narodni
N U dlozisté
1 L Sedé
6 literatury

Fuzzy Computations Are More Powerful than Crisp Ones

Wiedermann, Jiri
2000

Dostupny z http://www.nusl.cz/ntk/nusl-33969

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 21.05.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33969
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Fuzzy Computations Are More Powerful Than Crisp
Ones

Jiri Wiedermann

Technical report No. 828

December 2000

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod Vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: +4202 6605 3520 fax: 44202 8585789
e-mail: wieder@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Fuzzy Computations Are More Powerful Than Crisp
Ones

Jit{ Wiedermann®

Technical report No. 828
December 2000

Abstract

A model of a Turing machine with a fuzzy instruction set is considered. It is a gener-
alization of a standard nondeterministic machine which accepts words of some (fuzzy)
language with various truth degrees which depend on the choice of so—called t-norm.
This norm defines the corresponding fuzzy propositional calculus which is shown to
be related in a certain reasonable way to the fuzzy Turing machine at hand. Next it
is shown that a variant of fuzzy Turing machines which corresponds to the so—called
Godel norm is computationally equivalent to a Turing machine with fuzzy final states.
A surprising result showing that the nondeterministic variants of the latter machine
also accept fuzzy languages that are not recursively enumerable (r.e.). This can be
compared with the power of deterministic fuzzy Turing machines that accept only r.e.
languages. The respective results are in a sharp contrast to crisp computations where
there is no difference between the computational power of deterministic and nonde-
terministic computations. The languages accepted by deterministic fuzzy Turing ma-
chines are further characterized as r.e. languages for which there exists a computable,
w.r.t. the respective t—norm, mapping that for each word in the language assigns its
respective truth degree. The respective results shed new light on the power of fuzzy
computing and point to the fact that on deterministic devices nondeterministic fuzzy
computations that are not a priori known to be time bounded cannot be simulated.

Keywords
fuzzy computing; fuzzy Turing machine; fuzzy propositional calculus; recursively
enumerable languages

This research was partially supported by GA CR grant No. 201/00/1489.

1 Introduction

In this paper we will concentrate on the investigation of computational power of fuzzy
computations. Unfortunately, the formal notion of fuzzy computations seems to be
quite fuzzy indeed. Attempts to define it have been around since the dawn of the no-
tion of fuzzy algorithms by Zadeh in late seventies (cf.[7]). In those days fuzzy variants
of Turing machines, Markov algorithms, and finite automata (cf. [6],[7]) were been
proposed and also fundamentals of fuzzy language theory were established [3]. Surpris-
ingly, despite of the rich application potential of fuzzy computing (e.g. as embodied
in fuzzy control systems) no sufficient attention has been paid to the investigation of
recursive—theoretical limits of fuzzy computations.

In order to do so one needs an agreed-upon machine model whose computations will
serve as a paradigmatic example of fuzzy computations. No doubts that any attempt to
define such a model should start at the same level as in the classical computability (or
complexity) theory, i.e. within the classical framework of the Turing machine theory.
In doing so the above mentioned earlier approaches enhanced by the recent progress
in developing the sound (meta)mathematical foundations o fuzzy logic (cf. [1]) should
be taken into account.

The benefits from having a formal, generally accepted, Turing-machine-like model
of fuzzy computations are obvious: such a model would enable a systematic study
of the power and efficiency of fuzzy computing, allow its comparison with standard
models of computing and, last but not least, enable a transfer of the known results
between the domain of crisp and fuzzy computing.

The aim of this paper is to propose a candidate model for computability and com-
plexity investigations of fuzzy computations and to bring the first results along the
respective lines. Similarly as earlier approaches (cf. [6] or [7]) this model is based on
the generalization of a classic notion of a (nondeterministic) Turing machine. More-
over, it is designed so as to be compatible with recent developments aiming at rigorous
mathematical foundations of fuzzy logic. Thanks to this fact the model is more general
than its forerunners and covers a full spectrum of specific t—norms some of which were
treated separately in the early days of fuzzy computing. On the other hand, thanks to
its similarity to classical models this model also enables its comparison with the former
models as far as its computational power is concerned.

In Section 2 we will define the basic variant of a fuzzy Turing machine — viz.
the one that makes use of a fuzzy instruction set. It accepts its inputs with various
truth degrees which also depend on the choice of the underlying t-norm. This norm
presents the link to the respective fuzzy predicate calculus. The (classical) notion of a
fuzzy language accepted by a fuzzy Turing machine will be extended to cover our more
general notion of a fuzzy Turing machine. However, due to our more general definition
of a fuzzy Turing machine a proof that the respective definition of acceptance is sound
is needed. A further rationale of our general approach is exemplified in Section 3 by
pointing out to the relation between the truth degree of certain fuzzy propositional
formulae and accepting computations of fuzzy Turing machines. In Section 4 a ‘classic’
variant of a fuzzy Turing machine (namely the one proposed in early works by Zadeh
[7] or Santos [6]) based on the so—called min-max (or Godel) norm is investigated.

It is shown that this model is computationally equivalent to the variant of a fuzzy
Turing machine which makes use of crisp instructions in combination with fuzzy final
states. Next, in Section 5 a surprising result is shown. It states that the languages
accepted by nondeterministic variants of fuzzy Turing machines need not be recursively
enumerable. This is in contrast to the deterministic variants which accept languages
recursively enumerable. Finally, in Section 6 the class of fuzzy languages accepted
by deterministic fuzzy Turing machines is further characterized with the help of the
standard recursivity theory. In Section 7 the merit of the presented results is discussed.

