���X���X�NF�
CG�NF��� � derivative �FC���X���X���
CG�NF��� � derivative �FC���X���X���
 !
CG�NC	NF� � derivative �FC�NC�X���X�NF�

�ENDSET

The second derivatives of the constraint functions are speci
ed by using the macrovariables �HMODELC
or �HMODELCS� If �JACC��D�� the Hessian matrices are assumed to be dense and we only specify their
upper half�

��

�SET�HMODELC�
HC��� � derivative ��FC�KC�X���X����

HC��� � derivative ��FC�KC�X���X����X���
HC�
� � derivative ��FC�KC�X���X����

HC��� � derivative ��FC�KC�X���X����X�
�
HC�	� � derivative ��FC�KC�X���X����X�
�
HC��� � derivative ��FC�KC�X���X�
��

 !
HC�NF	�NF������ � derivative ��FC�KC�X���X�NF��

�for a given index KC and given values of variables X�I�� �� I� NF�
�ENDSET

or

�SET�HMODELCS�
CH��� � derivative ��FC���X���X����

CH��� � derivative ��FC���X���X����X���
CH�
� � derivative ��FC���X���X����

CH��� � derivative ��FC���X���X����X�
�
CH�	� � derivative ��FC���X���X����X�
�
CH��� � derivative ��FC���X���X�
��

 !
CH�NF	�NF������ � derivative ��FC���X���X�NF��

CH�NF	�NF�������� � derivative ��FC���X���X����

CH�NF	�NF�������� � derivative ��FC���X���X����X���
CH�NF	�NF������
� � derivative ��FC���X���X����

 !
CH�NC	NF	�NF������ � derivative ��FC�NC�X���X�NF��

�ENDSET

If the macrovariables �GMODELC and �GMODELCS or �HMODELC and �HMODELCS are not
de
ned� we suppose that the
rst or the second derivatives of the constraint functions are not given
analytically� In this case� they are computed numerically� by using the UFO system routines whenever it
is required� If it is advantageous to compute the
rst derivatives of the constraint functions FC�KC�X�� ��
KC� NC� together with their values� we can replace the set of models �FMODELC� �GMODELC by the
commonmodel �FGMODELC and the set of models �FMODELCS� �GMODELCS by the commonmodel
�FGMODELCS� Similarly we can replace the set of models �FMODELC� �GMODELC� �HMODELC by
the commonmodel �FGHMODELC and the set of models �FMODELCS� �GMODELCS� �HMODELCS
by the common model �FGHMODELCS�
To improve the e�ciency of the computation� we can specify some additional information about

the constraint functions FC�KC�X�� �� KC� NC� The
rst piece of information� useful for an automatic
choice of the optimizationmethod� is the computational complexity speci
ed by the macrovariable �KCC�

�KCC� � � Evaluations of the constraint functions FC�KC�X�� �� KC� NC� are very easy �they
require O�n� simple operations at most��

�KCC� � � Evaluations of the constraint functions FC�KC�X�� �� KC� NC� are of medium
complexity �they at least require O�n� complicated operations and O�n�� simple op�
erations at most��

�KCC�
 � Evaluations of the constraint functions FC�KC�X�� �� KC� NC� are extremely
di�cult �they at least require O�n�� complicated or O�n�� simple operations��

The option �KCC�� is default�
If some of the constraint functions are linear and have the form

��

FC�KC�X� �
NFX
I��

CG��KC� �� 	NF� I� 	X�I�

we can specify them separately� Then the number of linear constraint functions must be speci
ed by
using the statement �NCL�number of linear functions �default value is �NCL���� We always suppose
that the
rst NCL constraint functions are linear� Then the coe�cients CG��KC���	NF�I�� �� KC�
NCL� �� I� NF� are speci
ed by using the macrovariable �INPUT and the macrovariables �FMODELC
or �FMODELCS� �GMODELC or �GMODELCS� �HMODELC or �HMODELCS are used only for the
speci
cation of the nonlinear constraint functions FC�KC�X�� NCL�KC� NC�

����� Speci�cation of the constraint functions �sparse problems	

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix CG� This possibility decreases the computational time and storage requirements for
large�scale optimization problems� In this case� we use option �JACC��S� which means that the sparsity
pattern is speci
ed� All other speci
cations remain the same as in the case of dense problems� The sparsity
pattern of the Jacobian matrix is speci
ed by using the macrovariable �INPUT� Two integer vectors ICG
and JCG are used where ICG�KC�� �� KC� NC��� are pointers and JCG�K�� �� K� ICG�NC������ are
indices of nonzero elements� Nonzero elements are ordered by the gradients of the constraint functions�
The number of nonzero elements must be speci
ed by using the statement �MC�number of elements�
The number of nonzero elements could be greater than is needed �twice say� since it is used for the
declaration of working
elds� For example� if we have the gradients

GC���X� � �gC��� � � � � gC����

GC���X� � �� � gC��� � � gC����

GC�
�X� � �� � � � gC��� � ��

GC���X� � �gC��� g
C
��� g

C
��� � ��

GC�	�X� � �� � � � gC��� g
C
����

and the Jacobian matrix

CG�X� �

�
BBB�

gC�� � � � � � gC��
� � gC�� � � � gC��
� � � � gC�� � �
gC�� � gC�� � gC�� � �
� � � � gC�� � gC��

�
CCCA

then we have to set�

�NC�	
�MC��� �the minimum required value is MC����
�ADD�INPUT�

ICG������ ICG����
� ICG�
��	
ICG������ ICG�	���� ICG������
JCG������ JCG������ JCG�
���� JCG������ JCG�	��

JCG������ JCG������ JCG����
� JCG����
� JCG������

�ENDADD

�

As in the case of the dense problem� the
rst derivatives of the constraint functions can be speci
ed
by using the macrovariables �GMODELC or �GMODELCS� If �JACC��S�� only the nonzero elements
of the gradients are speci
ed� For the above example the speci
cation has the form�

�SET�GMODELC�
IF �KC�EQ��� THEN

GC��� � �FC���X���X���
GC��� � �FC���X���X���

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X���X���
GC��� � �FC���X���X���

ELSE IF �KC�EQ�
� THEN
GC�
� � �FC�
�X���X�
�

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X���X���
GC��� � �FC���X���X���
GC�
� � �FC���X���X�
�

ELSE
GC�
� � �FC�	�X���X�
�
GC��� � �FC�	�X���X���

ENDIF
�ENDSET

or

�SET�GMODELCS�
CG��� � �FC���X���X���
CG��� � �FC���X���X���
CG�
� � �FC���X���X���
CG��� � �FC���X���X���
CG�	� � �FC�
�X���X�
�
CG��� � �FC���X���X���
CG��� � �FC���X���X���
CG��� � �FC���X���X�
�
CG��� � �FC�	�X���X�
�
CG���� � �FC�	�X���X���

�ENDSET

As in the case of the dense problem� the second derivatives of the approximating functions can
be speci
ed by using the macrovariables �HMODELC or �HMODELCS� If �JACC��S�� only nonzero
elements of the Hessian matrices are speci
ed� For the above example the speci
cations have the form

�SET�HMODELC�
IF �KC�EQ��� THEN

HC��� � ��FC���X���X����

HC��� � ��FC���X���X����X���
HC�
� � ��FC���X���X����

ELSE IF �KC�EQ��� THEN
HC��� � ��FC���X���X����

HC��� � ��FC���X���X����X���
HC�
� � ��FC���X���X����

ELSE IF �KC�EQ�
� THEN
HC��� � ��FC�
�X���X�
��

�

ELSE IF �KC�EQ��� THEN
HC��� � ��FC���X���X����

HC��� � ��FC���X���X����X���
HC�
� � ��FC���X���X����

HC��� � ��FC���X���X����X�
�
HC�	� � ��FC���X���X����X�
�
HC��� � ��FC���X���X�
��

ELSE
HC��� � ��FC�	�X���X�
��

HC��� � ��FC�	�X���X�
��X���
HC�
� � ��FC�	�X���X����

ENDIF
�ENDSET

or

�SET�HMODELCS�
CH��� � ��FC���X���X����

CH��� � ��FC���X���X����X���
CH�
� � ��FC���X���X����

CH��� � ��FC���X���X����

CH�	� � ��FC���X���X����X���
CH��� � ��FC���X���X����

CH��� � ��FC�
�X���X�
��

CH��� � ��FC���X���X����

CH��� � ��FC���X���X����X���
CH���� � ��FC���X���X����

CH���� � ��FC���X���X����X�
�
CH���� � ��FC���X���X����X�
�
CH��
� � ��FC���X���X�
��

CH���� � ��FC�	�X���X�
��

CH��	� � ��FC�	�X���X�
��X���
CH���� � ��FC�	�X���X����

�ENDSET

Note that the dimensions of arrays HC or CH must be speci
ed by the statement �MHC�dimension of HC
or �MCH�dimension of CH�
If some of the constraint functions are linear �i�e� if �NCL��� and if �JACC��S�� then the coe�cients

CG�K�� �� K� ICG�NCL����� �constant part of the sparse Jacobian matrix�� must be speci
ed by using
the macrovariable �INPUT� If the matrix given in the above example is the constant sparse Jacobian
matrix� we use this speci
cation�

�ADD�INPUT�
CG����gC��� CG����g

C
��� CG�
��g

C
��� CG����g

C
��

CG�	��gC��� CG����g
C
��� CG����g

C
��� CG����g

C
��

CG����gC��� CG�����g
C
��

�ENDADD

There is another possibility which can be useful when all constraint functions are linear� It is based on
the usage of a special procedure UKMCI� which serves for a direct input of individual Jacobian matrix
elements� The procedure UKMCI� is formally called by using the statement

CALL �UKMCI��K�I�GCKI� or �SETCG�K�I�GCKI�

�

where K is an index of a given constraint function �a row of the Jacobian matrix�� I is an index of
a given variable �a column of the Jacobian matrix�� and GCKI is a numerical value of the element
�FC�K�X���X�I�� For the example given above we can write�

�ADD�INPUT�
�SETCG�����gC���
�SETCG�����gC���
�SETCG�����gC���
�SETCG�����gC���
�SETCG�
�
�gC���
�SETCG�����gC���
�SETCG�����gC���
�SETCG���
�gC���
�SETCG�	�
�gC���
�SETCG�	���gC���

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the
elds ICG
and JCG beforehand� If the number of the constraints are very large� then we can use a slightly more
complicated procedure UKMCI� which uses dynamic structures and therefore works more quickly� The
procedure UKMCI� is formally called by using the statement

CALL �UKMCI��K�I�GCKI�

where K is an index of a given constraint function �a row of the Jacobian matrix�� I is an index of a given
variable �a column of the Jacobian matrix�� GCKI is the numerical value of the element �FC�K�X���X�I�
and LCG is an auxiliary working
eld�

����� Additional speci�cations concerning optimization problems

Useful speci
cations� which can improve the computational e�ciency and robustness of the optimiza�
tion methods� are a lower bound for the objective function value and an upper bound for the stepsize�
Both of these values depend on the de
nition of the objective function and can be speci
ed by the
statements �FMIN�lower bound �for the objective function value� and �XMAX�upper bound �for the
stepsize�� We recommend a de
nition of �FMIN whenever it is possible� and a de
nition of �XMAX
whenever the objective function contains the exponential functions� If the objective function is a sum
of powers �or a sum of squares�� then automatically �FMIN��� The default option for the maximum
stepsize is �XMAX������
If there are no general constraints and if the number of variables is not greater than ��� then we can

use global optimization methods� A decision between local and global optimization is e�ected by means
of macrovariable �EXTREM�

�EXTREM��L� � A local extremum is found� which usually contains the starting point in its region of
attractivity�

�EXTREM��G� � All extrema in the given region are found and a global extremum is determined�

The default option is �EXTREM��L�� If �EXTREM��G�� we cannot use the common models �FG�
MODELF and �FGHMODELF for a common speci
cation of the value � the gradient and the Hessian
matrix of the model function� Similarly we cannot use the models �FGMODELA or �FGMODELAS and
�FGHMODELA or �FGHMODELAS for a common speci
cation of the approximating functions�
The global optimization is performed over a bounded region speci
ed by lower and upper bounds

XL�I� and XU�I�� �� I� NF� If these bounds are not speci
ed �using the macrovariable �INPUT��
they are computed from the initial values of variables and from the given maximum stepsize� so that
XL�I��X�I��XMAX and XU�I��X�I��XMAX� �� I� NF� The maximum stepsize is speci
ed� as in

the case given above� using the statement �XMAX�maximum stepsize� The default option is again
�XMAX������
Additional useful speci
cations� concerning the solution precision� are bounds used in termination

criteria� These bounds can be speci
ed by the macrovariables �TOLX� �TOLF� �TOLB� �TOLG� �TOLC
and MIC� MIT� MFV�

�TOLX � lower bound for a relative change of variables
�TOLF � lower bound for a relative change of function values
�TOLB � lower bound for the objective function value
�TOLG � lower bound for the objective function gradient norm
�TOLC � lower bound for the violated constraint functions

�MIC � maximum number of penalty function changes
�MIT � maximum number of iterations
�MFV � maximum number of function evaluations

The default values are �TOLX�����D���� �TOLF�����D����� �TOLB������D���� �TOLG�����D����
�TOLC�����D��� and MIC�	� MIT�	��� MFV������

�

�� Optimization methods in the UFO system

The UFO system has a modular structure� All optimization methods can be set up using the indi�
vidual simple modules� For example� the sequential quadratic programming variable metric methods for
nonlinearly constrained optimization problems are set up by using the modules for an objective func�
tion evaluation� penalty function de
nition� direction determination� quadratic programming solution�
stepsize selection� and variable metric update� The optimization methods contained in the UFO system
can be roughly divided into two groups� The
rst group contains methods for unconstrained and lin�
early constrained optimization problems� while the second group contains methods for general nonlinear
programming problems� Methods for general nonlinear programming problems� i�e� for problems with
nonlinear constraints� are classi
ed by their realization form which is determined by using the macrovari�
able �FORM�

�FORM��SQ� � Sequential �or recursive� quadratic programming methods for general dense prob�
lems�

�FORM��SE� � Inexact sequential �or recursive� quadratic programmingmethods for sparse equality
constrained problems�

�FORM��SI� � Inexact interior point methods for sparse equality and inequality constrained prob�
lems�

Sections
�� �
��� concern methods for unconstrained and linearly constrained problems� These methods
do not use the macrovariable �FORM for a classi
cation� Methods for general nonlinear programming
problems are described in Sections
��� �
��
� The basic parts of optimization methods are described in
Sections
��� �
���� Section
��� is devoted to global optimization methods�
Methods for unconstrained and linearly constrained problems contained in the UFO system can be

partitioned into several classes which are speci
ed by using the macrovariable �CLASS�

�CLASS��HM� � Heuristic methods for small�size problems� This class contains the pattern search
method and the simplex method�

�CLASS��CD� � Conjugate direction methods which use no matrices� This class contains conjugate
direction methods and variable metric methods with limited storage based on the
Strang recursions�

�CLASS��VM� � Variable metric methods which use an approximation of the Hessian matrix which
is updated in each iteration�

�CLASS��VL� � Variable metric methods with limited storage based on compact variable metric
updates�

�CLASS��VR� � Variable metric methods with limited storage based on reduced Hessians�
�CLASS��MN� � Modi
ed Newton methods which use the Hessian matrix computed either analyti�

cally or numerically�
�CLASS��TN� � Truncated Newton methods based on the di�erence approximation of directional

derivatives�
�CLASS��GN� � Modi
ed Gauss�Newton methods for nonlinear least squares problems which use the

normal equation matrix as an approximation of the Hessian matrix� These methods
are also realized by using the Jacobian matrix representation�

�CLASS��QN� � Quasi�Newton methods for nonlinear least squares problems and nonlinear equations�
�CLASS��QL� � Quasi�Newton methods with limited storage for sparse nonlinear least squares prob�

lems and sparse nonlinear equations�
�CLASS��QB� � Quasi�Newton and Brent methods for nonlinear equations�
�CLASS��LP� � Simplex type methods for linear programming problems�
�CLASS��LI� � Interior point methods for linear programming problems�
�CLASS��QP� � Simplex type methods for quadratic programming problems�
�CLASS��QI� � Interior point methods for quadratic programming problems�
�CLASS��BM� � Proximal bundle methods for nonsmooth optimization�
�CLASS��BN� � Bundle�Newton methods for nonsmooth optimization�

	

�CLASS��VB� � Variable metric bundle methods for nonsmooth optimization�

The individual methods from the above classes can be chosen by using additional speci
cations�
The most important ones� concerning direction determination and stepsize selection� are the type of the
method� the kind of the matrix decomposition and the number of the method� The type of the method
is speci
ed by the macrovariable �TYPE�

�TYPE��L� � Line search methods�
�TYPE��G� � General trust region methods�
�TYPE��T� � Special trust region methods for nonlinear least squares problems�
�TYPE��M� � Modi
ed Marquardt methods for nonlinear least squares problems�
�TYPE��F� � SQP
lter methods for nonlinear programing problems�
�TYPE��P� � Pattern search method of Hooke and Jeeves�
�TYPE��S� � Simplex method of Nelder and Mead�

The kind of the matrix decomposition is speci
ed by the macrovariable �DECOMP�

�DECOMP��M� � The symmetric matrix is used as an input for the direction determination�
�DECOMP��G� � The LDLT decomposition without permutations is used as an input for the direction

determination� This decomposition is usually obtained by the Gill�Murray algorithm
�	���

�DECOMP��S� � The LDLT decomposition with permutations is used as an input for the direc�
tion determination� This decomposition is usually obtained by the Schnabel�Eskow
algorithm ��
���

�DECOMP��B� � The block LDLT decomposition with permutations is used as an input for the
direction determination� This decomposition is usually obtained by the Bunch�Parlett
algorithm ��	��

�DECOMP��I� � The inverse of a symmetric matrix is used as an input for the direction determination�
�DECOMP��R� � the RTR decomposition without permutations is used as an input for the direction

determination� This decomposition is usually obtained by the recursive QR factor�
ization �����

�DECOMP��C� � The RTR decomposition with permutations is used as an input for the direction
determination� This decomposition is usually obtained by an application of the rank
revealing algorithm �����

�DECOMP��A� � The rectangular matrix is used as an input for the direction determination�
�DECOMP��Q� � The QR decomposition of a rectangular matrix without permutations is used as

an input for the direction determination� This decomposition is usually obtained by
using the Householder re#ection with the explicitly stored orthogonal matrix Q�

�DECOMP��E� � The general square matrix is used as an input for the direction determination in the
case NA�NF �system of nonlinear equations��

If �FORM��SE�� we have additional possibilities for a representation of matrices in the direction deter�
mination�

�DECOMP��K� � The inde
nite Karush�Kuhn�Tucker matrix is used as an input for the direction
determination�

�DECOMP��Z� � The null space representation based on orthogonal projection is used as an input for
the direction determination�

�DECOMP��G� � The range space representation based on the Schur complement is used as an input
for the direction determination�

If �FORM��SI�� we have the following possibility for a representation of matrices in the direction deter�
mination�

�

�DECOMP��I� � The interior point Karush�Kuhn�Tucker matrix is used as an input for the direction
determination�

The macrovariable �DECOMP is also used for the selection of conjugate direction methods� In this case
it does not concern the kind of matrix decomposition�
The serial number of the method is speci
ed by the macrovariable �NUMBER� It determines an

individual realization of the direction determination�
Additional information about speci
cations �TYPE� �DECOMP� �NUMBER is given in Section
��	�
All options used for the method selection have default values� which follows from the knowledge bases

coded in the individual templates� Therefore they need not be speci
ed by the user� The possibilities we
describe can be of service to users who are familiar with optimization methods�
Almost all optimization methods have di�erent realizations for three di�erent representations of the

objective function� If �HESF��D�� dense variants can be used for either unconstrained problems or
box constrained problems or linearly constrained problems �with dense linear constraints speci
ed by
�JACC��D��� If �HESF��S�� sparse variants can be used for either unconstrained problems or box con�
strained problems or linearly constrained problems �with sparse linear constraints speci
ed by �JACC��S���
If �JACA��S� and �HESF��B�� partitioned variants can be used for either unconstrained problems or box
constrained problems� Partitioned variants of optimization methods are usually less e�cient due to the
more expensive matrix operations� Therefore we recommend preferring sparse variants to the partitioned
ones�

���� Heuristic methods

Heuristic �or comparative� methods are speci
ed by the statement �CLASS��HM�� These methods
can only be used for small�size problems �with �� variables at most�� The main advantage of the heuristic
methods is that they do not require continuity of the objective function�
The individual heuristic methods are speci
ed by the macrovariable �TYPE�

�TYPE��P� � Pattern search method of Hooke and Jeeves �����
�TYPE��S� � Simplex method of Nelder and Mead ������

The default value is �TYPE��P��

���� Conjugate direction methods

Conjugate direction methods are speci
ed by the statement �CLASS��CD�� These methods are very
e�cient for large problems with computationally simple objective functions ��KCF�� or �KCA���� The
main advantage of conjugate direction methods is that no matrices are used �implicitly �HESF��N���
This fact highly decreases storage requirements�
The individual conjugate direction methods are speci
ed by the macrovariable �DECOMP�

�DECOMP��C� � Conjugate gradient methods� These methods are the simplest ones of all conju�
gate direction methods and they require the fewest storage requirements� However�
they usually consume a greater number of function evaluations then other conjugate
direction methods�

�DECOMP��V� � Variable metric methods with limited storage based on the Strang recursions� These
methods allow us to prescribe storage requirements using the number of VM steps
�the number of necessary used vectors is approximately twice as great a number of
VM steps�� The number of VM steps is speci
ed by the macrovariable �MF� Variable
metric methods with limited storage usually consume fewer function evaluations then
conjugate gradient methods�

There are two families of conjugate gradient methods implemented in the UFO system�

�

�NUMBER�� � Basic conjugate gradient methods described in ����� The individual methods are
speci
ed by using the macrovariables �MET� �MET� and �MET��

�NUMBER�� � Generalized conjugate gradient methods introduced in ����� The individual methods
are speci
ed by using the macrovariable �MET��

If �MET��� then the steepest descent method is used� If �MET��� the Fletcher�Reeves method ���� is
used� If �MET��� the Polak�Ribiere method ����� is used� If �MET�
� the Hestenes�Stiefel method ����
is used� The macrovariable �MET� speci
es the restart procedure as it is described in ����� If �MET����
a restarted CG method with a positive parameter is used� If �MET���� a bounded CG method with a
positive parameter is used� If �MET��
� a bounded CG method with a positive lower bound is used� If
�MET���� a CG method with the Powell restart is used� If �MET��	� a CG method with the test on
conjugacy is used� If �MET���� a CG method with the test on orthogonality is used� The macrovariable
�MET� speci
es the scaling parameter as is described in ���� ��MET��� for suppressed scaling and
�MET��� for scaling in each iteration��
Similarly� the UFO system contains two variable metric methods with limited storage�

�NUMBER�� � The BFGS method with limited storage described in ���	�� The default number of
VM steps is �MF�	�

�NUMBER�� � The extended BFGS method with limited storage described in ����� The default
number of VM steps is �MF�
�

Both these methods are realized by using various scaling techniques ���� speci
ed by the macrovariable
�MET�� If �MET���� the scaling is suppressed� If �MET���� the scalar scaling is used� If �MET��
�
the diagonal scaling is used� If �MET���� the scalar and diagonal scalings are used simultaneously�
Possible speci
cations �type�decomp�number� for the conjugate direction methods in the uncon�

strained case are these�

L�C��� L�V���
L�C��� L�V���

The default choice is L�C��� Conjugate direction methods can also be used for sparse linear constraints
when �JACC��S��

���� Variable metric methods

Variable metric methods are speci
ed by the statement �CLASS��VM�� These methods are most
commonly used for either unconstrained or linearly constrained optimizations� Variable metric methods
use a symmetric �usually positive de
nite� matrix which is updated in every iteration in such a way
that it approximates the Hessian matrix of the objective function as precisely as possible� In the UFO
system� the variable metric methods are realized in three di�erent forms �for �HESF��D�� �HESF��S�
and �HESF��B�� depending on the Hessian matrix speci
cation�
There are two families of variable metric methods for dense problems ��HESF��D�� which are distin�

guished using the macrovariable �UPDATE�

�UPDATE��B� � The Broyden family ����� Variable metric methods from this family are the most
commonly used ones since they are very robust and e�cient�

�UPDATE��D� � The Davidon family ����� Variable metric methods from this family are similar to
the previous ones� The only di�erence is that projections into the new subspace are
computed� This guarantees the quadratic termination property even in the case of an
imperfect line search�

The default value is �UPDATE��B��
Individual variable metric methods are speci
ed by using the macrovariables �MET� �MET�� �MET�

and �MET
� The macrovariable �MET determines the variable metric update� If �MET��� the BFGS

�

method ����� �
��� �	��� ��
�� is used� If �MET��� the DFP method ��	�� ���� is used� If �MET�
� the
Hoshino method ��	� is used� If �MET��� the safeguarded rank�one method ���� is used� If �MET�	�
the optimally conditioned method ���� is used� If �MET��� the rank�one based method ���� from the
preconvex part of the Broyden family is used� If �MET��� the variationally derived method ��
� from the
preconvex part of the Broyden family is used� If �MET��� the heuristic method ���� is used� If �MET���
the method ��		� derived from the matrix decomposition is used� If �MET���� the method ��	�� which
minimizes the angle between the direction vector and the negative gradient is used� If �MET���� the
method ���� which minimizes the norm of the direction vector is used� If �MET���� the least prior
deviation method ����� is used� The default value is �MET��� If we specify �DECOMP��M�� we can
only use the values �MET�����
���
The macrovariable �MET� determines the Oren �scaling� parameter ������ If �MET���� no scaling

is used� If �MET���� the initial scaling ��

� is used� If �MET��
� the controlled scaling ��
� is used� If
�MET���� the simple controlled scaling ���� is used� If �MET��	� the scaling in each iteration is used�
The default value is �MET��
� The scaling parameter is determined by using heuristic rules given in
�����
The macrovariable �MET� determines the value of the Biggs �nonquadratic model� parameter ���� If

�MET���� the unit value is used� If �MET���� the Spedicato value ��
�� is used� If �MET��
� the
modi
ed Spedicato value ���� is used� If �MET���� the value determined from the homogeneous model
���� is used� If �MET��	� the value determined from the cubic model �	� is used� The default value is
�MET����
The macrovariable �MET
 determines the Powell correction ������ If �MET
��� the Powell correction

is suppressed �the strong update elimination�� If �MET
��� the Powell correction is suppressed �the weak
update elimination�� If �MET
�
� the Powell correction is applied� The default value is �MET
���
Possible speci
cations �type�decomposition�number� for dense variable metric methods in the uncon�

strained case are these�

L�G��� L�S��� L�B��� L�I��� L�M���
L�M�
�

G�G��� G�S��� G�B��� G�M���
G�G��� G�S��� G�B��� G�M���

G�M�
�
G�M���
G�M�	�
G�M���

The default choice is L�I��� In both the box constrained and the linearly constrained cases we cannot use
speci
cations with �DECOMP��B��
If the Hessian matrix is sparse with a general pattern ��HESF��S��� the sparse variable metric meth�

ods� which preserve this pattern� are used� If �DECOMP��M�� the individual variable metric updates
�or families� are speci
ed by using the macrovariable �UPDATE�

�UPDATE��M� � The simple Marwil projection update ������ This update can only be used if �DE�
COMP��M��

�UPDATE��G� � The fractioned Marwil projection update ������ This update can only be used if
�DECOMP��M� and �NUMBER�
�

�UPDATE��T� � The fractioned Toint projection update �the best method given in ������� This
update can only be used if �DECOMP��M� and �NUMBER�
�

�UPDATE��B� � The partitioned variable metric updates from the Broyden family �	��� These up�
dates can only be used if �MODEL��AF� or �MODEL��AQ� or �MODEL��AP��

The default value is �UPDATE��M��
Fractioned updates with speci
cations �UPDATE��G� or �UPDATE��T� can only be used in the

unconstrained case� If �UPDATE��B�� the particular update is speci
ed by using the macrovariable
�MET� If �MET��� the BFGS method is used� If �MET��� the DFP method is used� If �MET�
� the

�

Hoshino method is used� If �MET��� the safeguarded rank�one method is used� The default value is
�MET���
If �DECOMP��G�� less e�cient sparse product form updates from the Broyden family are used� In

this case� the particular update is speci
ed by using the macrovariable �MET� If �MET��� the BFGS
method is used� If �MET��� the DFP method is used� If �MET�
� the Hoshino method is used� The
default value is �MET���
Possible speci
cations �type�decomposition�number� for sparse variable metric methods in the uncon�

strained case are these�

L�G��� L�M���
L�M�
�

G�G��� G�M���
G�M���
G�M�
�
G�M���
G�M�	�
G�M���

The default choice is L�M�
� In the box constrained case� only the choice �DECOMP��M� is permitted�
The fractioned updates ��UPDATE��T� and �UPDATE��G�� can only be used if �DECOMP��M� and
�NUMBER�
�
If the Hessian matrix is sparse with a partitioned pattern ��HESF��B��� only the partitioned variable

metric updates� speci
ed by the choice �UPDATE��B�� can be used� These updates are the same as
in the case when the Hessian matrix is sparse with a general pattern� but the partitioned realization is
usually less e�cient than the general one due to the more expensive matrix operations�
Possible speci
cations �type�decomposition�number� for partitioned variable metric methods in the

unconstrained case are these�

L�M�
�
G�M�
�

The default choice is L�M�
�

���� Variablemetric methods with limited storage based on compact variablemetric updates

Variable metric methods with limited storage based on compact variable metric updates are speci
ed
by the statement �CLASS��VL�� The number of VM steps is speci
ed by the macrovariable �MF �the
default value is �MF�	�� Variable metric methods with limited storage based on compact variable
metric updates use several small�size matrices which are updated in every iteration in such a way that
their product approximates the Hessian matrix as precisely as possible �����
Individual variable metric methods with limited storage are speci
ed by using the macrovariables

�MET and �MET�� The macrovariable �MET determines the variable metric update� If �MET��� the
BFGS method ����� �
��� �	��� ��
�� is used� If �MET��� the safeguarded rank�one method ���� is used�
The macrovariable �MET� determines the scaling technique� If �MET���� scaling is suppressed� If
�MET���� the scalar scaling is used�
Possible speci
cations �type�decomposition�number� for variable metric methods based on compact

variable metric updates with limited storage are these�

L�I���
L�M�
�
G�M�
�
G�M���
G�M�	�

��

���� Variable metric methods with limited storage based on reduced Hessians

Variable metric methods with limited storage based on reduced Hessians are speci
ed by the statement
�CLASS��VR�� The number of VM steps is speci
ed by the macrovariable �MF �the default value is
�MF�	�� Variable metric methods with limited storage based on reduced Hessians use a small�size
matrix which is updated in every iteration in such a way that it approximates the reduced Hessian
matrix as precisely as possible �	
��
Individual variable metric methods with limited storage are speci
ed by using the macrovariables

�MET� �MET�� and �MET�� The macrovariable �MET determines the variable metric update� If
�MET��� the BFGS method ����� �
��� �	��� ��
�� is used� If �MET��� the DFP method ��	�� ���� is
used� If �MET�
� the Hoshino method ��	� is used� If �MET��� the safeguarded rank�one method ����
is used� If �MET�	� the optimally conditioned method ���� is used� If �MET��� the rank�one based
method ���� from the preconvex part of the Broyden family is used� If �MET��� the variationally derived
method ��
� from the preconvex part of the Broyden family is used� If �MET��� the heuristic method
���� is used� If �MET��� the method ��		� derived from the matrix decomposition is used� If �MET����
the method ��	�� which minimizes the angle between the direction vector and the negative gradient is
used� The default value is �MET���
The macrovariable �MET� determines the Oren �scaling� parameter ������ If �MET���� no scaling

is used� If �MET���� the initial scaling ��

� is used� If �MET��
� the controlled scaling ��
� is used� If
�MET���� the simple controlled scaling ���� is used� If �MET��	� the scaling in each iteration is used�
The default value is �MET��
� The scaling parameter is determined by using heuristic rules given in
�����
The macrovariable �MET� determines the value of the Biggs �nonquadratic model� parameter ���� If

�MET���� the unit value is used� If �MET���� the Spedicato value ��
�� is used� If �MET��
� the
modi
ed Spedicato value ���� is used� If �MET���� the value determined from the homogeneous model
���� is used� If �MET��	� the value determined from the cubic model �	� is used� The default value is
�MET����
The macrovariable �MET
 determines the Powell correction ������ If �MET
��� the Powell correction

is suppressed �the strong update elimination�� If �MET
��� the Powell correction is suppressed �the weak
update elimination�� If �MET
�
� the Powell correction is applied�
Possible speci
cations �type�decomposition�number� for variable metric methods with limited storage

based on reduced Hessians are these�

L�R���

��
� Modi�ed Newton methods

Modi
ed Newton methods are speci
ed by the statement �CLASS��MN�� These methods use the
Hessian matrix of the objective function which is computed either analytically or numerically� The UFO
system performs a numerical computation of the Hessian matrix automatically whenever the macrovari�
able �HMODELF �or �FGHMODELF� is not de
ned� Modi
ed Newton methods are realized in three
di�erent forms �for �HESF��D�� �HESF��S� and �HESF��B�� depending on the Hessian matrix speci
�
cation� Even if the modi
ed Newton methods can be realized as line search methods ��TYPE��L��� it is
more advantageous to realize them as trust region methods ��TYPE��G���
If the Hessian matrix is dense ��HESF��D��� all second derivatives have to be given analytically or they

are computed numerically by using di�erences of gradients� Possible speci
cations �type�decomposition�
number� for dense modi
ed Newton methods in the unconstrained case are these�

��

L�G��� L�S��� L�B��� L�M���
L�G��� L�S��� L�B��� L�M���

L�M�
�
G�G��� G�S��� G�B��� G�M���
G�G��� G�S��� G�B��� G�M���

G�M�
�
G�M���
G�M�	�
G�M���

The default choice is G�M��� In both the box constrained and the linearly constrained cases we cannot
use speci
cations with �DECOMP��S� and �DECOMP��B�� The choice L�G�� di�ers from the choice
L�G��� The last one corresponds to the combination of both the Newton and the conjugate gradient
methods�
If the Hessian matrix is sparse with a general pattern ��HESF��S��� we have two possibilities� If

�MODEL��FF�� only the structurally nonzero second order derivatives have to be given analytically by
using the prescribed pattern� The numerical computation of the second derivatives is based on the fact
that a substantially lower number of di�erences has to be used in comparison with the dense case� The
determination of suitable di�erences is a combinatorial problem equivalent to a graph coloring problem
����� ����� If �MODEL��AF� or �MODEL��AQ� or �MODEL��AP�� only the nonzero second derivatives
of the approximating functions have to be given analytically by using the prescribed pattern� The numer�
ical computation of the second derivatives is based on the fact that the approximating functions depend
on a minor number of variables so that the number of di�erences is substantially lower in comparison to
the dense case�
If �MODEL��AQ� �sum of squares�� the combination ���� of both the modi
ed Newton and the

modi
ed Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET�
If �MET��� the modi
ed Newton method is used� If �MET��� then the combined method is used� The
default value is �MET���
Possible speci
cations �type�decomposition�number� for sparse modi
ed Newton methods in the un�

constrained case are these�

L�G��� L�M���
L�M�
�

G�G��� G�M���
G�M���
G�M�
�
G�M���
G�M�	�
G�M���

The default choice is G�M�
� In the box constrained case� only the choice �DECOMP��M� is permitted�
If the Hessian matrix is sparse with a partitioned pattern ��HESF��B��� a computation of the second

order derivatives is the same as in the case when the Hessian matrix is sparse with a general pattern� but
the partitioned realization is usually less e�cient than the general one due to the more expensive matrix
operations�
If �MODEL��AQ� �sum of squares�� the combination of both the modi
ed Newton and the modi
ed

Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET like
the dense case� Possible speci
cations �type�decomposition�number� for partitioned modi
ed Newton
methods in the unconstrained case are these�

L�M�
�
G�M�
�

��

The default choice is G�M�
�

���� Truncated Newton methods

Truncated Newton methods are speci
ed by the statement �CLASS��TN�� These methods di�er
from modi
ed Newton methods in that the directional derivatives are determined by the numerical
di�erentiation instead of the sparse Hessian matrix multiplication� Truncated Newton methods are very
e�cient for large problems with computationally simple objective functions ��KCF�� or �KCA���� The
main advantage of truncated Newton methods is that no matrices are used �implicitly �HESF��N��� This
fact highly decreases storage requirements�
Truncated Newton methods are implemented either as line search methods or as trust region methods

and are based on the conjugate gradient subalgorithm� Possible speci
cations �type�decomposition�
number� for truncated Newton methods are these�

L�M�
�
G�M�
�
G�M���
G�M�	�

The default choice is G�M�
�

���� Modi�ed Gauss�Newton methods for nonlinear least squares and nonlinear equations

Modi
ed Gauss�Newton methods are speci
ed by the statement �CLASS��GN�� These methods are
special optimization methods for either nonlinear least squares ��MODEL��AQ�� or nonlinear least pow�
ers ��MODEL��AP�� problems� Modi
ed Gauss�Newton methods are based on the fact that the
rst
term in the Hessian matrix expression� the so�called normal equation matrix� depending on the
rst
derivatives of the approximating functions only is a good approximation of the whole Hessian matrix�
The second term in the Hessian matrix expression can be approximated by using the variable metric
updates�
Modi
ed Gauss�Newton methods are realized in four di�erent forms �for �HESF��D�� �HESF��S��

�HESF��B�� �HESF��N�� depending on the Hessian matrix speci
cation� Although the modi
ed Gauss�
Newton methods can be realized as the line search methods ��TYPE��L��� it is more advantageous to
realize them as the trust region methods ��TYPE��G���
If the Hessian matrix is speci
ed to be dense ��HESF��D��� then the normal equation matrix is also

dense� In this case� we can use hybrid methods with dense updates�

�UPDATE��N� � No update is used� The method utilizes the normal equation matrix �the
rst part
of the Hessian matrix expression��

�UPDATE��S� � The Dennis structured approach �
�� is used� The second part of the Hessian matrix
is approximated by using modi
ed variable metric updates� This part is added to
the normal equation matrix if the conditions for leaving the modi
ed Gauss�Newton
method are satis
ed�

�UPDATE��F� � The Fletcher hybrid approach �
�� ���� is used� The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained by using the variable
metric updates� The decision between the two cases is based on the rate of the
function value decrease and on the normal equation matrix conditioning�

�UPDATE��B� � A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed �����

The default value is �UPDATE��N��
Individual variable metric updates from the above families are speci
ed by using the macrovariable

�MET� If �MET��� the BFGS method is used� If �MET��� the DFP method is used� If �MET�
� the

�

Hoshino method is used� If �MET��� the original �unsafeguarded� rank�one method is used� The value
�MET�� is only allowed if �UPDATE��S� and is the default in this case� The value �MET�� is the
default in the other cases�
Variable metric updates ��UPDATE�F or �UPDATE��B�� can be realized either as simple updates

�normal equation matrix is updated� or as cumulative updates �previous approximation of the Hessian
matrix is updated�� as is described in ����� A decision between these possibilities is mediated by the
macrovariable �MOT�� If �MOT���� the cumulative update is used� If �MOT���� the simple update
is used�
In the dense case� the modi
ed Gauss�Newton methods can be realized with additional special matrix

decompositions which cannot be used in other cases� If �DECOMP��R�� the recursive QR decomposi�
tion ����� is used with an additional correction of the upper triangular matrix R� If �DECOMP��C��
this matrix R can moreover be changed by using the rank revealing algorithm ���� which can improve
its conditioning� Possible speci
cations �type�decomposition�number� for dense modi
ed Gauss�Newton
methods in the unconstrained case are these�

L�G�� � L�S��� L�B��� L�R��� L�C��� L�M���
L�M�
�

G�G��� G�S��� G�B��� G�R��� G�C��� G�M���
G�G��� G�S��� G�B��� G�R��� G�C��� G�M���

G�M�
�
G�M���
G�M�	�
G�M���

T�G��� T�S��� T�R��� T�C��� T�M���
T�G���

T�S��� T�C��� T�M���
M�M���

The default choice is G�M��� In both the box constrained and the linearly constrained cases we cannot use
speci
cations �DECOMP��S�� �DECOMP��R�� �DECOMP��C�� If �DECOMP��S� or �DECOMP��C��
then variable metric updates cannot be used ��UPDATE��N��� The speci
cation �UPDATE��S� can only
be used if �DECOMP��M��
If the Hessian matrix is speci
ed to be sparse with a general pattern ��HESF��S��� the normal equation

matrix has the same structure� In this case� we can use hybrid methods with sparse updates�

�UPDATE��N� � No update is used� The method utilizes the normal equation matrix �the
rst part
of the Hessian matrix expression��

�UPDATE��S� � The Dennis structured approach �
�� is used� The second part of the Hessian matrix
is approximated by using modi
ed variable metric updates� This part is added to the
normal equation matrix if conditions for leaving the modi
ed Gauss�Newton method
are satis
ed�

�UPDATE��D� � The Brown�Dennis structured approach ���� is used� The Hessian matrices of approx�
imating functions are approximated by using variable metric updates� These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modi
ed Gauss�Newton method
are satis
ed�

�UPDATE��B� � A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed �����

�UPDATE��M� � A sparse update based on the Marwil projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi
ed Gauss�Newton method are satis
ed �����

The default value is �UPDATE��N��

��

Individual variable metric updates from the above families are speci
ed by using the macrovari�
able �MET as in the dense case� The value �MET�� is only allowed if either �UPDATE��S� or �UP�
DATE��D�� and is the default in this case� The value �MET�� is the default in the other cases excepting
the case �UPDATE��M� in which the macrovariable �MET is not utilized�
Variable metric updates ��UPDATE�M or �UPDATE��B�� can be realized either as simple updates

�normal equation matrix is updated� or as cumulative updates �previous approximation of the Hessian
matrix is updated�� A decision between these possibilities is mediated by the macrovariable �MOT�
similarly as in the dense case�
If �UPDATE��D�� we can use several switches for utilizing variable metric updates speci
ed by the

macrovariable �MOT�� If �MOT���� the Fletcher and Xu switch ���� is used� If �MOT���� a modi
�
cation of the Fletcher and Xu switch is used� If �MOT���� the Denis and Welsch switch �

� is used� If
�MOT��
� the Ramsin and Wedin switch ����� is used� The default value is �MOT����
Possible speci
cations �type�decomposition�number� for sparse Gauss�Newton methods in the uncon�

strained case are these�

L�G��� L�M���
L�M�
�

G�G��� G�M���
G�G��� G�M���

G�M�
�
G�M���
G�M�	�
G�M���

T�G��� T�M���
T�M���
M�M���

The default choice is G�M�
� In the box constrained case� only the choice �DECOMP��M� is permitted�
If the Hessian matrix is speci
ed to be sparse with a partitioned pattern ��HESF��B��� the normal

equation matrix has the same structure� If that is the case� then we can use hybrid methods with
partitioned updates �UPDATE��N�� �UPDATE��S�� �UPDATE��D�� �UPDATE��F�� �UPDATE��B��
whose details have already been explained above� Note that the partitioned realization is usually less
e�cient than the general one due to the more expensive matrix operations�
Possible speci
cations �type�decomposition�number� for partitioned Gauss�Newton methods are these�

L�M�
�
G�M�
�

The default choice is G�M�
�
If the Hessian matrix is not speci
ed ��HESF��N��� the normal equation matrix is not used� The

Jacobian matrix� de
ning a linear least squares problem� is utilized in each iteration instead� Such so�
called normal equation free Gauss�Newton methods are realized in two di�erent forms �for �JACA��D�
and �JACA��S�� depending on the Jacobian matrix speci
cation�
If the Jacobian matrix is speci
ed to be dense ��JACA��D��� then we cannot use hybrid methods

with variable metric updates �only the speci
cation �UPDATE��NO is permitted�� Moreover� dense�
normal equation free Gauss�Newton methods can only be used in the unconstrained case�
Possible speci
cations �type�decomposition�number� for dense� normal equation free� Gauss�Newton

methods are these�

�	

L�Q��� L�A��� L�E���
L�A�
� L�E�
�
L�A��� L�E���

L�E�	�
G�Q��� G�A��� G�E���
G�Q��� G�E���

G�A�
� G�E�
�
G�A��� G�E���

G�E�	�
G�A���

The default choice is G�A�
 for least squares problems and G�E�
 for systems of nonlinear equations� The
speci
cation �DECOMP��E� can only be used if NA�NF �system of nonlinear equations��
If the Jacobian matrix is speci
ed to be sparse ��JACA��S��� we can use hybrid methods with simple

variable metric updates�

�UPDATE��N� � No update is used� The method utilizes the original Jacobian matrix�
�UPDATE��V� � The simple factorized BFGS update ���� is used� The second order information is

approximated by the unsymmetric rank�one update of the Jacobian matrix�
�UPDATE��R� � The simple factorized rank�one update ���� is used� The second order information

is approximated by the addition of a dense row to the Jacobian matrix�

If �UPDATE��V� or �UPDATE��R�� we can use several switches for utilizing variable metric updates�
speci
ed by the macrovariable �MOT� as in the case of the speci
cation �HESF��S� described above�
The default value is �MOT����
The main advantage of sparse� normal equation free� Gauss�Newton methods consists in the fact that

the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row� If this
is the case� then the classical Gauss�Newton methods cannot be used� On the other hand� the normal
equation matrix often has a lower number of nonzero elements than the Jacobian one� Consequently� the
classical Gauss�Newton methods are more e�cient in this case�
Possible speci
cations �type�decomposition�number� for sparse� normal equation free� Gauss�Newton

methods are these�

L�A��� L�E���
L�A�
� L�E�
�
L�A��� L�E���

L�E�	�
G�A��� G�E���

G�E���
G�A�
� G�E�
�
G�A��� G�E���

G�E�	�
G�A���

The default choice is G�A�
 for least squares problems and G�E�
 for systems of nonlinear equations� The
speci
cation �DECOMP��E� can only be used if NA�NF �system of nonlinear equations�� The choice
L�E�� di�ers from the choice L�E��� The last one corresponds to the incomplete LU decomposition�

��
� Quasi�Newton methods for nonlinear least squares and nonlinear equations

Quasi�Newton methods are speci
ed by the statement �CLASS��QN�� These methods are special op�
timizationmethods for nonlinear least squares ��MODEL��AQ�� problems including systems of nonlinear
equations ��MODEL��NE�� when the
rst derivatives are not speci
ed analytically �the macrovariable
�GMODELA is not de
ned�� Quasi�Newton methods use a rectangular matrix which is updated in every

��

iteration in such a way that it approximates the Jacobian matrix as precisely as possible� In the UFO
system� the quasi�Newton methods are realized in two di�erent forms �for �JACA��D� and �JACA��S��
depending on the Jacobian matrix speci
cation�
There are two possibilities for dense problems ��JACA��D�� which are distinguished by using the

macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � The Broyden family ��
� of rank�one updates is used in almost all iterations� Only
after the restart is the Jacobian matrix approximated numerically by using di�erences�

When �UPDATE��B�� the individual quasi�Newton methods are speci
ed by using the macrovariable
�MET� If �MET��� the
rst �good� Broyden update ��
� is used� If �MET��� the second Broyden
update ��
� is used� If �MET�
� the second Greenstadt update ��
�� is used� If �MET��� the
rst
Greenstadt update ��
�� is used� If �MET�	� the
rst Todd OC update ���� is used� If �MET��� the

rst Todd OCX update ���� is used� If �MET��� the second Todd OC update ���� is used� If �MET���
the second Todd OCX update ���� is used� The default value is �MET��� Dense quasi�Newton methods
can only be used in the unconstrained case�
Possible speci
cations �type�decomposition�number� for dense quasi�Newton methods are these�

L�Q��� L�A��� L�E���
L�A�
� L�E�
�
L�A��� L�E���

L�E�	�
G�Q��� G�A��� G�E���
G�Q��� G�E���

G�A�
� G�E�
�
G�A��� G�E���

G�E�	�
G�A���

The default choice is G�Q�
� The speci
cation �DECOMP��E� can only be used if NA�NF �system of
nonlinear equations��
If the Jacobian matrix is sparse with a general pattern ��JACA��S��� there are two possibilities for

computing an approximation of the Jacobian matrix by the di�erences� These possibilities are distin�
guished by using the macrovariable �NUMDER�

�NUMDER�� � Derivatives of individual approximating functions are computed�
�NUMDER�� � The Coleman�More ���� graph coloring algorithm is used�

Moreover� various sparse quasi�Newton updates which preserve the pattern of the Jacobian matrix can
be used�
If �NUMDER��� there are three choices of the quasi�Newton updates which are speci
ed by the

macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � Sparse quasi�Newton updates are used in almost all iterations� Only after the restart
is the Jacobian matrix approximated numerically by using di�erences�

�UPDATE��S� � Modi
ed Newton methods such as the row scaling update are used in almost all
iterations� Only after the restart is the Jacobian matrix approximated numerically
by using di�erences�

��

If �NUMDER��� there are four choices of the quasi�Newton updates which are speci
ed by the
macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � Sparse quasi�Newton updates ��
�� are used in almost all iterations� Only after the
restart is the Jacobian matrix approximated numerically by using di�erences�

�UPDATE��S� � Modi
ed Newton methods such as the row scaling update are used in almost all
iterations� Only after the restart is the Jacobian matrix approximated numerically
by using di�erences�

�UPDATE��C� � Cyclic column determination methods are used in almost all iterations� Only after
the restart is the Jacobian matrix approximated numerically by using di�erences�

When �UPDATE��B�� the individual quasi�Newton methods are speci
ed by using the macrovariable
�MET� If �MET��� the Schubert update ��
�� is used� If �MET��� the Bogle�Perkins update ���� is
used� If �MET�
� the column update ���	� is used� When �UPDATE��S� and �MET��� the modi
ed
Newton method is used� When �UPDATE��S� and �MET��� the row scaling update ���	� is used�
When �UPDATE��C� and �MET��� the cyclic column determination method ���� is used� When �UP�
DATE��S� and �MET��� the cyclic column determination method ���� is used followed by the Schubert
update ��
���
Possible speci
cations �type�decomposition�number� for sparse quasi�Newton methods are these�

L�A��� L�E���
L�A�
� L�E�
�
L�A��� L�E���

L�E�	�
G�A��� G�E���

G�E���
G�A�
� G�E�
�
G�A��� G�E���

G�E�	�
G�A���

The default choice is G�A�
 for the least squares problems and G�E�
 for systems of nonlinear equations�
The speci
cation �DECOMP��E� can only be used if NA�NF �system of nonlinear equations�� The
choice L�E�� di�ers from the choice L�E��� The latter corresponds to the incomplete LU decomposition�

����� Quasi�Newton methods with limited storage for nonlinear equations

Quasi�Newton methods with limited storage are speci
ed by the statement �CLASS��QL�� The num�
ber of QN steps is speci
ed by the macrovariable �MF �the default value is �MF�	�� These methods
are special methods for solving sparse systems of nonlinear equations ��MODEL��NE�� when the
rst
derivatives are not speci
ed analytically �the macrovariable �GMODELA is not de
ned�� Therefore only
the case NA�NF is permitted� Quasi�Newton methods with limited storage use an initial approximation
of the sparse Jacobian matrix together with several small�size matrices which are updated in every iter�
ation in such a way that their product approximates the Jacobian matrix as precisely as possible �����
There are two possibilities which are distinguished by using the macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � The Broyden good update of rank�one with limited storage ���� is used in almost all
iterations� Only after the restart is the Jacobian matrix approximated numerically
by using di�erences�

��

Possible speci
cations �type�decomposition�number� for quasi�Newton methods with limited storage
are these�

L�A�
� L�E�
�
L�A��� L�E���

L�E�	�
G�A�
� G�E�
�
G�A��� G�E���

G�E�	�

The default choice is G�E�
�
Besides the quasi�Newton methods with limited storage� this class contains inverse column scaling

methods which are chosen by using the speci
cation �DECOMP��I�� There are two possibilities which
are distinguished by using the macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � The inverse column scaling update ����� is used in almost all iterations� Only after
the restart is the Jacobian matrix approximated numerically by using di�erences�

Possible speci
cations �type�decomposition�number� for inverse column scaling methods are these�

L�I���
L�I�
�

If �NUMBER��� then a complete LU decomposition is used� If �NUMBER�
� then a combination of
direct and iterative methods is used� The default value is �NUMBER�
�

����� Truncated Newton methods for nonlinear equations

Truncated Newton methods are speci
ed by the statement �CLASS��TN�� These methods are special
methods for solving systems of nonlinear equations ��MODEL��NE�� when the
rst derivatives are not
speci
ed analytically �the macrovariable �GMODELA is not de
ned�� Therefore only the case NA�NF
is permitted� Truncated Newton methods di�er from quasi�Newton methods in that the sparse Jacobian
matrix multiplication is replaced by the numerical di�erentiation� These methods are very e�cient for
large problems with computationally simple functions in nonlinear equations ��KCA���� The main
advantage of the truncated Newton methods is that matrices are not used �implicitly �JACA��N��� This
fact highly decreases storage requirements�
Truncated Newton methods are implemented either as the line search methods or as the trust region

methods and are based on the smoothed CGS subalgorithm� This subalgorithm can be preconditioned
by using the tridiagonal decomposition� This possibility is determined by the macrovariable �MOS�� If
�MOS���� the tridiagonal decomposition is not used� If �MOS���� the tridiagonal decomposition is
used before the iterative process� If �MOS���� the tridiagonal decomposition is used as a preconditioner�
If �MOS��
� both previous cases are assumed� The default value is �MOS����
Possible speci
cations �type�decomposition�number� for truncated Newton methods are these�

L�E�
�
L�E���
L�E�	�
G�E�
�
G�E���
G�E�	�

The default choice is G�E�
�

��

����� Quasi�Newton and Brent methods for nonlinear equations

Quasi�Newton and Brent methods are speci
ed by the statement �CLASS��QB�� These methods are
special simple methods for solving dense systems of nonlinear equations ��MODEL��NE�� when the
rst
derivatives are not speci
ed analytically �the macrovariable �GMODELA is not de
ned�� Therefore� only
the case NA�NF is permitted� Individual methods are selected using the macrovariable �NUMBER�

�NUMBER�� � The Brent method described in ����
�NUMBER�
 � The simple Newton method �this method can also be used if the macrovariable

�GMODELA is de
ned��

The default value is �NUMBER�
�

����� Simplex type methods for linear programming problems

Simplex type methods for linear programming problems are speci
ed by the statement �CLASS��LP��
These methods are realized in two di�erent forms �for �JACC��D� and �JACC��S�� depending on the
constraint Jacobian matrix speci
cation�
If the constraint Jacobian matrix is dense ��JACC��D��� we can use two di�erent linear programming

methods based on the active set strategy�

�NUMBER�� � Primal reduced gradient �null�space� method �like the method proposed in ������
which is a special implementation of the steepest descent reduced gradient method�

�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation
of the steepest descent projected gradient method�

Possible speci
cations �type�number� for dense linear programming methods are L�� and L��� The
default choice is L���
If the constraint Jacobian matrix is sparse ��JACC��S��� we can use two di�erent linear programming

methods based on the active set strategy� one linear programming method �

�NUMBER�� � Primal reduced gradient �null�space� simplex type method which is described in
������

�NUMBER�� � Primal projected steepest descent �range�space� method�

A possible speci
cation �type�number� for sparse linear programming methods are L�� and L��� The
default choice is L���

����� Interior point methods for linear programming problems

Interior pointmethods for linear programming problems are speci
ed by using the statement �CLASS��LI��
These methods� based on an infeasible primal�dual predictor�corrector strategy� can be used only in the
sparse case when �JACC��S�� Moreover� only the standard LP constraints Ax � b� x
 � can be consid�
ered at present� Individual methods are chosen by using the macrovariable �MLP�

�MLP�� � The
rst algorithm of Miao ������
�MLP�� � The second algorithm of Miao ������
�MLP�
 � The Mizuno algorithm ������

All these methods can be realized in three forms depending on the way of solving the linear generalized
Karush�Kuhn�Tucker system�
�NUMBER�� � Direct solution based on the Gill�Murray decomposition applied to the Schur com�

plement�

	�

�NUMBER�� � Direct solution based on the Bunch�Parlett decomposition applied to the original
Karush�Kuhn�Tucker system�

�NUMBER�
 � Iterative solution based on the conjugate gradient method applied to the Schur
complement�

Possible speci
cations �type�number� for interior point methods are L��� L�� and L�
� The default
choice is L���

����� Simplex type methods for quadratic programming problems

Simplex type methods for quadratic programming problems are speci
ed by using the statement
�CLASS��QP�� These methods are realized in two di�erent forms �for �JACC��D� and �JACC��S��
depending on the constraint Jacobian matrix speci
cation�
If the constraint Jacobian matrix is dense ��JACC��D��� we can use three di�erent quadratic pro�

gramming methods based on the active set strategy�

�NUMBER�� � Primal reduced gradient �null�space� method �like the method proposed in �	���
which is a special implementation of the Newton reduced gradient method�

�NUMBER�� � Primal projected gradient �range�space� method �like the method proposed in �
���
which is a special implementation of the Newton projected gradient method�

�NUMBER�
 � Dual projected gradient �range�space� method �like the method proposed in �		���

Possible speci
cations �type�number� for dense quadratic programming methods are L��� L��� and L�
�
The default choice is L���
If the constraint Jacobian matrix is sparse ��JACC��S��� we can use two di�erent quadratic program�

ming methods based on the active set strategy�

�NUMBER�� � Primal reduced gradient �null�space� simplex type method which is described in
������

�NUMBER�� � Primal projected conjugate gradient �range�space� method�

A possible speci
cation �type�number� for sparse quadratic programming methods are L�� and L���
The default choice is L���

���
� Interior point methods for quadratic programming problems

Interior point methods for quadratic programming problems are speci
ed by using the statement
�CLASS��QI�� These primal�dual methods� based on the logarithmic barrier function and iterative solu�
tion of the inde
nite Karush�Kuhn�Tucker system� can be used only in the sparse case when �JACC��S��
Interior point methods for quadratic programming problems are in fact the same as methods with the
choices �TYPE��L� and �DECOMP��I� described in Section
��
�
Two realizations are possible� which are speci
ed by the macrovariable �NUMBER�

�NUMBER�� � An exact sparse Bunch�Parlett �BP� decomposition �
	� of the inde
nite Karush�
Kuhn�Tucker system is used�

	�

�NUMBER�
 � An inexact preconditioned conjugate gradient �PCG� method for the inde
nite
Karush�Kuhn�Tucker system is applied which uses a special determination of the
required precision� The particular realization of the inexact preconditioned conju�
gate gradient method depends on speci
cations given by the macrovariables �MOS��
�MOS� and �MOS
� The macrovariable �MOS� speci
es the precision control� If
�MOS���� the precision control is suppressed� If �MOS���� a precision guarantee�
ing descent direction is used together with the basic choice of the penalty parameter�
The default value is �MOS���� The macrovariable �MOS� speci
es a preconditioning
technique� If �MOS���� preconditioning is suppressed� If ABS��MOS����� the in�
de
nite preconditioner ���� based on a diagonal approximation of the Hessian matrix
is used in the normal equation form� If �MOS� is positive� a complete Gill�Murray de�
composition is used� If �MOS� is negative� an incomplete Gill�Murray decomposition
is used� The default value is �MOS���� The macrovariable �MOS
 speci
es residual
smoothing of the conjugate gradient method� If �MOS
��� the residual smoothing is
suppressed� If �MOS
��� a simple one�dimensional residual smoothing is used� The
default value is �MOS
���

The default value is �NUMBER��
��
Possible speci
cations �type�decomposition�number� for inexact recursive quadratic programming

methods for equality constrained nonlinear programming problems are L�� and L�
� The default choice
is L�
�

����� Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimizationproblems are speci
ed by the statement �CLASS
��BM�� These methods use a solution of the special quadratic programming subproblem derived from the
cutting plane approach ��	��� This subproblem is in fact the same as in the recursive quadratic program�
ming methods for minimax problems� Proximal bundle methods are realized only for unconstrained or
linearly constrained dense problems ��JACA��D��� The special quadratic programming subproblem can
be solved by using the following methods�

�NUMBER�� � Dual projected gradient �range�space� method proposed in �����
�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation

of the Newton projected gradient method�

The special quadratic programming subproblem is de
ned in such a way that it has a diagonal Hessian
matrix� There are several methods for computing the diagonal weight coe�cients� which are selected
by using the macrovariables �MOS and �MES�� If �MOS�� and �MES���� the weights are updated
using curvature of the one�dimensional quadratic function� If �MOS�� and �MES���� the weights are
updated using the minimum position estimate �suitable for polyhedral and nearly polyhedral functions��
If �MOS��� the weights are updated using the quasi�Newton condition�
Proximal bundle methods are only realized as line search methods in two modi
cations which are

speci
ed by the macrovariable �MEX� If �MEX��� a convex version is assumed� If �MEX��� a nonconvex
version is assumed and we can de
ne a measure of nonconvexity using the macrovariable �ETA	� The
default value is �ETA	����	� Another important parameter is the maximum stepsize de
ned by the
macrovariable �XMAX� The maximum stepsize is a safeguard� which guarantees that the new point lies
in the region where the bundle model is valid� The default value is �XMAX������ Proximal bundle
methods are sensitive to the values of the above two parameters� Therefore� they should be carefully
tuned�
Possible speci
cations �type�number� for proximal bundle methods are L�� and L��� The default

choice is L��� Proximal bundle methods can be used when �KSF�
 or �KSA�
� They can also be used
for minimax problems as is shown in Section
����

	�

����� Bundle�Newton methods for nonsmooth optimization

Bundle�Newton methods for nonsmooth optimization problems are speci
ed by the statement �CLASS
��BN�� These methods use a solution of the special quadratic programming subproblem derived from the
cutting plane approach which contains second order information ����� This subproblem is in fact the
same as in recursive quadratic programming methods for minimax problems� Bundle�Newton methods
are only realized for unconstrained or linearly constrained dense problems ��JACA��D��� The special
quadratic programming subproblem can be solved by using the following methods�

�NUMBER�� � Dual projected gradient �range�space� method proposed in �����
�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation

of the Newton projected gradient method�

The special quadratic programming subproblem has a general �dense� Hessian matrix which is a bundle
approximation of the second�order matrix of the original nonsmooth problem�
Bundle�Newton methods are only realized as line search methods� A nonconvex version is assumed

and we can de
ne a measure of nonconvexity using the macrovariable �ETA	� The default value is
�ETA	����	� Another important parameter is the maximum stepsize de
ned by the macrovariable
�XMAX� The maximum stepsize is a safeguard� which guarantees that the new point lies in the region
where the bundle model is valid� The default value is �XMAX������ Proximal bundle methods are
sensitive to the values of the above two parameters� Therefore� they should be carefully tuned�
Possible speci
cations �type�number� for bundle�Newton methods are L�� and L��� The default choice

is L��� Bundle�Newton methods can be used when �KSF�
 or �KSA�
� They can also be used for
minimax problems as is shown in Section
����

���
� Variable metric bundle methods for nonsmooth optimization

Variable metric bundle methods for nonsmooth optimization problems are speci
ed by the statement
�CLASS ��VB�� These methods are based on a special realization of the BFGS variable metric method�
This realization uses special null steps and restarts� Stepsize selection is based on the polyhedral approx�
imation obtained using bundles of points and subgradients� Variable metric bundle methods are realized
only for unconstrained or linearly constrained dense problems ��JACA��D��� They need not solve any
quadratic programming subproblem�
Variable metric bundle methods are only realized as line search methods in two modi
cations which

are speci
ed by the macrovariable �MEX� If �MEX��� a convex version ���� is assumed� If �MEX��� a
nonconvex version ��	
� is assumed and we can de
ne a measure of nonconvexity using the macrovariable
�ETA	� The default value is �ETA	����	� Another important parameter is the maximum stepsize
de
ned by the macrovariable �XMAX� The maximum stepsize is a safeguard� which guarantees that
the new point lies in the region where the bundle model is valid� The default value is �XMAX������
Variable metric bundle methods are sensitive to the values of the above two parameters� Therefore� they
should be carefully tuned�
Possible speci
cations �type�number� for variable metric bundle methods are L�� and L��� The default

choice is L��� Variable metric bundle methods can be used when �KSF�
 or �KSA�
� They can also be
used for minimax problems as is shown in Section
����

����� Methods for minimax problems�

Minimax problems are speci
ed by the choice �MODEL��AM�� These problems can be solved using
six classes of methods�

�CLASS��BM� � Proximal bundle methods�
�CLASS��BN� � Bundle�Newton methods�
�CLASS��VB� � Variable metric bundle methods�

	

�CLASS��VM� � Recursive quadratic programming variable metric methods ������ An approximation
of the Lagrangian function Hessian matrix is updated in each iteration using the
variable metric updates belonging to the Broyden family�

�CLASS��MN� � Recursive quadratic programmingmodi
ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

�CLASS��LP� � Recursive linear programming methods�

The default value is �CLASS��VM��
Even if the minimax problems can be solved by using bundle methods described in Sections
��� �
����

it is more e�cient to use the recursive quadratic programming methods that utilize a special structure of
the minimax problem� Recursive quadratic programming methods are realized in three di�erent forms�

�TYPE��L� � Line search methods�
�TYPE��G� � General trust region methods�
�TYPE��C� � General trust region methods with second order corrections ��
��

If �TYPE��L�� the special line search method ��MES�	�� described in ����� can be used�
The special quadratic programming subproblem� which is derived from the minimax problem� can be

solved by using two di�erent methods�

�NUMBER�� � Dual projected gradient �range�space� method proposed in �����
�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation

of the Newton projected gradient method�

Recursive quadratic programming variable metric methods use the same updates as methods with
the choices �DECOMP��G� and �UPDATE��B� described in Section
�
 �values �MET�� � �MET���
can be used�� Similarly� recursive quadratic programming modi
ed Newton methods correspond to the
methods with the choice �DECOMP��G� described in Section
�� �the Gill�Murray decomposition is
used��
Recursive linear programming methods are realized as trust region methods with box constrained

subproblems� The special linear programming subproblem� which is derived from the minimax problem�
is solved by a primal projected gradient �range�space� method which is a special implementation of the
steepest descent method�
All of the above methods are only realized for dense unconstrained or linearly constrained problems�

A possible speci
cations �type�number� for recursive quadratic programming methods are these�

L���
L���
G���
G���
C���
C���

The default choice is L��� A possible speci
cation �type�number� for recursive linear programming meth�
ods is G���

����� Recursive quadratic programming methods for dense general nonlinear programming
problems

Recursive quadratic programming methods for dense general nonlinear programming problems are
speci
ed by the statement �FORM��SQ�� These methods belong to the two following classes�

�CLASS��VM� � Recursive quadratic programming variable metric methods� An approximation of
the Lagrangian function Hessian matrix is updated in each iteration using variable
metric updates�

	�

�CLASS��MN� � Recursive quadratic programmingmodi
ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

The default value is �CLASS��VM�� Variable metric methods are the same as in Section
�
 with the
choice �DECOMP��G� and �UPDATE��B� �values �MET�� � �MET��� can be used�� Similarly� mod�
i
ed Newton methods are the same as in Section
�� with the choice �DECOMP��G� �the Gill�Murray
decomposition is used��
Recursive quadratic programming methods for dense general nonlinear programming problems are

realized as line search methods ��TYPE��L�� with the l��exact penalty function� They are like the
methods proposed in ������ The special line search method ��MES�	� for l��exact penalty function
can be used successfully� The quadratic programming subproblem can be solved by using two di�erent
methods�

�NUMBER�� � Dual projected gradient �range�space� method �like the method proposed in �		���
�NUMBER�� � Primal projected gradient �range�space� method �like the method proposed in �
���

which is a special implementation of the Newton projected gradient method�

Possible speci
cations �type�number� for these methods are L�� and L��� The default choice is L���

����� Recursive quadratic programming methods for sparse equality constrained nonlinear
programming problems

Recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems are speci
ed by the statement �FORM��SE�� These methods� which are intended for large
problems� belong to the following classes�

�CLASS��VM� � Recursive quadratic programming variable metric methods� An approximation of
the Lagrangian function Hessian matrix is updated in each iteration using variable
metric updates�

�CLASS��VL� � Recursive quadratic programming variable metric methods with limited storage
based on compact representations of variable metric updates� The number of VM
steps is speci
ed by the macrovariable �MF �the default value is �MF�	�� Variable
metric methods with limited storage use several small�size matrices which are updated
in every iteration in such a way that their product approximates the Lagrangian
function Hessian matrix as precisely as possible �����

�CLASS��MN� � Inexact recursive quadratic programming modi
ed Newton methods� The La�
grangian function Hessian matrix is computed in each iteration either analytically
or numerically�

The default value is �CLASS��MN��
If �CLASS��VM�� the individual variable metric updates �or families� are speci
ed by using the

macrovariable �UPDATE�

�UPDATE��M� � The simple Marwil projection update ������
�UPDATE��B� � The partitioned variable metric updates from the Broyden family �	��� These up�

dates can only be used if �MODEL��AF� or �MODEL��AQ� or �MODEL��AP��

The default value is �UPDATE��M�� If �UPDATE��B�� the particular update is speci
ed by using the
macrovariable �MET� If �MET��� the BFGS method is used� If �MET��� the DFP method is used�
If �MET�
� the Hoshino method is used� If �MET��� the safeguarded rank�one method is used� The
default value is �MET���
If �CLASS��VL�� two variable metric updates with limited storage� belonging to the Broyden family�

can be used� These updates are speci
ed by using the macrovariable �MET� If �MET��� then the

		

BFGS method is used� If �MET��� then the safeguarded rank�one method is used� The default value is
�MET���
Recursive quadratic programming methods for sparse equality constrained nonlinear programming

problems are realized in three di�erent ways which are speci
ed by using the macrovariable �TYPE�

�TYPE��L� � Line search methods� These methods can use
ve di�erent merit functions for the
stepsize selection� Individual merit functions are determined by using the macrovari�
able �MEP� If �MEP��� no merit function is used� If �MEP��� the Powell l� exact
penalty function is used� If �MEP��� the l� augmented Lagrangian function is used�
If �MEP�
� the l� augmented Lagrangian function is used� If �MEP��� the Han l�
exact penalty function is used� If �MEP�	� the Schittkowski augmented Lagrangian
function is used� The default value is �MEP���

�TYPE��F� � SQP
lter methods ����� These methods are based on a special multicriterial decision
and do not use any merit function�

�TYPE��G� � Trust region methods� These methods use two direction determination subproblems
�
��� ����� ����� The vertical subproblem� solved by using the dog�leg method� serves
for a su�cient decrease of constraint violations� The horizontal subproblem� solved
by a special realization of the conjugate gradient method� serves for minimization of
a quadratic approximation of a particular merit function� Individual merit functions
are determined by using the macrovariable �MEP� If �MEP��� no merit function
is used� If �MEP��� the Powell l� exact penalty function is used� If �MEP���
the l� augmented Lagrangian function is used� If �MEP�
� the l� augmented La�
grangian function is used� If �MEP��� the Han l� exact penalty function is used�
If �MEP�	� the Schittkowski augmented Lagrangian function is used� The default
value is �MEP���

The default value is �TYPE��L��
If �TYPE��L� or �TYPE��F�� the direction vector can be computed in three di�erent ways� which

are speci
ed by using the macrovariable �DECOMP�

�DECOMP��K� � The direction vector is determined as a solution of the inde
nite Karush�Kuhn�
Tucker system �����

�DECOMP��Z� � The direction vector is decomposed into two parts� The vertical part is computed
directly from the constraint violation� The horizontal part� lying in the null�space� is
computed iteratively by using a special realization of the conjugate gradient method�
Instead of projecting into the null�space� either the augmented system or an orthog�
onal projection matrix� both determined from a range�space basis� are used �����

�DECOMP��G� � The direction vector is determined directly from the Lagrangian multipliers� which
are determined iteratively by using the conjugate gradient method in the range space
using the Schur complement�

The default value is �DECOMP��K��
If �DECOMP��K��
ve realizations are possible� which are speci
ed by the macrovariable �NUMBER�

�NUMBER�� � An exact sparse Bunch�Parlett �BP� decomposition �
	� of the inde
nite Karush�
Kuhn�Tucker system is used�

	�

�NUMBER�
 � An inexact preconditioned conjugate gradient �PCG� method for the inde
nite
Karush�Kuhn�Tucker system is applied which uses a special determination of the
required precision� The particular realization of the inexact preconditioned conju�
gate gradient method depends on speci
cations given by the macrovariables �MOS��
�MOS�� �MOS
 and �MOS�� The macrovariable �MOS� speci
es the precision con�
trol� If �MOS���� the precision control is suppressed� If �MOS���� a precision guar�
anteeing descent direction is used together with the basic choice of the penalty param�
eter� The default value is �MOS���� The macrovariable �MOS� speci
es a precondi�
tioning technique� If �MOS���� preconditioning is suppressed� If ABS��MOS�����
the inde
nite preconditioner ���� based on a diagonal approximation of the Hessian
matrix is used in the normal equation form� If ABS��MOS����� the inde
nite pre�
conditioner ���� based on a diagonal approximation of the Hessian matrix is used
in the augmented system form� If ABS��MOS���
� the inde
nite preconditioner
���� based on a diagonal perturbation of the Schur complement is used� If �MOS�
is positive� a complete Gill�Murray decomposition is used� If �MOS� is negative�
an incomplete Gill�Murray decomposition is used� The default value is �MOS����
The macrovariable �MOS
 speci
es residual smoothing of the conjugate gradient
method� If �MOS
��� the residual smoothing is suppressed� If �MOS
��� a simple
one�dimensional residual smoothing is used� The default value is �MOS
��� The
macrovariable �MOS� speci
es the choice of the initial direction� If �MOS���� the
zero initial direction is used� If �MOS���� the vertical initial direction is used� The
default value is �MOS����

�NUMBER�� � An inexact preconditioned conjugate residual �PCR� method for the inde
nite
Karush�Kuhn�Tucker system is applied which uses a special determination of the
required precision� The particular realization of the inexact preconditioned conjugate
residual method depends on speci
cations given by the macrovariables �MOS� and
�MOS�� which have the same meaning as in case �NUMBER�
� The default values
are �MOS��� and �MOS����

�NUMBER�	 � An inexact symmetric preconditioned quasi�minimum residual �PQMR� method for
the inde
nite Karush�Kuhn�Tucker system is applied which uses a special determi�
nation of the required precision� The particular realization of the inexact symmetric
preconditioned quasi�minimum residual method depends on speci
cations given by
the macrovariables �MOS� and �MOS�� which have the same meaning as in case
�NUMBER�
� The default values are �MOS��� and �MOS����

�NUMBER�� � An inexact nonsymmetric preconditioned conjugate gradient squared �PCGS�
method for the inde
nite Karush�Kuhn�Tucker system is applied which uses a spe�
cial determination of the required precision� The particular realization of the inexact
nonsymmetric preconditioned conjugate gradient squared method depends on speci�

cations given by the macrovariables �MOS�� �MOS� and �MOS
� which have the
same meaning as in case �NUMBER�
� The default values are �MOS���� �MOS���
and �MOS
���

The default value is �NUMBER��
��
If �DECOMP��Z�� only one realization is possible� which is speci
ed by the macrovariable �NUMBER�

	�

�NUMBER�
 � An inexact null�space preconditioned conjugate gradient �NPCG� method for the de�
termination of the horizontal direction is applied which uses a special determination
of the required precision� A particular realization of the null�space preconditioned
conjugate gradient method depends on the speci
cations given by the macrovariables
�MOS� and �MOS�� The macrovariable �MOS� speci
es the precision control and
the choice of the penalty parameter� If �MOS���� the precision control is suppressed�
If �MOS���� a precision guaranteeing descent direction is used together with the ba�
sic choice of the penalty parameter� If �MOS���� a precision guaranteeing descent
direction is used together with an extended choice of the penalty parameter� based on
the condition of positive de
nitness� The default value is �MOS���� The macrovari�
able �MOS� speci
es a way for computing the preconditioner� If ABS��MOS�����
the preconditioner is computed by using the orthogonal projection matrix determined
from a range�space basis� If ABS��MOS����� the preconditioner is computed by us�
ing the augmented system determined from a range�space basis� If �MOS� is positive�
a diagonal approximation of the Hessian matrix is used� If �MOS� is negative the
unit approximation of the Hessian matrix is used� The default value is �MOS����

If �DECOMP��G�� two realizations are possible� which are speci
ed by the macrovariable �NUMBER�

�NUMBER�
 � The sparse Gill�Murray decomposition of the Lagrangian function Hessian matrix
followed by a range�space smoothed conjugate gradient �RSCG� method for a positive
de
nite range space system is applied which uses a special determination of the re�
quired precision� The particular realization of the preconditioned conjugate gradient
method depends on speci
cations given by the macrovariables �MOS�� �MOS� and
�MOS
� The macrovariable �MOS� speci
es the precision control and the choice
of the penalty parameter� If �MOS���� the precision control is suppressed� If
�MOS���� a precision guaranteeing descent direction is used� The default value
is �MOS���� The macrovariable �MOS� speci
es a preconditioning technique� If
�MOS���� the preconditioning is suppressed� If ABS��MOS����� the positive de
�
nite preconditioner ���� based on a diagonal approximation of the Hessian matrix is
used� If ABS��MOS����� the polynomial preconditioner ���
� based on a decomposi�
tion of the normal equation is used� If �MOS� is positive� a complete Gill�Murray de�
composition is used� If �MOS� is negative� an incomplete Gill�Murray decomposition
is used� The default value is �MOS���� The macrovariable �MOS
 speci
es residual
smoothing of the conjugate gradient method� If �MOS
��� the residual smoothing is
suppressed� If �MOS
��� then a simple one�dimensional residual smoothing is used�
The default value is �MOS
���

�NUMBER�� � The sparse Bunch�Parlett decomposition of the Lagrangian function Hessian matrix
followed by a range�space smoothed conjugate gradient �RSCG� method for an indef�
inite range space system is applied which uses a special determination of the precision
required� The particular realization of the smoothed conjugate gradient method de�
pends on speci
cations given by the macrovariables �MOS� and �MOS
� which have
the same meaning as in case �NUMBER�
� The default values are �MOS��� and
�MOS
���

The default value is �NUMBER��
��
If �TYPE��G�� only the speci
cations �DECOMP��Z� and �NUMBER��
� are possible� which cor�

responds to the trust region conjugate gradient �TRCG� method� The macrovariable �MOS� speci
es
a way for computing the projection step� If �MOS���� the projection step is computed by using the
orthogonal projection matrix determined from a range�space basis� If �MOS���� the projection step is
computed by using the augmented system determined from a range�space basis�
If �TYPE��L�� the UFO system allows us to choose a second order correction for overcoming the

Maratos e�ect and various Lagrange multipliers updates� This is a�ected by the macrovariables �MEP�

	�

and �MEP�� The macrovariable �MEP� speci
es a second order correction� If �MEP���� the second
order correction is suppressed� If �MEP���� the second order correction is determined as being a least
squares solution of the shifted constraint system� The default value is �MEP���� The macrovariable
�MEP� speci
es estimates of Lagrange multipliers at the beginning of each iteration� If �MEP���� the
initial estimate is taken from the previous iteration� If �MEP���� the initial estimate is determined as
being a least squares solution of the
rst part of the Karush�Kuhn�Tucker system� The default value is
�MEP����
Possible speci
cations �type�decomposition�number� for inexact recursive quadratic programming

methods for equality constrained nonlinear programming problems are these�

L�K���
L�K�
� L�Z�
� L�G�
�
L�K��� L�G���
L�K�	�
L�K���
F�K���

F�Z���
F�K�
� F�Z�
� F�G�
�
F�K��� F�G���
F�K�	�
F�K���

G�Z�
�

The default choice is L�K�
� The choice �DECOMP��G� cannot be used for variable metric methods
with limited storage ��CLASS��VL���

����� Interior point methods for sparse equality and inequality constrained nonlinear pro�
gramming problems