For easier understanding of fuzzy logics background the acquaintance with e.g. the
second chapter of monograph [1] is to be recommended.

2 Fuzzy Turing machines

Inspired by the earlier proposals of fuzzy Turing machines (especially those from [6]
and [7]) a basic variant of a fuzzy Turing machine will be defined. It will be obtained
from the standard nondeterministic Turing machine by fuzzyfication of its ‘instruction
set’. However, the machine design will still be general in the sense that the truth
degrees associated with each accepting computation will be computed by a special truth
function called t—norm. Namely, this t—norm determines the kind of fuzzy propositional
calculus in which the respective computations can also be described (see Section 3). By
choosing a particular t—norm we will obtain specific variants of fuzzy Turing machines,
among them also the one defined originally by Santos [6].

Next we will proceed to the definition of a fuzzy Turing machine. Prior to giving
the respective definition we will introduce the definition of a t-—norm (cf. [1]).

Definition 1 A continuous t-norm is a binary operation * on [0,1](i.e. t: [0, —
[0,1]) satisfying the following conditions:

1. t 1s continuous;

2. x is commutative and associative, i.e for all x,y,z € [0,1] we have x xy =y x x
and (zxy) *x 2 = x * (y * 2);

3. x is non—decreasing in both arquments, i.e. x1 < x9 tmplies x1 xy < T9 *y and
Y1 < yo implies T x y1 < T % yo;

4. for all x € 0,1] we have 1 xx = x and 0 x x = 0.

For the sake of simplicity, we will introduce only the definition of a single-tape
fuzzy Turing machine since we will be mainly interested in its principal computational
abilities and less in its effectiveness.

Definition 2 A nondeterministic single-tape fuzzy Turing machine with a fuzzy in-
struction set (FIS-NTM) is a ten—tuple F = (S,T,1,A,b, qo, g5, M, 1, %) where:

1. S is the finite set of states;

2. T is the finite set of tape symbols;
3. I 1s the set of input symbols; I C T

4. A is the next-move relation which is a subset of S X T x S x T x {—1,0,1}. For
each possible move of F there is an element 6 € A with § = (sy1,t1, S, t2,d). That
18, if the current state is s; and the tape symbol scanned by the machine’s head is
t1, F will enter the new state so, the new tape symbol ty will rewrite the previous
symbol t, and the tape head will move in direction d. (In the previous relation
symbol —1 (1) denotes a move by one cell to the left (right) and 0 denotes no
move.)

b, in T'— I, is the blank;,
qo ¢S the initial state;

qr is the final, or accepting state;

RS =

M is a finite subset of the real interval [0,1], of cardinality m, where m = |A| is
the number of moves in A;

9. p: A — M is a function that to each move ¢ assigns the truth degree j(0) of its
membership in A

10. x 18 a continuous t—norm.

Note that the membership degree of § € A equals the truth degree of the proposition
“6 is an element of A”. For & = (si1,t1,589,12,d) € A we will define a predicate
A(sy,t1, 89,19, d) and we will say that the truth degree of A(sy,ty, $2, 12, h) equals « if
and only if p(d) = a.

The notion of computation is defined as usual with the help of instantaneous de-
scriptions (IDs). An instantaneous description @y of F working on input w at time
t > 0 is a unique description of machine’s tape, of its state and of the position of the
machine’s head after performing its ¢-th move on input w. If Q); and @y, are two IDs
we will write @, F* Qy11 and say that Q11 is reachable in one step from Q) with truth
degree « if and only if there is a possible move in A, with truth degree «, leading from
Q; to (Q;41. On input w the machine starts its computation in the respective initial ID
Qo- This is an ID describing the tape holding a string of n input symbols (the so—called
input string, or input word), one symbol per cell starting with the leftmost cell. All
cells to the right of the input string are blank. The head is scanning the leftmost
cell and the current state is gy. From the initial ID the computation proceeds to IDs
that are reachable in one step from Qq, etc. If Qo F*° @y F** Q... F* Qy, with
Qo, ..., € M we say that QQ is reachable from ().

Now we establish a relation between the truth degrees of individual moves and
those of the respective computations. In order to do so note that, intuitively, within
the propositional calculus belonging to the respective t—norm, for a particular move
d = (s1,t1, 89,12, h) € A its membership degree o = p(J) can be interpreted as the
truth degree of the proposition “at each time t, when the machine is in state sy, its

head is scanning the i-th cell with symbol ti, the machine will subsequently enter state
s9, rewrite the scanned symbol by ty and mowve its head in direction h”. Then, this truth
degree can be extended to any ID of F reachable from its initial ID as follows.

Let d(Q;) denote the truth degree of the proposition “after t steps, starting from
Qo the instantaneous description of F is QQ;”. The respective evaluation function d is

defined as
1, t=20

d(Q:) = {d(Qtl) xa, t>0 and Q,, F*Q, (+)

Thus, the truth degree is being ‘adjusted’ along any computational path with the
help of the respective t—norm which acts as the truth function of the (strong) conjunc-
tion & (cf. [1]).

A sequence (o, @1, ...,Q, of IDs is called an accepting sequence of IDs of F on
input w, if and only if @)y is an initial ID, ;1 F* @; for 1 < i < ¢, and @, is an
accepting ID (i.e. such ID that contains the final state ¢7). In such a case we say that
along the computational path corresponding to the sequence Qo, Q1, ..., @, input w is
accepted with truth degree d(Q),).

A FIS-NTM works as a (fuzzy) language acceptor as follows. The tape symbols of
the machine include the alphabet of the language, called the input symbols, a special
symbol blank, denoted b, and perhaps other symbols.

Definition 3 Let F = (S,T,1,A,b,qo,qr, M, i1, %) be a FIS-NTM. The input string w
is accepted with truth degree e(w) by F if and only if

e(w) = mgx{d(Q)|Q is an accepting ID reachable from the initial ID Qo}

Next we will show that the previous definition is sound — i.e. that the maximum
e(w) of truth degrees of accepting IDs over all accepting paths always exists.

Towards that end consider the commutative ordered semigroup G = ([0, 1], %, <),
where M = {a;|a; < 11,1 < i< k—1} C[0,1] is the set of instruction membership
degrees from Definition 2. Let G(M) be a subsemigroup of G generated by M. Syn-
tactically, the elements of G(M) are formed by ‘products’ of elements of M. Referring
to the commutative and associative properties of the respective t-norm the elements of
G(M) take the form o x ;"7 x ... % o', with 1 > ap > ag_; > ... > oy > 0 and
s; > 0 for 1 < i < k. In the previous expression we wrote o* to denote the product
axax...xa having k factors. Each element a € G(M) of the previous form is uniquely
determined by an integer k-tuple s = (s, Sg_1,-..,51). Such a k-tuple will be called
a tuple representation (w.r.t. the subalgebra G(M)) of the respective element. The
length of a tuple s is len(s) = sp + Sg_1 + ...51. Let mpag, a1, ..., 0] : ZF — [0,1]
be the function that to each k-tuple representation of an element of G(M) assigns the
respective real number in [0,1]. Instead of 7[ag, ak_1,..., 1] we will also write 7;,[M]
or simply 7. Thus, under the previous notation, for element oz € G(M) represented by
k-tuple s we have 7;(s) = .

Over the tuple representation of elements of G(M) we will consider the partial
order ‘C’ defined as follows: we will say that tuple s = (sy, s9,. .., s;) dominates tuple
r = (ry,re,...,r) (written as r C s), or that r is dominated by s if and only if r; < s;

fori=1,2,...,k. If an element dominates another one we say that the two elements
are comparable. Considering the properties of the respective ¢t-norm we can prove the
following proposition.

Proposition 1 Ifr C s then 7.(r) > 74(s).

A set D of k-tuples from G(M) is called independent if and only if no two its
elements are comparable.

Proposition 2 For any k > 1, with |M| = k, any independent subset of k-tuples from
G(M) is finite.

Sketch of the proof: Assume that there would be an infinite independent subset Dy of
k-tuples of G(M). We will show that then there must exist infinite independent sets of
i-tuples for any 1 < i < k.

Choose any s = (s, S2, . . ., S) from Dy, and consider a decomposition of Dy, into all
subsets consisting of elements whose i-th component is fixed to some value between 0
and s;, forv =1,2,..., k. Each k-tuple r € D;, must fall into at least one of such subsets
since, thanks to independence of Dy, at least one of the components of r must be less
than the corresponding component of s. There is a finite number of such subsets (which
need not be mutually disjoint) and their union equals Dj. Because there is at most a
finite number of such subsets, some of them must be infinite, since otherwise D; would
be finite. Choose any such infinite subset corresponding to some fixed component value
of its i-th component and remove this component from all the corresponding k-tuples.
As a result we get an infinite independent set Dy 1 of (k — 1)-tuples.

Now repeat the previous construction with set Dy_; until we get the decomposition
of the given infinite independent set into a finite number of independent subsets of a
finite size. But this would contradict the assumption on the infiniteness of the original
set. Note that at the latest such a situation will occur when we reach £ = 1 since there
is no infinite independent set of elements which consist of a single component.

Thus, the assumption that D was an infinite independent set was wrong.

O

Next we show that that G(M) is well-ordered w.r.t. the standard ordering ‘<’, i.e.
each subset of G(M) has a maximal element.

Lemma 1 Let F be a subset of G(M). Then F contains a mazimal element, i.e. there
is an element a € F such that x < a for all x € F.

Sketch of the proof: Assume that there is no maximal element in F. In this case to each
element x; € F' there would be element x5 € F), with x; < x5, etc. Thus, there would
be an infinite increasing chain x; < x5 < ... of elements of F. We show that in this
chain there must exist ¢ and j such that 7 < j and x; > x;.

To see this consider the infinite sequence of k-tuples corresponding to the elements
of the previous chain. Since there is but a finite number of tuples of each length,
in this sequence there must be an infinite sub-sequence consisting of tuples of non-
decreasing length. In this sub-sequence tuples are either incomparable or there exist

pairs of comparable tuples. In the former case the respective tuples will form an
infinite independent set which, thanks to Proposition 2 cannot exist. In the latter
case let there be two indices 7, j with ¢ < 7 and two comparable tuples r and s in the
subsequence such that 7(r) = x; and 7(s) = x;. In this case since len(r) < len(s)
the only possibility concerning the relation between r and s is r C s and consequently
Te(r) > 7 (s) (by Proposition 1). But this means that x; > x; what is a contradiction
with the assumption of the respective sub-chain ordering.
It follows that there are no infinite increasing chains in F' and therefore it must
contain the maximal element.
O

Corollary 1 Let F be FIS-NTM, let w be any input, let A # O be the set of all
accepting IDs of F on input w, let d be the evaluation function. Then the set {d(A)|A €
A} contains an element with a mazimal truth degree.

Sketch of the proof: Consider the computational tree T of F on input w. To each
path in T of form Qo F% @y F%1 Q... F% Q,1y, with r > 0 and «a;; € M, an
element oy, * oy, * ...q; € G(M) is assigned. Hence, to each accepting ID A € A
there is a corresponding element a4 € G(M) whose value equals to the truth degree
of A. Let F = {aa|A € A} be the set of elements corresponding to all accepting IDs
in 7. Clearly, F C G(M) and hence, according to Lemma 1 there exists its maximal
element «. Obviously, the corresponding ID A from A will get the maximal truth degree
d(A) € (0,1].

O

Now we will proceed to the definition of fuzzy languages.

Definition 4 The fuzzy language L accepted by F is the fuzzy set of ordered pairs
Ly = {(w,e(w))| w is accepted by F with truth degree e(w) > 0}

The time complezity T (n) of the respective computation is the minimal number of
moves needed to accept any input of length n.

Note that in case when p(d6) =1 for all 6 € A the FIS-NTM equals the standard
NTM as defined e.g. in [2]. Such a machine is also called a crisp Turing machine.

3 Fuzzy Turing Machines and Fuzzy Propositional
Calculus

Next we will give the ‘fuzzy logic’ rationale for the above definition of acceptance by a
fuzzy Turing machine. Namely, one could ask why we have chosen in the definition of
the truth degree of acceptance the operator x that corresponds to the truth function
of fuzzy logic connective & of strong conjunction and not that of implication =, say.
In Section 5 we will show quite a surprising result concerning the power of the fuzzy
Turing machines. Therefore it is of importance to be quite sure that the underlying
notion of a fuzzy TM is ‘well-defined’, to avoid the objection that the non-standard

6

power of fuzzy Turing machines stems from their non-natural definition. This is why
we will next give a formal substantiation that the notion of fuzzy TMs corresponds
well to our expectations when the truth degrees of the computations of fuzzy TMs are
compared to the evaluations of formulae in fuzzy propositional calculus PC(x) [1]. We
will say that a formula of PC(x) with free variables is satisfiable with truth degree « if
and only if there is such an assignment of truth values to the respective free variables
which makes the formula hold with truth degree .

We will show that for each fuzzy Turing machine F and its input w there is a
propositional formula wy in the underlying fuzzy logic that is satisfied with a certain
truth degree if and only if F accepts w with the same truth degree. The details are
given in the following theorem.

Theorem 1 Let F be a FIS-NTM of polynomial time complezity, let w be an input to
F. Then there is a polynomial-time bounded algorithm that from F and w constructs
a propositional formula wy in the calculus PC(x) such that wy is satisfiable with truth
degree o if and only if F accepts w with truth degree a.

Sketch of the proof: The respective proof mirrors the proofs showing the NP-completeness
of satisfiability problem for standard, ‘crisp’ computations (cf. [2]). Therefore we will
only sketch the main ideas pointing to places where the proof declines from the stan-
dard one in order to reflect the properties of the underlying fuzzy logic or fuzzy Turing
machine.

Suppose that F has states qi, ¢, - . ., ¢s and tape symbols X, Xy, ..., X,,. Let p(n)
be a polynomial denoting the time complexity of F. Thus if F accepts its input w then
it does so within p(n) moves, with n = |w|. Therefore in such a case there is at least
one sequence of IDs Qy, Q1, . .., @, such that Q) is initial ID, Q;—; F* @; for 1 < < g,
(), is accepting ID, ¢ < p(n), and no ID has more than p(n) tape cells.

We will construct the fuzzy propositional formula wy that ‘simulates’ a sequence
of IDs entered by F. Each assignment of true or false (represented by 1 or 0) to
the variables of wy represents at most one sequence of IDs of F, possibly not a legal
sequence. Formula wy will take on a truth value o > 0 if and only if the assignment to
the variables represents a sequence of IDs leading to acceptance of w by F with truth
degree a.

The following variables are used as propositional variables in w, (we assume that
they always will take on only crisp values).

e C(i,j,t) is true if and only if the ith cell on F’s tape contains symbol X; at
time ¢.

e S(k,t) is true if and only if F is in state g at time ¢.

e H(i,t) is true if and only if at time ¢ the tape head is scanning tape cell i.

In all the above expressions we assume 1 < i < p(n),1 < j < p,1 < k < s and
0<t<p(n).

There are thus O(p*(n)) propositional variables. Next we will construct wy as a
conjunction of seven formulae Ay, Ao, ..., A7 to assert that Qo, @1, ..., Q, is an accept-
ing sequence of IDs, where each); is of length p(n) = ¢. Asserting that Qo, Q1, ..., Q,
is an accepting sequence of IDs, then it is tantamount to asserting that the respective
formulae are satisfiable if and only if the following conditions are met:

Aj: the tape head is scanning exactly one cell in each ID;
As: each ID has exactly one tape symbol in each tape cell;
As: each ID has exactly one state;

Ay at most one tape cell, the one scanned by the tape head, is modified from one ID
to the next;

As: the change of state, tape contents, and head location between successive IDs is
compatible with the next-move relation of F;

Ag: the first ID is an initial ID, and

A7: the last ID is a final ID.

All the above formulae hold with truth degree 1 (are crisp), except of formula As
that will ‘mirror’ the next-move instructions of F that may have truth degrees less than
1. Therefore we will take a closer look at that formula. It asserts that each successive
ID of F is obtained from the previous ID by one transition allowed by a next-move
0 € A of F.

Let machine F at time ¢ be in state k reading the symbol j in the ith cell and
let 6 = (k,j, k', 7', d) be a possible move, with truth degree «. Construct a subformula
A?kiljlk’t that asserts the following. If at time ¢ the sth cell contains symbol j and the
tape head is scanning the ith cell and F is in state k, then at time ¢ + 1 the ith cell
will be rewritten by j’, the state entered will be &' and the head move will relocate the
head to position i', with d = i’ — i. Formally,

_ypran)-t ijki'j'k't
As = H =0 \/ijlci’j’k’tA5
where the operator IT* denotes the “iterated strong conjunction” of subformulae
following the operator and

Aéjki’j’k’t _
= C(i, J, t)&H (i, t)&S{k, t)&C (i, j', t + 1)&S(K', t + 1)&H (i, t + 1)A(k, j, k', j',i" — 7)

If satisfied at some time ¢ and some position ¢, i.e. when the next move is given
by the predicate 6(k,j, k', j',d), with truth degree «, then by the rules of formulae
evaluation in PC(x) this truth degree is to be assigned to the above subformula, and
only to this subformula. Namely, the remaining subformulae in A5 corresponding for
the same time ¢ to different choices of the remaining variables are vacuously false
due to their very definition. Thus in Aj for each ¢ and for a possible move exactly one

subformula will hold with truth degree . This degree will be assigned as a truth degree
to the respective subformula. Therefore, in accordance with the rules of evaluation, the
truth degrees of formulae in the underlying fuzzy propositional calculus (cf. [1]) the
whole formula A5 will hold with the truth degree that corresponds to the ‘star’ product
(i.e. the one corresponding to the operator x) of the evaluations of all subformulae.
However, thanks to the properties of t—norms (cf. 1) only truth degrees that are less
than 1 affect the respective evaluation. Therefore, if satisfied by a certain choice of
moves, the formula A5 will get the same truth degree as the corresponding sequence of
moves of F.

The details of construction of all other formulae can be found e.g. in [2]. Due to
their very semantics and thanks to the fact that all variables involved are crisp, all
these formulae are crisp.

The final formula wy we are after is the conjunction A;&Ax&...&A7. A more
detailed analysis will show that this formula can be represented in space O(p?(n) logn).
From the construction of formula wy it is clear that given the accepting sequence of IDs
Qo, @1, ..., Q, leading to acceptance of w with truth degree o one can obviously find
an assignment of 0s and 1s to the propositional variables C(i, j,t), S{(k,t,) and H (i, t)
that will satisfy wy with truth degree a and this will be the maximal possible truth
degree among all possible assignments. Conversely, given an assignment of values to
the variables of wy which maximizes the truth degree a of wy we can easily find an
accepting sequence of IDs that led to accepting w with truth degree o. Thus wq holds
with truth degree « if and only if the truth degree of (the proposition) “F accepts w”
is a.

O

The above result opens the way to the investigation of complete problems for poly-
nomially time bounded fuzzy computations. Namely, we have just shown that for this
class of fuzzy computations the problem of finding an assignment to free variables of a
fuzzy propositional formula which maximizes its truth degree is a complete problem.
However, we will not follow this line in this paper.

4 Turing Machines with Fuzzy Final States

Let G = ([0, 1], %, <) be a commutative ordered semigroup, let M = {o;|a; < ;41,1 <
i <k—1} C[0,1] be the set of instruction membership degrees from definition 2, and
finally let G(M) be a subsemigroup of G generated by M.

Next we will focus our attention on a specific class of fuzzy languages which is
defined by fuzzy Turing machines with a specific t-norm. Namely, we will be interested
in t-norms for which the respective subsemigroup G (M) has a finite number of elements.
This is e.g. the case of a popular Gddel t-norm defined as z * y = min{x,y}.?This
restriction has a serious impact on the class of languages recognized by the respective
fuzzy Turing machines. In fact, all words from a fuzzy language accepted by such a
fuzzy Turing machine are accepted with only finitely many truth degrees:

2 Also Lukasiewicz t-norm shares the latter mentioned property, but we will be interested only in
the case of Godel’s t-norm.

Theorem 2 Let F = (S,T,1,A,b,q0,q7, M, i, %) be a FIS-NTM with the Gédel t-
norm, let M = {1, aq,...,ar} C [0,1] be the respective set of truth degrees of all
mowves of F. Then the fuzzy language accepted by F is

Ly = U {(w, a;)|w is accepted by F with truth degree o}

Sketch of the proof: Note that in accordance with its definition in the Godel t-norm
the truth degree d(Q;) of reaching the ID @, from @) is a non—increasing function (in
t) which takes only the values from set M irrespectively of the length of the respective
computational path. Thus, if a word is accepted then it is accepted with the truth
degree equal to an element of M.
|
This fact opens the road for proving the equivalence of a FIS-NTM with the Godel
t—norm (note that this is the fuzzy Turing machine defined in [6]) with another variant
of a fuzzy Turing machine — viz. the one with fuzzy final states:

Definition 5 A nondeterministic single-tape fuzzy Turing machine with fuzzy final
states (FFS-NTM) is an eight-tuple G = (S,T,1,A,b, qo, F,v) where:

1. S, T, I, A, b and qy are defined as in definition 2

2. F C S is the finite set of final, or accepting states;

3. v:F —10,1] is a function that to each q; € F assigns a truth degree v(qs) of its
membership in F.

Remark: Fuzzy final state Turing machines are defined similarly as the corresponding
fuzzy final state finite automata in [4].

A FFS-NTM works as a (fuzzy) language acceptor as follows. The input string w
is accepted with truth degree « if and only if

1. there is an accepting sequence of moves such that F, started in the initial ID,
after performing the above mentioned sequence of moves, eventually enters an
accepting ID in a final state g5 € F;

2. o = max{v(qs)}, where maximum is taken over all accepting states in which the
computation of G on input w might end.

The language accepted by G is a set of words accepted by G with a positive truth
degree. Because set F' of final states is finite, all words accepted by a FFS-NTM are
accepted with only finitely many truth degrees. In view of Theorem 2 this already
indicates the following statement.

Theorem 3 Any FIS-NTM F with the Godel t—norm is computationally equivalent to
some FFS-NTM G, and vice versa.

10

Sketch of the proof: Let F = (S1,T,1,A,b,q0,q7, M, p, %) be a FIS-NTM with the
Godel t-norm, let M = {aq, an, ..., ax} C [0, 1] be the respective set of all truth degrees
of elements of A;. Define the FES-NTM G = (S5, T, 1, Ay, b, qo, F,v) as follows. For
each ¢ € S; construct the set of k states {q1,q2,...,q} € So. The idea behind is that
each ¢; € Sy will represent the state ¢ € S; in which the value of «; is stored. This
idea is implemented with the help of the next-move relation Ay which is designed so
as to store the values of function d(@Q;) defined in the previous section by the relation
(%) in the respective states.

Now the simulation of F by G is straightforward. At each time the tape contents
of both machines is identical. The difference is that at each time machine G keeps and
updates in its current state the value of the respective truth degree d(Q,) for the ID
QQ; reached by F at that time. This is possible since there is but a finite number of
different values of d(@Q;). Function v is designed so as to return the truth value stored
in the respective final state.

For the reverse simulation of G by F, make the following modification in the def-
inition of F. Define a new final state ¢ ¢ Sy and add it to S;. Turn all moves of G
into the moves of F by defining their truth degree equal to 1. For each f € F such
that v(f) = a add to A; a new move of form (f,s,qyr,s,0) with truth degree «, for
any s € T. It is clear that the resulting machine F will be a FIS-NTM accepting the
same fuzzy language as the FFS-NTM G does.

O

5 Separation of fuzzy computations from the crisp
ones

At first superficial sight one could infer from their definition that the FFS-NTMs, being
restricted in their use of fuzziness, are ‘almost equal’ to standard nondeterministic
‘crisp’ Turing machines. The mere difference between the two classes is that in the
former one one has to keep track in what final states the computation might end, and
to select the one with the highest membership degree in set F. Surprisingly, in the
general case this condition is not a computable one. Consequently, we will show that
in general the FFS-NTM cannot be simulated by crisp machines.

Consider a slightly modified crisp version of a FIS-NTM as defined in 2. This
modified machine differs from the standard model of a NTM by the fact that it is
allowed to have several final states, collected into a finite set F.

Definition 6 Let C be a crisp nondeterministic Turing machine, let F' be the finite set
of its final states. Then the problem of deciding whether for any C, any f € F' and any
input w machine C will accept w in state f is called the REACHABILITY PROBLEM.

Then it is not hard to see that for such machines the following theorem holds:

Theorem 4 The REACHABILITY PROBLEM s undecidable.

11

Sketch of the proof: Let (C, f,w) be an input to the REACHABILITY PROBLEM.
From C we can construct machine ¢’ which is a standard NTM (having just a single
final state) as follows. To the next move relation of C we add further moves leading
from all states f € F' (F is the set of final states of F) to a single new final state ¢y,
leaving the tape content intact and performing no moves. It is clear that C accepts w
in state f € F if and only if C" accepts w. Thus, we have reduced the REACHABILITY
PROBLEM to the HALTING PROBLEM which is known to be undecidable (cf. [2]).
O
Let C be a crisp NTM with set F of final states, let (C) be its encoding (cf. [2] for
the details of the encoding). Define now the language corresponding to the REACH-
ABILITY PROBLEM as follows:

Lycac = {({C),w, f)| C accepts w in statef € F'}

The following is almost obvious:
Corollary 2 L,.qcn 1S a 1.€. language that is not recursive.

Next we will show that there is no ‘FFS-NTM simulator’, that is, there is no crisp
(deterministic or non-deterministic) algorithm that would simulate an arbitrary FFS-
NTM.

Theorem 5 There is no crisp Turing machine that could simulate any given FFS-
NTM.

Sketch of the proof: Assume that there is crisp Turing machine R that, given the
description (G) of a FES-NTM G = (S,T,1,A,b, q, F,v), would simulate its action on
any input w. That is, R would accept input w in a state corresponding in one-to-one
manner to some state f € F if and only if w is accepted by G in state f (if w is
not accepted by G R need not halt). We will show that then we could construct a
machine @ recognizing L,.q.,. Thus, @ will stop for each w and will accept (reject) w
ifwe Lreach (’UJ g Lreach)-

There is one ‘technical’ problem related to the description of G. Namely, the function
values of function v might be real numbers that, in general, have no finite description
and therefore the description of G could be of infinite length. However, from the defini-
tion of acceptance of a FFS-NTM it is obvious that only the ordering of the respective
numbers is of importance. Thus, w.l.o.g. we can assume that for the purposes of sim-
ulation encoding (G) is of a special form. Instead of the description of the range of
v the set of final states is described in this order: fi, fs,..., fx for some k£ > 0 and
0<v(fi)<v(fe) <...<v(fi)

Let v be a word. If it has a syntax that does not correspond to words from L,.qch,
v is rejected by Q. Otherwise, if v is of form v = ((C), w, f) machine @ will work as
follows.

@ first modifies (the ‘program’ of) machine G in the following way. It adds a new
final state fy to the set F, with 0 < v(fy) < v(f;) and adds a new transition into f,
right from the initial state ¢q. Let G’ be the machine obtained in this way. Clearly, the

12

new machine accepts each word, i.e. it halts on each input. The following is obvious:
a word w is accepted by G in state f; if and only if w is accepted by G’ in state f;, for
some ¢ > 0. The only difference makes the state f, : word w is not accepted by G if
and only if w is accepted by G’ in state fj.

@ now invokes machine R to simulate G’ on input w and ‘sees’ in what state G’
accepts w. If w is accepted in state f then () accepts w. Otherwise, if w is accepted
in a state different from f) will reject w. Note that the introduction of state f, was
necessary in order to assume that the simulation of G’ by R will always halt.

It is clear that () recognizes L,¢q.p, and hence L, is a recursive language. Nonethe-
less, this is in contradiction with Corollary 2. Therefore the assumption of existence
of a universal simulating machine R was wrong.

O

Corollary 3 There exist non r.e. languages accepted by FFS-NTMs.

Sketch of the proof: If the languages accepted by FFS-NTMs were r.e. languages, then
one could ‘simulate’ any FFS-NTM on a given input in the following (not very efficient,
indeed) way. Let G be a FFS-NTM which is to be simulated on input w, let L be the
respective language. Then it is enough to recursively enumerate L until w is generated
what will happen if and only if w € L. Otherwise the ‘simulating machine’ will run
forever and not accept its input.
|
Note that the assumption that machine G was a nondeterministic Turing machine
was a crucial one in the previous theorem. Namely, the deterministic Turing machine
with fuzzy final states can be simulated by crisp machines:

Theorem 6 A FFS-DTM can be simulated by a crisp Turing machine.

Sketch of the proof: Let D be a FFS-DTM given by its description under the same
assumptions on ordering of its final states as in the previous theorem. Then the sim-
ulating deterministic machine Q has no problems in simulating D since if a word is
accepted by D there is exactly one computational path leading to acceptance in some

final state. If on an input D runs forever then) will do the same.
O

Corollary 4 Languages accepted by FFS-DTMs are r.e. languages.

Corollary 5 Nondeterministic fuzzy final state machines are more powerful than the
Crisp ones.

Thus fuzzy nondeterminism is more powerful than fuzzy determinism, and also fuzzy
nondeterminism is more powerful than the ‘pure’, crisp nondeterminism. This comes as
a surprise. Note, however, that Matescu et al. [4] came to the same conclusion for the
case of finite automata with fuzzy instructions set: their nondeterministic versions are
more powerful than the deterministic ones. Surprisingly, this is not the case with fuzzy

13

final state finite automata where both variants — deterministic and nondeterministic
ones — recognize the same class of languages.

From the computational point of view it is not clear whether ‘our’ result should be
expected from a machine model to correspond to fuzzy logic. Namely, by this result
the fuzzy nondeterministic Turing machines are ‘too powerful’ — they recognize lan-
guages beyond those recognized by standard Turing machines. Intuitively, this is so
since the nondeterministic fuzzy Turing machines ‘implement’ the operation of finding
a maximum of a set of real numbers, whose membership in that set is undecidable.
However, with regard to Theorem 1 any objections against the machine model under-
lying this result are at the same time objections against the fuzzy propositional calculus
underlying the model.

Finally, note that time-bounded fuzzy nondeterministic computations can be simu-
lated by deterministic machines, thanks to the fact that there is a known upper bound
(which is equal to the time bound) limiting the depth of the underlying nondetermin-
istic computational tree that is to be traversed in looking for the accepting state.

6 Recursively Enumerable Fuzzy Languages

Next we will take a closer look at fuzzy languages accepted by fuzzy Turing machines
as defined in Definition 4. We will be especially interested in answering the following
question: what conditions should a language L C ¥* and the respective truth function
e : ¥* — [0,1] satisfy in order to generate a fuzzy language Lfy.., = {(w,e(w))|w €
L,e(w) > 0} that is an r.e. language (in the standard sense). Such a fuzzy language
will be called a recursively enumerable fuzzy language.

Thanks to Corollary 3 we know that in general a language accepted by a FIS-NTM
need not be a r.e. fuzzy language. Thus we will concentrate to languages accepted by
FIS-DTMs.

To answer the above posed question we will investigate the nature of e(w). For that
purpose we will similarly as in Section 2 consider the commutative ordered semigroup
G = ([0, 1], %, <) and its ordered subsemigroup G(M). It is clear that the truth degree
e(w) of any word w accepted by a fuzzy Turing machine is an element of the subsemi-
group G(M). This fact will enable the characterization of fuzzy languages accepted by
some FIS-DTM in terms of standard computability notions.

There is a technical problems related to computation of elements of G(M) which
in general are reals and therefore cannot be manipulated and represented straightfor-
wardly by a Turing machine. However, in Section 2 we have already introduced the
tuple representation of elements of G(M). Thus, within G(M), instead of comput-
ing directly with real numbers a Turing machine can compute with the help of the
respective tuple representation.

Then the following theorem holds (function 7 used in the statement of the theorem
has been defined in Section 2, in the prelude to Proposition 1).

Theorem 7 Lete: T* — [0,1] be a truth function. Fuzzy language
Lpuzzy = {(w, e(w))|w € T*, e(w) > 0}

14

15 a r.e. fuzzy language if and only if
1. the language L = {w|3zx € [0,1] : (w,2) € Lyyszy} is a r.e. language and

2. there exists a set M of k real constants oy, aw, . .. € (0, 1] and a Turing machine
which computes a function f : T* — ZF that for each w € L assigns a tuple
representation f(w) of some element from G(M) such that e(w) = 7[M](f(w)).

Sketch of the proof: Let Lg,,,, be accepted by some FIS-DTM. We will construct
two crisp Turing machines N; and N3, respectively, such that the first one will accept
language L and the second one will compute (‘define’) function f as defined above.
The inputs to N are arbitrary strings over T* whereas the inputs to N3 are words
from L.

Let F be a FIS-DTM machine that accepts the words of Ly,,.,. In particular, this
machine defines the values of the set M. Machine N is simply the machine F with
truth degrees of all its instructions set to 1. Clearly, N is a crisp deterministic machine
that accepts L.

Machine N5 will be a deterministic transducer constructed as follows.

On input w € L machine N, will follow the respective computational path of F.
Moreover, in addition to performing the same instructions it also will ‘symbolically’
compute the truth degrees of each ID reached by F (cf. the respective ‘rule’ (x) for
evaluation the truth degrees of IDs). Of course, this ‘symbolic’ representation of truth
degrees of IDs is nothing else than a tuple representation of the respective element from
G(M). When reaching an accepting state of Ny we will define the value of f(w) to be
equal to the truth degree (in tuple notation) of the respective accepting ID in F. Since
F was a deterministic machine the final state at hand was the only one that could have
been reached by N3 on input w. Therefore it holds that 7,[M](f(w)) = e(w).

For the proof of the opposite implication assume that A is a Turing machine that
accepts L. Let Ny be a transducer which to each w € L assigns a tuple representation
f(w) € ZF of some element in G(M). Then we will construct the FIS-DTM F that
accepts the fuzzy language

Ljuzzy = {(w, e(w))[w € L and e(w) = 7.[M](f(w))}

On input w machine F works as follows. First, it simulates A until it eventually
reaches its accepting state. All the respective instructions are crisp. Then it switches to
simulation of N3 on input w and computes a tuple representation f(w), still making use
of crisp instructions. It will end in some ID Q with truth degree 1. This ID corresponds
to the final state of N5. Then F switches to ‘fuzzy computation mode’ and according
to the tuple representation f(w) it performs a series of transitions that end in an
accepting ID @ with truth degree 7,[M](f(w)). The respective details are as follows.
Let (¢1,0s,...,¢) be the respective tuple representation of f(w). Call a transition a
dummy transition if and only if it merely changes the state without changing anything
else in a given ID. Then everything that F has to do, being in an ID Q, is to perform
a series of transitions consisting of /; dummy transitions with truth degree «;, for
i=1,2,...,k. It is clear that the computation will end in a unique ID @ (of F) with
truth degree e(w) = 7,[M](f(w)). Therefore F accepts L y..y.

15

7 Conclusion

We have proposed a fuzzy variant of a nondeterministic Turing machine to serve as a
formal model of fuzzy computations. This model is intended to be used in recursion
and complexity-theoretic investigations aiming at the power, limits and efficiency of
fuzzy computations, rather than designing efficient fuzzy algorithms. Our model differs
from similar earlier proposals by its greater generality (it ‘works’ with any t-norm).
Thanks to this the natural relationship between the fuzzy computations and fuzzy
propositional calculus has been proved. This fact supports the evidence that our model
is ‘well defined’, similarly as its previously defined special cases. We have also shown
that a fully fledged fuzzy Turing machine, that is, its non-deterministic version, is
computationally more powerful than its deterministic version. This is something that
has no analogue in the standard realm of the recursion theory. Finally, we have shown
a necessary and sufficient condition, in classical terms of computability theory, when a
fuzzy language is accepted by some fuzzy Turing machine.

Our results indicate that fuzziness, seen as a computational resource does lead to
increase in computational power when compared with crisp computations. If fuzzy logic
underlies somehow the human thinking then one may speculate whether our results are
related to the ‘inexplicable’ ability of human mind to solve ‘unsolvable’ problems (cf.
[5]).

Nevertheless, returning to more prosaic matters, the building of the complexity the-
ory of fuzzy computing seems to be the nearest future agenda for the computer science
in the field of fuzzy computing. The present paper offers a basis for such investigations.

Acknowledgement.

The author is grateful to Petr Hajek for discussions related to the subject of the present
paper and to his comments on earlier versions of this paper.

16

Bibliography

Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, 1998

Hopcroft, J. E. — Ullman, J. D.: Introduction to Automata Theory, Languages,
and Computation. Addison—Wesley Publishing Company, Reading, Mass., 1979,
417 p.

Lee, E. T. — Zadeh, L.A.: Note on Fuzzy Languages. Information Science, Vol. 1,
No. 4, pp. 421-434, 1969

Matescu, A. — Salomaa, A. — Salomaa, K. — Yu, S.: Lexical Analysis with a
Simple Finite-Fuzzy—Automaton Model. J. Universal Comp. Sci., Vol 1, No. 5, pp.
292-311, 1995

Penrose, R.: The Emperors New Mind. Concerning Computers, Minds and The
Laws of Physics. Oxford University Press, new York, 1989

Santos, E.: Fuzzy Algorithms. Information and Control, Vol. 17, pp. 326-339, 1970

Zadeh, L. A.: Fuzzy Algorithms. Information and Control, Vol. 12, No. 2, pp.
94-102, 1968

17