Interior point methods for sparse equality and inequality constrained nonlinear programmingproblems
are speci
ed by the statement �FORM��SI�� These methods� which are intended for large problems�
belong to the following class�

�CLASS��MN� � Inexact interior point modi
ed Newton methods� The Lagrangian function Hessian
matrix is computed in each iteration either analytically or numerically�

Interior point methods for sparse equality and inequality constrained nonlinear programmingproblems
are realized in two di�erent ways which are speci
ed by using the macrovariable �TYPE�

�TYPE��L� � Line search methods� These methods can use
ve di�erent merit functions for the
stepsize selection� Individual merit functions are determined by using the macrovari�
able �MEP� If �MEP��� no merit function is used� If �MEP��� the l� augmented
Lagrangian function is used� The default value is �MEP���

�TYPE��F� � SQP
lter methods ����� These methods are based on a special multicriterial decision
and do not use any merit function�

The default value is �TYPE��L��
The direction vector can be computed in the way� which is speci
ed by using the macrovariable

�DECOMP�

�DECOMP��I� � The direction vector is determined as a solution of the inde
nite Karush�Kuhn�
Tucker system �����

Two realizations are possible� which are speci
ed by the macrovariable �NUMBER�

	�

�NUMBER�� � An exact sparse Bunch�Parlett �BP� decomposition �
	� of the inde
nite Karush�
Kuhn�Tucker system is used�

�NUMBER�
 � An inexact preconditioned conjugate gradient �PCG� method for the inde
nite
Karush�Kuhn�Tucker system is applied which uses a special determination of the
required precision� The particular realization of the inexact preconditioned conju�
gate gradient method depends on speci
cations given by the macrovariables �MOS��
�MOS� and �MOS
� The macrovariable �MOS� speci
es the precision control� If
�MOS���� the precision control is suppressed� If �MOS���� a precision guarantee�
ing descent direction is used together with the basic choice of the penalty parameter�
The default value is �MOS���� The macrovariable �MOS� speci
es a preconditioning
technique� If �MOS���� preconditioning is suppressed� If ABS��MOS����� the in�
de
nite preconditioner ���� based on a diagonal approximation of the Hessian matrix
is used in the normal equation form� If �MOS� is positive� a complete Gill�Murray de�
composition is used� If �MOS� is negative� an incomplete Gill�Murray decomposition
is used� The default value is �MOS���� The macrovariable �MOS
 speci
es residual
smoothing of the conjugate gradient method� If �MOS
��� the residual smoothing is
suppressed� If �MOS
��� a simple one�dimensional residual smoothing is used� The
default value is �MOS
���

The default value is �NUMBER��
��
Possible speci
cations �type�decomposition�number� for inexact recursive quadratic programming

methods for equality constrained nonlinear programming problems are these�

L�I���
L�I�
�

The default choice is L�I�
�

����� Methods for initial value problems for ordinary di�erential equations

Methods for initial value problems for ordinary di�erential equations are speci
ed by using the
macrovariable �SOLVER� The UFO system contains
ve types of integration methods�

�SOLVER��DP	� � The Dormand and Prince method of the
fth order with a stepsize control for nonsti�
problems�

�SOLVER��DP�� � The Dormand and Prince method of the eighth order with a stepsize control for
nonsti� problems�

�SOLVER��EX�� � The extrapolation method with a stepsize control� based on the midpoint rule� for
nonsti� problems�

�SOLVER��RD	� � The Radau method of the
fth order with a stepsize control for sti� problems�
�SOLVER��RS�� � The Rosenbrock method of the fourth order with a stepsize control for sti� problems�

The default value is �SOLVER��DP��� These methods� described in ����� use a stepsize control based on
a local truncation error�
A solution to the initial value problem for ordinary di�erential equations can be stored for subsequent

processing� The extent of the data stored is determined by using the macrovariable �MED� If �MED���
then no data are stored� If �MED��� the data in all solution steps are stored� If �MED��� the data
in equidistant mesh points are stored� The number of mesh points is speci
ed by using the statement
�NA�number of mesh points in the last case�

����� Methods for direction determination

Optimization methods� contained in the UFO system� are usually implemented in such a way that
they use the same modules for direction determination� These modules� realized with di�erent kinds
of matrix decomposition� are distinguished by using the macrovariables �TYPE and �NUMBER� The

��

meaning of the speci
cation �TYPE has been explained above� Now we will explain the speci
cation
�NUMBER�
If �TYPE��L�� then line search methods are supposed� In this case� relatively simple procedures are

used for direction determination� There are
ve possibilities�

�NUMBER�� � Direct methods for solving linear systems based on various matrix decompositions�
These decompositions are interesting� especially in the sparse case� The Gill�Murray
decomposition �	�� of the Hessian matrix is applied if �DECOMP��M� and �MOS���
or if �DECOMP��G�� The Schnabel�Eskow decomposition ��
�� of the Hessian matrix
is used if �DECOMP��M� and �MOS��� or if �DECOMP��S�� The Choleski decom�
position of the Hessian matrix is utilized if �DECOMP��R� or �DECOMP��C�� The
Bunch�Parlett decomposition ��	� of the Hessian matrix is applied if �DECOMP��B��
The inverse matrix is used if �DECOMP��I�� The orthogonal QR decomposition �����
of the Jacobian matrix is utilized if �DECOMP��A� or �DECOMP��Q�� The com�
plete LU decomposition ���� of the Jacobian matrix is applied if �DECOMP��E��
Moreover� symbolic decomposition is always determined before the iterative process
in the sparse case� so that only numerical computations with known factors are carried
out in the subsequent iterations�

�NUMBER�� � An alternative possibility to the previous case� The direct solution is combined with
a conjugate gradient direction if the Hessian matrix is inde
nite� This possibility can
be advantageously used in connection with the modi
ed Newton method�

�NUMBER�
 � Inexact iterative methods� The conjugate gradient method ���� for solving linear
systems with the Hessian matrix is applied if �DECOMP��M�� The CGLS method
����� for solving linear least squares problems with the Jacobian matrix is used if
�DECOMP��A�� The smoothed CGS method ���	� for solving linear systems with
the Jacobian matrix is utilized if �DECOMP��E�� The precision is speci
ed by the
macrovariable �MOS� If �MOS��� simple strategy is used� If �MOS��� the geo�
metric decreasing strategy is used� If �MOS�
� the harmonic decreasing strategy
is used� If �DECOMP��M� and �HESF��S�� the conjugate gradient method can
be preconditioned by using the incomplete Gill�Murray �IGM� decomposition� This
possibility is speci
ed by the macrovariable �MOS�� If �MOS���� preconditioning
is suppressed� If �MOS���� the IGM decomposition is used� Similarly� if �DE�
COMP��E� and �JACA��S�� the smoothed CGS method can be preconditioned by
using either the incomplete LU �ILU� decomposition or the SSOR iteration� This
possibility is speci
ed by the macrovariable �MOS�� If �MOS���� preconditioning is
suppressed� If �MOS���� the ILU decomposition is used� If �MOS���� the SSOR
iteration is used�

�NUMBER�� � Inexact iterative methods� The LSQR method ����� for solving linear least squares
problems with the Jacobian matrix is applied if �DECOMP��A�� The GMRES
method ����� for solving linear systems with the Jacobian matrix is used if �DE�
COMP��E�� The precision is speci
ed by the macrovariable �MOS as in the previous
case�

�NUMBER�	 � Inexact iterative methods� The smoothed BICGSTAB method ��	�� for solving linear
systems with the sparse Jacobian matrix is used if �DECOMP��E�� The precision is
speci
ed by the macrovariable �MOS as in the previous case�

If the line search method is used then a descent property of the determined direction is tested� If

�sT g
 �� k s kk g k

where sTg is the directional derivative� s is the direction� and g is the objective function gradient� then
the direction is accepted� In the opposite case the optimization method is restarted� The value �� is
speci
ed using the macrovariable �EPS��

��

If �TYPE��G�� then trust region methods are supposed� The initial trust region radius can be
speci
ed by the statement �XDEL�trust region radius� but the default automatically derived value is
recommended� The trust region methods can be internally scaled� This way is very advantageous
for nonlinear regression problems containing exponentials� The trust region scaling is speci
ed by the
macrovariable �MOS�� If �MOS���� no scaling is performed� If �MOS���� the scaling coe�cients are
derived from the normal equation matrix diagonal elements ��	�� There are six possibilities�

�NUMBER�� � So�called single dog�leg methods based on various matrix decompositions� These
decompositions are interesting especially in the sparse case� The Gill�Murray decom�
position �	�� of the Hessian matrix is applied if �DECOMP��M� and �MOS��� or if
�DECOMP��G�� The Schnabel�Eskow decomposition ��
�� is used if �DECOMP��M�
and �MOS��� or if �DECOMP��S�� The Choleski decomposition of the Hessian ma�
trix is utilized if �DECOMP��R� or �DECOMP��C�� The Bunch�Parlett decompo�
sition ��	� of the Hessian matrix is applied if �DECOMP��B�� The orthogonal QR
decomposition ����� of the Jacobian matrix is utilized if �DECOMP��A� or �DE�
COMP��Q�� The complete LU decomposition ���� of the Jacobian matrix is applied
if �DECOMP��E�� Moreover� symbolic decomposition is always determined before the
iterative process in the sparse case� so that only numerical computations with known
factors are carried out in the subsequent iterations� The individual dog�leg methods
are speci
ed by the macrovariable �MOS� If �MOS��� the single dog�leg method �����
is used� If �MOS��� the double dog�leg method �
�� is used� If �MOS�
� the triple
dog�leg method is used� If �MOS��� the optimum dog�leg method ���� is used�

�NUMBER�� � An alternative possibility to the previous case� The so�called multiple dog�leg
methods �combinations of single dog�leg methods and conjugate gradient meth�
ods� ���� are supposed� The number of dog�leg steps is speci
ed by the statement
�MOS�number of steps�

�NUMBER�
 � Iterative trust region methods� The conjugate gradient trust region method ��
��
with the Hessian matrix is applied if �DECOMP��M�� The CGLS trust region method
���� with the Jacobian matrix is used if �DECOMP��A�� The smoothed CGS trust
region method ��
� with the Jacobian matrix is utilized if �DECOMP��E�� The preci�
sion is speci
ed by the macrovariable �MOS� If �MOS��� the simple strategy is used�
If �MOS��� the geometric decreasing strategy is used� If �MOS�
� the harmonic de�
creasing strategy is used� If �DECOMP��M� and �HESF��S�� the conjugate gradient
method can be preconditioned by using the incomplete Gill�Murray �IGM� decompo�
sition� This possibility is speci
ed by the macrovariable �MOS�� If �MOS���� pre�
conditioning is suppressed� If �MOS���� the IGM decomposition is used� Similarly� if
�DECOMP��E� and �JACA��S�� the smoothed CGS method can be preconditioned
by using either the incomplete LU �ILU� decomposition or the SSOR iteration� This
possibility is speci
ed by the macrovariable �MOS�� If �MOS���� preconditioning is
suppressed� If �MOS���� the ILU decomposition is used� If �MOS���� the SSOR
iteration is used�

�NUMBER�� � Iterative trust region methods� The combined Lanczos and CG trust region method
���� with the Hessian matrix is applied if �DECOMP��M�� The LSQR trust region
method ���� with the Jacobian matrix is used if �DECOMP��A�� The GMRES trust
region method ��
� with the Jacobian matrix is utilized if �DECOMP��E�� The preci�
sion is speci
ed by the macrovariable �MOS as in the previous case� Iterative methods
can be again preconditioned� This possibility is speci
ed by the macrovariable �MOS�
as in the previous case�

��

�NUMBER�	 � Iterative trust region methods� The combined CG and Lanczos trust region method
���� with the Hessian matrix is applied if �DECOMP��M�� The smoothed BICGSTAB
trust region method ��
� with the Jacobian matrix is utilized if �DECOMP��E�� The
precision is speci
ed by the macrovariable �MOS as in the previous case� Iterative
methods can be again preconditioned� This possibility is speci
ed by the macrovari�
able �MOS� as in the previous case�

�NUMBER�� � An optimum locally constrained trust region method ������ The Gill�Murray decom�
position �	�� of the Hessian matrix is applied if �DECOMP��M� and �MOS���� The
Schnabel�Eskow decomposition ��
�� of the Hessian matrix is used if �DECOMP��M�
and �MOS��� or if �DECOMP��S�� The special augmented Jacobian matrix is used
if �DECOMP��A��

If �TYPE��T�� only the speci
cations �NUMBER��� �NUMBER�� and �NUMBER�� can be used�
These speci
cations have the same meaning as in the case �TYPE��G�� but the implementation is simpler�
If �NUMBER��� the simpli
ed optimum locally constrained trust region method ��	� is used�
If �TYPE��M�� only the speci
cation �NUMBER�� can be used� In this case a modi
ed Marquardt

method proposed by Fletcher �
�� is applied�

���
� Methods for stepsize selection

Stepsize selection is a very important part of optimization methods� The UFO system contains two
types of stepsize selection procedures� line search methods and trust region methods� Line search methods
are realized in two modi
cations speci
ed by the macrovariable �SEARCH�

�SEARCH��B� � Basic line search methods based on various interpolation and extrapolation formulas�
�SEARCH��M� � Mixed line search methods which control the maximum stepsize like the trust region

methods�

The choice of individual line search procedures is in#uenced by the order of directional derivatives
being used� This order can be speci
ed by the macrovariable �KDS� The value of the macrovariable �KDS
is usually derived internally from the order of analytically supplied partial derivatives� If this order is
zero� then always �KDS��� In the opposite case� the value of the macrovariable �KDS can be speci
ed by
the user� If �KDS��� only the function values are used during the line search� If �KDS��� the function
values and the
rst directional derivatives are used� If �KDS�� then� in addition� the Hessian matrices
or their approximations are computed during the line search �this case is very useful for a line search
implementation of modi
ed Gauss�Newton methods��
The particular interpolation and extrapolation rule is speci
ed by the macrovariable �MES� If �KDS���

we have the following possibilities�

�MES�� � The uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � Two point quadratic extrapolation or interpolation is used�
�MES�
 � Three point quadratic extrapolation or interpolation is used�
�MES�� � Three point cubic extrapolation or interpolation is used�
�MES�	 � Special extrapolation or interpolation is used based on the special form of the ob�

jective function�

If �KDS�� or �KDS��� the following possibilities� based on the
rst directional derivatives� can be used�

�MES�� � The uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � Quadratic extrapolation or interpolation �with one directional derivative� is used�
�MES�
 � Quadratic extrapolation or interpolation �with two directional derivatives� is used�
�MES�� � Cubic extrapolation or interpolation ��	� is used�
�MES�	 � Conic extrapolation or interpolation ��� is used�

�

More detailed speci
cations concerning the line search selection can be chosen using macrovariables
�MES�� �MES�� �MES
�

�MES��� � Constant extrapolation is used�
�MES��� � Extrapolation speci
ed by the macrovariable �MES is used�
�MES��
 � Extrapolation is suppressed�
�MES��� � Standard line search termination criterion is used�
�MES��� � Special termination criterion for nonconvex functions is used�
�MES��
 � Line search is terminated after at least two function evaluations�
�MES
�� � Safeguard against rounding errors is suppressed�
�MES
�� � The
rst level of safeguard is used�
�MES
�
 � The second level of safeguard is used�

Another useful speci
cation for the line search selection is a termination criterion which is determined
by using the macrovariable �KTERS�

�KTERS�� � The nonmonotone line search procedure proposed in �	�� is used� The absolute value
of the macrovariable �KTERS� which cannot be greater then ��� gives the number of
nonmonotone steps�

�KTERS�� � Perfect stepsize� The relative precision of the stepsize parameter is given by the
value �EPS
�

�KTERS�� � The Goldstein stepsize �	��� The termination precision is given by the value �EPS��
�KTERS�
 � The Curry�Altman stepsize ���� �Wolfe conditions�� The termination precision is

given by the values �EPS� and �EPS��
�KTRES�� � The extended Curry�Altman stepsize �
�� �strict Wolfe conditions�� The termination

precision is given by the values �EPS� and �EPS��
�KTERS�	 � The Armijo stepsize ���� The termination is given by the value �EPS��
�KTERS�� � The
rst stepsize� The stepsize selection is terminated after the
rst function eval�

uation�

The last useful speci
cation for the line search methods is the initial stepsize choice which is determined
by the macrovariable �INITS� The initial stepsize is usually computed by the rule

� � min�c���c��$F�s
Tg��

where sT g is the initial directional derivative and $F � F � Fmin or $F � Fold � F if the value of
the macrovariable �INITS is positive or negative respectively� The absolute value of the macrovariable
�INITS determines coe�cients c� and c� If jINITSj��� then c� � � and c� � �� If jINITSj��� then c� � �
and c� � �� If jINITSj�
� then c� � � and c� � �� If jINITSj��� then c� � � and c� � ��
Trust region methods are also realized in two modi
cations speci
ed by the macrovariable �SEARCH�

�SEARCH��B� � The basic trust region methods with stepsize control based on the comparison of
both the actual and the predicted function decreases�

�SEARCH��M� � Mixed trust region methods which use interpolation formulas for stepsize reduction
like the line search methods ������

Trust region methods are also in#uenced by using the macrovariable �KTERS� If �KTERS��� then
nonmonotone trust region procedure proposed in ���� is used� The absolute value of the macrovariable
�KTERS� which cannot be greater then ��� gives the number of nonmonotone steps�

����� Methods for numerical di�erentiation

The UFO system computes derivatives of the model function �of the approximating functions� of the
constraint funcions� numerically whenever they are not given analytically� This is made possible by the
macroprocessor which generates a corresponding part of the control program� The main problem of a

��

numerical di�erentiation is a di�erence determination which has to be chosen in such a way that the
total in#uence of both the cancellation and the roundo� error is as small as possible� There are three
possibilities in the UFO system which are distinguished by using the macrovatiable �MCG�

�MCG�� � The simple di�erence determination described in �
�� is used�
�MCG�� � The optimum di�erence determination proposed in �	�� is used�
�MCG�� � The optimum di�erence determination proposed in ����� is used�

The default option is �MCG��� The above possibilities are used for a computation of the model function

rst order derivatives� The others �second order derivatives or derivatives of the approximating functions
and constraint functions� are always computed with the simple di�erence determination�

����� Methods for objective function evaluation in the case of dynamical systems optimiza�
tion

If either �MODEL��DF� or �MODEL��DQ�� the objective function is computed from the solution of
an initial value problem for ordinary di�erential equations� The initial value problem is solved and the
integral criterion is evaluated by using integration methods speci
ed by the macrovariable �SOLVER as
is described above� If the partial derivatives of all the functions used are given analytically� the gradient
of the objective function is computed by integration methods� There are two possibilities speci
ed by
the macrovariable �SYSTEM�

�SYSTEM��F� � Forward integration using an augmented system of ordinary di�erential equations�
�SYSTEM��B� � Backward integration using the adjoint system of ordinary di�erential equations�

The default value is �SYSTEM��F�� In the case of modi
ed Gauss�Newton methods ��CLASS��GN���
an approximation of the Hessian matrix is also computed by using forward integration of an augmented
system�

���
� Global optimization methods

Global optimization methods are used if �EXTREM��G� is speci
ed� The global optimization meth�
ods use local optimization methods for
nding local minima� Therefore the particular local optimization
method has to be chosen by using the macrovariables �CLASS and �TYPE and others� Individual global
optimization methods are speci
ed by using the macrovariables �GCLASS and �GTYPE� The UFO
system contains four classes of global optimization methods�

�GCLASS�� � Random search methods� These methods are simple and robust� but less e�cient�
�GCLASS�� � Continuation methods� These methods use some penalty functions which are ad�

justed after reaching an arbitrary local minimum so that another local minimum is
found�

�GCLASS�
 � Clustering methods� These methods are based on randomly generated sample points
which are processed using clustering algorithms to determine attractivity regions
�clusters� of the individual minima� The attractivity regions �clusters� obtained are
not searched repeatedly�

�GCLASS�� � Multi�level methods� Modern stochastic methods which involve a combination of
sampling and local search techniques� These methods combine strong theoretical
properties with an attractive computational behaviour� These methods are simpler
but more e�cient than the clustering methods�

If �GCLASS��� we can choose four types of global optimization methods�

�	

�GTYPE�� � Single�start methods� Random points� uniformly distributed in a given region� are
generated and a local minimization method is started from the point with the lowest
function value�

�GTYPE�� � Multi�start methods� Random points� uniformly distributed in a given region� are
generated and local minimization is started from every point� The local minima
obtained are compared and selected�

�GTYPE�
 � Modi
ed multi�start methods� Random points� distributed in a given region uni�
formly� are generated and local minimization is started whenever a point is found
which has a lower function value than that reached up to date�

�GTYPE�� � Bayesian reduced multi�start methods ���� Random samples of points are repeatedly
generated� Every random sample is reduced and local minimization is started from
all points belonging to the reduced sample� Obtained local minima are compared
and selected� This process is repeated while the Bayesian termination criterion is not
satis
ed�

If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � Tunneling function methods ��
�� These methods consist of two phases� a local
minimization phase and a tunneling phase� The starting point for the second phase
is the local minimum� At the end of the tunneling phase a new point is found which
has a function value equal or lower than the starting point�

�GTYPE�� � Combined tunneling function and random search methods� In this case a random
search is used in the tunneling phase if the minimization of a tunneling function has
failed to
nd a new starting point�

�GTYPE�
 � Filled function methods ����� ����� The idea of
lled function methods is based on
a
lled function� This function has a maximum in the point of a known minimum of
the objective function� On the other hand� this function does not have minimizers or
saddle points in any basin of a higher minimizer of the objective function� but it does
have a minimizer or a saddle point in a basin of a lower minimizer of the objective
function�

If �GCLASS�
� we can choose two types of global optimization methods�

�GTYPE�� � Density clustering method ���� Density clustering refers to a class of clustering
techniques by using nonparametric probability density estimates to form clusters� All
unclustered points from a reduced sample� which are within the threshold distance
from the seed point� are added to the cluster�

�GTYPE�� � Single linkage clustering method ���� In this case� the next two clusters to be merged
are those for which the distance between the nearest points is the smallest� When
this distance becomes larger than the threshold distance� the procedure is stopped�
Starting with each point in a separate cluster� the points at distances smaller than
the threshold distance are linked� A cluster is recognized as a set of points linked
together�

If �GCLASS��� we can choose three types of global optimization methods�

��

�GTYPE�� � multi�level single linkage method ������ In this case� the function values of the
sample points are used in a very simple manner to obtain a very powerful method�
The local search procedure is applied to every sample point� except if there is another
sample point within the critical distance which has a smaller function value� Clusters
can be constructed by associating a point with a local minimum� if there exists a
chain of points linking it to that minimum� This is done so that the distance between
each successive pair is� at most� equal to the critical distance and the function value
is decreasing along the chain� A point in this way could be assigned to more than one
minimum�

�GTYPE�� � Multi�level mode analysis method ������ This method is a generalization of the mode
analysis method� The region is partitioned into cells� After the sample reduction� it
is determined which cells contain enough points to be �full�� For each full cell the
function value of the cell is de
ned to be equal to the smallest function value of any of
the sample points in the cell� Finally� for every full cell� local minimization is applied
except if a cell has a neighbouring cell which is full and has a smaller function value�

�GTYPE�
 � Modi
ed multi�level single linkage method� This is a multi level single linkage
method with some modi
cations which are described in ������

The number of points randomly generated in the given region can be speci
ed by using the macrovari�
able �MNRND� The default value is usually ������"NF� Since it depends on the number of variables
and for NF��� it is too large� we recommend to use global optimization methods up to �� variables only�
If we use clustering or multi level single linkage methods ��GCLASS�
 or �GCLASS���� we can specify
additional parameters�

�MNLMIN � Maximum considered number of local minima� The default value is 	����"NF�
�GAMA � Reduction of random sample �typically ���D� � ���D��� A greater value of GAMA

usually leads to a greater number of local minima� but it requires a greater amount
of work�

�SIGMA � Parameter of cluster or single linkage termination �typically � � ���

��

�� Input possibilities in the UFO system

The UFO system has many input possibilities including interactive dialogues� These input possibilities
can be divided into three basic groups which are batch mode� text dialogue mode and graphic dialogue
mode� Batch and dialogue modes can be combined� The basic means for the batch and combined modes
is the UFO control language�

���� The UFO control language

The form of the control program can be determined by using the statements of the UFO control
language� The UFO control language is based on the batch editing language �BEL� ����� that described
in Appendix B� The UFO control language contains four types of instructions�

�� Standard Fortran �� instructions which can be written in the free format�

�� Fortran �� instructions containing macrovariables� These instructions get a
nal form after the
rst
pass of the UFO preprocessor�

� Substitutions and directives� These macroinstructions control the UFO preprocessor execution�

�� Special substitutions� These macroinstructions are special tools of the UFO control language that
realize the most useful sets of single instructions�

Standard Fortran �� instructions used in the UFO control language have some extensions and limita�
tions� The main extension is the free format� The instructions may not have a limited length� they can
be written everywhere in the input
le and if they are written in the same line� the character ��� is used
to separate the instructions� The continuation of an instruction is speci
ed by character �% �� The main
limitation concerns the application of instructions in the control program� Therefore� statement numbers
greater than ���� cannot be used� comments can be introduced by character �	� only and the only con�
tinuation character can be �% �� Also� it is recommended to use identi
ers beginning with character �W�
which are not used in the UFO system
Macrovariables used in the UFO system begin with character ��� and are supposed to be of the

type character� Their values are always in the form of a string of characters which can be sometimes
interpreted as an integer or a real or a logical constant� The chief signi
cance of the macrovariables is
their use in substituting their values for their names in the Fortran �� statements� In this case we place
the macrovariable �beginning with ���� in the text� but if it is followed by a letter or digit we have to use
brackets� For example if we write

�FLOAT W�����
or

CALL UD�HESF�TYPE�DECOMP�NUMBER
or

X���������P��

and if the values of �FLOAT� �HESF� �TYPE� �DECOMP� �NUMBER and �P are �REAL	�� �this
is default�� �D�� �L�� �G� ��� and �D� �this is default�� we get REAL	� W����� or CALL UDDLG�� or
X�������D� respectively� after the UFO preprocessor application� The values of macrovariables can be
de
ned and changed by assignments or by special directives as will be shown later�
Substitutions and directives are very important for the UFO control language since they make the

substitutions of texts� de
nitions and changes of macrovariables� branching� loops� etc�� possible� We
brie#y describe the most useful of them� A more detailed description is given in Appendix B�

�� Assignment� The assignment of a string of characters for a macrovariable is speci
ed by the
macroinstruction �MACRO��value�� For example� we have to set �HESF��D�� �TYPE��L�� �DE�
COMP��G�� �NUMBER�� �the integers do not need to be substituted as strings� to obtain the
result given above�

��

�� Insertion of a text� If we write

�SET�MACRO� or �ADD�MACRO�

text text

�ENDSET �ENDADD

then a given text �that can contain a large number of Fortran �� statements� is inserted into the
macrovariable �MACRO� The macroinstruction �SET is used for the de
nition of a new macrovari�
able� The macroinstruction �ADD appends a new text into the old macrovariable so that it can be
used repeatedly�

� Logical substitutions� The macrovariables �INT� �REAL� �LOG and �DEF have logical values� If
we write �INT�MACRO� �or �REAL�MACRO� or �LOG�MACRO��� the resulting value is either
�TRUE�� if the value of the macrovariable �MACRO is an integer constant �or real constant or
logical constant�� or �FALSE� in the opposite case� If we write �DEF�MACRO�� the value of
�DEF is either �TRUE�� if the macrovariable �MACRO was previously de
ned �by the substitution
�MACRO��value� or by using macroinstructions �SET and �ADD�� or �FALSE� in the opposite case�
This possibility can be used for branching� If we use the directive �ERASE�MACRO�� the previously
de
ned macrovariable �MACRO becomes unde
ned �so that �DEF�MACRO���FALSE���

�� List of items macrovariables� Values of macrovariables can be lists of items� i�e� they can have
a more complicated form �MACRO��item � nitem �n� � �nitem n� where every item corresponds to
one value� The list of items macrovariables use pointers which point out the current items� The
current item can be obtained by the substitution �DATA�MACRO� which also moves the pointer
to the next item� The directive �RESTORE�MACRO� returns the pointer to the
rst item�

	� Branching� This possibility is very similar to the branching in the Fortran �� language�

�IF�condition�

statements

�ELSEIF�condition�

statements

�ELSE

statements

�ENDIF

Conditions can be logical constants �TRUE�� �FALSE�� or logical macrovariables �INT�MACRO��
�REAL�MACRO�� �LOG�MACRO��� �DEF�MACRO�� or they can have a form of comparisons
MACRO�MACRO�� MACRO��value� etc� �besides the relation �� we can also use other relations
� or � or �� or �� or ���� Branching is used in the UFO preprocessor stage and has an in#uence
on the form of the control program�

�� Loops� The basic looping directives have the following form �similarly as in the Fortran �� or Pascal
languages��

�DO�MACRO�INDEX��INDEX��INDEX
�

statements

�ENDDO

or

��

�REPEAT

statements

�UNTIL�condition�

For example if we set �NF��� �NC�
 and write

�DO�I���NF���

�DO�J���NC���

CALL �SETCG��I��J��I��D���J��D��

�ENDDO

�ENDDO

then the UFO preprocessor generates the sequence

�SETCG��������D�����D��

�SETCG��������D�����D��

�SETCG���
����D��
��D��

�SETCG��������D�����D��

�SETCG��������D�����D��

�SETCG���
����D��
��D��

Similarly� if we set �FLOAT��REAL"�� �N���� �MACRO��X��N�nG��N�nH��N��N�n�END��� and
write

�REPEAT

�I��DATA�MACRO��

�FLOAT �I

�UNTIL�I���END���

then the UFO preprocessor generates the sequence

REAL"� X����

REAL"� G����

REAL"� H�������

�� File substitutions� Suppose we have a
le with a name
le name�extension� Then we can include
it into the control program by using the macroinstructions

�INCLUDE��
le name�extension��

or

�SUBST��
le name�extension��

The main di�erence between these possibilities is that the directive �INCLUDE includes a text
without change �it has to be a regular Fortran �� text with a
xed format� while the directive
�SUBST substitutes a text executed consecutively by the UFO preprocessor �so that it can con�
tain the macrovariables and macroinstructions and be written in the free format�� Moreover� the
directives �SUBST can be nested� This possibility is widely used for control program generation
by using nested templates� If the included
le has the name
le name�I� we can use a simpler form
without extension� For example� the
le UZLINS�I can be substituted by using the macroinstruction
�SUBST��UZLINS���

��

�� Special substitutions� Besides macroinstructions of the batch editing language BEL� the UFO
control language contains special substitutions which realize sets of instructions and are useful for
controlling the UFO preprocessor�

�BATCH � Switch to the batch mode�

�DIALOGUE � Switch to the default dialogue mode �text or graphic��

�TDIALOGUE � Switch to the text dialogue mode�

�GDIALOGUE � Switch to the graphic dialogue mode�

�GLOBAL � Global declarations�

�INITIATION � Initiation of the global variables�

�INPUT � User supplied input�

�OUTPUT � User supplied output�

�METHOD � Generation of the optimization method�

�MODERASE � Cancellation of the current model�

�METERASE � Cancellation of the current method�

�VARERASE � Clearing the common variables�

�TSTART � Start of the time measurement�

�TSTOP � Termination of the time measurement and print of the measured time�

�END � End of the optimization block�

�STANDARD � Standard optimization block� The macroinstruction �STANDARD substi�
tutes the sequence of macroinstructions �GLOBAL� �INITIATION� �MOD�
ERASE� �INPUT� �METHOD� �OUTPUT� �TSTOP�

Moreover �UYTES�� �UYTES�� �UYTES
� �UOTES�� �UKMAI� �UKMCI� �UKMCI� are simpli
ed
substitutions of subroutines UYTES�� UYTES�� UYTES
� UOTES�� UKMAI�� UKMCI�� UKMCI�
respectively and �SETAG� �SETCG are simpli
ed calling statements �sections ��� and ������
We have described the basic possibilities of the UFO control language that are su�cient for preparing

the batch input
le� More details are given in subsequent chapters and especially in Appendix B� The
following example demonstrates the use of the UFO control language for the solution to three collections
of optimization problems by two selected methods�

�REM ��������������� basic parameters ���������������

�TOLX����
�P��
�� �TOLF����
�P����� �TOLG����
�P���� �MIT��

� �MFV��	

�KOUT�
� �LOUT��� �MOUT��

�BATCH

�GLOBAL

�ADD�INTEGER���IAG��NA
���JAG��MA���

�REM ��������������� the first method ���������������

�CLASS��VM�� �TYPE��L�� �DECOMP��M�� �NUMBER��� �UPDATE��B�

�REM ��������������� the first model ���������������

�MODEL��AF�� �JACA��S�� �HESF��S�� �NF��

� �NA��

� �MA�	

� �M��

�SET�INPUT�

��

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT�IEXT�IERR�

IF�IERR�NE�
� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT�

�ENDSET

�REM ��������������� the first solver ���������������

�INITIATION

�MODERASE

CALL �UYTES�

DO ���� NEXT�����

CALL �UYTES	

�INPUT

�METHOD

CALL �UYTES�

���� CONTINUE

�REM ��������������� the second method ���������������

�METERASE

�CLASS��GN�� �TYPE��L�� �DECOMP��M�� �NUMBER��� �UPDATE��D�

�REM ��������������� the second model ���������������

�MODEL��AQ�� �JACA��S�� �HESF��S�� �NF��

� �NA��

� �MA�	

� �M��

�SET�INPUT�

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT����IEXT�IERR�

IF�IERR�NE�
� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT����

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT����

�ENDSET

�REM ��������������� the second solver ���������������

�INITIATION

�MODERASE

DO ���� NEXT������

CALL �UYTES	

�INPUT

�METHOD

CALL �UYTES�

���� CONTINUE

��

�REM ��������������� the third model ���������������

�SET�INPUT�

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT����IEXT�IERR�

IF�IERR�NE�
� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT����

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT����

�ENDSET

�REM ��������������� the third solver ���������������

�INITIATION

�MODERASE

DO ���� NEXT������

CALL �UYTES	

�INPUT

�METHOD

CALL �UYTES�

���� CONTINUE

�REM ��������������� the final action ���������������

CALL �UOTES�

�END

���� The batch mode

A switch to the batch mode is realized by using the special substitution �BATCH� If we want to
process either the batch mode or the mixed mode we have to prepare a batch input
le written in the
UFO control language� This input
le prescribes the structure of the control program� If a macrovari�
able is used� it has to be one de
ned previously� Therefore de
nitions of macrovariables usually lie at
the beginning of the input
le� Many macrovariables serve for de
ning a given optimization problem�
The most important among them are the macrovariable �INPUT which determines initial input values
�user supplied input� and macrovariables which de
ne problem functions� speci
cally the model �or ob�
jective� function� approximating functions for nonlinear approximation� constrain functions for nonlinear
programming� state functions� initial functions and the terminal function for optimization of dynamical
systems� These functions are speci
ed by using special macrovariables whose names consist of three
parts� The
rst part can contain letters F� G� D� H or their combinations�

F � Function value�
G � Gradient with respect to basic variables�
D � Gradient with respect to state variables�
H � Hessian matrix with respect to basic variables�
FG � Function value and gradient with respect to basic variables�
FD � Function value and gradient with respect to state variables�
GD � Gradient with respect to basic variables and gradient with respect to state variables�
FGD � Function value� gradient with respect to basic variables and gradient with respect to state

variables�

�

FGH � Function value� gradient with respect to basic variables and Hessian matrix with respect to
basic variables�

The second part always has the form MODEL� The third part can contain letters F� A� C� E� Y and also
an additional letter S�

F � The model function or the terminal function�
A � The selected approximating function�
AS � All approximating functions�
C � The selected constraint function�
CS � All constraint functions�
E � The selected state function�
ES � All state functions�
Y � The selected initial function�
YS � All initial functions�

The following combinations are possible�

�FMODELF �FMODELA �FMODELC �FMODELE �FMODELY
�FMODELAS �FMODELCS �FMODELES �FMODELYS

�GMODELF �GMODELA �GMODELC �GMODELE �GMODELY
�GMODELAS �GMODELCS �GMODELES �GMODELYS

�DMODELF �DMODELA �DMODELE
�DMODELES

�HMODELF �HMODELA �HMODELC
�HMODELAS �HMODELCS

�FGMODELF �FGMODELA �FGMODELC �FGMODELE �FGMODELY
�FGMODELAS �FGMODELCS �FGMODELES �FGMODELYS

�FDMODELF �FDMODELA �FDMODELE
�FDMODELES

�GDMODELF �GDMODELA �GDMODELE
�GDMODELES

�FGDMODELF �FGDMODELA �FGDMODELE
�FGDMODELES

�FGHMODELF �FGHMODELA �FGHMODELC
�FGHMODELAS �FGHMODELCS

The choice of a suitable way for problem function de
nitions is ambiguous and problem dependent�
We can only give several remarks�

�� The basic and most general way is the use of di�erent macrovariables for di�erent quantities �val�
ues� gradients� Hessian matrices� together with an independent evaluation of individual functions
�the last letter is di�erent from S�� This way saves the computer storage and frequently also the
computational time�

�� Sometimes� evaluations of gradients require function values� In this case� it can be advantageous
to compute values and gradients simultaneously� A similar consideration also holds for Hessian
matrices�

� Even if simultaneous evaluations of all approximating �constraint� state� initial� functions increase
storage requirements� it can be advantageous if there are complicated computations common for
all such functions� and also if a problem has a low dimension or a sparse structure� It is frequently
advantageous for the evaluation of state and initial functions when the dynamical systems are
optimized�

��

�� If the gradients of approximating �constraint� state� initial� functions are computed simultaneously
�the last letter is equal to S�� then also function values have to be computed simultaneously� Simi�
larly if the Hessian matrices are computed simultaneously� then also function values and gradients
have to be computed simultaneously�

A simple example of a batch input
le was shown in section ���� We repeat it here with some explanations�

�SET�INPUT�

X�������	D
� X�	�� ��
D

�ENDSET

�SET�FMODELF�

FF���
D	��X�����	�X�	����	
�X������
D
���	

�ENDSET

�NF�	

�NOUT��

�BATCH

�STANDARD

By using the macrovariable �INPUT� we specify the initial values of variables x� � ���� and x� � ���� By
using the macrovariable �FMODELF� we specify the model function value �the model function gradient
is not speci
ed� it will be computed numerically�� The macrovariable �NF de
nes the number of variables
and �NOUT is a print speci
cation� The macroinstruction �BATCH switches the mode to the batch mode�
The macroinstruction �STANDARD de
nes the standard form of the control program� Descriptions of
more complicated problems are shown in chapter 	�
In the above example� a direct de
nition of a model function value is used� We can also use indirect

speci
cations by means of the Fortran �� subroutines or the
les prepared beforehand� Suppose that the
model function value is de
ned by using the subroutine EFFU
� or is speci
ed in the
le FVAL�FOR� Then
we can write�

�SET�FMODELF�
CALL EFFU���NF�X�FF�NEXT�
�ENDSET

or
�SET�FMODELF�
�INCLUDE��FVAL�FOR��
�ENDSET

or
�SET�FMODELF�
�SUBST��FVAL�FOR��
�ENDSET

The last possibility is useful if the model function value speci
cation is written in a free format or it
contains the BEL macroinstructions�
If we need to utilize user supplied subroutines� we can include them into the control program using

the macrovariable �SUBROUTINES�

�SET�SUBROUTINES�
user supplied subroutines
�ENDSET

In this case� some exceptions laid on the text of user supplied subroutines forced by the UFO preprocessor
have to be satis
ed� All comments have to begin with character �"�� the continuation line has to begin
with character �%�� character ��� has to be replaced by ���� and character ��� does not have to be present�
The batch input
le should also contain optimization method selection� Fortunately� this selection

is not critical since the optimization method can be chosen automatically by using knowledge bases

�	

contained in the UFO system templates� Here we will only demonstrate some possibilities� The greatest
in#uence on the optimization method selection have the following macrovariables�

�CLASS � Class of optimization methods �heuristic� conjugate gradient� variable metric� vari�
able metric with limited storage� modi
ed Newton� truncated Newton� Gauss�Newton�
quasi�Newton� quasi�Newton with limited storage� proximal bundle� bundle�Newton��

�TYPE � Type of optimization methods �line search� trust region� SQP
lter��
�DECOMP � Type of matrix decomposition �original matrix� Choleski decomposition� inversion��
�NUMBER � Individual methods for direction determination �various direct� various iterative��
�UPDATE � Type of variable metric or quasi�Newton update�

A more detailed description of these choices together with other choices ��MET� �MET�� �MET�� �MET
�
�MES� �MES�� �MES�� �MES
� �MOS� �MOS�� �MOS�� �MOS
� is given in section
�

���� The text dialogue mode

A switch to the text dialogue mode is realized by using the special substitution �TDIALOGUE� This
is equivalent to the substitution �DIALOGUE in the UNIX version of the UFO system� If this is the case�
a sequence of questions appear on the screen in the text form� Each question� which is placed in its own
frame� consists of the macrovariable description usually followed by the list of its possible values� The
name of a macrovariable together with its default value is written on the top of the frame� We have two
possibilities for an answer� First� the required value can be entered from the keyboard� Secondly� we can
press ENTER to choose the default value� After the assignment of a value to the macrovariable� a new
question immediately appears on the screen until the last one is exhausted� The dialogue mode can be
terminated by entering character � �� from the keyboard� We demonstrate four questions as an example�

AND OTHER INPUT DATA HAVE TO BE SPECIFIED�

TYPES OF CONSTRAINTS� THE STRUCTURE OF SPARSE PROBLEM�

HERE THE STARTING POINT� BOUNDS FOR VARIABLES�

USER SUPPLIED INPUT�

& INPUT � � &

Here a user supplied input is expected� This is a text which should be entered from the keyboard�

& MODEL �FF� &

TYPE OF OBJECTIVE FUNCTION

FF � GENERAL FUNCTION

FL � LINEAR FUNCTION

FQ � QUADRATIC FUNCTION

AF � SUM OF FUNCTIONS

AQ � SUM OF SQUARES

AP � SUM OF POWERS

AM � MINIMAX

DF � DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION

DQ � DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO � MODEL IS NOT SPECIFIED

��

Here an optimization model� i�e� a type of the objective function� is chosen� We have �� possibilities� FF�
FL� FQ� AF� AQ� AP� AM� DF� DQ� NO� The default value of the macrovariable �MODEL corresponding
to the general objective function is FF� By pressing ENTER� the default value FF is accepted�

& NF ��� &

NUMBER OF VARIABLES

Here the number of variables is expected� This is a positive integer� No default value is o�ered� i�e� we
have to set a value� If this value is not a positive integer� the answer is ignored and the same question
appears on the screen�

& FMIN �����D ��� &

LOWER BOUND FOR FUNCTION VALUE

Here a real constant is expected� By pressing ENTER the default value ����D �� is accepted�
More details concerning a text dialogue mode are given in Appendix A� where a complete text dialogue

concerning unconstrained minimization of the Rosenbrock function is shown�

���� The graphic dialogue mode

The graphic dialogue mode can be used only on PC computers under the MS DOS system� This
possibility is not allowed on the UNIX workstations� A switch to the graphic dialogue mode is realized
by using the special substitution �GDIALOGUE� This is an equivalent to the substitution �DIALOGUE
in the PC version of the UFO system� If this is the case� a sequence of screens follows� Each screen
realizes one question which is in fact the same as that in the text dialogue mode� Nevertheless� the graph
dialogue mode has several advantages over the text one�

�� Information is better arranged on the screen�

�� The window for typing answers is in fact a simple editor� Therefore the text can be easily corrected
and a movement controlled by arrows is possible�

� Application of the special UFO editor is possible for realizing more complicated answers� The UFO
editor works with multiple windows so that an answer can be set up from several sources� Therefore
a convenient utility of the batch mode can also be used in the dialogue mode�

To compare text and graphic dialogue modes� we again demonstrate the above four questions�

��

Here a user supplied input is expected� This is a text which should be written into the window displayed
on the screen �followed by pressing ENTER�� If this text is more complicated� we can use the UFO editor
by typing character �E� and pressing ENTER� The return from the UFO editor to the graphic dialogue
is realized by pressing �alt�	� �section ��
�� The dialogue mode can be terminated by typing character
� �� and pressing ENTER�

Here an optimization model� i�e� a type of the objective function� is chosen� We have �� possibilities� FF�
FL� FQ� AF� AQ� AP� AM� DF� DQ� NO� The default value of the macrovariable �MODEL� corresponding

��

to the general objective function� is FF� By pressing ENTER� the default value FF is accepted� If we
want to choose a di�erent possibility� it has to be written into the two�character window� followed by
pressing ENTER� The dialogue mode can be terminated by typing character � �� and pressing ENTER�

Here the number of variables is expected� This is a positive integer� No default value is o�ered� i�e� we
have to enter any value� If this value is not a positive integer� the answer is ignored and another answer
is expected� The dialogue mode can be terminated by typing character � �� and pressing ENTER�

Here a real constant is expected� By pressing ENTER the default value ����D �� is accepted� If we want
to choose a di�erent value� it has to be written into the twenty�character window� followed by pressing
ENTER� The dialogue mode can be terminated by typing character � �� and pressing ENTER�

��

�� Output possibilities in the UFO system

The UFO system has many output possibilities including graphic pictures� These output possibilities
can be divided into
ve basic groups�

���� Basic screen output

The basic screen output can be used only if �GRAPH��N� and �DISPLAY��N�� In this case� individual
rows corresponding to the iterations and the
nal results are printed on the screen consequently� A
print level of the screen output is determined by using the macrovariables �MOUT and �NOUT� The
macrovariable �MOUT can have the following values�

�MOUT� � � Screen output is suppressed�
�MOUT�� � � Standard output� The
nal results appear on the screen�
�MOUT�� � � Extended output� Additional information from every iteration appears on the screen�
�MOUT��
 � Extended output� Additional
nal results of linear or quadratic programming sub�

problems appear on the screen�
�MOUT�� � � Extended output� Additional information from every iteration of linear or quadratic

programming subproblems appears on the screen�

If �MOUT��� a standard line of the
nal results is printed� while if �MOUT�� then a modi
ed line of
the
nal results� containing the termination criterion� is printed�
The macrovariable �NOUT can have the following values�

�NOUT� � � Short
nal results �scalar variables� appear on the screen�
�NOUT� � � Extended
nal results �vectors� appear on the screen�

���� Extended screen output

If we want to use an extended screen output� we have to set �DISPLAY��Y� �the default value
is �DISPLAY��N��� This type of screen output consists of text pages which correspond to individual
iterations and the
nal results� The
nal results are divided into several groups which can be displayed
successively� We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of the
nal results�

F � �function� � Value of the objective function and statistics�
V � �variables� � Values of variables if NF�� �with their bounds if KBF����
A � �approximation� � Values of approximating functions if NA�� �with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � �constraints� � Values of constraint functions if NC�� �with their bounds if KBC����
D � �data� � Data which specify the problem solved �sizes of problem and additional speci
ca�

tions��
O � �options� � Options which specify the method used�

Exit�

Q � �quit� � Exit from the extended screen output�

After typing each character we must use ENTER�
Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci
ed

if we set �SCAN��Y� �the default value is �SCAN��N��� If �SCAN��N�� the output of iterations is
suppressed� Scanning of the iterative process can be terminated by using character � �� from the keyboard�

��

���� Graphic screen output

The graphic screen output can be used only on PC computers under the MS DOS system� This
possibility is not allowed on the UNIX workstations� If we want to use a graphic screen output� we
have to set �GRAPH��Y� �the default value is �GRAPH��N��� In this case� both iterations and the
nal
results appear in the graphic mode� In general� the graphic screen output is a sequence of screens which
can be examined successively in a required order� A change of the screen is carried out by using the menu
given on the top of this screen� We have three possibilities� First� the character displayed as a capital
at the menu item can immediately be typed from the keyboard� Secondly� we can use characters � and
� which realize movement in the top menu� The underlined menu item is then selected by pressing
ENTER� Finally� we can apply a mouse click to the menu item� In the subsequent graphic screen output
description� we focus our attention to the
rst possibility without a loss of generality�
The graphic form of the
nal results can be speci
ed in detail by using macrovariables �PATH ��N��

no� �Y�� yes� �E�� extended�� �MAP ��N�� no� �Y�� yes� �E�� extended�� �HIL ��N�� no� �Y�� yes� and �ISO
��N�� no� �Y�� yes�� The
nal results are divided into several groups which can be displayed successively�
We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of the
nal results�

F � �function� � Value of the objective function and statistics�
V � �variables� � Values of variables if NF�� �with their bounds if KBF����
A � �approximation� � Values of approximating functions if NA�� �with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � �constraints� � Values of constraint functions if NC�� �with their bounds if KBC����
D � �data� � Data which specify the problem solved �sizes of problem and additional speci
ca�

tions��
O � �options� � Options which specify the method used�
T � �path� � Values of the objective function and selected variables �we can change these vari�

ables during the graphic output� if we have speci
ed �PATH��E�� in the last NPA
iterations �only if �PATH��Y� or �PATH��E���

Exit�

Q � �quit� � Exit from the graphic output�
X � �exit� � Exit from the UFO system�

Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci
ed
if we set �SCAN��Y� �the default value is �SCAN��N��� In every iteration� we can choose one of the
possibilities F� V� A� C� D� O as in the case above� If we have chosen either V �variables� or A �approxi�
mation� or C �constraints�� the intermediate results can be displayed graphicly by typing G �graph� from
the keyboard� In all these cases we can execute a single iteration by typing SPACE merely� We can also
execute all iterations until the k�th one by typing J �jump� and entering the number k� Finally� by typing
U �automatic�� all remaining iterations are executed without scanning�
Besides text representations in the graphic mode� which are essentially like the ones in the extended

screen output �with the choice �DISPLAY��Y��� we can chose several types of graphic data representation�

a� Graphic picture�

If we have chosen either V �variables� or A �approximation� or C �constraints�� the results can be
displayed graphicly by typing G �graph� from the keyboard� A graphic picture appears on the screen in
this case� It contains either values of variables with indices I� � � I � NF� or values of the approximating
functions with indices KA� � � KA � NA� or values of the constraint functions with indices KC� � �
KC � NC� If we have chosen A �approximation� in the case of NE��� the graphic picture contains a
component �with the index VAR� of a solution of the set of ordinary di�erential equations at the mesh

��

points AT�KA�� � � KA � NA� We have to de
ne the index VAR from the keyboard in this case� The
graphic picture can be changed by typing the particular characters from the keyboard�

Change of representation�

V � �values� � Values are drawn�
O � �ordinates� � Values and ordinates from zero axis are drawn�
C � �curve� � Values are connected by a curve�
M � �mixed� � Curve and ordinates are drawn�

Change of graph �if either KBF�� or KBA�� or KBC����

F � �functions� � Either values of variables X�I�� � � I � NF� or values of the approximating func�
tions AF�KA�� � � KA � NA� or values of the constraint functions CF�KC�� � �
KC � NC� are demonstrated�

A � �approximation� � Either values of variables X�I� together with their bounds XL�I� and XU�I�� �
� I � NF� or values of the approximating functions AF�KA� together with their
prescribed values AM�KA� � � � KA � NA� or values of the constraint functions
CF�KC� together with their bounds CL�KC� and CU�KC�� � � KC � NC� are
demonstrated�

D � �di�erences� � Either the di�erences between variables and their bounds or the di�erences be�
tween the approximating functions and their prescribed values or the di�erences
between the constraint functions and their bounds are demonstrated�

Continuation �if either NF � ��� or NA � ��� or NC � �����

P � �previous� � Previous set of at most ��� values is drawn�
N � �next� � Next set of at most ��� values is drawn�

Choice of the next displayed iteration �only if �SCAN��Y���

J � �jump� � The iterative process is stopped at the k�th iteration� Number k is read from the
keyboard�

U � �automatic� � All remaining iterations are executed without scanning�

New graph or return�

W � �new� � This possibility can be used only if NE��� Then a new component �with a new
index VAR� of a solution of the set of ordinary di�erential equations is drawn� We
have to de
ne a new index VAR from the keyboard in this case�

Q � �quit� � Return to the displayed group of
nal results�

If we have chosen F �function� as a group of
nal results� we can use additional graphic representations�

b� Two�dimensional orbit�

If NE��� we can draw an orbit of two components of a solution of the set of ordinary di�erential
equations by typing G �graph� from the keyboard� We have to de
ne an index VAR for every selected
component of a solution �according to the text appeared on the screen�� The two�dimensional orbit can
be changed by typing particular characters from the keyboard�

Change of the orbit�

V � �values� � Values are drawn�
C � �curves� � Values are connected by a curve�

New orbit or return�

W � �new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de
ne new two indices from the keyboard in this case�

Q � �quit� � Return to the displayed group of
nal results�

��

c� Three�dimensional orbit�

If NE��� then we can draw an orbit of three components of a solution of the set of ordinary di�erential
equations by typing I �picture� from the keyboard� We have to de
ne an index VAR for every selected
component of a solution �according to the text appeared on the screen�� The three�dimensional orbit can
be changed by typing particular characters from the keyboard�

Change of the orbit�

V � �values� � Values are drawn�
C � �curves� � Values are connected by a curve�
O � �rotate� � Rotation of values or curves about a vertical axis by a subsequently entered angle

D
�
T � �tilt� � Tilting rotated values or curves by a subsequently entered angle Dtheta�
A � �axes� � Drawing a picture with rotated and tilted axes�
S � �scale� � Scaling of rotated and tilted values or curves to make full use of the screen�

New orbit or return�

W � �new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de
ne new three indices from the keyboard in this case�

Q � �quit� � Return to the displayed group of
nal results�

d� Coloured map of the objective function�

If we have speci
ed either �MAP��Y� or �MAP��E� �default value is �MAP��N��� we can draw a
coloured map of the objective function by typing M �map� from the keyboard� This picture can be
changed by typing particular characters from the keyboard�

Change of the map�

L � �linear� � Linear scale of the coloured map�
G � �logarithmic� � Logarithmic scale of the coloured map�
R � �re
nement� � Re
nement of the coloured map�
B � �back� � Back re
nement of the coloured map�
N � �inverse� � Coloured map of the objective function negation�

Another type of picture� new map or return�

H � �hills� � Drawing an objective function surface with respect to visibility �only if �HIL��Y�
is speci
ed��

S � �isolines� � Drawing contours of the objective function �only if �ISO��Y� is speci
ed��
W � �new� � Selection of new variables and drawing a new coloured map�
Q � �quit� � Return to the displayed group of
nal results�

If we set �MAP��Y�� one picture for two variables is drawn� If we set �MAP��E�� three pictures
for all combinations of two from three variables are drawn� In both cases we have to de
ne� from the
keyboard� an index VAR and bounds XL�VAR�� XU�VAR� for every variable used �according to the text
appeared on the screen�� Note that the choice �MAP��E� excludes the choices �HIL��Y� and �ISO��Y�
so that the other pictures cannot be used�

e� Objective function surface�

If we have speci
ed �HIL��Y� �default value is �HIL��N��� we can draw an objective function surface
with respect to visibility by typing H �hills� from the keyboard� This picture can be changed by typing
particular characters from the keyboard�

Change of the surface�

L � �linear� � Linear scale of the surface�
G � �logarithmic� � Logarithmic scale of the surface�

�

R � �re
nement� � Re
nement of the surface�
B � �back� � Back re
nement of the surface�
O � �rotate� � Rotation of the surface about a vertical axis by a subsequently entered angle D
�
T � �tilt� � Tilting the rotated surface by a subsequently entered angle Dtheta�
F � �face� � Facing the rotated surface �drawing the rotated surface without tilting��
N � �inverse� � Surface of the objective function negation�

Another type of picture� new surface or return�

M � �map� � Drawing a coloured map of the objective function �only if �MAP��Y� is speci
ed��
S � �isolines� � Drawing contours of the objective function �only if �ISO��Y� is speci
ed��
W � �new� � Selection of new variables and drawing new surface�
Q � �quit� � Return to the displayed group of
nal results�

Before drawing the objective function surface we have to de
ne� from the keyboard� an index VAR
and bounds XL�VAR�� XU�VAR� for every variable used �according to the text appeared on the screen��

f� Objective function contours�

If we have speci
ed �ISO��Y� �default value is �ISO��N��� we can draw an objective function contours
by typing S �isolines� from the keyboard� This picture can be changed by typing particular characters
from the keyboard�

Change of contours�

L � �linear� � Linear scale of contours�
G � �logarithmic� � Logarithmic scale of contours�
R � �re
nement� � Re
nement of contours�
B � �back� � Back re
nement of contours�
O � �colour� � Colouring of contours and used levels�
N � �inverse� � Inverse colouring of contours and used levels�

Another type of picture� new contours or return�

M � �map� � Drawing a coloured map of the objective function �only if �MAP��Y� is speci
ed��
H � �hills� � Drawing an objective function surface with respect to visibility �only if �HIL��Y�

is speci
ed��
W � �new� � Selection of new variables and drawing a new surface�
Q � �quit� � Return to the displayed group of
nal results�

g� Graphic path of the objective function and selected variables�

If we have chosen T �path�� we can display the values of the objective function as a function graph
by typing G �graph� or draw the objective function contours with the path in the last NPA iterations by
typing S �isolines�� The graph can be changed in the same way as in a��

Change of contours�

L � �linear� � Linear scale of contours�
G � �logarithmic� � Logarithmic scale of contours�
R � �re
nement� � Re
nement of contours�
B � �back� � Back re
nement of contours�
Z � �zoom� � Zoom of the path for the number of last iterations entered�

Another type of picture� new contours or return�

W � �new� � Selection of new variables and drawing new contours �only if we have speci
ed
�PATH��E���

Q � �quit� � Return to the displayed group of
nal results�

��

Before drawing the objective function contours we have to de
ne� from the keyboard� an index VAR
and bounds XL�VAR�� XU�VAR� for every variable used �according to the text appeared on the screen��

���� Text �le output

The UFO system contains a great number of text
le output procedures which are controlled by
using the macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT
� and �LOUT� These text
le output
procedures are useful especially for debugging new optimization methods� The UFO system works with
the output
le P�OUT� The Fortran number of this output
le de
nes the common variable IWR� The
macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT
 determines what is printed and the macrovariable
�LOUT has an in#uence on the extent of the print�
The macrovariable �KOUT can have the following values�

�KOUT� � � Text
le output is suppressed �the
le P�OUT is empty� �
�KOUT� � � � Standard output� The heading and the
nal results are printed together with selected

information in each accepted iteration�
�KOUT� � � � Extended output� Additional information� obtained from stepsize selection� is printed�
�KOUT� �
 � Extended output� Additional information� obtained from direction determination and

variable metric update� is printed�
�KOUT� � � � Extended output� Additional information� obtained from linear constraint addition

and deletion� is printed�
�KOUT� � 	 � Extended output� Additional information� obtained from numerical di�erentiation� is

printed�

If �KOUT��� a standard heading is printed while if �KOUT��� an extended heading� containing problem
speci
cations and optimization options� is printed�
The selection of iterations accepted for print is controlled by the contents of the macrovariables

�KOUT�� �KOUT�� �KOUT
� If KOUT�� KOUT�� only the iterations whose numbers are between
KOUT� and KOUT� are assumed� but the KOUT
�� ones are always omitted �KOUT� is a lower bound�
KOUT� is an upper bound and KOUT
 is a step�� Similarly� if KOUT��KOUT�� only the iterations
whose numbers are smaller than KOUT� or greater than KOUT� are assumed� but the KOUT
�� ones
are always omitted� If �KOUT
��� no iterations are assumed�
While the macrovariable �KOUT speci
es which information is printed� the macrovariable �LOUT

speci
es how much information is printed�

�LOUT� � � Basic output� The basic information �� row if �KOUT��� is printed in each accepted
iteration�

�LOUT�� � � Extended output� Additional scalars� together with the vector of variables� are
printed�

�LOUT�� � � Extended output� Additional vectors �usually gradients� are printed�
�LOUT��
 � Extended output� Additional matrices �usually Hessian matrices� are printed�
�LOUT�� � � The most extended output� All useful data are printed�

If �LOUT��� the basic part of the information is printed� If �LOUT��� a more extensive part of the
information is printed�
The macrovariable �LOUT has an additional signi
cance� If �KOUT�� and �LOUT��� a copy of

the basic screen output is provided� If �KOUT�� and �LOUT��� paper saving print is assumed� In the
last case� only several rows are printed for every solution� This type of output is useful for simultaneous
tests of optimization methods�

To show a typical basic output which corresponds to the choices �KOUT��� �KOUT
�� and �LOUT��
we propose the following results from unconstrained optimization�

�	

UNCONSTRAINED MINIMIZATION USING UFO SYSTEM

���

OPTIMIZATION SUBROUTINE � U�FDU�

DIRECTION DETERMINATION � UDDLI�

STEP SIZE DETERMINATION � US
L
�

FUNCTION DETERMINATION � UF�F
�

GRADIENT DETERMINATION � UF
GS	

H MATRIX DETERMINATION �

VARIABLE METRIC UPDATE � UUDBI�

PROBLEM

�������

NF � 	 KDF�
 KSF� � KCF� 	 KBF�
 ISNF� � NORMF�

NA �
 NAL�
 MAL�
 KDA��� KSA�
 KCA�
 KBA�
 ISNA�
 NORMA�

NC �
 NCL�
 MCL�
 KDC��� KSC�
 KCC�
 KBC�
 ISNC�
 NORMC�

FINAL RESULTS

�������������

FF� ���
�		�����D

�

X � ���		��	���
D

� ����������	D

�

TERMINATION� ITERM�� GRAD TOL F����
�D

� G� ���
D�
� D� ����D�
�

STATISTICS

����������

NIT � �� NDEC �

NFV � �� NAV �
 NCV �
 NRES � �

NFG �
 NAG �
 NCG �
 NREM �

NFH �
 NAH �
 NCH �
 NADD �

Here the optimization subroutines used are listed on the top followed by problem speci
cations� After brief
results� the termination causes are written� The termination cause ITERM�� �GRAD TOL� corresponds
to the attainment of the required gradient norm� F is the objective function value� G is the maximum
absolute value of gradient elements and D is the maximum relative change of variables� The statistics
contains the number of iterations NIT� the number of decompositions NDEC� the number of restarts
NRES� the number of constraint deletions or additions NREM or NADD respectively� and a set of data
concerns numbers �N� of model function �F� or approximating functions �A� or constraint functions �C�
values �V� or gradients �G� or Hessian matrices �H� evaluations respectively�

���� User supplied output

The UFO system allows utilizing both the user supplied output subroutines and the post�processing
subroutines� These subroutines can be inserted in the control program by using the macrovariable
�OUTPUT�

�SET�OUTPUT�
Calling the user supplied output subroutines�
Calling the post�processing subroutines�

�ENDSET

The parameters of the user supplied output subroutines and the post�processing subroutines must satisfy
the UFO conventions� For example� the vector of variables� the model function value and the model
function gradient must be denoted X� FF and GF� respectively �see chapter ���

��

��
� Storing �nal results

If we set �OUTPUTDATA��Y�� the
nal values of variables X�I�� �� I� NF� are stored in
le P�DAT�
Similarly� if we set �INPUTDATA��Y�� the values of variables X�I�� �� I� NF� from
le P�DAT are used
as input data for a new optimization process�

���� Other output �les

The UFO system uses two other output
les P�DIM and P�SIF which contain additional information
about the problem solved� File P�DIM shows us the problem dimension� It contains the numbers of
variables� approximating functions� constraints and also numbers of nonzero elements in sparse structures�
For example� if we apply the UFO system to the input
le TSIF	��UFO� then the
le P�DIM contains the
following text�

PROBLEM� NEXT �

NUMBER OF VARIABLES� NF � ��

NUMBER OF CONSTRAINTS� NC � ��

NUMBER OF NONZERO ELEMENTS� MC � ����

NUMBER OF NONZERO ELEMENTS� MHC � ��

NUMBER OF NONZERO ELEMENTS� MCH � ����

NUMBER OF NONZERO ELEMENTS� M � 	���

File P�SIF contains information concerning SIF
les of the CUTE collection �section ��
�� This
le is
generated by the SIF decoder� For example� if we apply the UFO system to the input
le TSIF	��UFO�
the
le P�SIF contains the following text�

Problem name� BRITGAS

The objective function uses � nonlinear group

There are ��
 nonlinear equality constraints

There are �	� variables bounded only from below

There are 	� variables bounded from below and above

���� Error messages

If we use the speci
cation �MOUT�� �basic screen output�� then nonstandard terminations are
indicated� The message consists of three parts� the name of a critical subroutine� the number of a
message� and an explanation text� For example� if the number of iterations is exceeded� we obtain the
following message�

 NIT� �

 NFV�	��� NFG�
 NDC����� NCG�
 F� ��		D

� G� ���	D

�

UYFUT�� ��	� MAXIMUM NUMBER OF ITERATIONS

Error messages are very useful especially in case the problem dimension is invalid� For example� if the
number of nonzero elements in the Jacobian matrix is speci
ed incorrectly� then we obtain the message�

 NIT�
 NFV�
 NFG�
 NDC�
 NCG�
 F� �

D

 G� �

D

UZLMIN� ���� LACK OF SPACE � MA TOO SMALL

ACTUAL VALUE� 	�� � DECLARED VALUE� 	�

Here UZLMIN is a subroutine where an error was detected� �� is the error number and MA TOO SMALL
is the explanation� In this case� additional information �ACTUAL VALUE and DECLARED VALUE� is
given�
The following table presents all UFO error messages �error numbers and explanations��

��

�� � MAXIMUM NUMBER OF FUNCTION EVALUATIONS � MFV TOO SMALL

�	 � MAXIMUM NUMBER OF ITERATIONS � MIT TOO SMALL

�� � MAXIMUM NUMBER OF CYCLES � MIC TOO SMALL

� � BAD DECOMPOSITION

	 � BAD INTERVAL IN THE OLC DIRECTION DETERMINATION

� � MAXIMUM NUMBER OF STEPS IN THE OLC DIRECTION DETERMINATION

� � BREAKDOWN IN THE ITERATIVE METHOD

� � BREAKDOWN IN THE ITERATIVE METHOD

� � MAXIMUM NUMBER OF REDUCTIONS

� � NEGATIVE DIRECTIONAL DERIVATIVE

� � BAD INTERVAL FOR INTERPOLATION

� � BAD PREDICTION IN THE TRUST REGION METHOD

�
 � RESTART

�� � FEASIBLE SOLUTION DOES NOT EXIST

�	 � BOUNDED SOLUTION DOES NOT EXIST

�� � FEASIBLE SOLUTION DOES NOT EXIST

�� � FEASIBLE TRUST REGION DOES NOT EXIST

�� � INVALID SITUATION IN CONSTRAINT HANDLING

�� � INVALID SITUATION IN CONSTRAINT HANDLING

�� � LACK OF SPACE IN CONSTRAINT HANDLING � MMAX TOO SMALL

�� � LACK OF SPACE IN CONSTRAINT HANDLING � MMAX TOO SMALL

�� � BAD INPUT DATA

	
 � BAD INPUT DATA

	� � UXSGFM� NAU IS DECLARED TOO SMALL

		 � UXSGFM� NZ IS DECLARED TOO SMALL

	� � UXSGFM� JACOBIAN MATRIX IS TOO UNSTABLE

	� � UXSGFM� JACOBIAN MATRIX IS SINGULAR

	� � UXSGFM� NZ IS TOO SMALL FOR THE FACTOR

	� � UXSGFM� NAU IS TOO SMALL FOR THE FACTOR

	� � UXSGFM� NZ IS TOO SMALL FOR DATA MANIPULATIONS AFTER FACTORIZATION

	� � UXSGFM� COLUMN SCHEME FOR THE FACTOR IS NOT CREATED� LACK OF SPACE

	� � BAD INPUT DATA

�
 � BAD INPUT DATA

�� � UXSGUM� NAU IS DECLARED TOO SMALL

�	 � UXSGUM� JACOBIAN MATRIX IS SINGULAR

�� � UXSGUM� FACTOR IS BADLY CONDITIONED

�� � UXSGUM� LITTLE SPACE FOR L�UPDATES

�� � UXSGUM� JACOBIAN MATRIX SINGULARITY IS FACED

�� � UNBOUNDENESS IS FACED

�� � UKLTS�� ROWS ARE NOT SPECIFIED

�� � UKLTS�� COLUMNS ARE NOT SPECIFIED

�� � UKLTS�� TYPE IS NOT SPECIFIED

�
 � UKLTS�� TYPC IS NOT DEFINED

�� � LACK OF SPACE FOR THE CHOLESKI FACTOR � MMAX TOO SMALL

�	 � LACK OF SPACE FOR A SYMBOLIC FACTORIZATION � MMAX TOO SMALL

�� � LACK OF SPACE FOR THE FILL�IN

�� � LACK OF SPACE FOR NUMERICAL DIFFERENTIATION � M TOO SMALL

�� � STRUCTURAL SINGULARITY DURING INCOMPLETE LU FACTORIZATION

�� � INVALID STRUCTURE FOR INCOMPLETE LU FACTORIZATION

�� � LACK OF SPACE IN NUMERICAL DIFFERENTIATION � NVAR TOO SMALL

�� � LACK OF SPACE IN THE INCOMPLETE DECOMPOSITION � MMAX TOO SMALL

�� � LACK OF SPACE IN THE SCHUR COMPLEMENT � MMAX TOO SMALL

��

�
 � LACK OF SPACE FOR THE FACTOR

�� � INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS

�	 � LACK OF SPACE IN THE FRONTAL SCHEME

�� � ERROR IN THE FRONTAL SCHEME

�� � LACK OF SPACE IN THE FRONTAL SCHEME

�� � ERROR IN THE FRONTAL SCHEME

�� � LACK OF SPACE IN THE INTEGER FIELD

�� � LACK OF SPACE IN THE REAL FIELD

�� � ZERO INDEX

�� � DIMENSION ERROR

�
 � LACK OF SPACE IN THE WORKING FIELD

�� � INVALID MATRIX ORDER

�	 � NUMBER OF NONZEROS SMALLER THAN ZERO

�� � INVALID ENTRIES IN THE INPUT MATRIX

�� � INCONSISTENT MEMORY

�� � LACK OF SPACE IN THE INTEGER FIELD � MMAX TOO SMALL

�� � LACK OF SPACE IN THE REAL FIELD � MMAX TOO SMALL

�� � INVALID LU FACTORS

�� � MAXIMUM INTEGER TOO SMALL

�� � INVALID INPUTS

�
 � ZERO PIVOT WHEN DEFINITENESS IS DECLARED

�� � CHANGE IN SIGN OF PIVOT ENCOUNTERED

�	 � SINGULARITY DETECTED

�� � NONZERO ELEMENT IGNORED

�� � PIVOT HAS DIFFERENT SIGN FROM THE PREVIOUS ONE

�� � LACK OF SPACE � M TOO SMALL

�� � LACK OF SPACE � MAH TOO SMALL

�� � LACK OF SPACE � MCH TOO SMALL

�� � LACK OF SPACE � MA TOO SMALL

�� � LACK OF SPACE � MC TOO SMALL

�
 � LACK OF SPACE � NF TOO SMALL

�� � LACK OF SPACE � NA TOO SMALL

�	 � LACK OF SPACE � NC TOO SMALL

�� � SIMPLE BOUNDS ARE NOT PERMITTED

�� � INEQUALITY CONSTRASINTS ARE NOT PERMITTED

�� � TOO MANY DENSE ROWS � ND TOO SMALL

�� � LACK OF SPACE � MHA TOO SMALL

�� � LACK OF SPACE � MHC TOO SMALL

�� � LINEAR DEPENDENCE OF ACTIVE CONSTRAINTS

�� � INFEASIBLE SOLUTION

�
 � MAXIMUM NUMBER OF SIMPLEX ITERATIONS � MIS TOO SMALL

�� � DIFFERENTIAL EQUATION IS UNSTABLE

�	 � MAXIMUM NUMBER OF INTEGRATION STEPS EXCEEDED

�� � TOO SMALL INTEGRATION STEP

�� � DIFFERENTIAL EQUATION IS STIFF

�� � SINGULAR JACOBIAN IN IMPLICIT INTEGRATION METHOD

�� � LACK OF SPACE IN DIFFERENTIAL EQUATION SOLVER

�� � LACK OF SPACE � MMAX TOO SMALL

�� � MAXIMUM NUMBER OF MINOR CYCLES � MIQ TOO SMALL �

�� � MAXIMUM NUMBER OF MAJOR CYCLES � MAQ TOO SMALL �

��

� Special tools of the UFO system

The UFO system contains special tools that facilitate the user�s activity� There are tools for checking
the correctness of optimization problems and for testing optimization methods�

��� Checking external subroutines

The values� gradients� Hessian matrices of the model function or the approximating functions or the
constraint functions are speci
ed by using the macrovariables �FMODELF� �GMODELF� �HMODELF
or �FMODELA� �GMODELA� �HMODELA or �FMODELC� �GMODELC� �HMODELC� respectively�
Sometimes the correctness of these models needs to be checked up� If this is the case� then both the
analytical and the numerical di�erentiation can be compared� The checking of optimization problems can
be speci
ed by using the macrovariable �TEST� If �TEST��N�� no checking is performed� If �TEST��Y��
both the analytical and the numerical di�erentiation are executed before optimization is started �at the
initial starting point� and the derivatives obtained are printed� Only the derivatives that are analytically
speci
ed �the
rst� the second� are checked� If �TEST��A�� the checking is performed after the opti�
mization is
nished �at the
nal optimum point�� Finally� if �TEST��O�� only checking is performed and
optimization is not started� The output of checking an optimization problem has the following form�

STANDARD TEST OF EXTERNAL SUBROUTINES

�������������������������������������

PROBLEM NO �

PROBLEM

�������

NF � 	 KDF � 	 KSF � � KCF � 	 NORMF �

NA �
 NAL �
 MAL �
 KDA � �� KSA �
 KCA �
 NORMA �

NC � � NCL �
 MCL �
 KDC � � KSC �
 KCC � 	 NORMC �

PARAMETERS

����������

X � ��	

D

� ��

D

�

DERIVATIVES

�����������

FF A � ��
�

D

�

GF N � ��	�
�����		D

� ���

�	��D

�

GF A � ��	�
�

D

� ���

D

�

HF N � ���
	

���D

� ��

�
D

� �	

	D

�

HF A � ���
	

D

� ��

D

� �	

D

�

FC A � ���

D

�

GC N � ��

D

� �	

�	D

�

GC A � ��

D

� �	

D

�

FC A � ��

D

�

GC N � ���

�
D

� ����������
D

GC A � ���

D

� ��

D

�

FC A � ��

D

�

GC N � ���

�
D

� �	

�	D

�

GC A � ���

D

� �	

D

�

��

Here the letter �N� indicates a numerical di�erentiation and the letter �A� indicates an analytical
di�erentiation�

��� Testing optimization methods

The UFO system contains a great number of subroutines �collections of test problems� which serve
for testing optimization methods� All of these subroutines begin with letter �E� �external�� The input
subroutines have the second letter �I� and the third letter �U� or �L� or �N� for unconstrained or linearly
constrained or nonlinearly constrained problems� respectively� The model speci
cation subroutines have
the second letter �F� or �A� or �C� or �E� or �Y� for a model function or approximating functions or
constraint functions or state functions or initial functions� respectively� and the third letter �F� or �G�
or �H� for values or gradients or Hessian matrices� The fourth letter is always �U� or �D� or �S� or
�B� for universal or dense or sparse or partitioned problems� respectively� The last two digits specify
individual test problems collections� When we want to carry out a test of the method selected� we use
the speci
cations �COLLECTION��Y� and �NEXT�number of test problems in the input batch
le�
Tests corresponding to individual test problems collections are realized by using the following test

input
les�

TEST
�	�UFO � tests for unconstrained optimization ��	 dense problems from ����� ������ External
subroutines EIUD
�� EFFU
�� EFGU
�� EFHD
� are used�

TEST
		�UFO � tests for the sum of squares minimization �
� dense problems from ������� External
subroutines EIUD
	� EAFU
	� EAGU
	� EAHD
	 are used�

TEST
�	�UFO � tests for linearly constrained optimization ��	 dense problems from ��
��� External
subroutines EILD
�� EFFU
�� EFGU
� are used�

TEST
�	�UFO � tests for medium�size linear programming �� dense problems�� External subroutine
EILD
� is used�

TEST
�	�UFO � tests for medium�size quadratic programming �	 dense problems�� External subrou�
tine EILD
� is used�

TEST
�	�UFO � tests for minimax ��	 dense problems from ������� External subroutines EIUD
��
EAFU
�� EAGU
�� EAHD
� are used�

TEST
�	�UFO � tests for inequality constrained nonlinear programming �
� dense problems from
��
��� External subroutines EIND
�� EFFU
�� EFGU
�� ECFU
�� ECGU
� are used�

TEST
�	�UFO � tests for equality constrained nonlinear programming �
� dense problems from ��
���
External subroutines EIND
�� EFFU
�� EFGU
�� ECFU
�� ECGU
� are used�

TEST
�	�UFO � tests for unconstrained global optimization ��
 problems from ��	���� External
subroutines EIUD
�� EFFU
�� EFGU
� are used�

TEST�
	�UFO � tests for unconstrained optimization ��	 sparse problems from ������ External sub�
routines EIUS�
� EFFU�
� EFGU�
� EFHS�
 are used�

TEST��	�UFO � tests for large�scale linear programming ��� sparse problems�� External subroutine
EILS�� is used�

TEST�		�UFO � tests for large�scale quadratic programming ��� sparse problems�� External subrou�
tine EILS�	 is used�

TEST��	�UFO � tests for linearly constrained optimization �� sparse problems�� External subroutines
EILS��� EFFU��� EFGU�� are used�

TEST��	�UFO � tests for the sum of functions minimization ��� sparse problems from ������ External
subroutines EIUB��� EAFU��� EAGU�� are used�

TEST��	�UFO � tests for the sum of squares minimization ��� sparse problems from ������ External
subroutines EIUB��� EAFU��� EAGU�� are used�

TEST��	�UFO � tests for nonlinear equations solutions �
� dense problems�� External subroutines
EIUD��� EAFU��� EAGU�� are used�

TEST��	�UFO � tests for nonlinear equations solutions �
� dense problems�� External subroutines
EIUD��� EAFU��� EAGU�� are used�

��

TEST��	�UFO � tests for nonlinear equations �
� sparse problems from ������ External subroutines
EIUB��� EAFU��� EAGU�� are used�

TEST��	�UFO � tests for nonsmooth unconstrained optimization ��	 dense problems from �������
External subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST	
	�UFO � tests for equality constrained sparse nonlinear programming ��� sparse problems
from ������� External subroutines EIUB	
� EIUS	
� EIND	
� EINS	
� EFFU	
� EFGU	
�
EAFU	
� EAGU	
� ECFU	
� ECGU	
 are used�

TEST	�	�UFO � tests for inequality constrained sparse nonlinear programming �� dense problem��
External subroutines EIUS	�� EINS	�� EFFU	�� EFGU	�� ECFU	�� ECGU	� are used�

TEST			�UFO � tests for linearly constrained minimax optimization ��	 dense problems from �������
External subroutines EIUD		� EAFU		� EAGU		� EAHD		 are used�

TEST	�	�UFO � extended tests for unconstrained optimization ��� dense problems from ������ Ex�
ternal subroutines EIUD	�� EFFU	�� EFGU	� are used�

TEST	�	�UFO � extended tests for the sum of squares minimization ���	 dense problems from �����
����� ����� ������� External subroutines EIUD	�� EAFU	�� EAGU	� are used�

TEST	�	�UFO � extended tests for the sum of functions minimization ��� sparse problems from ������
External subroutines EIUB	�� EAFU	�� EAGU	� are used�

TEST	�	�UFO � extended tests for the sum of squares minimization �	� sparse problems from ������
External subroutines EIUB	�� EAFU	�� EAGU	� are used�

TEST	�	�UFO � extended tests for the sum of squares minimization ��� dense problems from ������
External subroutines EIUD	�� EAFU	�� EAGU	� are used�

TEST	�	�UFO � extended tests for unconstrained optimization ��� dense problems from ����� �����
����� ������� External subroutines EIUD	�� EFFU	�� EFGU	� are used�

TEST	�	�UFO � tests for nonsmooth unconstrained optimization �
� dense problems�� External
subroutines EIUD	�� EFFU	�� EFGU	�� EFBU	� are used�

TEST�
	�UFO � tests for optimization of dynamical systems �� dense problems�� External subrou�
tines EIUD�
� EEFU�
� EEGU�
� EYFU�
� EYGU�
 are used�

TEST��	�UFO � tests for di�erential equations �� dense problems�� External subroutines EIUD���
EEFU�� are used�

TEST�		�UFO � tests for the sum of squares minimization �� dense problems from ������ External
subroutines EIUD�	� EAFU�	� EAGU�	 are used�

TEST��	�UFO � tests for the sum of squares minimization �� dense problems from ������ External
subroutines EIUD��� EAFU��� EAGU�� are used�

TEST��	�UFO � tests for large�scale linear programming ��� sparse problems�� External subroutine
EINS	
 is used�

TEST��	�UFO � tests for large�scale quadratic programming �� sparse problems�� External subrou�
tine EIQS�� is used�

TEST��	�UFO � extended tests for nonlinear equations solutions ��� dense problems�� External
subroutines EIUD��� EAFU��� EAGU�� are used�

TEST��	�UFO � extended tests for nonlinear equations solutions ��� dense problems�� External
subroutines EIUD��� EAFU��� EAGU�� are used�

In these input
les� all necessary macrovariables are de
ned and the external subroutines are called� The
external subroutines with the last two digits ��� � � � �
� are brie#y described in the text
les E
��TXT�
� � � � E���TXT� The external subroutines with the last two digits ��� � � � � �� contain original test problems�
The remaining external subroutines are their various combinations�
To demonstrate the use of the test input
le we perform a test of the sum of squares minimization

by using a hybrid method realized as a trust region method� The test input
le TEST
	�UFO has the
following form�

�SET�INPUT�

CALL EIUD
	�NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

IF�IERR�NE�
� GO TO ��ENDTEST

�ENDSET

��

�SET�FMODELA�

CALL EAFU
	�NF�KA�X�FA�NEXT�

�ENDSET

�NF��	

�NA��

�KOUT�

�LOUT��

�MOUT���

�MIT��

�MFV��

�MODEL��AQ�

�CLASS��GN�

�TYPE��G�

�DECOMP��M�

�NUMBER��

�UPDATE��F�

�TOLX����
�P���

�TOLF����
�P����

�TOLB����
�P����

�TOLG����
�P���

�COLLECTION��Y�

�NEXT��

�BATCH

�STANDARD

The result �screen output� obtained has the following form �each row corresponds to one test problem
and the last row is the summary��

CLASS � GN � GM� UPDATE � F MODEL � AQ HESF � D NF � �	

� NIT� �	 NFV� �� NFG�
 FV BOUND F� �	�����
�	�E��� G� �			D���

	 NIT� 	� NFV� �	 NFG�
 GRAD TOL F� 	����	�	��� G� ��	�D�
�

� NIT� �� NFV� �
	 NFG�
 FV BOUND F� �	
������	
E�		 G� ����D�
�

� NIT� �� NFV� �� NFG�
 FV BOUND F� �

 G� �

D

� NIT� � NFV� 	� NFG�
 GRAD TOL F� ���		������E��� G� ��
�D�
�

� NIT� �	 NFV� �� NFG�
 LARGE F� �	����
���� G� ����D�
�

US
G
�� � �� MAXIMUM NUMBER OF REDUCTIONS

� NIT� � NFV� �	 NFG�
 FV BOUND F� �����
����	E�	� G� ����D��	

� NIT� � NFV� 	� NFG�
 GRAD TOL F� ���
�������E�
	 G� �	��D�
�

� NIT� � NFV� � NFG�
 GRAD TOL F� �����������E�
� G� ����D�
�

�
 NIT� �	� NFV� �
� NFG�
 STEP TOL F� �����	�	��� G� ����D�
	

�� NIT� �� NFV� 	�� NFG�
 FV BOUND F� �������
���E��� G� ���
D�
�

�	 NIT� �	 NFV� �� NFG�
 FV BOUND F� ����	�
����E�	
 G� ����D��

�� NIT� �
 NFV� �� NFG�
 GRAD TOL F� �����������E�
� G� �	��D�
�

�� NIT� �� NFV� 	�� NFG�
 FV BOUND F� ��
	����		�E�	� G� �	��D��

�� NIT� �� NFV� �	 NFG�
 GRAD TOL F� ������	�
	�E�
� G� ����D�
�

�� NIT� 	� NFV� ��� NFG�
 LARGE F� �	�����

�� G� �	��D�
�

US
G
�� � �� MAXIMUM NUMBER OF REDUCTIONS

�� NIT� 		 NFV� ��� NFG�
 GRAD TOL F� �	��	������E�
� G� �	��D�
�

�� NIT� �� NFV� �	� NFG�
 FV BOUND F� �	���
	����E��� G� ��
�D�
�

�� NIT� �� NFV� ��� NFG�
 GRAD TOL F� �	��	����
�E�
� G� ����D�
�

	
 NIT� � NFV� ��
 NFG�
 GRAD TOL F� �	���	�����E�
� G� �	��D�
�

	� NIT� �	 NFV� ��� NFG�
 FV BOUND F� �����������E�	� G� �		
D���

		 NIT� �
 NFV� ��� NFG�
 GRAD TOL F� ��
��������E�
� G� �	��D�
�

�

	� NIT� 	
 NFV� 	�� NFG�
 GRAD TOL F� ����	��
	��E�
� G� ����D�
�

	� NIT� 	� NFV� ��� NFG�
 GRAD TOL F� ��
��
���		E�
� G� ����D�
�

	� NIT� �
 NFV� ��� NFG�
 FV BOUND F� ��	������
�E�	� G� ���
D���

	� NIT� � NFV� ��� NFG�
 GRAD TOL F� ���������	�E�
� G� ����D�
�

	� NIT� � NFV� �� NFG�
 FV BOUND F� ����	�
�
��E��� G� ����D�
�

	� NIT� � NFV� �
� NFG�
 GRAD TOL F� �	�
�������E��
 G� ����D�
�

	� NIT� 	 NFV� �� NFG�
 GRAD TOL F� �������	��
E��� G� �	
�D�
�

�
 NIT� � NFV� �� NFG�
 FV BOUND F� �	�		������E�	� G� ����D��	

TOTAL NIT� ��� NFV� ���� NFG�
 NDC� ��	
 � 	�

NCG�
 NRS� � NAD�
 NRM�

��� Interface to the CUTE collection

The CUTE collection ���� is the most famous set of problems for testing optimizationmethods� These
problems are written in the special so�called SIF format� Therefore a SIF decoder is necessary� Such a
decoder is part of the CUTE collection� but this version can only be used for a relatively small set of
optimization codes �e�g� for the LANCELOT ��
� code�� Since the UFO system has a special nature� the
original SIF decoder had to be modi
ed� This modi
cation consists in replacing the subroutine SDLANC
by the subroutine SDUFO and in preparing new interface subroutines SIUBXX� SIUDXX� SIUSXX� SINBXX�
SINDXX� SINSXX� SFFUXX� SFGUXX� SFFGUX� SCFUXX� SCGUXX� SCFGUX� SAFUXX� SAGUXX� SAFGUX �instead of
USETUP� UFN� UGR� CSETUP� CFN� CGR etc���
The CUTE collection is not distributed with the UFO system� The SIF
les together with SIF

decoder subroutines have to be obtained from their authors �they are also available on the INTERNET
address http���www�dci�clrc�ac�uk�Activity�CUTE�� The special interface subroutines listed above
are exceptions� They are contained in the library CUTELIB�LIB�
If we want to use a SIF
le for testing the UFO system methods� it su�ces to write the macroinstruc�

tion �SIF��SIF
le name� in the input batch
le� For example� if we want to use problem DTOC
 for
testing recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems� then the problem speci
cation �input batch
le� has the following form�

�SIF��DTOC��

�FORM��SE�

�MOUT�	

�BATCH

�STANDARD

Here DTOC
 is a name of the SIF
le and SE is the form of recursive quadratic programming methods
�section
����� The problem solution �basic screen output� has this form�

NIC�
 NIT�
 NFV� � NFG� � F� �

D

 C� ���
D

	 G� �

D

NIC�
 NIT� � NFV� 	 NFG� �� F� �	��D

� C� �	��D��� G� ����D���

 NIC�
 NIT� 	 NFV� 	 NFG� �� F� �	��D

� C� �	��D��� G� ����D���

The form of additional output
les P�DIM and P�SIF is shown in section 	���
If the sparsity pattern contains a relatively great number of nonzero elements� then default dimensions

�e�g� �M� �MA� �MAH� �MHA� �MC� �MCH� �MHC� might be too small and therefore they must be
speci
ed in the input batch
le�

��

�� Application of the UFO system
examples�

Before the solution of a given problem� the input
le containing the problem description and other
speci
cations for the macroprocessor must usually be prepared� This input
le can contain only the
macroinstruction �STANDARD �input
le STANDARD�UFO�� Then a full dialogue is processed� However�
a more advantageous possibility is to prepare an input
le containing the problem description while a
method selection is left to the dialogue� Moreover� since a method selection can be made automatically
by using knowledge bases coded in UFO templates� the batch mode is recommended�
When writing input
le instructions� we have to observe some conventions� Since a control program

contains a great number of common variables� we recommend using variables beginning with the letter
�W� for the problem description to avoid their double use� Real variables of this type should be declared
at the beginning of the control program by the statement �FLOAT �for example �FLOAT W�W��W���
Simple integers I�J�K�L need not be declared� We recommend using statement numbers smaller than
����� for the problem description to avoid their double use�
The basic implementation of the UFO system is in a double precision arithmetic� Therefore usually

�FLOAT��REAL"�� and �P��D�� We recommend writing real constants always in the form of �P or D
speci
cation �for example ����P �� ����P�� or ���D �� ���D��� since the conversions from a single precision�
which depend on a compiler� can be incorrect� Instead of constants ���D�� ��	D�� ���D�� ���D��
��D��
���D�� 	��D�� ���D�� we can use the common variables ZERO� HALF� ONE� TWO� THREE� FOUR�
FIVE� TEN� which contain corresponding values�
In the following text� we demonstrate the application of the UFO system to �� typical problems�

Every example consists of the problem description� the problem speci
cation �input
le�� comments to
the problem speci
cation and the problem solution �basic screen output� obtained on a PC computer� All
input
les contain the necessary data and can be used in the batch mode� These input
les are included
into the UFO system as the demo�
les PROB
��UFO�� � � �PROB	
�UFO�

���� Optimization with simple bounds

a� Problem description�
Suppose we have to
nd a local maximum of the objective function

F �x� �
�
n�

� nY
i��

xi
�
� �

with simple bounds � � xi � i for � � i � n� where n � 	� The starting point is xi � � for � � i � n� The
solution point is xi � i for � � i � n and the corresponding maximum value of the objective function is
F � �����

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

DO � I���NF

X�I��	�D
 � XL�I��
�D
 � XU�I��DBLE�I� � IX�I���

� CONTINUE

�ENDSET

�SET�FGMODELF�

W���D

DO 	 I���NF

W�W�X�I��DBLE�I�

	 CONTINUE

FF�W�	�D

DO � I���NF

�	

GF�I��W�X�I�

� CONTINUE

�ENDSET

�IEXT��

�NF��

�KBF�	

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values and the simple bounds for variables�
By using the macrovariable �FGMODELF we specify analytically the value and the gradient of the model
function� Because we look for a maximum� we set �IEXT���

d� Problem solution �basic screen output��

CLASS � VM � LG� UPDATE � B MODEL � FF HESF � D NF � �

NIT�
 NFV� � NFG� � F� ����������� G� ����D�
�

NIT� � NFV� � NFG� � F� ����

 G� ���
D

NIT� 	 NFV� � NFG� � F� ��	

 G� �	

D

NIT� � NFV� � NFG� � F� ��

 G� �

D

 NIT� � NFV� � NFG� � NDC�
 NCG�
 F� ��

D

� G� �

D

FF � ���

D

�

X � ��

D

� �	

D

� ��

D

� ��

D

�

��

D

�

���� Minimization of the sum of squares

a� problem description�
Suppose we have to
nd a local minimum of the objective function

F �x� �
�
�

mX
i��

�
x�e

�x�ti � x�e
�x�ti � x	e

�x�ti � yi
��

where m � ��� ti � i��� and yi � e�ti�	e���ti�
e��ti for � � i � m� The starting point is x� � �� x� �
�� x� � �� x� � �� x� � �� x	 � �� The solution point is x� � �� x� � ��� x� � �� x� � �� x� � 	� x	 �
 and
the corresponding minimum value of the objective function is F � ���

b� Problem speci
cation �input
le��

�FLOAT W�WA�WB�WC

�SET�INPUT�

X������D
 � X�	��	�D
 � X������D

X������D
 � X������D
 � X������D

DO � KA���NA

W�
��D
�DBLE�KA�

AM�KA��EXP��W����D
�EXP����
D��W�
��D
�EXP����D
�W�

� CONTINUE

XMAX���D�

��

FMIN�
�D

�ENDSET

�SET�FMODELA�

W�
��D
�FLOAT�KA�

WA�EXP��W�X����

WB�EXP��W�X�	��

WC�EXP��W�X����

FA�X����WA�X����WB
X����WC

�ENDSET

�NF��

�NA�	

�NAL�

�KBA��

�MOS���

�MOUT�	

�NOUT��

�MODEL��AQ�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the vector AM
containing values yi� � � i � m� Since the approximating functions contain exponentials� we de
ne
the maximum stepsize �XMAX���� By using the macrovariable �FGMODELA we specify analytically
the values of the approximating function� The gradients of the approximating functions are computed
numerically� For the sum of squares minimization we set �MODEL��AQ�� The speci
cation �KBA��
indicates that the vector AM is used�

d� Problem solution �basic screen output��

CLASS � GN � GM� UPDATE � N MODEL � AQ HESF � D NF � �

NIT�
 NFV� � NFG�
 F� ����	������ G� ����D

NIT� � NFV� �� NFG�
 F� �����
	
��� G� �	��D

NIT� 	 NFV� 	� NFG�
 F� ���	
���	�� G� ����D

NIT� � NFV� 	� NFG�
 F� ���������
�E�
� G� �	
�D

NIT� � NFV� �� NFG�
 F� �������

��E�
� G� �	
	D

NIT� � NFV� �� NFG�
 F� ��	���
����E�
� G� ����D

NIT� � NFV� �
 NFG�
 F� ���������
�E�
	 G� ����D

NIT� � NFV� �� NFG�
 F� �����������E�
	 G� ���	D�
�

NIT� � NFV� �� NFG�
 F� ������
����E�
� G� ���	D�
	

NIT� � NFV� �� NFG�
 F� ������	����E�
� G� ����D�
�

NIT� �
 NFV� �
 NFG�
 F� �	���������E�
� G� ���	D�
�

NIT� �� NFV� �� NFG�
 F� ��������	��E�
� G� ���
D�
	

NIT� �	 NFV� �� NFG�
 F� �����������E�
� G� ����D�
	

NIT� �� NFV� �
� NFG�
 F� �	�	�������E�
� G� ����D�
	

NIT� �� NFV� �
� NFG�
 F� ���
��
���	E��� G� ����D�
�

NIT� �� NFV� ��� NFG�
 F� ��
	�������E�	� G� ���
D���

 NIT� �� NFV� ��� NFG�
 NDC� �
 NCG�
 F� ��
	D�	� G� ���
D���

F � ��
	�������D�	�

X � ��

D

� ��

D

	 ��

D

� ��

D

�

��

D

� ��

D

�

��

���� Minimax approximation

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

F �x� � max
��i�m

j
x� � tix�

� � tix� � t�ix� � t�ix�
� yij

where m � ��� ti � �i�������� and yi � e�ti for � � i � m�The starting point is x� � ��	� x� � �� x� �
�� x� � �� x� � �� The solution point is x� � ������� x� � ���	
�� x� � �������� x� � ����	�� x� �
���
��� and the corresponding minimum value of the objective function is F � ��������
���

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

X����
��D
 � X�	��
�
D
 � X����
�
D

X����
�
D
 � X����
�
D

�ENDSET

�SET�FMODELA�

W�
��D
�DBLE�KA������
D

FA��X���
W�X�	������
D

W��X���
W��X���
W�X�������EXP�W�

�ENDSET

�MODEL��AM�

�NF��

�NA�	�

�NAL�

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of the approximating functions� The gradients of the
approximating functions are computed numerically� For minimax approximation we set �MODEL��AM��

d� Problem solution �basic screen output��

CLASS � VM � LQ� UPDATE � B MODEL � AM HESF � D NF � �

NIT�
 NFV� � NFG�
 F� 	�	��	���	� G� ��

D
��

NIT� � NFV� �� NFG�
 F� ��	�������� G� ����D

NIT� 	 NFV� �� NFG�
 F� ��	��	�����E�
� G� �		�D

NIT� � NFV� 	� NFG�
 F� ��	�������	E�
� G� ����D

NIT� � NFV� �� NFG�
 F� �����	����	E�
	 G� �	�
D�
�

NIT� � NFV� �� NFG�
 F� �����	����	E�
	 G� ����D�
	

NIT� � NFV� �� NFG�
 F� ������	����E�
	 G� ����D�
�

NIT� � NFV� �� NFG�
 F� �		����	

�E�
� G� �	��D�
�

NIT� � NFV� �� NFG�
 F� ��		��	����E�
� G� ����D�
�

NIT� � NFV� �� NFG�
 F� ��		���	���E�
� G� ����D�
�

 NIT� � NFV� �� NFG�
 NDC�
 NCG�
 F� ��		D�
� G� ����D�
�

��

F � ��		���	���D�
�

X � ��������	��D

 �	�������
�D

 ������
�����D

 �	��	
��
��D

������
	��

D�
�

���� Nonsmooth optimization

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

F �x� � �x� � � 	 �x
�
� � x�� � �� �

�
�
jx�� � x�� � �j

The starting point is x� � ��� x� � ���� The solution point is x� � �� x� � �� and the corresponding
minimum value of the objective function is F � �����

b� Problem speci
cation �input
le��

�FLOAT W

�SET�INPUT�

X�������D

X�	�����D

�ENDSET

�SET�FGMODELF�

W�X�����	
X�	���	���D

FF��X���
	�D
�W
����D
�ABS�W�

W�SIGN�����P
�W�
��D

GF����W�X������D

GF�	��W�X�	�

�ENDSET

�NF�	

�KSF��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FGMODELF we specify analytically the value and the gradient of the objective function� For
nonsmooth optimization we set �KSF�
�

d� Problem solution �basic screen output��

CLASS � BM � L�� UPDATE � N MODEL � FF HESF � D NF � 	

NIT�
 NFV� � NFG� � F� ����

 G� ��

D
��

NIT� � NFV� � NFG� � F� ������������ G� ���
D

�

NIT� 	 NFV� � NFG� � F� ���
�������� G� ����D

NIT� � NFV� � NFG� � F� ��	�

 G� ��
	D

NIT� � NFV� � NFG� � F� ���	���	���� G� ��
	D

NIT� � NFV� � NFG� � F� ���
������	 G� ����D

��

NIT� � NFV� � NFG� � F� ���	���
���� G� ��		D

NIT� � NFV� � NFG� � F� ������
����� G� ���	D

NIT� � NFV� �
 NFG� �
 F� ������
��	�� G� ����D�
�

NIT� � NFV� �� NFG� �� F� �����
���	�� G� ����D

NIT� �
 NFV� �	 NFG� �	 F� �����	������ G� ��
�D

NIT� �� NFV� �� NFG� �� F� ������������ G� ���
D�
�

NIT� �	 NFV� �� NFG� �� F� �������			
� G� ����D�
�

NIT� �� NFV� �� NFG� �� F� ���

 G� ����D�
�

 NIT� �� NFV� �� NFG� �� NDC�
 NCG�
 F����

D

� G� ����D�
�

FF � ���

D

�

X � ��

D

� �

D

���� Optimization with linear constraints

a� problem speci
cation�

Suppose we have to
nd a local minimum of the objective function

F �x� � �x� � x��
� � �x� � ��

� � �x� � ��
� � �x� � ��

	

over the set given by the linear constraints

x� � x� � x� � �x� � �

x� � 	x� � �

The starting point is x� � ��� x� � �� x� � �� x� �
� x� � ���� The solution point is x� � �� x� �
�� x� � �� x� � �� x� � � and the corresponding minimum value of the objective function is F � ���

b� Problem speci
cation �input
le��

�SET�INPUT�

X���� ��D� � X�	�� ��D
 � X���� 	�D

X�������D
 � X����
��D

IC����� � CL������D

CG������D
 � CG�	����D
 � CG������D

CG������D
 � CG����
�D

IC�	��� � CL�	����D

CG����
�D
 � CG����
�D
 � CG������D

CG����
�D
 � CG��
����D

FMIN �
�D

�ENDSET

�SET�FMODELF�

FF��X����X�	����	
�X������D
���	
 �

�X������D
����
�X������D
����

�ENDSET

�SET�GMODELF�

GF���� 	�D
��X����X�	��

GF�	���	�D
��X����X�	��

GF���� 	�D
��X������D
�

GF���� ��D
��X������D
����

GF���� ��D
��X������D
����

�ENDSET

���

�NF��

�NC�	

�NCL�	

�KBC��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the types and
values of the general linear constraints� Since there are only equality constraints� we can specify only
the left sides �CL��� and CL���� and we can set �KBC��� The speci
cation �FMIN�� is used� since
the objective function value cannot be smaller then zero� By using the macrovariable �FMODELF we
specify analytically the value of the model function� By using the macrovariable �GMODELF we specify
analytically the gradient of the model function�

d� Problem solution �basic screen output��

CLASS � VM � LG� UPDATE � B MODEL � FF HESF � D NF � �

NIT�
 NFV� � NFG� � F� 	���

��
 G� ����D

	

NIT� � NFV� 	 NFG� 	 F� 	������
	
	 G� ����D

�

NIT� 	 NFV� � NFG� � F� ��
�	
	��
� G� ����D

�

NIT� � NFV� � NFG� � F� ����
����
� G� �	��D

�

NIT� � NFV� � NFG� � F� ��	��	����� G� ����D

NIT� � NFV� � NFG� � F� �����
����� G� ����D

NIT� � NFV� � NFG� � F� ����		�����E�
� G� ����D

NIT� � NFV� � NFG� � F� ���������	�E�
� G� ����D

NIT� � NFV� � NFG� � F� �����������E�
	 G� ����D�
�

NIT� � NFV� �
 NFG� �
 F� �	��

���	�E�
	 G� ����D�
�

NIT� �
 NFV� �� NFG� �� F� �����������E�
� G� ����D�
	

NIT� �� NFV� �	 NFG� �	 F� ��������		�E�
� G� ��
�D�
�

NIT� �	 NFV� �� NFG� �� F� ����������	E�
� G� ����D�
	

NIT� �� NFV� �� NFG� �� F� ��������
��E�
� G� ����D�
	

NIT� �� NFV� �� NFG� �� F� ����	������E�
� G� �		
D�
	

NIT� �� NFV� �� NFG� �� F� ��	
������
E�
� G� ����D�
	

NIT� �� NFV� �� NFG� �� F� �����������E�
� G� ��
�D�
	

NIT� �� NFV� �� NFG� �� F� �����������E�
� G� ��
�D�
�

NIT� �� NFV� �� NFG� �� F� ��������
�
E�
� G� ����D�
�

NIT� �� NFV� 	
 NFG� 	
 F� �	�	�������E�
� G� ����D�
�

NIT� 	
 NFV� 	� NFG� 	� F� ���	�
�����E�
� G� ��

D�
�

NIT� 	� NFV� 		 NFG� 		 F� �������	���E�
� G� ���
D�
�

NIT� 		 NFV� 	� NFG� 	� F� ���	�	��	��E�
� G� �	��D�
�

NIT� 	� NFV� 	� NFG� 	� F� ��
���	�
��E�
� G� ���	D�
�

NIT� 	� NFV� 	� NFG� 	� F� �	����
���	E�
� G� �	
�D�
�

NIT� 	� NFV� 	� NFG� 	� F� ��	�
������E��
 G� ��		D�
�

NIT� 	� NFV� 	� NFG� 	� F� ����	
��	��E��
 G� �	��D�
�

NIT� 	� NFV� 	� NFG� 	� F� ��
��������E��� G� ��
�D�
�

 NIT� 	� NFV� 	� NFG� 	� NDC�
 NCG�
 F� ��
�D��� G� ��
�D�
�

FF � ��
��������D���

X � ��

�������D

� ��

������	D

� ���������	�D

 �����������D

���

��

�	D

�

��
� Minimax approximation with linear constraints

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

F �x� � max�f��x�� f��x�� f��x��

with

f��x� � � exp�x� � x��

f��x� � sinh�x� � ��� �

f��x� � � log�x��� �

over the set given by the box constraint x�
 ����� and the linear constraint

	

���
x� � x� �

�

�

 ��

The starting point is x� � ��� x� � ������ The solution point is x� � ��	���� x� � ��	��
 and the
corresponding minimum value of the objective function is F � ����������

b� Problem speci
cation �input
le��

�SET�INPUT�

X�������D
 � IX����

X�	�� ��D�	 � XL�	�� ��D�	 � IX�	���

CL�������D�� � IC�����

CG������D�	 � CG�	�����D

�ENDSET

�SET�FMODELA�

IF �KA�EQ��� FA��EXP�X����X�	��

IF �KA�EQ�	� FA� SINH�X������D
����D

IF �KA�EQ��� FA��LOG�X�	�����D

�ENDSET

�MODEL��AM�

�IEXT���

�NF�	

�NA��

�NC��

�NCL��

�KBF��

�KBC��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

���

By using the macrovariable �INPUT we specify the initial values of variables and the types and values
of both the box constraints and the general linear constraints� Since there are only one�sided constraints�
we specify only the left sides �XL��� and CL���� and we can set �KBF�� and �KBC��� By using
the macrovariable �FMODELA we specify analytically the values of the approximating functions� The
gradients of the approximating functions are computed numerically� For minimax approximation we set
�MODEL��AM� and �IEXT����

d� Problem solution �basic screen output��

CLASS � VM � LQ� UPDATE � B MODEL � AM HESF � D NF � 	

NIT�
 NFV� � NFG�
 F� ���
���
��� G� ��

D
��

NIT� � NFV� � NFG�
 F� ����������� G� ����D

NIT� 	 NFV� � NFG�
 F� �����	����
 G� ����D

NIT� � NFV� �	 NFG�
 F� ��	�����	

 G� ����D

NIT� � NFV� �� NFG�
 F� ������
��
�� G� ����D

NIT� � NFV� �� NFG�
 F� ���������
�� G� ����D�
�

NIT� � NFV� 	� NFG�
 F� ������������ G� ����D�
	

NIT� � NFV� 	� NFG�
 F� �������
���� G� ����D�
�

 NIT� � NFV� 	� NFG�
 NDC�
 NCG�
 F������D

 G� �	
�D��

F � �������
����D

X � ���	�������D

� �����	���
�D

���� Optimization with nonlinear constraints �nonlinear programming	

a� Problem description�

Suppose we have to
nd a local maximum of the objective function

F �x� � x�x�

over the set given by the simple bounds x�
 �� x�
 �� x�
 �� x

 � and by the nonlinear constraints

�x� � x	�
� � �x� � x
�

�
 �

x�x� � x�x�p
x�� � x��

 �

x�x	 � x�x
p
x�� � x��

 �

x�x� � �x� � x��x� � x�x�p
�x� � x��� � x��

 �

x�x� � �x� � x��x
 � x�x	p
�x� � x�� � x��

 �

The starting point is x� �
��� x� � ���� x� � ���� x� � ���	� x� � ��	� x	 � 	��� x
 � ���� The
solution point is x� � ������ x� � ������ x� � ������ x� � ������ x� � ������ x	 � ������ x
 � �����
and the corresponding minimum value of the objective function is F � �
�
�
��

b� Problem speci
cation �input
le��

��

�FLOAT W

�SET�INPUT�

X���� ��
D
 � XL����
�
D
 � IX���� �

X�	��
�
D

X���� 	�
D
 � XL����
�
D
 � IX���� �

X��������D

X���� ���D
 � XL���� ��
D
 � IX���� �

X���� ��
D

X����
�
D
 � XL���� ��
D
 � IX���� �

CL������
D
 � IC���� �

CL�	����
D
 � IC�	�� �

CL������
D
 � IC���� �

CL������
D
 � IC���� �

CL������
D
 � IC���� �

�ENDSET

�SET�FMODELF�

FF�X����X���

�ENDSET

�SET�FMODELC�

IF �KC�LE�
� THEN

ELSE IF �KC�EQ��� THEN

FC��X����X������	
�X����X������	

ELSE IF �KC�EQ�	� THEN

W�SQRT�X�	���	
X�����	�

FC��X����X����X�	��X�����W

ELSE IF �KC�EQ��� THEN

W�SQRT�X�	���	
X�����	�

FC��X����X����X�	��X�����W

ELSE IF �KC�EQ��� THEN

W�SQRT��X�	��X������	
X�����	�

FC��X����X���
�X�	��X�����X����X����X�����W

ELSE IF �KC�EQ��� THEN

W�SQRT��X�	��X������	
X�����	�

FC��X����X���
�X�	��X�����X����X����X�����W

ENDIF

�ENDSET

�NF��

�NC��

�NCL�

�KBF��

�KBC��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values and simple bounds for variables
and the types and values of the general constraints� Since there are only one�sided simple bounds and
one�sided general constraints� we set �KBF�� and �KBC��� By using the macrovariable �FMODELF
we specify analytically the value of the model function� The gradient of the model function is computed

���

numerically�

d� Problem solution �basic screen output��

CLASS � VM � LN� UPDATE � N MODEL � FF HESF � D NF � �

NIC�
 NIT�
 NFV� � NFG�
 F� ��

D

� C� �	��D

� G� �

D

NIC�
 NIT� � NFV� �� NFG�
 F� ���
D

	 C� ����D

 G� �	��D

�

NIC�
 NIT� 	 NFV� �� NFG�
 F� �	��D

	 C� ��
�D�
� G� ��
�D

�

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D

	 C� ����D�
� G� ��
�D

�

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D

	 C� ����D�
� G� ��
�D

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D

	 C� ���	D�
� G� ����D

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D

	 C� ��
�D�
	 G� �	�
D

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D

	 C� �	��D�
� G� ����D�
�

NIC�
 NIT� � NFV� �
� NFG�
 F� �	��D

	 C� ����D�
� G� �	��D�
�

NIC�
 NIT� � NFV� �	
 NFG�
 F� �	��D

	 C� ��	�D�
� G� ����D�
�

NIC�
 NIT� �
 NFV� ��� NFG�
 F� �	��D

	 C� ���	D�
� G� ����D�
�

NIC�
 NIT� �� NFV� ��� NFG�
 F� �	��D

	 C� ����D�
� G� �		�D�
�

NIC�
 NIT� �	 NFV� ��� NFG�
 F� �	��D

	 C� ��
	D��	 G� �	��D�
�

 NIC�
 NIT� �� NFV� ��� NFG�
 F� �	��D

	 C� ��
	D��	 G� �	�	D�
�

FF � �	�����
��
D

	

X � ���	��	��		D

� �	�
����
��D�
� ���	��	��	�D

� ��

���D

�

�	���	���
�D

� �	���	�����D

� ��

D

�

���� Global optimization

a� Problem description�

Suppose we have to
nd the global minimum of the objective function

F �x� � �x� �
�
��x� � 	�

� � �x� � ��
��x� �
�

� � x��x
�
�

over the set given by the inequalities ��� � x� � �� and ��� � x� � ��� The starting point is x� � ��
x� � �� The solution point is x� � ���

��� x� � ������	 and the global minimumvalue of the objective
function is F � ���������

b� Problem speci
cation �input
le��

�SET�INPUT�

XL������	�D
 � XU�����
�D

XL�	����	�D
 � XU�	���
�D

�ENDSET

�SET�FMODELF�

FF���X������D
���X���
��D
����	
 �

��X�	��	�D
���X�	�
��D
����	��X����X�	����	

�ENDSET

�NF�	

�MOUT��

�NOUT��

�EXTREM��G�

�BATCH

�STANDARD

��	

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the bounds de
ning the investigated region� By using
the macrovariable �FMODELF we specify analytically the value of the model function� The gradient
of the model function is computed numerically� Since we require to
nd the global minimum we set
�EXTREM��G��

d� Problem solution �basic screen output��

CLASS � VM � LI� UPDATE � B MODEL � FF HESF � D NF � 	

 NIT� �� NFV� ��� NEX� � F� ���
�D

�

EXTREM � �

F � ���
�
��	�	�D

�

X � ����	������	D

� �������
���
D

�

EXTREM 	 �

F � ���
�		�����D

�

X � ���		��	����D

� ��������
��D

�

EXTREM � �

F � ����
����
��D

�

X � �������
���D

� ��������
�
�D

�

EXTREM � �

F � ������
�����D

	

X � �����	��	��D

� �	�	����	��D

�

��
� Large scale optimization �sparse Hessian matrix	

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

F �x� �
nX
i��

�
�
� �xi�xi � xi�� � xi�� � �

��
� xn�� � x� � �

where n � ���� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ���

b� Problem speci
cation �input
le��

�FLOAT A

�SET�INPUT�

DO � I���NF

X�I�����
D

J�	��I���
�

IH�I��J

JH�J��I

JH�J
���I
�

� CONTINUE

IH�NF
���	�NF

�ENDSET

���

�SET�FMODELF�

FF�
�
D

DO 	 J���NF

A����
D
�	�
D
�X�J���X�J�
��
D

IF �J�GT��� A�A�X�J���

IF �J�LT�NF� A�A�X�J
��

FF�FF
A�A

	 CONTINUE

�ENDSET

�SET�GMODELF�

GF����
�
D

DO � J���NF

A����
D
�	�
D
�X�J���X�J�
��
D

IF �J�GT��� A�A�X�J���

IF �J�LT�NF� A�A�X�J
��

A�A
A

GF�J��GF�J�
A����
D
���
D
�X�J��

IF �J�GT��� GF�J����GF�J����A

IF �J�LT�NF� GF�J
����A

� CONTINUE

�ENDSET

�NF��

�M��

�MOUT�	

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Hessian matrix� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is �	NF������� We set �M�	��� since a greater space
is needed for sparse matrix processing� By using the macrovariable �FMODELF we specify analytically
the value of the model function� By using the macrovariable �GMODELF we specify analytically the
gradient of the model function�

d� problem solution �basic screen output��

CLASS � MN � GM� UPDATE � N MODEL � FF HESF � S NF � �

NIT�
 NFV� � NFG� � F� ��
�

 G� ���
D

	

NIT� � NFV� 	 NFG� � F� ���	�	����� G� ��	�D

	

NIT� 	 NFV� � NFG� �	 F� ����	�	���� G� ����D

�

NIT� � NFV� � NFG� �� F� �	�
�	����	 G� ����D

�

NIT� � NFV� � NFG� 	
 F� �����������E�
� G� ��		D

NIT� � NFV� � NFG� 	� F� �	��		�
��	E�
� G� ����D�
	

NIT� � NFV� � NFG� 	� F� ������
����E�
� G� ��		D�
�

NIT� � NFV� � NFG� �	 F� ��
�	������E�
� G� ����D�
�

NIT� � NFV� � NFG� �� F� ������
�
��E��	 G� ��
�D�
�

NIT� � NFV� �
 NFG� �
 F� �����
�����E��� G� �	��D�
�

 NIT� � NFV� �
 NFG� �
 NDC�
 NCG� 	 F� ����D��� G� �	��D�
�

���

����� Large�scale optimization �sparse Jacobian matrix	

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

F �x� �
nX
i��

fAi �x�

where n���� and

fAi �x� �
�
�
� �xi�xi � xi�� � �

��
� i � �

fAi �x� �
�
�
� �xi�xi � xi�� � xi�� � �

��
� � � i � n� �

fAi �x� �
�
�
� �xi�xi � xi�� � �

��
� i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���
�This problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�FLOAT WA

�SET�INPUT�

DO � I���NF

X�I�����
D

� CONTINUE

L��

DO 	 I���NF

IAG�I��L

IF �I�GT��� THEN

JAG�L��I��

L�L
�

ENDIF

JAG�L��I

L�L
�

IF �I�LT�NF� THEN

JAG�L��I
�

L�L
�

ENDIF

	 CONTINUE

IAG�NF
���L

�ENDSET

�SET�FMODELA�

WA����
D
�	�
D
�X�KA���X�KA�
��
D

IF �KA�GT� �� WA�WA�X�KA���

IF �KA�LT�NF� WA�WA�X�KA
��

FA�WA�WA

�ENDSET

�SET�GMODELA�

WA����
D
�	�
D
�X�KA���X�KA�
��
D

IF �KA�GT� �� WA�WA�X�KA���

IF �KA�LT�NF� WA�WA�X�KA
��

���

WA�WA
WA

GA�KA��WA����
D
���
D
�X�KA��

IF �KA�GT� �� GA�KA�����WA

IF �KA�LT�NF� GA�KA
����WA

�ENDSET

�NF��

�NA��

�MA��

�M��

�MOUT�	

�MODEL��AF�

�JACA��S�

�HESF��B�

�FMIN��
�
�P
�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiag�
onal and the number of its nonzero elements is
	NF������� Therefore we set �MA�
��� Since we use
the partitioned Hessian matrix indicated by the statement �HESF��B�� we must specify the number of its
nonzero elements �it is �	NF���� Therefore we set �M����� By using the macrovariable �FMODELA we
specify analytically the values of the approximating functions� By using the macrovariable �GMODELA
we specify analytically the gradients of the approximating functions� For the sum of values minimization
we set �MODEL��AF��

d� problem solution �basic screen output��

CLASS � VM � LM� UPDATE � B MODEL � AF HESF � B NF � �

NIT�
 NFV� � NFG� � F� ��
�

 G� ���
D

	

NIT� � NFV� 	 NFG� 	 F� ����������� G� ����D

�

NIT� 	 NFV� � NFG� � F� �����
����� G� ����D

�

NIT� � NFV� � NFG� � F� ��	�	������ G� ��
�D

�

NIT� � NFV� � NFG� � F� ���
��
���	 G� ����D

�

NIT� � NFV� � NFG� � F� ����������� G� ����D

�

NIT� � NFV� � NFG� � F� �������	���E�
	 G� �	��D

NIT� � NFV� �
 NFG� �
 F� ���
�������E�
� G� ����D

NIT� � NFV� �� NFG� �� F� �����������E�
� G� ����D�
�

NIT� � NFV� �	 NFG� �	 F� ��
��	�����E�
� G� ��	�D�
	

NIT� �
 NFV� �� NFG� �� F� ���	�������E�
� G� ��
�D�
	

NIT� �� NFV� �� NFG� �� F� ����������	E�
� G� �	��D�
�

NIT� �	 NFV� �� NFG� �� F� ��
��	�����E��
 G� ��	�D�
�

NIT� �� NFV� �� NFG� �� F� �����������E��	 G� ����D�
�

NIT� �� NFV� �� NFG� �� F� �����
�
���E��� G� ����D�
�

 NIT� �� NFV� �� NFG� �� NDC�
 NCG� � F� ����D��� G� ����D�
�

����� Large�scale sum of squares optimization �sparse Jacobian matrix	

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

���

F �x� �
nX
i��

�
fAi �x�

��

where n � ��� and

fAi �x� � �
� �xi�xi � xi�� � � � i � �

fAi �x� � �
� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi �x� � �
� �xi�xi � xi�� � � � i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���
�This problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I���NF

X�I�����
D

� CONTINUE

L��

DO 	 I���NA

IAG�I��L

IF �I�GT��� THEN

JAG�L��I��

L�L
�

ENDIF

JAG�L��I

L�L
�

IF �I�LT�NA� THEN

JAG�L��I
�

L�L
�

ENDIF

	 CONTINUE

IAG�NA
���L

�ENDSET

�SET�FMODELA�

I�KA

FA����
D
�	�
D
�X�I���X�I�
��
D

IF �I�GT��� FA�FA�X�I���

IF �I�LT�NA� FA�FA�X�I
��

�ENDSET

�SET�GMODELA�

I�KA

GA�I����
D
���
D
�X�I�

IF �I�GT��� GA�I�������
D

IF �I�LT�NA� GA�I
������
D

�ENDSET

�NF��

�NA��

�MA��

���

�M��

�MOUT�	

�MODEL��AQ�

�JACA��S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiag�
onal and the number of its nonzero elements is
	NF������� Therefore we set �MA�
��� Since we do
not use the sparse Hessian matrix� we do not specify the number of its nonzero elements� By using the
macrovariable �FMODELA we specify analytically the values of the approximating functions� By using
the macrovariable �GMODELA we specify analytically the gradients of the approximating functions� For
the sum�of�squares minimization we set �MODEL��AQ��

d� problem solution �basic screen output��

CLASS � GN � GE� UPDATE � N MODEL � AQ HESF � N NF � �

NIT�
 NFV� � NFG� � F� 	
��

 G� ���
D

	

NIT� � NFV� 	 NFG� 	 F� ������
���� G� �	�
D

�

NIT� 	 NFV� � NFG� � F� �		��	�����E�
� G� ����D

NIT� � NFV� � NFG� � F� �����

��	�E�
� G� ���	D�
�

NIT� � NFV� � NFG� � F� �	���������E��� G� ��	�D�
�

 NIT� � NFV� � NFG� � NDC� � NCG�
 F� �	��D��� G� ��	�D�
�

����� Large�scale nonlinear equations

a� Problem description�

Suppose we have to solve the system of the nonlinear equations

fAi �x� � �
� �xi�xi � xi�� � � � � � i � �

fAi �x� � �
� �xi�xi � xi�� � xi�� � � � � � � � i � n� �

fAi �x� � �
� �xi�xi � xi�� � � � � � i � n

where n����� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ��� �This problem is equivalent to the previous problem��

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I���NF

X�I�����
D

� CONTINUE

�ENDSET

�SET�FMODELA�

I�KA

FA����
D
�	�
D
�X�I���X�I�
��
D

���

IF �I�GT��� FA�FA�X�I���

IF �I�LT�NA� FA�FA�X�I
��

�ENDSET

�NF��

�NA��

�MOUT�	

�MODEL��NE�

�JACA��N�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of functions in the nonlinear equations� For solving
nonlinear equations we set �MODEL��AQ��

d� problem solution �basic screen output��

CLASS � TN � GE� UPDATE � N MODEL � AQ HESF � N NF � �

NIT�
 NFV� � F� 	
��

NIT� � NFV� � F� ��	�������

NIT� 	 NFV� �� F� ���	�	���	�E�
�

NIT� � NFV� 	� F� �	������
�
E�
�

NIT� � NFV� 	� F� ��	
��
���	E���

 NIT� � NFV� 	� NDC� � NCG� � F� ��	
D���

����� Large�scale linear programming

a� Problem description�

Suppose we have to
nd the global maximum of the linear function

F �x� �
nX
i��

����ixi

with simple bounds ��� � xi � ��� � � xi � n� and linear constraints

�xi � xi�� � xi�� � i� � � i � nC

where n � �� and nC � ��� The starting point is not given� The maximum value of the linear objective
function is F � ���

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I���NF

IX�I���

XL�I���	�
D�

XU�I��	�
D�

GF�I��FLOAT�������I�

� CONTINUE

DO 	 KC���NC

���

IC�KC���

CL�KC��FLOAT�KC�

�SETCG�KC�KC����
D
�

�SETCG�KC�KC
�� ��
D
�

�SETCG�KC�KC
	����
D
�

	 CONTINUE

�ENDSET

�IEXT��

�NF�	

�NC���

�NCL���

�MC���

�KBF�	

�KBC��

�MOUT�	

�NOUT��

�MODEL��FL�

�JACC��S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the bounds for variables and the sparsity pattern
with numerical values of the constraint Jacobian matrix� We use the procedure UKMCI�� The sparse
Jacobian matrix� indicated by the statement �JACC��S�� is tridiagonal and the number of its nonzero
elements is
	�NF����	�� Therefore� we set �MC�	�� The option �MODEL��FL� indicates the linear
programming problem�

d� Problem solution �basic screen output��

CLASS � LP � LN� UPDATE � N MODEL � FL HESF � N NF � 	

NUMITR� � INEW� 	
 IOLD� �� KINP�
 IU� �� F� ���
D

�

NUMITR� 	 INEW� �� IOLD� 	
 KINP�
 IU� �� F� �	
�D

�

NUMITR� � INEW�
 IOLD� 	
 KINP�
 IU� �� F� �

D

NUMITR� � NEL� � NREF� � KINP�
 IU� �� F� �

D

 ITERL� �

NUMITR� � INEW� �� IOLD� �� KINP�
 IU� �� F� ��

D

�

NUMITR� 	 INEW� 	
 IOLD� �� KINP�
 IU� �� F� ��

D

�

NUMITR� � INEW�
 IOLD� �� KINP�
 IU� �� F� ��

D

�

NUMITR� � NEL� � NREF� � KINP�
 IU� �� F� ��

D

� ITERL� 	

 NIC�
 NIT� � NFV� 	 NFG�
 F����

D

� C� �

D

 G� �

D

FF � ���

D

�

X � ��	

D

� �

D

 ��

D

� ���

D

�

���

D

� ���

D

� ���

D

� ���

D

�

���

D

� ���

D

� ����

D

	 ����

D

	

����

D

	 ���	

D

	 ����

D

	 ����

D

	

����

D

	 ��	

D

	 ��	

D

	 ����

D

	

����� Large�scale quadratic programming

a� Problem description�

Suppose we have to
nd the global minimum of the quadratic function

��

F �x� �
�

�
��x�� � x�� � �x

�
� � x�� � �x�x� � �x�x�� � x� �
x� � x� � x�

with simple bounds xi
 � for � � i � n and linear constraints

x� � �x� � x� � x� � 	�

x� � x� � �x� � x� � ��

�x� � �x�

�

The starting point is xi � ��� for � � i � n�� The minimum value of the quadratic objective function is
F � ����������

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I���NF

X�I��
��D

XL�I��
�
D

IX�I���

� CONTINUE

GF�������
D
� GF�	�����
D
� GF���� ��
D
� GF�������
D

IH���� �� IH�	�� �� IH���� �� IH���� �� IH� ��� �

JH���� �� JH�	�� �� JH���� 	� JH���� �� JH� ��� �� JH���� �

HF���� 	�
D
� HF�	�����
D
� HF���� ��
D

HF���� 	�
D
� HF���� ��
D
� HF���� ��
D

IC����	� IC�	��	� IC�����

CL���� ��
D
� CL�	�� ��
D
� CL���� ��
D

ICG������ ICG�	���� ICG������ ICG������

JCG������ JCG�	��	� JCG������ JCG������ JCG� ����

JCG����	� JCG������ JCG������ JCG����	� JCG��
���

CG���� ��
D
� CG�	�� 	�
D
� CG���� ��
D
� CG���� ��
D
� CG� ��� ��
D

CG���� ��
D
� CG���� 	�
D
� CG�������
D
� CG���� 	�
D
� CG��
�� ��
D

�ENDSET

�NF��

�NC��

�NCL��

�MC��

�M��

�KBF��

�KBC��

�MOUT�	

�NOUT��

�MODEL��FQ�

�JACC��S�

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the bounds for variables� the sparsity pattern with
numerical values of the model Hessian matrix� and the sparsity pattern with numerical values of the

���

constraint Jacobian matrix� The sparse Hessian matrix is indicated by the statement �HESF��S�� We
set �M���� as a su�ciently large dimension for the working
elds� The sparse Jacobian matrix is
indicated by the statement �JACC��S� and the number of its nonzero elements is �MC���� The option
�MODEL��FQ� indicates the quadratic programming problem�

d� Problem solution �basic screen output��

CLASS � QP � LN	 UPDATE � N MODEL � FQ HESF � S NF � �

MODE � � NRED �
 N � � IOLD �
 INEW �

MODE � � NRED � � N � � IOLD �
 INEW � � ADDITION

MODE � � NRED � 	 N � 	 IOLD �
 INEW � �� ADDITION

MODE � � NRED � � N � 	 IOLD �
 INEW �

MODE � � NRED � � N � 	 IOLD �
 INEW �

MODE � � NRED � � N � � IOLD � � INEW �
 DELETION

MODE � � NRED � � N � 	 IOLD �
 INEW � � ADDITION

MODE � � NRED � � N � 	 IOLD �
 INEW �

MODE � � NRED � � N � 	 IOLD �
 INEW �

 NIC�
 NIT� � NFV� 	 NFG�
 F������D

� C� �

D

 G� �

D

FF � �����������	D

�

X � �	�	�	�	�	�D

 �	
�
�
�
��D

� �

D

 �����������D

����� Large�scale optimization with linear constraints

a� Problem description�

The problem we have solved is in fact the Hock and Schittkowski problem number ��� �see ����� which
has �� variables and � linear constraints� The minimum value of the objective function is F � ��������

b� Problem speci
cation �input
eld��

�FLOAT WI�WJ

�SET�INPUT�

DO � I���NF

X�I���
�
D
� XL�I��
�
D
� XU�I����
D
� IX�I���

� CONTINUE

IH� ��� �� IH� 	�� �� IH� ����
� IH� ������ IH� �����

IH� ���	�� IH� ���	�� IH� ����
� IH� ������ IH��
����

IH�������� IH��	���
� IH������	� IH�������� IH�������

IH�������� IH��������

JH� ��� �� JH� 	�� �� JH� ��� �� JH� ��� �� JH� �����

JH� ��� 	� JH� ��� �� JH� ��� �� JH� ����
�

JH��
�� �� JH����� �� JH��	�� �� JH������
� JH�������

JH����� �� JH����� �� JH�������� JH��������

JH����� �� JH�	
�� �� JH�	����
� JH�		���	� JH�	�����

JH�	��� �� JH�	��� �� JH�	������

JH�	��� �� JH�	������ JH�	������

JH��
�� �� JH������
� JH��	�����

JH����� �� JH������	� JH��������

JH������
� JH��������

JH�������� JH��������

JH��
���	� JH��������

JH��	����� JH��������

��	

JH��������

JH��������

JH��������

DO 	 I���NC

IC�I���

	 CONTINUE

CL���� 	��D

CL�	�� ���D

CL��������D

CL��������D

CL���� ���D

CL���� 	��D

CL���� 	��D

CL��������D

�SETCG��� ��
�		D
�

�SETCG��� 	�
�	
D
�

�SETCG��� ��
���D
�

�SETCG��� ��
�	�D
�

�SETCG��� ��
���D
�

�SETCG��� ��
���D
�

�SETCG��� ��
��	D
�

�SETCG��� ��
���D
�

�SETCG��� �� ��

D
�

�SETCG�	� �������D
�

�SETCG�	� ������
D
�

�SETCG�	� �� ���	D
�

�SETCG�	� �������D
�

�SETCG�	� ��
��
D
�

�SETCG�	��
� ��

D
�

�SETCG��� �� ��	�D
�

�SETCG��� 	��
���D
�

�SETCG��� �������D
�

�SETCG��� ���
���D
�

�SETCG��� ���
���D
�

�SETCG������ ��

D
�

�SETCG��� ������
D
�

�SETCG��� 	����
�D
�

�SETCG��� ��
���D
�

�SETCG��� ���
���D
�

�SETCG��� �������D
�

�SETCG��� ���
���D
�

�SETCG����	� ��

D
�

�SETCG��� �������D
�

�SETCG��� �� ����D
�

�SETCG��� ��
���D
�

�SETCG��� ���
���D
�

�SETCG��� ���
���D
�

�SETCG������ ��

D
�

�SETCG��� 	�����	D
�

�SETCG��� ���
���D
�

�SETCG��� �� ���	D
�

�SETCG��� �� ��	�D
�

���

�SETCG��� ��
�	�D
�

�SETCG��� ���
�	�D
�

�SETCG������ ��

D
�

�SETCG��� �� ���	D
�

�SETCG��� ��
���D
�

�SETCG��� �� ���	D
�

�SETCG��� ���
���D
�

�SETCG������ ��

D
�

�SETCG��� 	�
���D
�

�SETCG��� ��
�	�D
�

�SETCG��� ������
D
�

�SETCG��� ��
���D
�

�SETCG��� �����
�D
�

�SETCG��� ��
��
D
�

�SETCG������ ��

D
�

�ENDSET

�SET�FGMODELF�

FF�
�
D

DO � I���NF

GF�I��
�
D

� CONTINUE

DO � I���NF

WI�X�I���X�I�
��
D
�
��
D

K��IH�I�

K	�IH�I
����

DO � K�K��K	

J�JH�K�

WJ�X�J���X�J�
��
D
�
��
D

FF�FF
WI�WJ

GF�I��GF�I�
�	�
D
�X�I�
��
D
��WJ

GF�J��GF�J�
WI��	�
D
�X�J�
��
D
�

� CONTINUE

� CONTINUE

�ENDSET

�NF���

�M�	

�NC��

�NCL��

�MC���

�KBF�	

�KBC��

�MOUT�	

�NOUT��

�JACC��S�

�HESF��S�

�ADD�INTEGER���IH��NF
���JH��M���

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the bounds for variables� the sparsity pattern with

���

numerical values of the model Hessian matrix� and the sparsity pattern with numerical values of the
constraint Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix is indicated by
the statement �HESF��S�� The sparse Jacobian matrix is indicated by the statement �JACC��S�� The
option �MODEL��FF� indicates a general objective function� By using the macrovariable �FGMODELF
we specify analytically the value and the gradient of the model function� Since the Hessian structure
appears in the gradient de
nition and the conjugate gradient method is used as default� we have to
declare
les IH and JH�

d� Problem solution �basic screen output��

CLASS � CD � LC� UPDATE � N MODEL � FF HESF � N NF � ��

NIT�
 NFV� � NFG� � F� �������	��	 G� �

D

NIT� � NFV� � NFG� � F� �������

�� G� �

D

NIT� 	 NFV� � NFG� � F� �������
��
 G� �	��D

�

NIT� � NFV� � NFG� � F� ��
��	�	��� G� ����D

�

NIT� � NFV� � NFG� � F� ������	���� G� ����D

�

NIT� � NFV� � NFG� � F� ����������� G� ����D

	

NIT� � NFV� �
 NFG� �
 F� ���������	� G� ����D

�

NIT� � NFV� �� NFG� �� F� �������	��
 G� ����D

�

NIT� � NFV� �	 NFG� �	 F� 	�������

� G� �	��D

�

NIT� � NFV� �� NFG� �� F� 	�
�
������ G� ��
�D

�

NIT� �
 NFV� �� NFG� �� F� 	���
�	��

 G� �	��D

�

NIT� �� NFV� �� NFG� �� F� 	��������
� G� ����D�
�

NIT� �	 NFV� �� NFG� �� F� 	���������� G� ����D�
	

NIT� �� NFV� 	� NFG� 	� F� 	���������� G� �	�	D�
�

NIT� �� NFV� 	� NFG� 	� F� 	���������� G� ���
D�
�

 NIT� �� NFV� 	� NFG� 	� NDC�
 NCG�
 F� �	��D

� G� ���
D�
�

FF � �	���������D

�

X � �����������D�
� �����������D

 �	
	��
����D

 �����������D

��	���
����D

� ��������		�D

 �����������D

� �����

����D

�������
�	�D

� �������	���	D��� ������������D��� ��	��
�����D���

���
	
�
��	D

 �		��
�����D��� ����	������D

 ������������D���

���
� Large�scale optimization with nonlinear equality constraints

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

F �x� �
nX
i��

�
fAi �x�

��

where n � ��� and

fAi �x� � �
� �xi�xi � xi�� � � � i � �

fAi �x� � �
� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi �x� � �
� �xi�xi � xi�� � � � i � n

over the set given by the nonlinear equality constraints

���

�xi�x
�
i � xi���� ���� xi� � ��xi � x�i��� � x�i�� � xi�� � xi�� � x�i�� � ��
 � i � n� �

The starting point is xi � ��� � � i � n� The minimum value of the objective function is F � 	����	��

b� Problem speci
cation �input
le��

�FLOAT WA�WB

�SET�INPUT�

DO � I���NF

X�I�����D

� CONTINUE

M�

IH�����

DO 	 I���NF

M�M
�

JH�M��I

IF �I�LE�NF��� THEN

M�M
�

JH�M��I
�

ENDIF

IF �I�LE�NF�	� THEN

M�M
�

JH�M��I
	

ENDIF

IH�I
���M
�

	 CONTINUE

MC�

ICG�����

DO � I���NF�	

MC�MC
�

JCG�MC��I�	

MC�MC
�

JCG�MC��I��

MC�MC
�

JCG�MC��I

MC�MC
�

JCG�MC��I
�

MC�MC
�

JCG�MC��I
	

ICG�I����MC
�

� CONTINUE

DO � KC���NC

IC�KC���

CL�KC��
�D

� CONTINUE

�ENDSET

�SET�FMODELF�

FF�
�D

DO � J���NF

WA����D
�	�D
�X�J���X�J�
��D

���

IF �J�GT� �� WA�WA�X�J���

IF �J�LT�NF� WA�WA�X�J
��

FF�FF
WA��	

� CONTINUE

�ENDSET

�SET�GMODELF�

DO � J���NF

GF�J��
�D

� CONTINUE

DO � J���NF

WA����D
�	�D
�X�J���X�J�
��D

IF �J�GT� �� WA�WA�X�J���

IF �J�LT�NF� WA�WA�X�J
��

WB�	�D
�WA

GF�J��GF�J�
WB����D
���D
�X�J��

IF �J�GT� �� GF�J����GF�J����WB

IF �J�LT�NF� GF�J
���GF�J
���WB

� CONTINUE

�ENDSET

�SET�FMODELC�

K�KC
	

FC���D
�X�K���X�K���	�X�K�����	�D
����D
�X�K��

� ��D
��X�K��X�K
����	�
X�K�����	�X�K�	�
X�K
���

� X�K
	���	

�ENDSET

�SET�GMODELC�

K�KC
	

GC�K�	�����D

GC�K�������D
�X�K�
	�D
�X�K���

GC�K��	��D
�X�K���	���D
�X�K���
��D

GC�K
������D
�X�K
��
��D

GC�K
	���	�D
�X�K
	�

�ENDSET

�NF��

�M���

�NC���

�NCL�

�NCE�NC

�MC��

�KBC��

�MOUT�	

�JACC��S�

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� the sparsity pattern of
the objective Hessian matrix� the sparsity pattern of the constraint Jacobian matrix� and the constraint
speci
cations� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is �	NF������� We set �M��	��� since a greater

���

space is needed for sparse matrix processing� The sparse Jacobian matrix is indicated by the statement
�JACC��S�� Since there are only the equality constraints� we can specify the right hand sides CL�KC�� �
� KC � NC� and set �KBC��� The statement �NCE�NC expresses that all constraints are equalities�
By using the macrovariable �FMODELF we specify analytically the value of the model function� By
using the macrovariable �GMODELF we specify analytically the gradient of the model function� By
using the macrovariable �FMODELC we specify analytically the values of the constraint functions� By
using the macrovariable �GMODELC we specify analytically the gradients of the constraint functions�

d� problem solution �basic screen output��

CLASS � MN � LK� UPDATE � N MODEL � FF HESF � S NF � �

NIC�
 NIT�
 NFV� � NFG� �
 F� ���
D

� C� �	�
D

	 G� ���
D

	

NIC�
 NIT� � NFV� 	 NFG� 	
 F� ����D

� C� ���
D

� G� ��	�D

	

NIC�
 NIT� 	 NFV� � NFG� �
 F� ����D

� C� �	��D

� G� ����D

�

NIC�
 NIT� � NFV� � NFG� �
 F� �	��D

� C� ��	�D

� G� ���
D

�

NIC�
 NIT� � NFV� � NFG� �
 F� ����D

	 C� ����D

 G� ���
D

�

NIC�
 NIT� � NFV� � NFG� �
 F������D

	 C� ����D

 G� ����D

�

NIC�
 NIT� � NFV� �� NFG� �
 F� �	��D

� C� ����D

 G� ����D

�

NIC�
 NIT� � NFV� �	 NFG� �
 F� ����D

� C� ���
D�
� G� ���
D

NIC�
 NIT� � NFV� �� NFG� �
 F� ���
D

� C� �	�	D�
	 G� ����D

NIC�
 NIT� � NFV� �� NFG� �

 F� ��	�D

� C� ��	�D�
� G� ����D�
�

NIC�
 NIT� �
 NFV� �� NFG� ��
 F� ��	�D

� C� ���
D�
� G� ����D�
�

NIC�
 NIT� �� NFV� �� NFG� �	
 F� ��	�D

� C� �	��D�
� G� ����D�
	

NIC�
 NIT� �	 NFV� �� NFG� ��
 F� ��	�D

� C� ����D�
� G� �		
D�
�

NIC�
 NIT� �� NFV� �� NFG� ��
 F� ��	�D

� C� ����D�
� G� ��	�D�
�

 NIC�
 NIT� �� NFV� �� NFG� ��
 F� ��	�D

� C� ����D�
� G� ��	�D�
�

����� Large�scale optimization with nonlinear equality and inequality constraints

a� Problem description�

Suppose we have to
nd a local minimum of the objective function

F �x� �
n��X
j��

�
x�i�� � x�i � �x

�
i�� � xi� �� � 	xi�� � 	xi � ��xi�� � �xi��

�

where n � ��� over the set given by the nonlinear constraints

x�j�� � x�j � x�j�� � x�j�� � xj��� xj � xj�� � xj�� � �� mod�k�
� � �

x�j�� � �x
�
j � x�j�� � �x

�
i�� � xj�� � xj�� � ��� mod�k�
� � �

�x�j�� � x�j � x�j�� � �xj��� xj � xj�� � 	� mod�k�
� � �

where j � ��div�k � ��
� � ��� � � k �
�n � ���� �div�k�l� is the integer division and mod�k� l� is the
remainder after integer division�� The starting point is xi � �� � � i � n� The minimum value of the
objective function is F � ��
�
����

b� Problem speci
cation �input
le��

�SET�INPUT�

DO � I���NF

X�I��
�
D

� CONTINUE

���

DO 	 I���NF

IH�I��I

JH�I��I

	 CONTINUE

IH�NF
���NF
�

MC�

KC�

DO � J���NC��

CL�KC
�����
D

CL�KC
	����
D�

CL�KC
�����
D

I�	��J���

DO � K����

IC�KC
K��	

ICG�KC
K��MC
�

DO � L����

JCG�MC
L��I
L

� CONTINUE

MC�MC
�

� CONTINUE

KC�KC
�

� CONTINUE

ICG�NC
���MC
�

�ENDSET

�SET�FMODELF�

FF�
�
D

DO �� J�	�NF�	�	

FF�FF
X�J�����	
X�J���	
	�
D
�X�J
����	
X�J
	���	�

���
D
�X�J������
D
�X�J��	��D��X�J
��
��
D
�X�J
	�

�� CONTINUE

�ENDSET

�SET�GMODELF�

DO �	 I���NF

GF�I��
�
D

�	 CONTINUE

DO �� J�	�NF�	�	

GF�J����GF�J���
	�
D
�X�J������
D

GF�J��GF�J�
	�
D
�X�J����
D

GF�J
���GF�J
��
��
D
�X�J
���	��D�

GF�J
	��GF�J
	�
	�
D
�X�J
	�
��
D

�� CONTINUE

�ENDSET

�SET�FMODELC�

J�	���KC�����
��

L�MOD�KC���

GO TO �	��		�	��� L
�

	� FC�X�J�����	
X�J���	
X�J
����	
X�J
	���	�

X�J����X�J�
X�J
���X�J
	�

GO TO 	�

		 FC�X�J�����	
	�
D
�X�J���	
X�J
����	
	�
D
�X�J
	���	�

�X�J����X�J
	�

GO TO 	�

���

	� FC�	�
D
�X�J�����	
X�J���	
X�J
����	�

	�
D
�X�J����X�J��X�J
	�

	� CONTINUE

�ENDSET

�SET�GMODELC�

J�	���KC�����
��

L�MOD�KC���

GO TO �	��	��	��� L
�

	� GC�J����	�
D
�X�J���
��
D

GC�J��	�
D
�X�J����
D

GC�J
���	�
D
�X�J
��
��
D

GC�J
	��	�
D
�X�J
	����
D

GO TO 	�

	� GC�J����	�
D
�X�J������
D

GC�J����
D
�X�J�

GC�J
���	�
D
�X�J
��

GC�J
	����
D
�X�J
	����
D

GO TO 	�

	� GC�J������
D
�X�J���
	�
D

GC�J��	�
D
�X�J����
D

GC�J
���	�
D
�X�J
��

GC�J
	�����
D

	� CONTINUE

�ENDSET

�NF��

�M��

�NC����

�NCL�

�MC��

�KBC��

�MOUT�	

�JACC��S�

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of variables� the sparsity pattern of
the objective Hessian matrix� the sparsity pattern of the constraint Jacobian matrix� and the constraint
speci
cations� The sparse Hessian matrix� indicated by the statement �HESF��S�� is diagonal so that the
number of its upper half nonzero elements is NF����� We set �M������ since a greater space is needed
for sparse matrix processing� The sparse Jacobian matrix is indicated by the statement �JACC��S��
Since there are only one sided inequality constraints� we can specify the right hand sides CL�KC�� �
� KC � NC� and set �KBC�� �we can also specify CU�KC�� � � KC � NC� and set �KBC���� By
using the macrovariable �FMODELF we specify analytically the value of the model function� By using
the macrovariable �GMODELF we specify analytically the gradient of the model function� By using the
macrovariable �FMODELC we specify analytically the values of the constraint functions� By using the
macrovariable �GMODELC we specify analytically the gradients of the constraint functions�

d� problem solution �basic screen output��

��

CLASS � MN � LI� UPDATE � N MODEL � FF HESF � S NF � �

NIC�
 NIT�
 NFV� � NFG� � F� �

D

 C� �

D

 G� �	��D

	

NIC�
 NIT� � NFV� 	 NFG� �� F���	��D

� C� ���	D

	 G� ���	D

	

NIC�
 NIT� 	 NFV� � NFG� 	� F���	��D

� C� ��
�D

	 G� ��	�D

	

NIC�
 NIT� � NFV� � NFG� 	� F������D

� C� ����D

� G� ����D

�

NIC�
 NIT� � NFV� � NFG� �� F������D

� C� ����D

� G� ��	�D

�

NIC�
 NIT� � NFV� � NFG� �	 F������D

� C� ��
	D

� G� ��	�D

	

NIC�
 NIT� � NFV� � NFG� �� F������D

� C� ��
�D

� G� ����D

�

NIC�
 NIT� � NFV� � NFG� �� F������D

� C� ����D

 G� ��
�D

	

NIC�
 NIT� � NFV� � NFG� �� F������D

� C� ����D

 G� ����D

�

NIC�
 NIT� � NFV� �
 NFG� �
 F�����
D

� C� �

D

 G� ����D

NIC�
 NIT� �
 NFV� �� NFG� �� F�����
D

� C� ��
	D�
	 G� ����D

NIC�
 NIT� �� NFV� �	 NFG� �� F�����
D

� C� ��
�D�
	 G� ����D

NIC�
 NIT� �	 NFV� �� NFG� �� F�����
D

� C� �	��D�
	 G� ����D�
�

NIC�
 NIT� �� NFV� �� NFG� �� F�����
D

� C� �	��D�
� G� �	
�D�
	

NIC�
 NIT� �� NFV� �� NFG� �
� F�����
D

� C� ����D�
� G� �	��D�
�

NIC�
 NIT� �� NFV� �� NFG� ��	 F�����
D

� C� ����D�
� G� ����D�
�

NIC�
 NIT� �� NFV� �� NFG� ��� F�����
D

� C� ���
D�
� G� ����D�
�

NIC�
 NIT� �� NFV� �� NFG� �	� F�����
D

� C� ��	�D��
 G� ����D�
�

NIC�
 NIT� �� NFV� �� NFG� ��� F�����
D

� C� ��		D��	 G� ����D���

 NIC�
 NIT� �� NFV� �� NFG� ��� F�����
D

� C� ��		D��	 G� ����D���

����� Optimization of dynamical systems � general integral criterion

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
�

�

Z T

�

�y���t� � y���t��dt�
�

�
�y���T � � y���T ��

where T � ��	 and where

dy��t�
dt
� y��t�� y���� � x�

dy��t�
dt
� ��� y���t��y��t� � y��t�� y���� � �

b� Problem speci
cation �input
eld��

�SET�INPUT�

X����ZERO

TA�ZERO

TAMAX����D

�ENDSET

�SET�FMODELF�

FF�HALF��YA�����	
YA�	���	�

�ENDSET

�SET�DMODELF�

DF����YA���

DF�	��YA�	�

�ENDSET

�SET�FMODELA�

���

FA�HALF��YA�����	
YA�	���	�

�ENDSET

�SET�DMODELA�

DA����YA���

DA�	��YA�	�

�ENDSET

�SET�FMODELE�

GO TO ���	� KE

� FE�YA�	�

GO TO �

	 FE��YA���
�ONE�YA�����	��YA�	�

� CONTINUE

�ENDSET

�SET�DMODELE�

GO TO ����� KE

� DE����ZERO

DE�	��ONE

GO TO �

� DE�����ONE�TWO�YA����YA�	�

DE�	��ONE�YA�����	

� CONTINUE

�ENDSET

�SET�FMODELY�

GO TO ����� KE

� FE�X���

GO TO �

� FE�ONE

� CONTINUE

�ENDSET

�SET�GMODELY�

GO TO ��
���� KE

�
 GE����ONE

GO TO �	

�� GE����ZERO

�	 CONTINUE

�ENDSET

�NF��

�NE�	

�MODEL��DF�

�MOUT�	

�NOUT��

�TOLR����
�P���

�TOLA����
�P���

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial value of the variable x� as well as the initial
and terminal times � and T� respectively� By using the macrovariables �FMODELA and �DMODELA
we specify the subintegral function and by using the macrovariables �FMODELF and �DMODELF we
specify the terminal function� The right hand sides of the di�erential equations are speci
ed by using the

��	

macrovariables �FMODELE and �DMODELE� the while initial values and their derivatives are given by
using the macrovariables �FMODELY and �GMODELY� The option �MODEL��DF� indicates a general
integral criterion�

d� Problem solution �basic screen output��

CLASS � VM � LI� UPDATE � B MODEL � DF HESF � D NF � �

NIT�
 NFV� � NFG�
 F� 	��������

 G� �	�	D

�

NIT� � NFV� � NFG�
 F� ����������� G� ����D

NIT� 	 NFV� � NFG�
 F� �����	����� G� ����D�
	

NIT� � NFV� � NFG�
 F� �����	����� G� ��		D�
�

NIT� � NFV� � NFG�
 F� �����	����� G� �	
�D�
�

 NIT� � NFV� � NFG�
 NDC�
 NCG�
 F� ����D

� G� �	
�D�
�

FF � �����������D

X � �����������D

���
� Optimization of dynamical systems � special integral criterion

a� Problem description�

Suppose we have to
nd a minimum of the objective function

F �x� �
�

�

Z T

�

�y��t�� ���� � t���dt

where T � � and where

dy��t�
dt

� �x�y��t�� y���� � x�

b� Problem speci
cation �input
eld��

�SET�INPUT�

X����	�
D

X�	��
�
D

TA�ZERO

TAMAX�ONE

�ENDSET

�SET�FMODELE�

FE��X����YA�����	

YE�ONE��ONE
TA�

WE�ONE

�ENDSET

�SET�GDMODELE�

GE�����YA�����	

GE�	��ZERO

DE�����TWO�X����YA���

�ENDSET

�SET�FMODELY�

FE�X�	�

�ENDSET

�SET�GMODELY�

GE����ZERO

���

GE�	��ONE

�ENDSET

�MODELA��Y�

�NF�	

�NE��

�MODEL��DQ�

�CLASS��GN�

�UPDATE��F�

�MOUT�	

�NOUT��

�TOLR����
�P���

�TOLA����
�P���

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of the variables x� and x� as
well as the initial and terminal times � and T� respectively� The right hand side of the di�erential
equation is speci
ed by using the macrovariables �FMODELE and �GDMODELE� while the initial
values and their derivatives are given by using the macrovariables �FMODELY and �GMODELY� The
option �MODEL��DQ� together with �MODELA��Y� indicate a special integral criterion�

d� Problem solution �basic screen output��

CLASS � GN � GM� UPDATE � F MODEL � DQ HESF � D NF � 	

NIT�
 NFV� � NFG� � F� �	�

 G� ����D

NIT� � NFV� � NFG� 	 F� �����������E�
� G� ����D

NIT� 	 NFV� � NFG� � F� �����������E�
	 G� ����D�
	

NIT� � NFV� � NFG� � F� �������
���E�
� G� �		�D�
	

NIT� � NFV� � NFG� � F� ���
�
�����E�
� G� ��

D�
�

NIT� � NFV� �� NFG� � F� �	���
�	���E��� G� �	

D�
�

 NIT� � NFV� �� NFG� � NDC� � NCG�
 F� �	��D��� G� �	

D�
�

F � �	���
�	���D���

X � ���������	�D

 ����������
D

����� Initial value problem for ordinary di�erential equations

a� Problem description�

Suppose we have to
nd a solution of the Van der Pol equation

dy��t�
dt
� y��t�� y���� � �

dy��t�
dt
� ��� y���t��y��t� � y��t�� y���� � �

in the interval � � t � T where T � ���

b� Problem speci
cation �input
eld��

�SET�INPUT�

YA����	�
D

���

YA�	��
�
D

TA�
�
D

TAMAX���
D�

�ENDSET

�SET�FMODELE�

IF �KE�EQ��� THEN

FE�YA�	�

ELSE

FE����
D
�YA�����	��YA�	��YA���

ENDIF

�ENDSET

�NA�	�

�NE�	

�MODEL��DE�

�MED�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci
cation�

By using the macrovariable �INPUT we specify the initial values of the variables y� and y� as well as
the initial and terminal times � and T� respectively� The right hand sides of the di�erential equations are
speci
ed by using the macrovariable �FMODELE� The option �MODEL��N� indicates integration of a
system of ordinary di�erential equations�

d� Problem solution �basic screen output��

CLASS � NO � NN
 UPDATE � N MODEL � NO HESF � N NF �

 NSTP� �� NACC� �� NREJ� �	 NEV ��		� NEG �

� AT� �

D

AY� �	

D

� �

D

	 AT� ��

D

AY� ��������	�
D

� ������	�����D

� AT� ��

D

�

AY� ���
����	��D

� ����
	��
���D

� AT� ���

D

�

AY� ��
�
��	���D

� ����	��	
���D

�

� AT� �	

D

�

AY� ��	��������D

 �����	����

D

�

� AT� �	�

D

�

AY� ����
�������D

 ��	������
��D

�

� AT� ��

D

�

AY� ������
�����D

� ���
	�
�
	��D

�

� AT� ���

D

�

AY� �����������
D

� �	��
������D

� AT� ��

D

�

AY� ���������	��D

� ��	�������	D

�
 AT� ���

D

�

AY� ��������
���D

� �����
�����D

�� AT� ��

D

�

AY� �����
������D

 ���
�
�����D

�

���

�	 AT� ���

D

�

AY� ����	�
��
�D�
� �	���������D

�

�� AT� ��

D

�

AY� ��	��
�����D

� �	��������
D

�

�� AT� ���

D

�

AY� �����������D

� ������
��	�D

�� AT� ��

D

�

AY� ���	
��	��
D

� ���������	��D

�� AT� ���

D

�

AY� ����

�	���D

� ���
	�������D

�� AT� ��

D

�

AY� ��	��	�	���D

� ������������D

�� AT� ���

D

�

AY� �����������D

 �������	����D

�

�� AT� ��

D

�

AY� ����	���	��
D

 ��	�	��
	���D

�

	
 AT� ���

D

�

AY� ������������D

� ������	�����D

�

	� AT� ��

D

	

AY� ��	

���
���D

� ��	�
����	�D�
�

���

	� Model examples for demonstration of graphic output

Here we introduce several problem speci
cations �input
les� which demonstrate the application of
the graphic screen output� The graphic screen output can be used only on PC computers under the MS
DOS system� This possibility is not allowed on the UNIX workstations�
The input
les are included into the UFO system as demo�
les PROC
��UFO�� � � �PROC
��UFO� Corre�

sponding graphic pictures are included in the appendix� The data recommended for graphic pictures are
introduced in lines which begin by the directive �REM�

���� Nonlinear regression

�SET�INPUT�

LDIM��

X������
D	

X�	����
D�

X����	�	D

X������
�D

X������
D��

X������
D�

X�������D

X������
�D

X������
D��

X��
����
D�

X��������D

X��	����
�D

X�����	�
D��

X�������
D�

X��������D

X�������
�D

X�������
D��

X�������
D	

X�������	D

X�	
����
�D

BETA�����D

CALL BIUD
��NF�LDIM�NA�X�XL�XU�IX�AT�AM�

�ENDSET

�SET�FMODELA�

CALL BAFU
��NF�LDIM�KA�NA�X�AT�FA�BETA�

�ENDSET

�SET�GMODELA�

CALL BAGU
��NF�LDIM�KA�NA�X�AT�GA�BETA�

�ENDSET

�NF��

�NA��

�KOUT�

�KOUT��

�KOUT	��

�KOUT���

�LOUT�

�MOUT�	

�MIT��

�MODEL��AQ�

�
�

�CLASS��GN�

�TYPE��G�

�DECOMP��M�

�NUMBER��

�UPDATE��F�

�TOLX����
�P����

�TOLF����
�P����

�TOLB����
�P����

�TOLG����
�P���

�KBA��

�KBF�	

�GRAPH��Y�

�SCAN��Y�

�BATCH

�ADD�REAL���BETA�AT��NA���

�ADD�SUBROUTINES�

SUBROUTINE BIUD
��N�L�NA�X�XL�XU�IX�AT�AM�

INTEGER N�L�NA�IX�N��I�K

REAL�� X�N��XL�N��XU�N��AT�NA��AM�NA�

N���L

K�

DO � I���L

X�K
���LOG�X�K
���

XL�K
���LOG���
D

�

XU�K
���LOG���
D
�
�

IX�K
����

X�K
	��LOG�X�K
	��

XL�K
	��LOG���
D

�

XU�K
	��LOG���
D
�
�

IX�K
	���

XL�K
�����
D�	

XU�K
�����
D
	

IX�K
����

XL�K
�����

�D

XU�K
�����

D�

IX�K
����

K�K
�

� CONTINUE

OPEN ����FILE��PROC
��DAT��STATUS��OLD��

NA�

	 NA�NA
�

READ ������	D�������ERR��� AT�NA��AM�NA�

GO TO 	

� NA�NA��

RETURN

END

SUBROUTINE BAFU
��N�L�KA�NA�X�AT�FA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��FA�Q����QD���

REAL�� ARG�POM�BK�B�INT�BETA

INTEGER J�K

COMMON �BCOM� Q�QD

�
�

DATA BK ���������D���

FA�
�
D

K�

DO � J���L

ARG�X�K
����BK�AT�KA��

IF �KA�EQ��� THEN

Q�J��B�INT�AT�KA��ARG�

FA�FA
EXP�X�K
��
X�K
	��ARG�

ELSE

POM�X�K
�����
D

FA�FA
EXP�X�K
��
X�K
	��ARG��

� ���
D

�POM�BETA��EXP�X�K
�����B�INT�AT�KA��ARG��

� Q�J�������X�K
���POM�

ENDIF

K�K
�

� CONTINUE

RETURN

END

SUBROUTINE BAGU
��N�L�KA�NA�X�AT�GA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��GA�N�

REAL�� FAC�ARG�POM�POW�BK�B�INT�B�INTD�A�B�C�D�E�F�G

REAL�� Q����QD����QQ�QQD�BETA

INTEGER J�K

COMMON �BCOM� Q�QD

DATA BK ���������D���

K�

DO � J���L

FAC���
D
��BK�AT�KA��

ARG�FAC�X�K
��

IF �KA�EQ��� THEN

Q�J��B�INT�AT�KA��ARG�

QD�J��FAC�B�INTD�AT�KA��ARG�

QQ�
�
D

QQD�
�
D

ELSE

QQ�B�INT�AT�KA��ARG��Q�J�

QQD�FAC�B�INTD�AT�KA��ARG��QD�J�

ENDIF

POM�X�K
�����
D

POW��X�K
���POM

A�EXP�X�K
��
X�K
	��ARG�

B�EXP�X�K
���

G�B�QQ

C����
D

�POM�BETA��G�

D�C��POW

E�POW�D�C

F�POM�POM

GA�K
���A��D
E��POM�BETA��G�

GA�K
	��A�D

GA�K
���A���FAC�D
E��POM�BETA��B�QQD�

GA�K
���A�D��LOG�C��F
POW�G��C�BETA��

�
�

K�K
�

� CONTINUE

RETURN

END

FUNCTION B�INT�T�X�

REAL�� T�X�B�INT

REAL�� A��A	�A��A��A��A��B��B	�B��B��B��B�

DATA A��A	�A��A��A��A� ����
D

� ��
�
D

� �����
D

�

� ���	�
D

� �
	��
D

� �	
�
D

�

DATA B��B	�B��B��B��B� ��	�
D

� ��
�
D

� �	

�
D

�

� �	�

�
D

� ���	
�
D

� �
�
�
D

�

B�INT����
D
��A�
X��A�
X��A�
X��A�
X��A	
X��A�
X�������

� �B�
X��B�
X��B�
X��B�
X��B	
X��B�
X��������EXP��X��T

RETURN

END

FUNCTION B�INTD�T�X�

REAL�� T�X�B�INTD

REAL�� A��A	�A��A��A��A��B��B	�B��B��B��B�

REAL�� C��C	�C��C��C��D��D	�D��D��D��DIS�DEN�DISD�DEND

DATA A��A	�A��A��A��A� ����
D

� ��
�
D

� �����
D

�

� ���	�
D

� �
	��
D

� �	
�
D

�

DATA B��B	�B��B��B��B� ��	�
D

� ��
�
D

� �	

�
D

�

� �	�

�
D

� ���	
�
D

� �
�
�
D

�

DATA C��C	�C��C��C� �	
��
D

� 	��
�
D

� �
����
D

�

� ������
D

� �
	��
D

�

DATA D��D	�D��D��D� �	�
�
D

� 	�	
�
D

� �	�

�
D

�

� 	�	

�
D

� ���	
�
D

�

DIS�A�
X��A�
X��A�
X��A�
X��A	
X��A�
X�����

DEN�B�
X��B�
X��B�
X��B�
X��B	
X��B�
X�����

DISD�C�
X��C�
X��C�
X��C	
X��C�
��
D
�X����

DEND�D�
X��D�
X��D�
X��D	
X��D�
��
D
�X����

B�INTD���DIS�DISD
DEND�DIS�DEN��DEN���
D
��EXP��X��T

RETURN

END

�ENDADD

�STANDARD

���� Nonlinear minimax optimization

�FLOAT W

�SET�INPUT�

X����
��D
 � X�	��
�
D
 � X����
�
D

X����
�
D
 � X����
�
D

�ENDSET

�SET�FMODELA�

W�
��D
�DBLE�KA������
D

FA��X���
W�X�	������
D

W��X���
W��X���
W�X�������EXP�W�

�ENDSET

�MODEL��AM�

�NF��

�NA�	�

�

�NAL�

�GRAPH��Y�

�MAP��Y�

�HIL��Y�

�ISO��Y�

�PATH��E�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

���� Transformer network design

�SET�INPUT�

NEXT��

CALL EIUD
��NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

�ENDSET

�SET�FMODELA�

CALL EAFU
��NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU
��NF�KA�X�GA�NEXT�

�ENDSET

�NF��

�NA���

�NAL�

�MOUT��

�MODEL��AM�

�GRAPH��Y�

�MAP��Y�

�HIL��Y�

�ISO��Y�

�PATH��E�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

���� Global optimization

�SET�INPUT�

NEXT��

CALL EIUD
��NF�XL�XU�NEXT�IERR�

�ENDSET

�SET�FMODELF�

CALL EFFU
��NF�X�FF�NEXT�

�ENDSET

�NF��

�
�

�MOUT��

�GCLASS��

�GRAPH��Y�

�MAP��Y�

�HIL��Y�

�ISO��Y�

�EXTREM��G�

�BATCH

�STANDARD

�REM VAR��� XL������ XU����

�REM VAR�	� XL������ XU����

���� Nonsmooth optimization

�SET�INPUT�

NEXT���

CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�

MA�NF
�

�ENDSET

�SET�FMODELF�

CALL EFFU���NF�X�FF�NEXT�

�ENDSET

�SET�GMODELF�

CALL EFGU���NF�X�GF�NEXT�

�ENDSET

�KSF��

�NF��

�MOUT���

�MODEL��FF�

�GRAPH��Y�

�MAP��Y�

�HIL��Y�

�ISO��Y�

�PATH��Y�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

��
� The Rosenbrock function

�SET�INPUT�

X�������	D

X�	�� ��
D

�ENDSET

�SET�FMODELF�

FF���
D	��X�����	�X�	����	
�X������
D
���	

�ENDSET

�
	

�NF�	

�GRAPH��Y�

�MAP��Y�

�ISO��Y�

�PATH��Y�

�BATCH

�STANDARD

���� Ordinary di�erential equations

�FLOAT W��W	�W��W�

�SET�INPUT�

TA�
�
D

YA����
����D

YA�	��
�
D

YA����
�
D

YA�����	�

�����
����
�	�		�
�����			�D

TAMAX����
��	����
�����	�������	
�	��D

�ENDSET

�SET�FMODELE�

W��
�
�		�����D

W	���D
�W�

W���YA���
W����	
YA�	���	

W��W��SQRT�W��

W���YA����W	���	
YA�	���	

W��W��SQRT�W��

GO TO ���	����� KE

� FE�YA���

GO TO �

	 FE�YA���

GO TO �

� FE�YA���
	�YA����W	��YA���
W���W��W���YA����W	��W�

GO TO �

� FE�YA�	��	�YA����W	�YA�	��W��W��YA�	��W�

� CONTINUE

�ENDSET

�NE��

�NA�	

�MODEL��DE�

�SOLVER��DP��

�MOUT���

�TOLR����
�P���

�TOLA����
�P���

�MED��

�GRAPH��Y�

�BATCH

�STANDARD

�
�

���� The Lorenz attractor

�FLOAT W��W	�W�

�SET�INPUT�

W���
�
D

W	�	��
D

W����
D
���
D

TA�
�
D

YA�������
D

YA�	�� ��
D

YA����W	���
D

TAMAX��
�
D

�ENDSET

�SET�FMODELE�

GO TO ���	��� KE

� FE��W��YA���
W��YA�	�

GO TO �

	 FE��YA����YA���
W	�YA����YA�	�

GO TO �

� FE�YA����YA�	��W��YA���

� CONTINUE

�ENDSET

�NE��

�NA�	

�MODEL��D�

�SOLVER��DP��

�MOUT���

�TOLR����
�P���

�TOLA����
�P���

�MED��

�GRAPH��Y�

�BATCH

�STANDARD

�
�

References

��� M�Altman� Generalized gradient methods of minimizing a functional� Bull� Acad� Polon� Sci�� Ser�
Sci� Math� Astronom� Phys� �� ������
�
�
���

��� L�Armijo� Minimization of functions having continuous partial derivatives� Paci
c J� Math� �� ������
��
�

�
� M�Al�Baali� R�Fletcher� Variational methods for nonlinear least squares� JOTA
� ����	� ��	�����

��� M�C�Biggs� Minimizationalgorithmsmaking use of nonquadratic properties of the objective function�
J� Inst� math� Appl� � ������
�	�
���

�	� M�C�Biggs� A note on minimization algorithms which make use of non�quadratic properties of the
objective function� Journal of the Institute of Mathematics and its Applications �� ����
�

��

��

��� P�Bjorstadt� J�Nocedal� Analysis of a new algorithm for one�dimensional minimization� Computing
�� ������ �
�����

��� C�G�E�Boender� A�H�G�Rinnoy Kan� Bayessian stopping rules for multistart global optimization
methods� Math� Programming
� ������ 	�����

��� C�G�E�Boender� A�H�G�Rinnoy Kan� G�T�Timmer� L�Stougie� A stochastic method for global opti�
mization� Mathematical programming �� ������ ��	�����

��� P�T�Boggs� J�W�Tolle� A strategy for global convergence in a sequential quadratic programming
algorithm� SIAM Journal on Numerical Analysis �� ������ ������
�

���� I�D�L�Bogle� J�D�Perkins� A New Sparsity Preserving Quasi�Newton Update for Solving Nonlinear
Equations� SIAM Journal on Scienti
c and Statistical Computations �� ������ �����
��

���� I�Bongartz� A�R�Conn� N� Gould� P�L�Toint� CUTE� constrained and unconstrained testing environ�
ment� Report�

���� C�G�Broyden� The convergence of a class of double rank minimization algorithms� Part � � general
considerations� Part � � the new algorithm� J� Inst� Math� Appl� � ������ ������ �����
��

��
� C�G�Broyden� A class of methods for solving nonlinear simultaneous equations� Math� of Comput�
�� ����	� 	���	�
�

���� K�M�Brown� J�E�Dennis� A new algorithm for nonlinear least squares curve
tting� In� �Mathemat�
ical Software� �J�Rice ed�� Academic Press� London �����

��	� J�R� Bunch� B�N� Parlett� Direct methods for solving symmetric inde
nite systems of linear equa�
tions� SIAM J� Numer� Anal� � ������ �
���		�

���� R�H�Byrd� R�B�Schnabel� G�A�Shultz� Approximate solution of the trust region problem by mini�
mization over two�dimensional subspaces� Math� Programming �� ������ ������
�

���� R�H�Byrd� J�Nocedal� R�B�Schnabel� Representation of quasi�Newton matrices and their use in
limited memory methods� Math Programming �
 ������ �����	��

���� T�F�Chan� Rank revealing QR factorizations� Linear Algebra Appl� ����� ������ ������

���� T�F�Coleman� B�S�Garbow J�S�Mor'� Software for estimation sparse Hessian matrices� ACM Trans�
of Math� Software �� ����	�
�
�
���

���� T�F�Coleman� Large sparse numerical optimization� Springer�Verlag� Berlin� �����

�
�

���� T�F�Coleman� B�S�Garbow� J�S�Mor'� Software for estimating sparse Jacobian matrices� ACM Trans�
of Math� Software �� ������
���
�	�

���� A�R� Conn� N�I�M� Gould� P�L� Toint� Testing a class of methods for solving minimization problems
with simple bounds on the variables� Mat� Comput� 	� ������
����
��

��
� A�R�Conn� N� Gould� P�L�Toint� LANCELOT� A Fortran Package for Large�Scale Nonlinear Opti�
mization� Springer Verlag� Berlin �����

���� H�Curry� The method of steepest descent for nonlinear minimization problems� Quart� Appl� Math�
� ������ �	������

��	� W�C�Davidon� Variable metric method for minimisation� A�E�C� Research and Development Report
ANL�	���� ��	��

���� W�C�Davidon� Optimally conditioned optimization algorithms without line searches� Math� Pro�
gramming � ����	� ��
��

���� T�A�Davis� I�S�Du�� An unsymmetric pattern multifrontal methodfor sparse LU factorization� Re�
port No� TR��
����� CIS Department� University of Florida� Gainesville ���
�

���� N�Y�Deng� Y�Xiao� F�J�Zhou� Nonmonotonic trust region algorithm� JOTA �� ����
� �	����	�

���� R�S�Dembo� T�Steihaug� Truncated�Newton algorithms for large�scale unconstrained minimization�
Math� Programming �� ����
� ��������

�
�� J�E�Dennis� Some computational techniques for the nonlinear least squares problem� In� �Numerical
solution of nonlinear algebraic equations� �G�D�Byrne� C�A�Hall� eds�� Academic Press� London �����

�
�� J�E�Dennis� H�H�W�Mei� An unconstrained optimization algorithm which uses function and gradient
values� Report No� TR��	����� Dept� of Computer Sci�� Cornell University ���	�

�
�� J�E�Dennis� R�B�Schnabel� Numerical methods for unconstrained optimization and nonlinear equa�
tions� Prentice�Hall� Englewood Cli�s� New Jersey ���
�

�

� J�E�Dennis� R�E�Welsch� Techniques for Nonlinear Least Squares and Robust Regression� Commu�
nications in Statistics B � ������
�	�
	��

�
�� J�E�Dennis� N�Vicente� On the convergence theory of trust�region�based algorithms for equality�
constrained optimization� SIAM J� on Optimization � ������ �����	��

�
	� I�S�Du�� J�K�Reid� The multifrontal solution of inde
nite sparse symmetric linear equations� ACM
Trans� of Math� Software � ����
�
���
�	�

�
�� R�Fletcher� A new approach to variable metric algorithms� Computer J� �
 ������
���
���

�
�� R�Fletcher� A modi
ed Marquardt subroutine for nonlinear least squares� Report No� R������ The�
oretical Physics Division� A�E�R�E� Harwell� �����

�
�� R�Fletcher� A general quadratic programming algorithm� J� Inst� Math� Appl� � ������ ������

�
�� R�Fletcher� Practical methods of optimization �Second edition�� Wiley� New York� �����

���� R�Fletcher� M�J�D�Powell� A rapidly convergent descent method for minimization� Computer J� �
����
� ��
�����

���� R�Fletcher� C�M�Reeves� Function minimization by conjugate gradients� Computer J� � ������ ����
�	��

�
�

���� R�Fletcher� C�Xu� Hybrid methods for nonlinear least squares� IMA J� Numer� Anal� � ������
���

���

��
� R�Fletcher� Second order corrections for nondi�erentiable optimization� In� �Numerical analysis�
Dundee ����� �G�A�Watson ed��� Lecture Notes in Mathematics���� Springer�Verlag� Berlin �����

���� R�Fletcher� Nonlinear programmming without a penalty function� Numerical analysis report
NA����� University of Dundee� �����

��	� R�W�Freund� N�M�Nachtigal� A new Krylov�subspace method for symmetric inde
nite linear sys�
tems� Report No� ORNL�TM����	�� Oak Ridge National Laboratory� Oak Ridge� Tennessee� �����

���� R�P�Ge� A
lled function method for
nding a global minimizer of a function of several variables�
Math� Programming �� ������ ��������

���� R�P�Ge� Y�F�Qin� A Class of
lled functions for
nding global minimizers of a function of several
variables� JOTA 	� ������ �����	��

���� J�C�Gilbert� C�Lemarechal� Some numerical experiments with variable�storage quasi�Newton algo�
rithms� Math� Programming� �	 ������ �����
	�

���� P�E�Gill� W�Murray� A numerically stable form of the simplex algorithm� Linear Algebra Appl� �
����
� ����
��

�	�� P�E�Gill� W�Murray� Newton type methods for unconstrained and linearly constrained optimization�
Math� Programming � ������
���
	��

�	�� P�E�Gill� W�Murray� Numerically stable methods for quadratic programming� Math� Programming
�� ������
���
���

�	�� P�E�Gill� W�Murray� M�H�Wright� Practical optimization� Academic Press� London �����

�	
� P�E�Gill� M�W�Leonard� Limited�memory reduced�Hessian methods for large�scale unconstrained
optimization� Technical Report NA ����� Department of Mathematics� University of California� San
Diego� �����

�	�� D�Goldfarb� A family of variable metric algorithms derived by variational means� Math Comput� ��
������ �
����

�		� D�Goldfarb� A�U�Idnani� A numerically stable dual method for solving strictly convex quadratic
programms� Report No� ������� Dept�of Computer Sci�� The City College of New York� �����

�	�� A�A�Goldstein� On steepest descent� SIAM J� Control
 ����	� �����	��

�	�� G�H�Golub� C�F�Van Loan� Matrix computations �second edition�� Johns Hopkins University Press�
Baltimore �����

�	�� A�Griewank� P�L�Toint� Partitioned variable metric updates for large scale structured optimization
problems� Numer� Math�
� ������ �����
��

�	�� L�Grippo� F�Lampariello� S�Lucidi� A nonmonotone line search technique for Newton�s method�
SIAM J� Numer� Anal� �
 ������ ��������

���� E�Hairer� S�P�Norsett� G�Wanner� Solving ordinary di�erential equations I� Springer Series in Com�
putational Mathematics �� Springer Verlag� Berlin �����

���� S�P�Han� Variable metric methods for minimizing a class of nondi�erentiable functions� Math� Pro�
gramming �� ������ ���
�

���

���� M�R�Hestenes� C�M�Stiefel� Methods of conjugate gradient for solving linear systems� J� Res� NBS
�� ������ �����
��

��
� W�Hock� K�Schittkowski� Test examples for nonlinear programming codes� Lecture notes in eco�
nomics and mathematical systems ���� Springer Verlag� Berlin �����

���� R�Hooke� T�A�Jeeves� Direct search solution of numerical and statistical problems� J� Assoc� Comp�
Mach� � ������ ��������

��	� S�Hoshino� A formulation of variable metric methods� J� Inst� Math� Appl� �� ������
�����
�

���� M�E�Hribar� J�Nocedal� Improvement to the Horizontal Subproblem� Preprint �����

���� Y�F�Hu� Y�Liu� C�Storey� E�cient generalized conjugate gradient algorithms� Part � � theory� Part
� � implementation� JOTA �� ������ �����
�� �
���	��

���� Y�F�Hu� C�Storey� Motivating quasi�Newton updates by preconditioned conjugate gradient methods�
Report No� A�	�� Dept� of Math� Sci�� Loughborough Univ� of Technology� Loughborough �����

���� C�M�Ip� M�J�Todd� Optimal conditioning and convergence in rank one quasi�Newton updates� SIAM
J� Numer� Anal� �	 ������ ��������

���� K�C�Kiwiel� An ellipsoid trust region bundle method for nonsmooth convex minimization� SIAM J�
on Control and Optimization �� ������ �
���	��

���� M�Lalee� J�Nocedal� T�Plantenga� On the implementation of an algorithm for large�scale equality
constrained optimization� Preprint �����

���� C�L�Lawson� R�J�Hanson� Solving least squares problems� Prentice�Hall� Englewood Cli�s� New
Jersey �����

��
� A�V�Levy� A�Montalvo� The tunneling algorithm for the global minimization of functions� SIAM
Journal Sci� Stat� Comp� � ����	� �	����

���� G�Li� Successive column correction algorithms for solving sparse nonlinear systems of equations�
Mathematical Programming �
 ������ ��������

��	� P�Lindstrom� P�A�Wedin� A new linesearch algorithm for nonlinear least squares problems� Math�
Programming �� ������ ��������

���� D�C�Liu� J�Nocedal� On the limited memory BFGS method for large�scale optimization� Math�
Programming �	 ������ 	�
�	���

���� L�Luk(an� Dual method for solving a special problem of quadratic programming as a subproblem at
linearly constrained nonlinear minimax approximation� Kybernetika �� ������ ��	��	��

���� L�Luk(an� An implementation of recursive quadratic programming variable metric methods for
linearly constrained nonlinear minimax approximation� Kybernetika �� ����	� ������

���� L�Luk(an� Variable metric methods� Unconstrained minimization� Academia� Prague ���� �in
Czech��

���� L�Luk(an� Computational experience with improved variable metric methods for unconstrained min�
imization� Kybernetika �� ������ ��	��
��

���� L�Luk(an� Computational experience with improved conjugate gradient methods for unconstrained
minimization� Kybernetika �� ������ ��������

���

���� L�Luk(an� A note on comparison of statistical software for nonlinear regression� Computational
Statistics Quaterly � ������
���
���

��
� L�Luk(an� Variationally derived scalling and variable metric updates from the preconvex part of the
Broyden family� JOTA �
 ������ ����
���

���� L�Luk(an� Inexact trust region method for large sparse nonlinear least squares� Kybernetika ��
����
�
�	�
���

��	� L�Luk(an� E�cient trust region method for nonlinear least squares� Kybernetika
� ������ ��	�����

���� L�Luk(an� Computational experience with known variable metric updates� JOTA �
 ������ ������

���� L�Luk(an� Inexact trust region method for large sparse systems of nonlinear equations� JOTA ��
������ 	���	���

���� L�Luk(an� Combined trust region methods for nonlinear least squares� Kybernetika
� ������ ����
�
��

���� L�Luk(an� Hybrid methods for large sparse nonlinear least squares� JOTA �� ������ 	�	�	�	�

���� L�Luk(an� J�Vl)ek� Optimization of dynamical systems� Kybernetika
� ������ ��	�����

���� L�Luk(an� J�Vl)ek� Simple scaling for variable metric updates� Report No� ���� Institute of Computer
Science� Academy of Sciences of the Czech Republic� Prague ���	�

���� L�Luk(an� J�Vl)ek� E�cient algorithm for large sparse equality constrained nonlinear programming
problems� Technical Report V��	�� Prague� ICS AS CR ����� �� p�

��
� L�Luk(an� J�Vl)ek� Truncated trust region methods based on preconditioned iterative subalgorithms
for large sparse systems of nonlinear equations� Journal of Optimization Theory and Applications�
Vol� �	� ����� No�
� pp� �
���	��

���� L�Luk(an� J�Vl)ek� A bundle�Newton method for nonsmooth unconstrained minimization� Mathe�
matical Programming� Vol� �
� ����� pp
�
�
���

��	� L�Luk(an� J�Vl)ek� Computational experience with globally convergent descent methods for large
sparse systems of nonlinear equations� OptimizationMethods and Software� Vol� �� ����� pp� ������
�

���� L�Luk(an� J�Vl)ek� Inde
nitely preconditioned inexact Newton method for large sparse equality
constrained nonlinear programming problems� Numerical Linear Algebra with Applications� Vol� 	�
����� pp� ��������

���� L�Luk(an� J�Vl)ek� Globally convergent variable metric method for convex nonsmooth unconstrained
minimization� To appear in Journal of Optimization Theory and Applications�

���� L�Luk(an� J�Vl)ek� Subroutines for testing large sparse and partially separable unconstrained and
equality constrained optimization problems� Technical Report V����� Prague� ICS AS CR �����

���� L�Luk(an� J�Vl)ek� Numerical experience with iterative methods for equality constrained nonlinear
programming problems� Technical Report V����� Prague� ICS AS CR� �����

����� L�Luk(an� J�Vl)ek� NDA� Algorithms for nondi�erentiable optimization� Technical Report V�����
Prague� ICS AS CR� �����

����� L�Luk(an� J�Vl)ek� Test problems for nonsmooth unconstrained and linearly constrained optimiza�
tion� Technical Report V����� Prague� ICS AS CR �����

���

����� L�Luk(an� J�Vl)ek� Preconditioning of saddle�point systems� In� Proceedings of the conference
SIMONA ����� Liberec �����

���
� M�M�M*kel*� J�Neittaanm*ki� Nonsmooth Optimization�World Scienti
c Publishing Co� Ltd� Lon�
don �����

����� E�S�Marwill� Exploiting sparsity in Newton�like methods� Ph�D� Thesis� Cornell University� Ithaca
�����

���	� J�M�Martinez� A quasi�Newton method with modi
cation of one column per iteration� Computing

 ������
	
�
���

����� J�M�Martinez� M�C�Zambaldi� An inverse column�updating method for solving large�scale nonlinear
systems of equations� Optimization Methods and Software � ������ ��������

����� J�Miao� Two infeasible interior�point predictor�corrector algorithms for linear programming� SIAM
J� Optimization � ������ 	���	���

����� R�B�Mi+in� J�L�Nazareth� The least�prior deviation quasi�Newton update� Technical Report� Dept�
of Pure and Applied Math�� Washington State University� Pullman �����

����� S�Mizuno� Polynomiality of infeasible�interior�point algorithms for linear programming� Math Pro�
gramming �� ������ ��������

����� J�J�Mor'� The Levenberg�Maquardt algorithm� Implementation and theory� In� �Numerical Anal�
ysis� �G�A�Watson ed�� Springer Verlag� Berlin �����

����� J�J�Mor'� B�S�Garbow� K�E�Hillstr,m� Testing unconstrained optimization software� ACM Trans�
Math� Software � ������ ������

����� J�J�Mor'� D�C�Sorensen� Computing a trust region step� Report No� ANL�����
� Argonne National
Laboratory� �����

���
� S�G�Nash� A�Sofer� Preconditioning reduced matrices� SIAM J� on Matrix Analysis and Application
�� ������ ������

����� J�A�Nelder� R�Mead� A simplex method for function minimization� Computer J� � ����	�
���
�
�

���	� J�Nocedal� Updating quasi�Newton Matrices with limited storage� Math� Comput�
	 ������ ��
�
����

����� J�Nocedal� Y�Yuan� Combining trust region and line search techniques� To appear�

����� S�S�Oren� D�G�Luenberger� Self scaling variable metric �SSVM� algorithms� Part � � criteria and
su�cient condition for scaling a class of algorithms� Part � � implementation and experiments�
Management Sci� �� ������ ��	����� ��
�����

����� S�S�Oren� E� Spedicato� Optimal conditioning of self scaling variable metric algorithms� Math
Programming �� ������ ������

����� C�C�Paige and M�A�Saunders� LSQR� An algorithm for sparse linear equations and sparse least
squares� ACM Transactions on Mathematical Software � ������ �
����

����� E�Polak� G�Ribi're� Note sur la convergence des methodes de directions conjug'es� Revue Francaise
Inform� Mech� Oper� ���R�������
	��
�

����� M�J�D�Powell� A new algorithm for unconstrained optimization� In� �Nonlinear Programming�
�J�B�Rosen O�L�Mangasarian� K�Ritter eds�� Academic Press� London �����

��

����� M�J�D�Powell� Convergence properties of a class of minimization algoritms� In �Nonlinear Program�
ming �� �O�L�Mangasarian� R�R�Meyer� S�M�Robinson eds��� Academic Press� London ���	�

���
� M�J�D�Powell� Restart procedures of the conjugate gradient method� Math� Programming �� ������
�����	��

����� M�J�D�Powell� A fast algorithm for nonlinearly constrained optimization calculations�
In��Numerical analysis� �G�A�Watson ed��� Springer Verlag� Berlin �����

���	� M�J�D�Powell� Convergence properties of algorithms for nonlinear optimization� Report No�
DAMPT ���	�NA�� University of Cambridge� ���	�

����� H�Ramsin� P�A�Wedin� A Comparison of Some Algorithms for the Nonlinear Least Squares Prob�
lem� BIT �� ������ ������

����� A�H�G�Rinnoy Kan� C�G�E�Boender� G�T�Timmer� A stochastic approach to global optimization�
Computational Mathematical Programming� NATO ASI Series Vol� F�	�

����� A�H�G�RinnoyKan� G�T�Timmer� Stochastic global optimizationmethods� Part I� Clustering meth�
ods� Part II� Multi�level methods� Math� Programming
� ������� North�Holland ���	�� 	�����

����� Y�Saad� M�Schultz� GMRES a Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems� SIAM Journal on Scienti
c and Statistical Computations � ������ �	������

��
�� R�B�Schnabel� E�Eskow� A new Choleski factorization� SIAM J� Sci� Stat� Comput� �� �������
��
����	��

��
�� L�K�Schubert� Modi
cation of a quasi�Newton method for nonlinear equations with a sparse Jaco�
bian� Math� of Comput� �� ������ ���
�� ������ �	�����

��
�� D�F�Shanno� Conditioning of quasi�Newton methods for function minimization� Math� Comput� ��
������ �����	��

��

� D�F�Shanno� K�J�Phua� Matrix conditioning and nonlinear optimization� Math� Programming ��
������ ��������

��
�� E�Spedicato� A class of rank�one positive de
nite quasi�Newton updates for unconstrained mini�
mization� Math� Operationsforsch� Statist� Ser� Optimization �� ����
� ������

��
	� E�Spedicato� M�T�Vespucci� Numerical experiments with variations of the Gauss�Newton algorithm
for nonlinear least squares� JOTA 	� ������
�
�

��

��
�� E�Spedicato� J�Greenstadt� On some classes of variationally derived quasi�Newton methods for
systems of nonlinear algebraic equations� Numer� Math� �� ������
�
�
���

��
�� T�Steihaug� Local and superlinear convergence for truncated iterated projections methods� Math�
Programming �� ����
� ��������

��
�� T�Steihaug� The conjugate gradient method and trust regions in large�scale optimization� SIAM J�
Numer� Anal� �� ����
� �����
��

��
�� N�M�Steen� G�D�Byrne� The problem of minimizing nonlinear functionals� I� Least squares� In�
�Numerical solution of nonlinear algebraic equations� �G�D�Byrne� C�A�Hall� eds�� Academic Press�
London �����

����� G�W�Stewart� A modi
cation of Davidon�s minimization method to accept di�erence approxima�
tions of derivatives� J� ACM �� ������ ����
�

���

����� M�-i(ka� Macroprocessor BEL for the UFO system �version ������ Report No� ��� �in Czech��
Institute of Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague �����

����� M�-i(ka� Macroprocessor UFO �version ������ Report No� ��� �in Czech�� Institute of Computer
and Information Sciences� Czechoslovak Academy of Sciences� Prague �����

���
� P�L�Toint� On sparse and symmetric matrix updating subject to a linear equation� Math of Comp�

� ������ �	������

����� P�L�Toint� On large scale nonlinear least squares calculations� SIAM J� Sci� Stat� Comput� � ������
�����
	�

���	� C�H�Tong� A comparative study of preconditioned Lanczos methods for nonsymmetric linear sys�
tems� Report No� SAND�������B� Sandia National Laboratories� Livermore �����

����� D�Touati�Ahmed� C�Storey� E�cient hybrid conjugate gradient techniques� JOTA �� ������� pp�

���
���

����� M�T.ma� A quadratic programmingalgorithm for large and sparse problems� Kybernetika �� ������
�		�����

����� M�T.ma� Sparse fractioned variable metric updates� Report No� ���� Institute of Computer and
Information Sciences� Czechoslovak Academy of Sciences� Prague �����

����� M�T.ma� Intermediate
ll�in in sparse QR decomposition� In� �Linear Algebra for Large Scale and
Real�Time Applications�� �B�de Moor� G�H�Golub� M�Moonen� eds��� Kluwer Academic Publishers�
London ���
� pp� ��	�����

��	�� P�S�Vassilevski� D�Lazarov� Preconditioning mixed
nite element saddle�point elliptic problems�
Numerical Linear Algebra with Applications
 ������ �����

��	�� H�A�Van der Vorst� Bi�CGSTAB� A fast and smoothly converging variant of Bi�CG for the solution
of nonsymmetric linear systems� SIAM J� Sci� Stat� Comput� �	 ������ �
������

��	�� J�Vl)ek� Bundle algorithms for nonsmooth unconstrained optimization� Report No� ���� Institute
of Computer Science� Academy of Sciences of the Czech Republic� Prague �����

��	
� J�Vl)ek� L�Luk(an� Globally convergent variable metric method for nonconvex nondi�erentiable
unconstrained minimization� Technical Report B ������� Department of Mathematical Information
Technology� University of Jyv/askyl/a� �����

��	�� H�Yabe� T�Takahashi� Factorized quasi�Newton methods for nonlinear least squares problems�
Math� Programming 	� ������ �	�����

��		� Y�Zhang� R�P�Tewarson� Least�change updates to Choleski factors subject to nonlinear quasi�
Newton condition� IMA J� Numer� Anal� � ������ 	���	���

��	�� Y�Zhang� R�P�Tewarson� Quasi�Newton algorithms with updates from the preconvex part of Broy�
den�s family� IMA J� Numer� Anal� � ������ ����	���

��	�� A�0ilinskas� A�A�Thorn� Global optimization� Springer Verlag� Berlin �����

��	

Index of macrovariables

�ADD ��
�BATCH ��� �

�CLASS
	� 	
�		� 	�
�COLLECTION ��
�DATA ��
�DECOMP
��
�� 	�� 	��	�
�DEF ��
�DIALOGUE ��� �����
�DISPLAY ��
�DMODELA ��� �	
�DMODELE �
� �	
�DMODELES �
� �	
�DMODELF ��� �	
�DO ��
�ELSE ��
�ELSEIF ��
�END ��
�ENDADD ��
�ENDDO ��
�ENDIF ��
�ENDSET ��
�EPS� ��
�EPS� ��
�EPS� ��
�EPS
 ��
�ERASE ��
�ETA	 	��	

�EXTREM

� �	
�FDMODELA ��� �	
�FDMODELE ��� �	
�FDMODELES ��� �	
�FDMODELF ��� �	
�FGDMODELA ��� �	
�FGDMODELE ��� �	
�FGDMODELES ��� �	
�FGDMODELF ��� �	
�FGHMODELA ��� �	
�FGHMODELAS ��� �	
�FGHMODELC ��� �	
�FGHMODELCS ��� �	
�FGHMODELF �
� �	
�FGMODELA ��� ��� �	
�FGMODELAS ��� �	
�FGMODELC ��� �	
�FGMODELCS ��� �	
�FGMODELE ��� �	
�FGMODELES ��� �	
�FGMODELF �
� ��� �	
�FGMODELY �	� �	
�FGMODELYS �	� �	

�FLOAT ��
�FMIN �
�

�FMODELA ��� �	� �	
�FMODELAS ��� �	
�FMODELC ��� �	
�FMODELCS ��� �	
�FMODELE �
���� �	
�FMODELES �
� �	
�FMODELF ��� ��� �	
�FMODELY ��� �	
�FMODELYS ��� �	
�FORM
	� 	�� 		� 	�
�GAMA ��
�GCLASS �	� ��
�GDIALOGUE ��� ��
�GDMODELA ��� �	
�GDMODELE ��� �	
�GDMODELES ��� �	
�GDMODELF ��� �	
�GLOBAL ��
�GMODELA ��� ��� ��� �	
�GMODELAS ��� ��� �	
�GMODELC ���
�� �	
�GMODELCS ���
�� �	
�GMODELE �
� �	
�GMODELES �
� �	
�GMODELF ��� ��� �	
�GMODELY �	� �	
�GMODELYS �	� �	
�GRAPH ��� ��
�GTYPE ��� ��
�HESF ����� ���
�
�HIL ��� �

�HMODELA ��� ��� �	
�HMODELAS ��� ��� �	
�HMODELC ���
�� �	
�HMODELCS ���
�� �	
�HMODELF ��� �	
�IEXT ��� �	� ��
�IF ��
�INCLUDE ��
�INITIATION ��
�INITS ��
�INPUT ��� ���
�� ��
�INPUTDATA ��
�INT ��
�ISO ��� ��
�JACA �� ���
�
�JACC ���
��
�
�KBA ��

���

�KBC ��
�KBF ��
�KCA ��
�KCC ��
�KCF �

�KDS �

�KOUT �	
�KOUT� �	
�KOUT� �	
�KOUT
 �	
�KSA ��� 	�� 	

�KSF �
� 	�� 	

�KTERS ��
�LOG ��
�LOUT �	
�M ��
�MA ��
�MAH ��
�MAP ��� �

�MC
�
�MCG �	
�MCH
�
�MED ��
�MEP 	�� 	�
�MEP� 	�
�MEP� 	�
�MES �

�MES� ��
�MES� 	�� ��
�MES
 ��
�MET
���
� ������ 	��		
�MET�
����
�MET�
��
�� ��
�MET

�
�METERASE ��
�METHOD ��
�MEX 	��	

�MF
�� ������ ��
�MFV
�
�MHA ��
�MHC
�
�MIC
�
�MIT
�
�MLP 	�
�MNLMIN ��
�MNRND ��
�MODEL �� �
�MODELA ��
�MODELF ��
�MODERASE ��
�MOS 	�� ����

�MOS� 	��	�� ��� ��
�MOS� ��� 	��	�� ��� ����

�MOS
 	��	�� ��

�MOS� 	�
�MOT� ��
�MOT� �	� ��
�MOUT ��
�NA ��
�NAL ��
�NC ��
�NCL
�
�NE ��
�NEXT ��
�NF ��
�NORMA ��
�NORMF ��
�NOUT ��
�NUMBER
�� 	��	�� ����

�NUMDER ��
�OUTPUT ��� ��
�OUTPUTDATA ��
�P ��
�PATH ��� ��
�REAL ��
�REPEAT ��
�RESTORE ��
�REXP �	
�SCAN ��� ��
�SEARCH �
� ��
�SET ��
�SETAG ��
�SETCG ��
�SIF ��
�SIGMA ��
�SOLVER ��
�STANDARD ��
�SUBROUTINES �	
�SUBST ��
�SYSTEM ��
�TDIALOGUE ��� ��
�TEST ��
�TOLB
�
�TOLC
�
�TOLF
�
�TOLG
�
�TOLX
�
�TSTART ��
�TSTOP ��
�TYPE
��
�� 	�� 	�� 	�
�UNTIL ��
�UKMAI� ��
�UKMCI� ��
�UKMCI� ��
�UPDATE
��
�� �
���� 		
�VARERASE ��
�XDEL ��
�XMAX �
�

� 	��	

���

Appendix A� Demonstration of the text dialogue mode

Suppose that the model function has the form

fF �x� � ����x�� � x��
� � �x� � ��

�

�the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we type the statement
UFOGO �without batch input
le speci
cation�� then the following questions �which we supplement together
with answers� appear on the screen�

UFO PREPROCESSOR V�����

AND OTHER INPUT DATA HAVE TO BE SPECIFIED�

TYPES OF CONSTRAINTS� THE STRUCTURE OF SPARSE PROBLEM�

HERE THE STARTING POINT� BOUNDS FOR VARIABLES�

USER SUPPLIED INPUT�

� INPUT � 	 �

X��	
 ����D
� X��	
 ��
D

� GRAPH �N	 �

SPECIFICATION OF GRAPHICAL OUTPUT

N � GRAPHICAL OUTPUT SUPPRESSED

Y � GRAPHICAL OUTPUT REQUIRED

� DISPLAY �N	 �

SPECIFICATION OF EXTENDED SCREEN OUTPUT

N � EXTENDED SCREEN OUTPUT SUPPRESSED

Y � EXTENDED SCREEN OUTPUT REQUIRED

� MODEL �FF	 �

TYPE OF OBJECTIVE FUNCTION

FF � GENERAL FUNCTION

FL � LINEAR FUNCTION

FQ � QUADRATIC FUNCTION

AF � SUM OF FUNCTIONS

AQ � SUM OF SQUARES

AP � SUM OF POWERS

AM � MINIMAX

DF � DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION

DQ � DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

DE � DIFFERENTIAL EQUATIONS

NE � NONLINEAR EQUATIONS

NO � MODEL IS NOT SPECIFIED

���

� NF �
	 �

NUMBER OF VARIABLES

�
� IEXT �
	 �

TYPE OF EXTREMUM

 � MINIMUM

� � MAXIMUM

� FMODELF ��	 �

MODEL OF OBJECTIVE FUNCTION

FF
 �FORTRAN EXPRESSION�

FF
 ��
D���X��	��� � X��		��� � �X��	 � ��
D
	���

GF�NF	
 �FORTRAN EXPRESSION�

�

�

GF��	
 �FORTRAN EXPRESSION�

GF��	
 �FORTRAN EXPRESSION�

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

� GMODELF ��	 �

HF�M	
 �FORTRAN EXPRESSION�

�

�

HF��	
 �FORTRAN EXPRESSION�

HF��	
 �FORTRAN EXPRESSION�

MODEL OF HESSIAN MATRIX

� HMODELF ��	 �

� KCF ��	 �

COMPLEXITY OF THE OBJECTIVE FUNCTION

� � EASY COMPUTED FUNCTION

� � REASONABLE BUT NOT EASY COMPUTED FUNCTION

� � EXTREMELY COMPLICATED FUNCTION

� KSF ��	 �

SMOOTHNESS OF THE OBJECTIVE FUNCTION�

� � SMOOTH AND WELL�CONDITIONED FUNCTION

� � SMOOTH BUT ILL�CONDITIONED FUNCTION

� � NONSMOOTH FUNCTION

���

� HESF �D	 �

TYPE OF HESSIAN MATRIX�

D � DENSE

S � SPARSE WITH KNOWN �GENERAL	 STRUCTURE

N � HESSIAN MATRIX IS NOT USED

� KBF �
	 �

TYPE OF SIMPLE BOUNDS�

 � NO SIMPLE BOUNDS

� � ONE SIDED SIMPLE BOUNDS

� � TWO SIDED SIMPLE BOUNDS

� KBC �
	 �

TYPE OF GENERAL CONSTRAINTS�

 � NO GENERAL CONSTRAINTS

� � ONE SIDED GENERAL CONSTRAINTS

� � TWO SIDED GENERAL CONSTRAINTS

� EXTREM �L	 �

TYPE OF OPTIMIZATION

L � LOCAL OPTIMIZATION

G � GLOBAL OPTIMIZATION

� NORMF �
	 �

SCALING SPECIFICATION FOR VARIABLES�

 � NO SCALING IS PERFORMED

� � SCALING FACTORS ARE DETERMINED AUTOMATICALLY

� � SCALING FACTORS ARE SUPPLIED BY USER

� INPUTDATA �N	 �

READ INPUT VALUES OF X �Y OR N	

� TEST �N	 �

STANDARD TEST OF EXTERNAL SUBROUTINES�

N � NO TEST

Y � PERFORM TEST BEFORE SOLUTION

A � PERFORM TEST AFTER SOLUTION

O � PERFORM TEST WITHOUT SOLUTION

�	�

� KOUT �
	 �

LEVEL OF TEXT FILE OUTPUT�

ABS�KOUT	

 � NO PRINT OR PAPER SAVING PRINT

ABS�KOUT	
� � STANDARD PRINT OF ITERATIONS

ABS�KOUT	
� � ADDITIONAL PRINT OF STEPSIZE SELECTION

ABS�KOUT	
� � ADDITIONAL PRINT OF DIRECTION DETERMINATION

AND VARIABLE METRIC UPDATE

ABS�KOUT	
� � ADDITINAL PRINT OF CONSTRAINT HANDLING

ABS�KOUT	
� � ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION

KOUT�
 � ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING

� LOUT ��	 �

LEVEL OF TEXT FILE OUTPUT�

 � NO PRINT

� � COPY OF THE BASIC SCREEN OUTPUT

�� � PAPER SAVING PRINT

� MOUT ���	 �

LEVEL OF BASIC SCREEN OUTPUT�

ABS�MOUT	

 � NO OUTPUT

ABS�MOUT	
� � FINAL OUTPUT

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

ABS�MOUT	
� � ADDITIONAL FINAL OUTPUT OF LINEAR OR

QUADRATIC PROGRAMMING

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

OF LINEAR OR QUADRATIC PROGRAMMING

MOUT�
 � FINAL OUTPUT WITH TERMINATION CRITERION

� � NOUT �
	 �

LEVEL OF BASIC SCREEN OUTPUT�

 � BASIC FINAL OUTPUT

� � EXTENDED FINAL OUTPUT

�
� MSELECT ��	 �

SELECTION OF OPTIMIZATION METHOD

� � AUTOMATICAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS

� � MANUAL SELECTION OF METHOD AND ALL PARAMETERS

� LAPACK �N	 �

USE LAPACK SUBROUTINES

N � ONLY UFO SUBROUTINES

Y � CONNECTION TO LAPACK POSSIBLE

�	�

SPECIFIC OUTPUT�

CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A

HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

USER SUPPLIED OUTPUT�

� OUTPUT � 	 �

� OUTPUTDATA �N	 �

WRITE OUTPUT VALUES OF X �Y OR N	

UFO PREPROCESSOR STOP

Each question is represented by one frame which contains the contents of the question �name of
the macrovariable that has to be de
ned�� the default value �in brackets� and an explanation of the
requirement� If no default value is wanted� the corresponding value or text has to be typed� The dialogue
can be ended by pressing the key �� � �
The result of the UFO preprocessor action is the following control program �reported in a slightly

shortened form� consisting of global declarations� input speci
cations� problem de
nition� method real�
ization and control variables adjustement�

�

� �������������������

� GLOBAL DECLARATIONS

� �������������������

�

INTEGER ITIME

INTEGER IMD

INTEGER IX���

REAL�� UXVDOT

REAL�� GF�	�

REAL�� X�	�

REAL�� HD�	�

REAL�� HF�	��	
���	�

REAL�� S�	�

REAL�� ALF

REAL�� BET

REAL�� XO�	�

REAL�� GO�	�

INTEGER IMB

�

� commons placed here were omitted

� since they require a large space

�

� �������������������

� END OF DECLARATIONS

� �������������������

�

OPEN �	�FILE��P�OUT��STATUS��UNKNOWN��

OPEN ���FILE��P�DIM��STATUS��UNKNOWN��

CALL UYCLEA

CALL UYINTP

�

�	�

� ����������

� METHOD ���

� ����������

�

CALL UYINT�

CALL UOTES���VM���L���I�������B���FF

� ���D��NF�

X�������	D

X�	����
D

CALL UYCLST

WRITE��������PROBLEM� NEXT ����I���� NEXT

IF �NF�GT�	� THEN

CALL UOERR	��UZLMIN���
�NF�	�

CALL UOERR�

ITERM���

TXFU��LACK SPC�

ENDIF

WRITE�������NUMBER OF VARIABLES� NF ����I���� NF

M�NF��NF
���	

IF �ITERM�LT�
� STOP

CALL UYTIM��ITIME�

NDECF�

IF �ITERM�NE�
� GO TO ��	

CALL UO
FU��NF�NA�NAL�MAL�NC�NCL�MCL�EPS
�EPS��EPS	�EPS��EPS��EPS�

� �EPS��EPS��EPS��EPS��ETA
�ETA��ETA	�ETA��ETA��ETA��ETA��ETA��E

� TA��ETA��ALF��ALF	�ALF��BET��BET	�BET��GAM��GAM	�GAM��DEL��DEL

� 	�DEL��RPF��RPF	�RPF��RGF��RGF	�RGF��FMIN�XMAX�XDEL�REXP�MET�M

� ET��MET	�MET��MES�MES��MES	�MES��MOT�MOT��MOT	�MOT��MOS�MOS��M

� OS	�MOS��MEP�MEP��MEP	�MEP��MEG�MEG��MEG	�MEG��MEX�MEX��MEX	�M

� EX��MED�MED��MED	�MED��MCG�MCG��MFP�MFP��MPF�MPF��MGF�MGF��MLP

� �MLP��MQP�MQP��MEQ�MEQ��MSG�MSG��KSF�KCF�KSA�KCA�KSC�KCC�KTERS

� �INITD�INITS�INITH�IREM�IADD�IRES��IRES	�MRED�IRAN��IRAN	�ISAM

� ��ISAM	�KINP�IPRN�

�

� ����������������������

� VARIABLE METRIC METHOD

� TEMPLATE � U�FDU�

� ����������������������

�

ASSIGN ����
 TO IMD

CALL UYPRO���UXFU����

CALL UYPRO	�FMIN�FO�

����
 CONTINUE

�

� �����������������

� MODEL DESCRIPTION

� �����������������

�

���

 CALL UF�F
��NF�GF�GF�FF�F�

GOTO �����
�����
����	
� ISB
�

����
 CONTINUE

ASSIGN ����
 TO IMB

�	

���

 CONTINUE

NFV�NFV
�

FF���
D	��X�����	�X�	����	
�X������
D
���	

GOTO IMB

����
 CONTINUE

GOTO ���

���	
 CONTINUE

CALL UF
GS	�NF�X�IX�X�GF�FF�HD�R�SNORM���
D������
D����	���

GOTO ����

�����
� ISB
�

����
 CONTINUE

ASSIGN ����
 TO IMB

GOTO ���

����
 CONTINUE

GO TO ���	

����
 CONTINUE

�

� ������������������������

� END OF MODEL DESCRIPTION

� ������������������������

�

GO TO IMD

����
 CONTINUE

CALL UYTRUG�NF�N�X�GF�GF�UMAX�GMAX�

CALL UO	FU��NF�M�NA�NC�X�GF�HF�X�X�F�DMAX�GMAX�

CALL UYFUT��N�F�FO�UMAX�GMAX�DMAX�ITES�IRES��IRES	�INEW�

IF�ITERM�NE�
� GOTO ����

����
 CONTINUE

ASSIGN ����
 TO IMD

CALL UUDSD��N�HF���

GOTO �����
�����
� ISB
�

����
 CONTINUE

IF�ITERM�NE�
� GOTO ����

CALL UYCPSD�NF�IX�HF�HD�MCG��

CALL UYTRUH�NF�N�X�HF�

�

� �����������������������

� DIRECTION DETERMINATION

� TEMPLATE � UDGLG�

� �����������������������

�

CALL UOD�D�

IF �IDECF�LT�
� THEN

IDECF��

INF�

ENDIF

TDXX�������INV �

IF �IDECF�EQ�
� THEN

�

� INVERSION

�

ALF�ETA	

CALL UXDPGF�N�HF�INF�ALF�BET�

�	�

CALL UXDPGI�N�HF�

NDECF�NDECF
�

IDECF��

ELSE IF �IDECF�EQ��� THEN

ELSE

ITERD���

TDXX��BAD DEC��

CALL UOERR���UDDLI�����

GO TO �	��

ENDIF

GNORM�SQRT�UXVDOT�N�GF�GF��

�

� NEWTON LIKE STEP

�

CALL UXDSMM�N�HF�GF�S�

CALL UXVNEG�N�S�S�

INITD�MAX�ABS�INITD����

ITERD��

IF�INF�EQ�
� THEN

TDXX������� POS�

ELSEIF�INF�LT�
� THEN

TDXX������� ZER�

ELSE

TDXX������� NEG�

ENDIF

SNORM�SQRT�UXVDOT�N�S�S��

NRED�INF

CALL UOD�D��ALF�BET�INF�

�	��
 CALL UOD�D	�N�GF�S�

�

� ������������������������������

� END OF DIRECTION DETERMINATION

� ������������������������������

�

IF �KD�GT�
� P�UXVDOT�N�GF�S�

CALL UD�TL��NF�N�GF�S�EPS
�ALF��ALF	�R�P�GNORM�SNORM�RMIN�RMAX�XMA

� X�XDEL�MES�INITD�INITH�

IF�ITERM�NE�
� GOTO ����

IF�IREST�NE�
� GOTO ����

CALL UYTRUS�NF�X�X�XO�GF�GO�S�S�RO�FP�FO�F�PO�P�CMAX�CMAXO�

����
 CONTINUE

ASSIGN ����
 TO IMD

CALL US
L
��EPS��RO�RP�R�FO�FP�F�PO�PP�FMIN�FMAX�PAR��PAR	�RMAX�RM

� IN�SNORM�MODE�KTERS�MES�MES��MES	�INITS�MRED�

GOTO �����������	� ISB
�

����	 CONTINUE

CALL UXVDIR�NF�R�S�XO�X�

GOTO ����

����� CONTINUE

IF �ITERS�LE�
� THEN

CALL UYZER
�NF�X�XO�R�F�FO�FF�P�PO�MOT��

IF�IDIR�EQ�
� THEN

�		

CALL UYRES��TSXX�

CALL UYSET�

GO TO ����

ELSE IF �MOT��EQ�
� THEN

CALL UYSET�

GO TO ����

ELSE

ITERD�

ENDIF

ENDIF

IF�KD�GT�LD� THEN

ASSIGN ����
 TO IMD

GO TO ����

ENDIF

����
 CONTINUE

TXFU�TUXX

CALL UYUPSD�NF�X�IX�XO�GF�GO�HD�P�MCG��

CALL UYTRUD�NF�X�X�XO�GF�GO�R�F�FO�P�PO�DMAX�

CALL UUDBI��N�HF�S�XO�GO�R�PO�F�FO�P���
D �
���

IF�IDIR�EQ�
� THEN

IF�ITERH�NE�
� CALL UYRES���UPDATE ��

GOTO ����

ELSE

GOTO ����

ENDIF

����
 CONTINUE

IF�ITERM�LT�
� TXFU�TDXX

CALL UYEPI����

��	

 CONTINUE

CALL UOERR��KOUT�LOUT�MOUT�ITERM�IER�

CALL UO�FU	�NF�NA�NC�X�X�X�X�FF�F�FO�DMAX�GMAX�XMAX�EPS
�EPS��EPS	

� �EPS��EPS��EPS��BET��BET	�GAM��GAM	�ETA��ETA	�MET�MET��MET	�ME

� T��MOT�MOT��MOT	�MOT��MES�MES��MES	�MES��MOS�MOS��MOS	�MOS��IN

� ITD�INITS�INITH�IRES��KTERS�IPRN�

����� CONTINUE

�

� �����������������

� END OF METHOD ���

� �����������������

�

CALL UYTIM	�ITIME�

CLOSE �	�

CLOSE ���

END

�

� ������������������������

� INITIATION OF METHOD ���

� ������������������������

�

SUBROUTINE UYINT�

�

� commons placed here were omitted

�	�

� since they require a large space

�

REAL�� XDELS�RPF�S�RPF	S�RPF�S�RGF�S�RGF	S�RGF�S

COMMON�UMCLST� XDELS�RPF�S�RPF	S�RPF�S�RGF�S�RGF	S�RGF�S

ETA
���
D���

ETA����
D �

ITR��

IRD��

IWR�	

�

� many other assignments follow which were

� omitted since they require a large space

�

END

�

� ���������������������

� INITIATION OF PROBLEM

� ���������������������

�

SUBROUTINE UYINTP

�

� commons placed here were omitted

� since they require a large space

�

NF�	

IEXT�

KCF�	

KSF��

KBF�

KBC�

NORMF�

KDF�

KDA���

KDC���

KDE���

KDY���

END

� ��

� BROYDEN CLASS OF VARIABLE METRIC UPDATES

� TEMPLATE � UUDBI�

� ��

SUBROUTINE UUDBI��N�H�S�XO�GO�R�PO�F�FO�P�ETA��MET�

�

� commons placed here were omitted

� since they require a large space

�

REAL�� H�N��N
���	��S�N��XO�N��GO�N��R�PO�ETA�

REAL�� F�FO�P

REAL�� AA�CC

COMMON �UMFUN�� AA�CC

REAL�� UXVDOT�UNFUN�

REAL�� DIS�POM�POM��POM��A�B�C�GAM�RHO�PAR

�	�

REAL�� DEN

INTEGER IUPDT

LOGICAL L��L�

EXTERNAL UNFUN�

IF �MET�LE�
� GO TO 		

CALL UOU�D��N�XO�GO�

IF �IDECF�NE��� THEN

ITERH���

TUXX��BAD DEC��

CALL UOERR���UUDBI	����

GO TO 		

ENDIF

L��ABS����GE���OR�ABS����EQ�	�AND�NIT�EQ�KIT

L���NOT�L�

�

� DETERMINATION OF THE PARAMETERS A� B� C

�

B�UXVDOT�N�XO�GO�

IF �B�LE�ZERO� THEN

ITERH�	

TUXX��B � NEG��

GO TO 		

ENDIF

CALL UXDSMM�N�H�GO�S�

A�UXVDOT�N�GO�S�

IF �A�LE�ZERO� THEN

ITERH��

TUXX��A � NEG��

GO TO 		

ENDIF

IF�MET�GE���OR�L�� THEN

IF �ITERD�NE��� THEN

MET��

C�ZERO

ELSE

C��R�PO

IF �C�LE�ZERO� THEN

ITERH��

TUXX��C � NEG��

GO TO 		

ENDIF

ENDIF

ELSE

C�ZERO

ENDIF

�

� DETERMINATION OF THE PARAMETER RHO �NONQUADRATIC PROPERTIES�

�

IF �FO�F
P�EQ�
� THEN

RHO�ONE

ELSE

RHO�HALF�B��FO�F
P�

�	�

ENDIF

IF�RHO�LE���
D�	� RHO�ONE

IF�RHO���
D�	�GE�ONE� RHO�ONE

AA�A�B

CC�C�B

IUPDT�

IF �L�� THEN

�

� DETERMINATION OF THE PARAMETER GAM �SELF SCALING�

�

IF �C�LE�ZERO� THEN

PAR�A�B

POM��
��D

POM����
D

ELSE

PAR�SQRT�A�C�

POM��
��D

POM����
D

ENDIF

GAM�RHO�PAR

IF �NIT�NE�KIT� THEN

L��GAM�LT�POM��OR�GAM�GT�POM�

ENDIF

ENDIF

IF �L�� THEN

GAM�ONE

PAR�RHO�GAM

ENDIF

�

� NEW UPDATE

�

POM�ONE��AA�CC�

IF �POM�LT�ONE� THEN

DEN�MAX�POM
��
D����SQRT�C�A��

POM��DEN�POM���ONE�POM�

TUXX��NEW �

GO TO 	

ENDIF

�� CONTINUE

�

� BFGS UPDATE

�

POM�ONE

DIS�PAR
AA

CALL UXVDIR�N��DIS�XO�S�XO�

DIS�ONE��B�DIS�

CALL UXDSMU�N�H�DIS�XO�

CALL UXDSMU�N�H��DIS�S�

TUXX��BFGS �

GO TO 	�

	
 CONTINUE

�

�	�

� GENERAL UPDATE

�

DEN�PAR
POM�AA

DIS�POM�DEN

CALL UXDSMU�N�H��PAR�DIS�ONE��A�S�

CALL UXVDIR�N��DIS�S�XO�S�

CALL UXDSMU�N�H�DEN�B�S�

	� CONTINUE

ITERH�

IF �GAM�EQ�ONE� GO TO 		

�

� SCALING

�

CALL UXDSMS�N�H�GAM�

		 CONTINUE

CALL UOU�D	�N�H�S�RHO�GAM�PAR�A�B�C�POM�ETA��

RETURN

END

The results �screen output� obtained by using this control program have the following form�

 NIT� �
 NFV� ��� NFG�
 GRAD TOL F� ��
����	�		E��� G� ��	�D�
�

FF � ��
����	�		D���

X � ��

��D

� ��

���D

�

���

Appendix B� The BEL interpreter

The BEL �Batch Editor Language� interpreter� developed as a part of the UFO project� is especially
determined for the generation of computer programs� batch editing of texts� preparation of print
les�

ltering of text
les etc� The BEL interpreter allows us to generate a prescribed output
le from the
input
le �template� which is a mixture of text lines and special instructions�
The UFO system is organized in such a way that a control program does not have to be written

in the FORTRAN language immediately� Instead� the procedure written in the UFO control language
is supplied� By using the installation template� the compiler of the UFO control language �UFOCLP �
UFO Control Language Preprocessor� generates a table of symbols which� together with the user supplied
procedure� is o�ered to the BEL interpreter� The BEL interpreter then generates the resulting control
program which is written in the FORTRAN language�

B��� General description

Although the BEL interpreter can be used in various general applications� it was developed especially
for the generation of FORTRAN programs� It is�

�� Interpreter� since instructions contained in the input text are interpreted and immediately realized�

�� Batch editor� since it serves for editing batch
les�

� Macroprocessor� since it makes it possible to de
ne or modify special macrovariables which can be
substituted into the processed text�

The macrovariable can be an integer constant� a logical constant� a string of characters� a set of text
lines� a set of BEL instructions� even a text
le�
The BEL interpreter requires an input text
le and a table of symbols� The input text
le �template�

consists of standard text lines together with the BEL instructions� The table of symbols contains names
and values of the macrovariables used�
The BEL instructions� contained in the input text
le� can be of two types�

�� Directives� i�e� control instructions and instructions for manipulation with the table of symbols�
These instructions begin with the special character CHDIR� In the subsequent text� we will suppose
that CHDIR���� ���� is the default value��

�� Substitutions� i�e�instructions for substituting macrovariables into the text� These instructions
begin with the special character CHSUB� In the subsequent text� we will suppose that CHSUB����
���� is the default value��

The BEL interpreter works in the following way�

�� The line of the input
le is read�

�� The line is recognized and if the character CHSUB is found� a pertinent substitution is realized�

� If the
rst character �di�erent from blank� is CHDIR� the line is a directive line� The recognized
directive is realized�

This process is repeated until the directive �END or the end of the
le is found� Note that we suppose
that CHSUB and CHDIR have the same values� This is allowed� since the correct meaning is recognized
from the context�

At the end of this subsection� we stress some speci
c features and advantages of the BEL interpreter�

�� The substitution is recursive� The depth of recursion only depends on the declared work space size�

���

�� Substitution is allowed in both the text lines and the directives�

� The names and values of macrovariables can have an arbitrary length which again only depends on
the declared work space size�

�� The set of directives is relatively small with a consistent syntax� It contains all important instruc�
tions ��IF��ELSEIF��ELSE��ENDIF� �DO��ENDDO� �REPEAT��UNTIL etc��

	� The control parameters �CHDIR� CHSUB etc�� can be changed during the work of the BEL
interpreter� This makes it possible to generate a program written in the BEL language which can
be immediately processed�

�� The BEL interpreter is a fully portable device� It can be implemented in an arbitrary system
containing FORTRAN �� compiler�

B��� List of instructions

Substitutions�

�INTEGER � Substitute by the absolute label computed from the relative label�
�NAME� ��NAME� � Substitute by the value of the macrovariable NAME�
�DATA�NAME� � Substitute by a new item from the list of items which is a value of the macrovari�

able NAME�
�DEF�NAME� � Substitute by ��TRUE�� if the macrovariable NAME is de
ned in the table of

symbols� Otherwise substitute by ��FALSE��
�INT�NAME� � Substitute by ��TRUE�� if the value of the macrovariable NAME is an integer

constant� Otherwise substitute by ��FALSE��
�LOG�NAME� � Substitute by ��TRUE�� if the value of the macrovariable NAME is a logical

constant� Otherwise substitute by ��FALSE��
�REAL�NAME� � Substitute by ��TRUE�� if the value of the macrovariable NAME is a real con�

stant� Otherwise substitute by ��FALSE��
�� � Substitute ��� �replace ���� by ����� This makes possible to insert the character

CHSUB into the text�

Directives�

�ADD � Add a value to a macrovariable�
�ADD� �ENDADD � Add text lines to a macrovariable�
�CLEAR � Clear value of a macrovariable which is a list of items type�
�DO� �ENDDO � Cycle�
�ERASE � Erase a macrovariable from the table of symbols�
�EXIT � Termination of the BEL interpreter work�
�HELP� �CHECK � Set a default value to a macrovariable which has not been previously de
ned�
�IF� �ELSEIF�
�ELSE� �ENDIF � Conditioned instruction�
�INCLUDE � Insert a macrovariable or a text
le into the output
le�
�OPTION � Change some optional parameter of the BEL interpreter�
�REM � Remark�
�REPEAT� �UNTIL � Cycle�
�RESTORE � Adjust the list of items pointer to the
rst item�
�REWIND � Rewind the
le on a given unit�
�SET � Set a value to a macrovariable�
�SET� �ENDSET � Set text lines to a macrovariable�
�STOP � Termination of the BEL interpreter work�
�SUBST � Substitute a text
le into the input
le�

���

B��� Special characters

The following special characters are important for the BEL interpreter work�

� � CHSUB �Substitution Character� � this is the
rst character in every substitution� If ��� should be
inserted into the text� we have to use �����

� � CHDIR �Directive Character� � if the
rst character on the line is CHDIR� then the line is a directive
line �CHSUB and CHDIR are distinguished by the context��

% � CHCON �Continuation Character� � if the last character on the line is CHCON� then it is assumed
that the logical line continues on the next physical line�

� � CHEOL �End Of Line Character� � this character speci
es the end of the logical line if it does not
coincide with the end of the physical line� This makes it possible to write several logical lines by
using the same physical line�

n � CHDS �Data Separator Character� � this character separates individual items in the list of items
type macrovariable�

The use of special characters can be demonstrated by the following simple example� Assume that the
input text has the form

�A��PaulnPeternJanenMary�
This is a list of my brothers and sis%
ters�
�DO�I������ �DATA�A�� �ENDDO

Then the output from the BEL interpreter has the form

This is a list of my brothers and sisters�
Paul
Peter
Jane
Mary

The special characters can be changed by the directive �OPTION� But no special character has to
be the alphabet or the digit� Moreover� di�erent special characters have to di�er �with the exception of
CHSUB and CHDIR��

B��� Description of instructions

This subsection contains a detailed description of the syntax and action of individual BEL instructions�
The following de
nitions will be used�

�digit� ��� � j � j � j
 j � � � � � j �

�alphabet� ��� A j B j C j D j � � � � � j Z

�character� ��� an arbitrary character with the exception of apostrophe

�integer constant� ��� �� j �� �digit� f�digit�g

�logical constant� ��� �TRUE� j �FALSE�

�macroname� ��� �alphabet� f�alphabet� j �digit�g

�string of characters� ��� �f�character� j �g

�text� ��� �string of characters� �f� �string of characters�g

�list of items� ��� �string of characters� �fn �string of characters�g

��

Substitutions�

�INTEGER

Syntax�
The type of INTEGER is an integer constant� Although it can have an arbitrary value� an application
to the control program generation requires it to be positive and lower than LABEL� �see the directive
�OPTION��

Action�
The integer constant INTEGER is a relative label in a given template� The absolute label� substituted
into the control program� is computed by the formula LABEL�LABEL��K	LABEL�� where LABEL�
and LABEL� are options of the BEL interpreter �see the directive �OPTION� and K is a serial number
of the application of the directive �SUBST�

Example�

���

generates

�����

if the main template is used or

�����

after the
rst application of the directive �SUBST�

�NAME� ��NAME	

Syntax�
The type of NAME is a macroname� This substitution has two forms� either �NAME or ��NAME�� The
latter form is required if the substitution appears inside a continuous string of characters to separate the
NAME from the adjacent text�

Action�
The string ��NAME� is replaced by the value of the macrovariable NAME�

Example�

�A��UFO�
�A SYSTEM

generates

UFO SYSTEM

�DATA�NAME	

Syntax�
The type of NAME is a macroname�

Action�
The string ��DATA�NAME�� is replaced by the next item of the list of items which is a value of the
macrovariable NAME� If the next item does not exist� the list of items pointer is returned to the
rst
item� Additional information is contained in the description of the directive �RESTORE�

Example�

�LIST��ITEM�nITEM�nITEM
�
�DATA�LIST�
�DATA�LIST�

���

�DATA�LIST�
�DATA�LIST�

generates

ITEM�
ITEM�
ITEM

ITEM�

�DEF�NAME	

Syntax�
The type of NAME is a macroname�

Action�
If the macrovariable NAME is de
ned in the table of symbols� the string ��DEF�NAME�� is replaced by
the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A���
�DEF�A�

generates

�TRUE�

�INT�NAME	

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is an integer constant� the string ��INT�NAME�� is replaced by
the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A���	
�INT�A�

generates

�TRUE�

�LOG�NAME	

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is a logical constant� the string ��LOG�NAME�� is replaced by
the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A��FALSE�
�LOG�A�

generates

�TRUE�

��	

�REAL�NAME	

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is a real constant �i�e� a string of characters which satis
es
the syntactic rules for FORTRAN real constants�� the string ��REAL�NAME�� is replaced by the logical
constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A�������D����
�REAL�A�

generates

�TRUE�

��

Action�
The string ���� is replaced by the character ���� This substitution allows us to insert the character ��� into
the generated text or into the macrovariable�

Example�

�I��NAME�
��DEF��I�

generates

�DEF�NAME�

Directives�

�ADD�NAME��NAME� or VALUE	

Syntax�
The type of NAME� and NAME� is a macroname�
The type of VALUE is an integer constant or a logical constant or a string of characters�

Action�
The value of the macrovariable NAME� or the VALUE is added to the value of the macrovariable NAME�
�the resulting value of the macrovariable NAME� is �NAME��NAME� in the
rst case��

Example�

�NAME��TOM�
�ADD�NAME�� JONES��
Name� �NAME

generates

Name� TOM JONES

�ADD�NAME	
TEXT

�ENDADD

Syntax�
The type of NAME is a macroname�
The type of TEXT is a text�

���

Action�
The TEXT is added to the value of the macrovariable NAME�

Example�

�SET�A�
Day�
�

�ENDSET
�ADD�A�
Month� December
Year� ����

�ENDADD

generates

Day�
�
Month� December
Year� ����

Remark� Only substitutions are realized in the text TEXT �not directives��

�CLEAR�NAME	

Syntax�
The type of NAME is a macroname�

Action�
This directive clears a list�of�items�type value of the macrovariable NAME� i�e� it deletes all duplications
of items� Small and capital letters of items are not distinguished�

Example�

�DECL��NnIX�N�nNnMn InJnNnM�
�CLEAR�DECL�
�END���DATA�DECL��
�REPEAT
�I���DATA�DECL��
INTEGER �I

�UNTIL�I�END�

generates

INTEGER IX�N�
INTEGER M
INTEGER I
INTEGER J
INTEGER N

�DO�NAME�INDEX��INDEX��INDEX�	
TEXT

�ENDDO

Syntax�
The type of NAME is a macroname�
The type of INDEX�� INDEX�� INDEX
 is a macroname or an integer constant�
The type of TEXT is a text�

Action�
This directive has a similar meaning as the statement DO in the FORTRAN language�
NAME is the cycle counter�

���

INDEX� is the initial value of the cycle counter�
INDEX� is the
nal value of the cycle counter�
INDEX
 is the change of the cycle counter after a cycle step�
If INDEX
 is not present� the default value INDEX��� is assumed�
The cycle counter NAME does not have to be changed in the cycle step�
The value INDEX
 does not have to be equal to ��
The body of the cycle is terminated by �ENDDO�
If INDEX��INDEX� and INDEX
�� or INDEX��INDEX� and INDEX
��� then the cycle is not
realized�
Cycles can be nested� The maximum depth of nested cycles is ���

Example�

�A��XnYnZ�
�DO�I���	���
A��I����C��I���DATA�A�

�ENDDO

generates

A������C����X
A�
����C�
��Y
A�	����C�	��Z

�ERASE�NAME	

Syntax�
The type of NAME is a macroname�

Action�
The macrovariable NAME is erased from the table of symbols�

Example�

�A��
�DEF�A�
�ERASE�A�
�DEF�A�

generates

�TRUE�
�FALSE�

�EXIT

Action�
The directive �EXIT has the same meaning as the end of the
le achievement� If the nested
les are
processed �see the description of the directive �SUBST�� the directive �EXIT realizes return to the higher
level
le �if the higher level
le does not exist� then �EXIT has the same meaning as �STOP��

�HELP
TEXT

�CHECK�NAME�DEFAULT�TYPE�LEVEL�TRANSFER	

Syntax�
The type of TEXT is a text�
The type of NAME is a macroname�
The type of DEFAULT is either a macroname or an integer constant or a logical constant or a string of
characters�

���

The type of TYPE is either a list of items or one of the strings INT �integer�� LOG �logical�� REAL
�real��
The type of LEVEL is an integer constant�
The type of TRANSFER is a logical constant�

Action�
The text TEXT appears on the screen if the dialogue mode is used� The value of the macrovariable
�NAME is checked to have the type TYPE� If the macrovariable �NAME is not de
ned or if it has a
wrong value� the value DEFAULT is used� The value of LEVEL gives the lowest level of the dialogue
�����
 or �� from which the text TEXT appears on the screen� The value of TRANSFER speci
es
transfer of the variable �NAME into the control program �YES if transfer is accepted or NO if transfer
is suppressed��

Example�

�HELP
TYPE OF THE HESSIAN MATRIX�

D � DENSE
B � SPARSE WITH KNOWN �PARTITIONED� STRUCTURE
S � SPARSE WITH KNOWN �GENERAL� STRUCTURE
N � HESSIAN MATRIX IN NOT USED

�CHECK�HESF��N���DnBnSnN����NO�

�IF�CONDITION	 LINE

Syntax�
The CONDITION can be of the following types�
The type of CONDITION is a macroname and a value of CONDITION is a logical constant�
The type of CONDITION is a logical constant ��TRUE� or �FALSE���
The type of CONDITION is a string of the form PART��operator�PART��
The type of PART� and PART� can be a macroname or an integer constant or a logical constant or a
string �values of PART� and PART� have to be of the same type� and �operator� can have the following
forms�

� equal to
�� not equal to
� less than �for integer values only�
�� less than or equal to �for integer values only�
� greater than �for integer values only�
�� greater than or equal to �for integer values only�

LINE is either a text line or a directive�

Action�
If the condition CONDITION is satis
ed� LINE is inserted into the output
le �if it is a text line� or
carried out �if it is a directive�� If the values of PART� and PART� are strings� then small and capital
letters are not distinguished and blanks are ignored�

Example�

�A��J O H N�
�IF�A��John�� Yes
�IF�A���Mary�� No

generates

Yes
No

���

�IF�CONDITION�	
TEXT�

�ELSEIF�CONDITION�	
TEXT�
�
�
�

�ELSE
TEXT

�ENDIF

Syntax�
CONDITION� and CONDITION� have the same syntax and meaning as CONDITION in the previous
case� The number of repeated �ELSEIF is not limited� �ELSEIF or �ELSE can be omitted�

Action�
This directive has a similar meaning as the conditioned statement IF�ELSEIF�ELSE�ENDIF in the FOR�
TRAN language� The conditioned statements can be nested� The maximumdepth of nested conditioned
statements is ���

Example�

�A���
�L��FALSE�
�IF�A����
A � A � �
B � B � �
�IF�L�
C � C � �
�ENDIF

�ELSE
WRITE�"�"� I

�ENDIF

generates

A � A � �
B � B � �

�INCLUDE�NAME	

Syntax�
The type of NAME is a macroname�

Action�
The directive �INCLUDE�NAME� is a special case of substitution� This directive makes it possible to
insert �into the generated text� one or more lines� which were previously assigned to the macrovariable
NAME� In contrast to the standard substitution �NAME� the inserted lines are not processed by the
BEL interpreter� so the directives are not carried out�

Example�

�SET�LINES�
�ADD�A�
X � Y � Z
CALL SUB�X�
�ENDADD

�ENDSET

���

�INCLUDE�LINES�

generates

�ADD�A�
X � Y � Z
CALL SUB�X�
�ENDADD

�INCLUDE��FILE�	

Syntax�
The type of FILE is a string�

Action�
The directive �INCLUDE��FILE�� is a special case of substitution� This directive makes it possible to
insert �into the generated text� the text which is stored in the
le with the name FILE� The inserted text
is not processed by the BEL interpreter� so the directives are not carried out�

Example�

�INCLUDE��C�nUFOnUMCOMN�I��

includes FORTRAN common blocks into the generated text �these common blocks are stored in the
le
C�nUFOnUMCOMN�I�

�OPTION�OPTIONNAME�NAME or VALUE	

Syntax�
OPTIONNAME is a selected name from the table of optional parameters �see below��
The type of NAME is a macroname� The value of NAME has to be an integer constant or a logical
constant or a string of character and has to correspond to the type of OPTIONNAME�
The type of VALUE has to be an integer constant or a logical constant or a string of character and has
to correspond to the type of OPTIONNAME�

Action�
This directive makes us possible to change selected optional parameter of the BEL interpreter� Optional
parameters are contained in the following table�

���

Name Type Default Description
CHDIR char� ��� see B�

CHEOL char� ��� see B�

CHCON char� �%� see B�

CHDS char� �n� see B�

FN� char� � �
rst part of the
le name
FN� char� ��I � last part of the
le name
ILNLEN int� �� physical length of the input line
OLNLEN int� �� physical length of the output line
IUNIT int� � No� of the input
le unit
OUNIT int� � No� of the output
le unit
INUNIT int� � No� of the �INCLUDE
les unit
IIUNIT int� � No� of the interactive mode input unit
OIUNIT int� � No� of the interactive mode output unit
DIALOG int� � level of dialogue �� or � or ��
MODERW int� � READ�WRITE mode �� or � or
�
LABEL� int� ����� initial label
LABEL� int� ��� di�erence between two consecutive labels
LSUBS log� �TRUE� substitutions carried out
LOUT log� �TRUE� output
le created
LSMLET log� �TRUE� small letters used in instructions
LFORTO log� �TRUE� output in standard FORTRAN format
LFRFMT log� �TRUE� input in free FORTRAN format

�used only if LFORTO��TRUE��
SIFDEC log� �FALSE� using the SIF decoder
DIALGR log� �FALSE� using the graphic dialogue

�REM

Action�
The rest of the line �following after �REM� is ignored by the BEL interpreter� The directive �REM is
used for remarks�

�REPEAT
TEXT

�UNTIL�CONDITION	

Syntax�
The type of TEXT is text�
CONDITION has the same syntax and meaning as that in the directive �IF�� � ���

Action�
This directive has a similar meaning as the statement REPEAT�UNTIL in the PASCAL language�
The cycle is terminated whenever the condition CONDITION is satis
ed �at least one realization is
carried out��
Cycles can be nested� The maximum depth of nested cycles is ���

Example�

�N���
�REAL��X��N�nG��N�nH��N��N�n�END��
�REPEAT
�I��DATA�REAL�
REAL �I

�UNTIL�I���END���

���

generates

REAL X����
REAL G����
REAL H�������

�RESTORE�NAME	

Syntax�
The type of NAME is a macroname�

Action�
The directive �RESTORE�NAME� can only be used if the value of the macrovariable NAME is a list
of items� Such a macrovariable uses a pointer which points out the next called item� The directive
�RESTORE adjust this pointer to point out the
rst item of the list �if the end of this list is found� the
pointer is adjusted to point out the
rst item without applying the directive �RESTORE��

Example�

�A��XnYnZ�
�DATA�A�
�DATA�A�

�RESTORE�A�
�DATA�A�

generates

X
Y
X

�REWIND�UNIT	

Syntax�
The type of UNIT is an integer constant�

Action�
The
le opened on the unit with the number UNIT is rewound� so it can again be read from the
rst
record �numbering of I�O units is used in the FORTRAN language��

�NAME� � NAME� or VALUE

�SET�NAME� � NAME� or VALUE	

Syntax�
The type of NAME� and NAME� is a macroname�
The type of VALUE is an integer constant or a logical constant or a string of characters�
This directive has two forms� The latter form is used if the macroname is identical with a directive �e�g�
�SET�REM��REMARK����

Action�
The new macrovariable with the name NAME� and the value equal to the value of the macrovariable
NAME� or constant VALUE is inserted into the table of symbols� If the macrovariable NAME� has
already been de
ned in the table of symbols� then it is changed�

�SET�NAME	
TEXT

�ENDSET

Syntax�
The type of NAME is a macroname�

��

The type of TEXT is text�

Action�
The macrovariable NAME is inserted into the table of symbols with the value TEXT� If the macrovariable
NAME has already been de
ned in the table of symbols� then it is changed�

Example�

�SET�INIT�
CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�
IF �IERR�NE��� GO TO ��ENDTEST

�ENDSET
�INIT

generates

CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�
IF �IERR�NE��� GO TO �ENDTEST

Remark� Only substitutions are realized in the text TEXT �not directives��

�STOP

Action�
The directive �STOP terminates the BEL interpreter work�

�SUBST��FILE�	

Syntax�
The type of FILE is a string�

Action�
This directive performs the following actions�
The new reference label is computed �using the parameters LABEL� and LABEL� of the BEL interpreter��
The
le with the name FILE is opened�
This
le is processed by the BEL interpreter�
The
le with the name FILE is closed�
The old reference label is restored�

This directive is similar to the directive �INCLUDE��FILE��� But the inserted text is now processed
by the BEL interpreter� All substitutions and directives are carried out� The directive �SUBST��FILE��
serves for dividing large texts into segments and makes it possible to generate texts by using conditioned
branching� This is advantageously used for generation of the control program in the UFO system where
templates corresponding to individual subroutines are such segments�

Example�

�SUBST��C�nUFOnPROBLEM�UFO��

inserts a template� written in the UFO control language� into the generated text �this template is stored
in the
le C�nUFOnPROBLEM�UFO�

���

Appendix C� Graphic screen output

C��� Nonlinear regression

��	

���

���

C��� Nonlinear minimax optimization

���

���

���

C��� Transformer network design

���

���

��

���

C��� Global optimization

��	

C��� Nonsmooth optimization

���

C�
� Rosenbrock function

���

C��� Ordinary di�erential equations

���

C��� The Lorenz attractor

���

���

