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A Parallel Solver for Large-Scale Markov Chains

Michele Benzi� Miroslav T�umay

Dedicated to the memory of R�udiger Weiss

Abstract

We consider the parallel computation of the stationary probability

distribution vector of ergodic Markov chains with large state spaces by

preconditioned Krylov subspace methods. The parallel preconditioner

is obtained as an explicit approximation, in factorized form, of a par-

ticular generalized inverse of the in�nitesimal generator of the Markov

process. Conditions that guarantee the existence of the preconditioner

are given, and the results of a parallel implementation are presented.

1 Introduction

Discrete Markov chains with large state spaces arise in many applications,
including for instance relability modeling, queueing network analysis, large
scale economic modeling and computer system performance evaluation. The
stationary probability distribution vector of an ergodic Markov process with
n � n transition probability matrix P is the unique 1 � n vector � which
satis�es

� = �P; �i > 0;
nX
i=1

�i = 1:
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Letting x = �T and A = I � P T , the computation of the stationary vector
reduces to �nding a nontrivial solution to the homogeneous linear system
Ax = 0. The ergodicity assumption means that P (and therefore A) is
irreducible. Perron{Frobenius theory [9] guarantees that A has rank n� 1,
and that the (one-dimensional) null space N (A) of A is spanned by a vector
x with positive entries. Upon normalization in the `1-norm, this is the
stationary distribution vector of the Markov process.

The coe�cient matrix A is a singularM -matrix, and it is usually referred
to as the in�nitesimal generator of the Markov process. The matrix A is
nonsymmetric, although it is sometimes structurally symmetric. See [26] for
a good introduction to Markov chains and their numerical solution.

Due to the very large number n of states typical of many real-world ap-
plications, there has been increasing interest in recent years in developing
parallel algorithms for Markov chain computations; see [2, 5, 10, 17, 19, 24].
Most of the attention so far has focused on (linear) stationary iterative meth-
ods, including block versions of Jacobi and Gauss{Seidel [10, 19, 24], and
on (nonlinear) iterative aggregation/disaggregation schemes speci�cally tai-
lored for stochastic matrices [10, 17]. In contrast, little work has been done
with parallel preconditioned Krylov subspace methods. Partial exceptions
are [5], where a symmetrizable stationary iteration (Cimmino's method) was
accelerated using conjugate gradients on a Cray T3D, and [19], where an
out-of-core, parallel implementation of Conjugate Gradient Squared (with
no preconditioning) was used to solve very large Markov models with up to
50 million states. The suitability of preconditioned Krylov subspace meth-
ods for solving Markov models has been demonstrated, e.g., in [25], although
no discussion of parallelization issues is given there.

In this paper we investigate the use of a parallel preconditioned itera-
tive method for large, sparse linear systems in the context of Markov chain
computations. The preconditioning strategy is a two-level method based on
sparse approximate inverses, �rst introduced in [3]. However, due to the
singularity of the in�nitesimal generator A, the applicability of approximate
inverse techniques in this context is not obvious. That this is indeed possible
is a consequence of the (singular) M -matrix property of A.

The paper is organized as follows. In section 2 we discuss the problem
of preconditioning singular equations in general, and we establish a link
between some standard preconditioners and generalized inverses. Sections 3{
5 are devoted to AINV preconditioning for Markov chain problems, including
a discussion of the parallel implementation and a theoretical analysis of the
existence of the preconditioner. Numerical tests are reported in section 6,
and some conclusions in Section 7.
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2 Preconditioning Markov chain problems

In the Markov chain context, preconditioning typically amounts to �nding
an easily invertible nonsingular matrix M (the preconditioner) which is a
good approximation to A; a Krylov subspace method is then used to solve
M�1Ax = 0 (for left preconditioning) or AM�1y = 0, x = M�1y (for
right preconditioning). Notice that even if A itself is singular, the precondi-
tioner must be nonsingular so as not to change the solution set, i.e., the null
space N (A) of A. Preconditioners can be generated by means of splittings
A = M � N , such as those used in stationary iterative methods including
Jacobi, Gauss{Seidel, SOR and block versions of these schemes; see [26].
Also in this class are the popular incomplete LU (ILU) factorization pre-
conditioners. ILU-type methods have been successfully applied to Markov
chain problems by Saad [25] in a sequential environment. The existence
of incomplete factorizations for nonsingularM -matrices was already proved
in [20]; an investigation of the existence of ILU factorizations for singular
M -matrices can be found in [11].

Incomplete factorization methods work quite well on a wide range of
problems, but they are not easily implemented on parallel computers. For
this and other reasons, much e�ort has been put in recent years into develop-
ing alternative preconditioning strategies that have natural parallelism while
being comparable to ILU methods in terms of robustness and convergence
rates. This work has resulted in several new techniques known as sparse ap-
proximate inverse preconditioners; see [7] for a recent survey and extensive
references. Sparse approximate inverse preconditioners are based on directly
approximating the inverse of the coe�cient matrix A with a sparse matrix
G � A�1. The application of the preconditioner only requires matrix-vector
products, which are easily parallelized. Until now, these techniques have
been applied almost exclusively to nonsingular systems of equations Ax = b.
The only exception seems to be [13], where the SPAI preconditioner [16] was
used in connection with Fast Wavelet Transform techniques on singular sys-
tems stemming from discretizations of the Neumann problem for Poisson's
equation.

The application of approximate inverse techniques in the singular case
raises several interesting theoretical and practical questions. Because the
inverse of A does not exist, it is not clear what matrix G is an approximation
of. It should presumably be some generalized inverse of A, but which one?
Note that this question can be asked of M�1 for any preconditionerM � A.
In [26], page 143, it is stated that M�1 should be an approximation of
the group generalized inverse A], and that an ILU factorization A � �L �U
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implicitly yields such an approximation: (�L �U)�1 � A]. As we will see,
this interpretation is not entirely correct and is somewhat misleading. The
group inverse (see [12]) is only one of many possible generalized inverses.
It is well known [21] that the group inverse plays an important role in the
modern theory of �nite Markov chains. However, it is seldom used as a
computational tool, in part because its computation requires knowledge of
the stationary distribution vector �.

As it turns out, di�erent preconditioners result (implicitly or explicitly)
in approximations M�1 to di�erent generalized inverses of A, which are
typically not the group inverse A] . Let us consider ILU preconditioning
�rst. If A is a n � n irreducible, singular M -matrix, then A has the LDU
factorization A = LDU where L and U are unit lower and upper triangular
matrices (respectively) and D is a diagonal matrix of rank n� 1:

D = diag(d1; d2; : : : ; dn�1; 0); di > 0 for 1 � i � n� 1

(see [26]). Notice that L and U are nonsingular M -matrices; in particular,
L�1 and U�1 have nonnegative entries. De�ne the matrix

A� = U�1D�L�1; where D� = diag(d�1
1
; d�1

2
; : : : ; d�1n�1; 0):

It can be easily veri�ed that A� satis�es the �rst two of Penrose's four
conditions [12]:

AA�A = A and A�AA� = A�:

The �rst identity states that A� is an inner inverse of A and the second
that A� is an outer inverse of A. A generalized inverse satisfying these two
conditions is called a (1; 2)-inverse of A or an inner-outer inverse. Another
term that is found in the literature is reexive inverse; see [12]. Because
A� does not necessarily satisfy the third and fourth Penrose conditions, it
is not the Moore{Penrose pseudoinverse Ay of A in general. Because Ay

is obviously a (1; 2)-inverse, this kind of generalized inverse is non-unique.
Indeed, there are in�nitely many such (1; 2)-inverses in general. Each pair
R, N of subspaces of IRn that are complements of the null space and range
of A (respectively) uniquely determines a (1; 2)-inverse GN;R of A with null
space N (GN;R) = N and range R(GN;R) = R; see [12]. In the case of A� it
is readily veri�ed that N = spanfeng and R = spanfe1; e2; : : : ; en�1g where
ei denotes the i-th unit basis vector in IRn. It is easy to see that R is com-
plementary to N (A) and N is complementary to R(A). The pseudoinverse
Ay corresponds to R = R(AT ), N = N (AT ).

The (1; 2)-inverse A� is also di�erent from the group inverse A], in gen-
eral. This can be seen from the fact that in general AA� 6= A�A, whereas
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the group inverse always satis�es AA] = A]A. Also notice that for a singu-
lar irreducible M -matrix A the (1; 2)-inverse A� = U�1D�L�1 is always a
nonnegative matrix, which is not true for the group inverse in general.

Let now A � �L �D �U be an incomplete LDU factorization of A, with �L � L

unit lower triangular, �U � U unit upper triangular and �D � D a nonsingular
diagonal matrix with positive entries on the main diagonal. Then clearly

(�L �D �U)�1 � A�:

Hence, an ILU factorization of A yields an implicit approximation to A�

rather than to A]. This can also be seen from the fact that (�L �D �U)�1, like
A�, is always nonnegative, which is not true of A].

It is straightfoward to check that A�A is the oblique projector onto R =
spanfe1; e2; : : : ; en�1g along N (A) and that AA� is the oblique projector
onto R(A) along N = spanfeng. Therefore, A�A has eigenvalues 0 with
multiplicity 1 and 1 with multiplicity n � 1, and likewise for AA�. Hence,
it makes good sense to construct preconditioners based on approximating
A� (either implicitly or explicitly), since in this case most eigenvalues of the
preconditioned matrix will be clustered around 1.

Next we consider the approximate inverse preconditioner AINV; see [4,
6]. This method is based on the observation that if Z and W are matrices
whose columns are A-biorthogonal, then W TAZ = D, a diagonal matrix.
When all the leading principal minors of A (except possibly the last one)
are nonzeros, Z and W can be obtained by applying a generalized Gram{
Schmidt process to the unit basis vectors e1; e2; : : : ; en. In this case Z and
W are unit upper triangular. It follows from the uniqueness of the LDU
factorization that Z = U�1 and W = L�T where A = LDU is the LDU
factorization of A. The diagonal matrixD is the same in both factorizations.
An approximate inverse in factorized form G = �Z �D�1 �W T can be obtained
by dropping small entries in the course of the A-biorthogonalization process.
Similar to ILU, this incomplete inverse factorization is guaranteed to exist
for nonsingular M -matrices [4]; see the next section for the singular M -
matrix case. In either case, G = �Z �D�1 �W T is a nonnegative matrix. Hence,
this preconditioner can be interpreted as a direct (explicit) approximation
to the (1; 2)-inverse A� of A: �Z �D�1 �W T � A�.

Lastly, we take a look at sparse approximate inverse techniques based
on Frobenius norm minimization; see, e.g., [16] and [14]. With this class of
methods, an approximate inverse G is computed by minimizing the func-
tional F (X) = jjI �AXjjF subject to some sparsity constraints. Here jj � jjF
denotes the Frobenius matrix norm. The sparsity constraints could be im-
posed a priori, or dynamically in the course of the algorithm. In either case,
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it is natural to ask what kind of generalized inverse is being approximated
by G when A is a singular matrix. It can be shown that the Moore{Penrose
pseudoinverse Ay is the matrix of smallest Frobenius norm that minimizes
jjI �AXjjF ; see for instance [23], page 428. Hence, in the singular case the
SPAI preconditioner can be seen as a sparse approximate Moore{Penrose
inverse of A. This is generally very di�erent from the approximate (1; 2)-
inverses obtained by either ILU or AINV.

In the next section we restrict our attention to the AINV preconditioner
and its application to Markov chain problems.

3 The AINV method for singular matrices

The AINV preconditioner [4, 6] is based on A-biorthogonalization. This is
a generalized Gram{Schmidt process applied to the unit basis vectors ei,
1 � i � n. In this generalization the standard inner product is replaced
by the bilinear form h(x; y) = xTAy. This process is well de�ned, in exact
arithmetic, if the leading principal minors of A are nonzero, otherwise some
form of pivoting (row and/or column interchanges) may be needed. If A
is a nonsingular M -matrix, all the leading principal minors are positive
and the process is well de�ned with no need for pivoting. This is perfectly
analogous to the LU factorization of A, and indeed in exact arithmetic the
A-biorthogonalization process computes the inverses of the triangular factors
of A. When A is a singular irreducible M -matrix, all the leading principal
minors of A except the n-th one (the determinant of A) are positive, and
the process can still be completed.

In order to obtain a sparse preconditioner, entries (�ll-ins) in the inverse
factors Z and W less than a given drop tolerance in magnitude are dropped
in the course of the computation, resulting in an incomplete process. The
stability of the incomplete process for M -matrices was analyzed in [4]. In
particular, if �di denotes the i-th pivot, i.e., the i-th diagonal entry of �D in the
incomplete process, then (Proposition 3.1 in [4]) �di � di for all i = 1; : : : ; n.
Because di > 0 for an M -matrix, no pivot breakdown can occur.

It is obvious that the same argument applies to the case where A is an
irreducible, singular M -matrix. In this case there can be no breakdown in
the �rst n� 1 steps of the incomplete A-biorthogonalization process, since
the �rst n � 1 leading principal minors are positive, and the pivots in the
incomplete process cannot be smaller than the exact ones. And even if the
n-th pivot �dn happened to be zero, it could simply be replaced by a positive
number in order to have a nonsingular preconditioner. The argument in [4]
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shows that �dn must be a nonnegative number, and it is extremely unlikely
that it will be exactly zero in the incomplete process.

Another way to guarantee the nonsingularity of the preconditioner is
to perturb the matrix A by adding a small positive quantity to the last
diagonal entry. This makes the matrix a nonsingular M -matrix, and the
incomplete A-biorthogonalization process can then be applied to this slightly
perturbed matrix to yield a well de�ned, nonsingular preconditioner. In
practice, however, this perturbation is not necessary, since dropping in the
factors typically has an equivalent e�ect (see Proposition 5.2 below).

The AINV preconditioner has been extensively tested on a variety of
symmetric and nonsymmetric problems in conjunction with standard Krylov
subspace methods like conjugate gradients (for symmetric positive de�nite
matrices) and GMRES, Bi-CGSTAB and TFQMR (for unsymmetric prob-
lems). The preconditioner has been found to be comparable to ILU methods
in terms of robustness and rates of convergence, with ILU methods being
somewhat faster on average on sequential computers. The main advantage
of AINV over the ILU-type methods is that its application within an iter-
ative process only requires matrix-vector multiplies, which are much easier
to vectorize and to parallelize than triangular solves.

Unfortunately, the computation of the preconditioner using the incom-
plete A-biorthogonalization process is inherently sequential. One possible
solution to this problem, adopted in [8], is to compute the preconditioner
sequentially on one processor and then to distribute the approximate inverse
factors among processors in a way that minimizes communication costs while
achieving good load balancing. This approach is justi�ed in applications,
like those considered in [8], in which the matrices are small enough to �t
on the local memory of one processor, and where the preconditioner can be
reused a number of times. In this case the time for computing the precondi-
tioner is negligible relative to the overall costs. In the Markov chain setting,
however, the preconditioner cannot be reused in general and it is imperative
that set-up costs be minimized. Furthermore, Markov chain problems can
be very large, and it is desirable to be able to compute the preconditioner
in parallel.

4 The parallel preconditioner

In the present section we describe how to achieve a fully parallel precondi-
tioner. The strategy used to parallelize the preconditioner construction is
based on the use of graph partitioning. This approach was �rst proposed
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in [3] in the context of solving nonsingular linear systems arising from the
discretization of partial di�erential equations.

The idea can be illustrated as follows. If p processors are available, graph
partitioning can be used to split the adjacency graph associated with the
sparse matrix A (or with A + AT if A is not structurally symmetric) in p

subgraphs of roughly equal size in such a way that the number of edge cuts
is approximately minimized. Nodes which are connected by cut edges are
removed from the subgraphs and put in the separator set. By numbering
the nodes in the separator set last, a symmetric permutation QTAQ of A is
obtained. The permuted matrix has the following structure:

QTAQ =

0
BBBBB@

A1 B1

A2 B2

. . .
...

Ap Bp

C1 C2 : : : Cp AS

1
CCCCCA
:

The diagonal blocks A1; : : : ; Ap correspond to the interior nodes in the graph
decomposition, and should have approximately the same order. The o�-
diagonal blocks Bi; Ci represent the connections between the subgraphs,
and the diagonal block AS the connections between nodes in the separator
set. The order of AS is equal to the cardinality of the separator set and
should be kept as small as possible. Note that because of the irreducibility
assumption, each block Ai is a nonsingularM -matrix, and each of the LDU
factorizations Ai = LiDiUi exists.

Let QTAQ = LDU be the LDU factorization of QTAQ. Then it is easy
to see that

L�1 =

0
BBBBBB@

L�1
1

L�1
2

. . .

L�1p
F1 F2 : : : Fp L�1S

1
CCCCCCA

where Fi := �L�1S CiA
�1
i (1 � i � p) and L�1S is the inverse of the unit lower

triangular factor of the Schur complement matrix

S = AS �
pX

i=1

CiA
�1
i Bi:

In the next section we show that S is a singular, irreducible M -matrix,
hence it has a well de�ned LDU factorization S = LSDSUS .
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Likewise,

U�1 =

0
BBBBBB@

U�1
1

E1

U�1
2

E2

. . .
...

U�1
p Ep

U�1
S

1
CCCCCCA

where Ei := �A�1i BiU
�1
S (1 � i � p) and U�1

S is the inverse of the unit up-
per triangular factor of S. It is important to observe that L�1 and U�1 pre-
serve a good deal of sparsity, since �ll-in can occur only within the nonzero
blocks. The matrix D is simply de�ned as

D = diag(D1; D2; : : : ;Dp; DS);

note that all diagonal entries of D are positive except for the last one, which
is zero. The (1; 2)-inverse D� of D is de�ned in the obvious way.

Hence, we can write the (generally dense) generalized inverse (QTAQ)�

of QTAQ as a product of sparse matrices L�1, U�1 and D�. In practice,
however, the inverse factors L�1 and U�1 contain too many nonzeros. Since
we are only interested in computing a preconditioner, we just need to com-
pute sparse approximations to L�1 and U�1.

This is accomplished as follows. With graph partitioning, the matrix
is distributed so that processor Pi holds Ai, Ci and Bi (1 � i � p).
One of the processors, marked as PS , should also hold AS . Each proces-
sor then computes sparse approximate inverse factors �Zi, �Di and �Wi such
that �Zi �D

�1
i

�W T
i � A�1i using the AINV algorithm. Once this is done, each

processor computes the product Si := Ci
�Zi �D

�1
i

�W T
i Bi � CiA

�1
i Bi. Un-

til this point the computation proceeds in parallel with no communication.
The next step is the accumulation of the approximate Schur complement
Ŝ := AS�

Pp
i=1 Si on processor PS . This accumulation is done in k = log2 p

steps with a fan-in across the processors. In the next section we show that
although the exact Schur complement S is singular, the approximate Schur
complement Ŝ is a nonsingular M -matrix under rather mild conditions.

As soon as Ŝ is computed, processor PS computes a factorized sparse
approximate inverse �ZS �D

�1
S

�W T
S � Ŝ�1 using the AINV algorithm. This is a

sequential bottleneck, and explains why the size of the separator set must be
kept small. Once the approximate inverse factors of Ŝ are computed, they
are broadcast to all remaining processors. (Actually, the preconditioner
application can be implemented in such a way that only the �WS factor
needs to be broadcast.) Notice that because only matrix-vector products
are required in the application of the preconditioner, there is no need to
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form � �Zi �D
�1
i

�W T
i Bi

�ZS � Ei or � �W T
S Ci

�Zi �D
�1
i

�W T
i � Fi explicitly. In this

way, a factorized sparse approximate (1; 2)-inverse of QTAQ is obtained.
This is a two-level preconditioner, in the sense that the computation of

the preconditioner involves two phases. In the �rst phase, sparse approxi-
mate inverses of the diagonal blocks Ai are computed. In the second phase,
a sparse approximate inverse of the approximate Schur complement Ŝ is
computed. Without this second step the preconditioner would reduce to a
block Jacobi method with inexact block solves (in the terminology of do-
main decomposition methods, this is additive Schwarz with inexact solves
and no overlap). It is well known that for a �xed problem size, the rate
of convergence of this preconditioner tends to deteriorate as the number of
blocks (subdomains) grows. Hence, assuming that each block is assigned to
a processor in a parallel computer, this method would not be scalable. How-
ever, the approximate Schur complement phase provides a global exchange
of information across the processors, acting as a \coarse grid" correction
in which the \coarse grid" nodes are interface nodes (i.e., they correspond
to vertices in the separator set). As we will see, this prevents the number
of iterations from growing as the number of processors grows. As long as
the cardinality of the separator set is small compared to the cardinality of
the subdomains (subgraphs), the algorithm is scalable in terms of parallel
e�ciency. Indeed, in this case the application of the preconditioner at each
step of a Krylov subspace method like GMRES or Bi-CGSTAB is easily
implemented in parallel with little communication needed.

5 The approximate Schur complement

In this section we investigate the existence of the approximate (1; 2)-inverse
of the in�nitesimal generator A. The key role is played by the (approximate)
Schur complement.

First we briey review the situation for the case where A is a nonsingular
M -matrix. Assume A is partitioned as�

A11 A12

A21 A22

�
: (1)

Then it is well-known that the Schur complement

S = A22 �A21A
�1
11
A12

is also a nonsingular M -matrix; see, e.g., [1]. Moreover, the same is true of
any approximate Schur complement

Ŝ = A22 �A21X11A12
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provided that O � X11 � A�1
11
, where the inequalities hold componentwise;

see [1], page 264.
In the singular case, the situation is slightly more complicated. In the fol-

lowing we will examine some basic properties of the exact Schur complement
of a singular, irreducible M -matrix A corresponding to an ergodic Markov
chain. Recall that A = I � P T where P is the irreducible row-stochastic
transition probability matrix.

Lemma 5.1 Let P be an irreducible row-stochastic matrix partitioned as

�
P11 P12
P21 P22

�
:

Assume that

A =

�
A11 A12

A21 A22

�
=

�
I � P T

11
�P T

21

�P T
12

I � P T
22

�
:

Then the Schur complement S of A11 in A is a singular, irreducible M-matrix

with a one-dimensional null space.

Proof: Consider the stochastic complement [22] � of P22 in P :

� = P22 + P21(I � P11)
�1P12:

Note that I � P11 is invertible since P is irreducible. From the theory
developed in [22], we know that � is row stochastic and irreducible since P
is. Consider now the Schur complement S of A11 in A:

S = A22 �A21A
�1
11
A12 = (I � P T

22
)� P T

12
(I � P T

11
)�1P T

21
= I � �T :

Clearly, S is an irreducible singularM -matrix. It follows (Perron{Frobenius
theorem) that S has a one-dimensional null space. 2

The previous lemma is especially useful in cases where the exact Schur
complement is used. In the context of preconditioning it is often important
to know properties of approximate Schur complements. As shown in the pre-
vious section, graph partitioning induces a reordering and block partitioning
of the matrix A in the form (1) where

A11 = diag(A1; A2; : : : ; Ap); A22 = AS

and
A12 = [BT

1
BT
2
: : : BT

p ]
T ; A21 = [C1 C2 : : : Cp]:
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We are interested in properties of the approximate Schur complement Ŝ
obtained by approximating the inverses of the diagonal blocksAi with AINV:

Ŝ = AS �
pX

i=1

Ci( �Zi �D
�1
i

�W T
i )Bi: (2)

In particular, we are interested in conditions that guarantee that Ŝ is a
nonsingular M -matrix, in which case the AINV algorithm can be safely
applied to Ŝ, resulting in a well de�ned preconditioner. We begin with a
lemma. Recall that a Z-matrix is a matrix with nonpositive o�-diagonal
entries [9].

Lemma 5.2 Let S be a singular, irreducible M -matrix. Let C � O; C 6= O

be such that Ŝ = S + C is a Z-matrix. Then Ŝ is a nonsingular M -matrix.

Proof: Since S is a singular M -matrix, we have S = �(B)I � B with
B � O, where �(B) denotes the spectral radius of B. Let D = diag(C):
Since S+C is a Z-matrix, we have that B � C�D. Therefore we can write
the modi�ed matrix Ŝ as Ŝ = D+�(B)I�(B+D�C) with B+D�C � O.

We distinguish the two following simple cases: Assume �rst that D = O.
Then Ŝ is a nonsingularM -matrix since it can be written as �(B)I�(B�C)
with �(B) > �(B � C). The last inequality follows from the irreducibility
of B and properties of nonnegative matrices; see [9], page 27, Cor. 1.5 (b).
Assume, on the other hand, that C = D. Hence, Ŝ = D + �(B)I � B.
Note that by assumption, at least one of the diagonal entries dii of D must
be positive. Let � denote the largest such positive diagonal entry. Since
B + �I is irreducible, �(B + �I �D) < �(B + �I) = �(B) + �, similar to the
previous case. It follows that Ŝ = (�(B)+�)I�(B+�I�D) is a nonsingular
M -matrix.

Finally, if both D 6= O and C 6= D, the result follows by combining the
two previous arguments. 2

In the context of our parallel preconditioner, this lemma says that if the
inexactness in the approximate inverses of the diagonal blocks Ai results in
an approximate Schur complement Ŝ that is still a Z-matrix and furthermore
if Ŝ � S is nonnegative and nonzero, then Ŝ is a nonsingular M -matrix.

The following proposition states su�cient conditions for the nonsingu-
larity of the approximate Schur complement. Bi� and B�j denote the i-th
row and the j-th column of matrix B, respectively.
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Proposition 5.1 Let

A =

�
A11 A12

A21 A22

�

be a singular irreducible M -matrix, with A11 2 IRm�m. Assume that ~A�1
11

is

an approximation to A�1
11

such that O � ~A�1
11
� A�1

11
, ~A�1

11
6= A�1

11
. Further-

more, assume that there exist indices i; j 2 f1; : : : ;mg such that the following
three conditions are satis�ed: (A�1

11
� ~A�1

11
)ij 6= 0; (A21)i� 6= 0 and (A12)�j 6=

0. Then the approximate Schur complement Ŝ = A22�A21
~A�1
11
A12 is a non-

singular M -matrix.

Proof: From Lemma 5.1 we know that the exact Schur complement S
of A11 in A is a singular, irreducible M -matrix. Note that the approximate
Schur complement Ŝ induced by an approximation ~A�1

11
of the block A�1

11

and the exact Schur complement S are related as follows:

Ŝ = A22 �A21
~A�1
11
A12 = S +A21(A

�1
11
� ~A�1

11
)A12 = S + C

with C � O since A21 � O;A12 � O; and A�1
11
� ~A�1

11
� O: Clearly, Ŝ is

a Z-matrix by its de�nition. From the assumption that ~A�1
11

6= A�1
11

and
that there exists at least one nonzero entry �ij of ~A�1

11
not equal to (in

fact, strictly less than) the corresponding entry of A�1
11
, we see that if the

corresponding row i of A21 and column j of A12 are both nonzero, there is
a nonzero entry in C: The result then follows from Lemma 5.2. 2

Let us now apply these results to the preconditioner described in the
previous section. In this case, A11 is block diagonal and the AINV algorithm
is used to approximate the inverse of each diagonal block separately, in
parallel. The approximate Schur complement (2) is the result of subtracting
p terms of the form Ci( �Zi �D

�1
i

�W T
i )Bi from AS , 1 � i � p. We refer to

these terms as (Schur complement) updates. Each one of these updates is
nonnegative and approximates the exact update CiA

�1
i Bi from below in

the (entrywise) nonnegative ordering, since O � �Zi �D
�1
i

�W T
i � A�1i ; see

[6]. Proposition 5.1 says that as long as at least one of these updates has
an entry that is strictly less than the corresponding entry in CiA

�1
i Bi, the

approximate Schur complement Ŝ is a nonsingular M -matrix.
In practice, these conditions are satis�ed as a result of dropping in the

approximate inversion of the diagonal blocks Ai. It is nevertheless desir-
able to have rigorous conditions that ensure nonsingularity. The following
proposition gives a su�cient condition for having a nonsingular approxi-
mate Schur complement as a consequence of dropping in AINV. Namely,
it speci�es conditions under which any dropping forces Ŝ to be nonsingu-
lar. Note that the conditions of this proposition do not apply to the global

13



matrix (1), since A11 is block diagonal and therefore reducible. However,
they can be applied to any individual Schur complement update for which
the corresponding diagonal block Ai is irreducible, making the result fairly
realistic.

Proposition 5.2 Let A11 2 IRm�m and the singular M-matrix

�
A11 A12

A21 A22

�

be both irreducible. Let A11 = L11U11 be the LU factorization of A11. As-

sume that in each column of L11 (except the last one) and in each row of
U11 (except the last one) there is at least one nonzero entry in addition to

the diagonal one:

(8i 2 f1; : : : ;m� 1g)(9j > i)((L11)ji 6= 0) (3)

and

(8i 2 f1; : : : ;m� 1g)(9j > i)((U11)ij 6= 0): (4)

Denote by �Z11 �D
�1
11

�W T
11
� A�1

11
the factorized sparse approximate inverse of

A11 obtained with the AINV algorithm. Then the approximate Schur comple-

ment Ŝ is a nonsingular M -matrix provided that �Z11 6= Z11 and �W11 6=W11.

Proof: First note that the two conditions for nonzero entries in L11 and
U11 are implied by similar conditions for the entries in the lower and upper
triangular parts of A11. Namely, it is easy to see that (barring fortuitous
cancellation)

for i > j : tril(A11)ij 6= 0) (L11)ij 6= 0

and for i < j : triu(A11)ij 6= 0) (U11)ij 6= 0:

Here tril(B) and triu(B) denote the lower and upper triangular part of
matrix B, respectively. These conditions are easier to check than the weaker
ones on the triangular factors of A11. Conditions (3) and (4) imply that there
is a path i! m in the graph of LT

11
and there is a path i! m in the graph

of U11 for all i 2 f1; : : : ;m� 1g.
Because the matrix is irreducible, then A12 6= O and A21 6= O. This

means that there exist indices i; j; r; s such that (A12)ij 6= 0 and (A21)rs 6= 0:
The existence of the previously mentioned paths implies that

(W T
11
A12)m� 6= 0 and (A21Z11)�m 6= 0;

14



where W11 and Z11 are the exact inverse factors of A11. The approximate
inverse factors from the AINV algorithm satisfy [6]

O � �Z11 �D
�1
11

�W T
11
� A�1

11
:

Therefore the conditions of Proposition 5.1 are satis�ed and we get the
result. 2

It is instructive to consider two extreme cases. If A11 is diagonal, then
the approximate Schur complement is necessarily equal to the exact one,
and is therefore singular. In this case, of course, the conditions of the last
proposition are violated. On the other hand if A11 is irreducible and tridiag-
onal, its inverse factors are completely dense and by the last proposition it is
enough to drop a single entry in each inverse factor to obtain a nonsingular
approximate Schur complement.

The purpose of the theory developed here is to shed light on the observed
robustness of the proposed preconditioner rather than to serve as a practical
tool. In other words, it does not seem to be necessary to check these con-
ditions in advance. Indeed, the approximate Schur complement was always
found to be a nonsingular M -matrix in actual computations.

6 Numerical experiments

In this section we report on results obtained with a parallel implementation
of the preconditioner on several Markov chain problems. The underlying
Krylov subspace method was Bi-CGSTAB [27], which was found to perform
well for Markov chains in [15]. Our FORTRAN implementation uses MPI
and dynamic memory allocation. The package METIS [18] was used for the
graph partitioning, working with the graph of A+AT whenever A was not
structurally symmetric.

The test problems arise from real Markov chain applications and were
provided by T. Dayar. These matrices have been used in [15] to compare
di�erent methods in a sequential environment. A description of the test
problems is provided in Table 1 below. Here n is the problem size and nnz

the number of nonzeros in the matrix. All the test problems are structurally
nonsymmetric except ncd and mutex. Most matrices are unstructured.

Tables 2{11 contain the test results. All runs were performed on an SGI
Origin 2000 at Los Alamos National Laboratory (using up to 64 processors),
except for those with matrices leaky, ncd and 2d which were performed on
an Origin 2000 at the Helsinki University of Technology (using up to 8 pro-
cessors). In all cases, the initial guess was a constant nonzero vector; similar
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Table 1: Information on test problems.

Matrix n nnz Application

hard 20301 140504 Complete bu�er sharing in ATM networks
leaky 8258 197474 Multiplexing model of a leaky bucket
2d 16641 66049 A two-dimensional Markov chain model
telecom 20491 101041 A telecommunication model
ncd 23426 156026 NCD queueing network
mutex 39203 563491 Resource sharing model
qn 104625 593115 A queueing network

results were obtained with a randomly generated initial guess. In the tables,
P-time denotes the time to compute the preconditioner, P-density the ratio
of the number of nonzeros in the preconditioner to the number of nonzeros
in the matrix A, Its denotes the number of iterations needed to reduce the
`2-norm of the initial residual by eight orders of magnitude, It-time the time
to perform the iterations, and Tot-time the sum of P-time and It-time. All
timings are in seconds. Furthermore, Sep-size is the cardinality of the sepa-
rator set (i.e., the order of the Schur complement matrix) and Avg-dom the
average number of vertices in a subdomain (subgraph) in the graph parti-
tioning of the problem. The drop tolerance � in the AINV algorithm was the
same at both levels of the preconditioner (approximate inversion of Ai for
1 � i � p and approximate inversion of the approximate Schur complement
Ŝ), except for the mutex problem (see below).

Tables 2{4 present results for the matrix hard, using three di�erent
values of the drop tolerance in the AINV algorithm. It can be seen that
changing the value of � changes the density of the preconditioner and the
number of iterations. However, the total timings are scarcely a�ected, espe-
cially if at least 8 processors are being used. See [8] for a similar observation
in a di�erent context. It is also clear from these runs that good speed-ups
are obtained so long as the size of the separator set is small compared to
the average subdomain size. As soon as the separator set is comparable to
the average subdomain or larger, the sequential bottleneck represented by
the Schur complement part of the computation begins to dominate and per-
formance deteriorates. The number of iterations remains roughly constant
(with a slight downward trend) as the number of processors grows. This is
due to the inuence of the approximate Schur complement.

The same problem was also solved using Bi-CGSTAB with diagonal pre-
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Table 2: Matrix hard, � = 0:02

p 2 4 8 16 32

P-time 2.35 1.19 0.65 0.40 0.34

P-density 6.21 5.90 5.67 5.14 4.52

Its 66 67 65 62 64

It-time 9.43 2.91 1.42 0.99 0.88

Tot-time 11.8 4.10 2.07 1.39 1.22

Sep-size 156 321 540 900 1346

Avg-dom 10073 5155 2470 1213 592

Table 3: Matrix hard, � = 0:05

p 2 4 8 16 32

P-time 1.19 0.60 0.35 0.22 0.21

P-density 3.10 3.02 2.95 2.78 2.52

Its 106 109 99 98 97

It-time 6.85 2.90 1.59 1.05 1.19

Tot-time 8.04 3.50 1.94 1.27 1.40

Table 4: Matrix hard, � = 0:1

p 2 4 8 16 32

P-time 0.73 0.38 0.22 0.15 0.14

P-density 1.39 1.36 1.34 1.28 1.19

Its 170 167 159 151 153

It-time 6.03 2.52 1.50 1.30 1.64

Tot-time 6.76 2.90 1.72 1.45 1.78
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Table 5: Matrix leaky, � = 0:1

p 2 4 8

P-time 0.26 0.17 0.09

P-density 0.21 0.21 0.20

No. its 134 134 132

It-time 1.39 0.84 0.62

Tot-time 1.65 1.01 0.71

Sep-size 48 144 335

Avg-dom 4105 2028 990

Table 6: Matrix 2d, � = 0:1

p 2 4 8

P-time 0.38 0.16 0.09

P-density 8.60 7.12 6.54

No. its 33 36 37

It-time 1.46 0.56 0.38

Tot-time 1.84 0.72 0.47

Sep-size 129 308 491

Avg-dom 8256 4083 2018

conditioning. This required approximately 700 iterations and 16.4 seconds
on one processor. If implemented in parallel, this method would probably
give results only slightly worse than those obtained with AINV. A similar
observation applies to matrices qn and mutex. On the other hand, diago-
nally preconditioned Bi-CGSTAB did not converge on the telecom problem.
Hence, AINV is a more robust approach. Furthermore, the ability to reduce
the number of iterations, and therefore the total number of inner products,
is an advantage on distributed memory machines, on which inner products
incur an additional penalty due to the need for global communication.

Results for matrices leaky and 2d are reported in Tables 5 and 6. These
two matrices are rather small, so only up to 8 processors were used. Note
that the speed-ups are better for 2d than for leaky. Also notice that the
preconditioner is very sparse for leaky, but rather dense for 2d.
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Table 7: Matrix telecom, � = 0:001

p 2 4 8 16 32 64

P-time 24.9 10.0 3.35 1.21 1.05 1.37

P-density 167 116 70 44 28 16

Its 11 12 14 13 12 12

It-time 36.5 14.0 6.04 0.96 0.38 0.43

Tot-time 61.4 24.0 9.39 2.17 1.43 1.80

Sep-size 34 97 220 471 989 1603

Avg-dom 10229 5099 2534 1251 609 295

Table 8: Matrix telecom, � = 0:005

p 2 4 8 16 32 64

P-time 7.04 3.78 1.37 0.61 0.49 0.56

P-density 46 44 37 29 21 10

No. its 60 55 81 60 68 84

It-time 59.4 27.0 12.8 2.18 1.36 1.71

Tot-time 66.4 30.8 14.2 2.79 1.86 2.27

Tables 7 and 8 refer to the telecom test problem. Here we found that
very small values of � (and, consequently, very dense preconditioners) are
necessary in order to achieve convergence in a reasonable number of itera-
tions. This problem is completely di�erent from the matrices arising from
the solution of elliptic partial di�erential equations. Notice the fairly small
size of the separator set, which causes the density of the preconditioner to
decrease very fast as the number of processors (and corresponding subdo-
mains) grows. As a result, speed-ups are quite good (even superlinear) up
to 32 processors. For a su�ciently high number of processors, the density
of the preconditioner becomes acceptable, and the convergence rate is the
same or comparable to that obtained with a very dense preconditioner on a
small number of processors.
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Table 9: Matrix ncd, � = 0:1

p 2 4 8

P-time 1.42 0.69 0.31

P-density 4.13 2.65 1.90

No. its 292 288 285

It-time 17.0 8.45 6.38

Tot-time 18.4 9.14 6.69

Sep-size 3911 6521 12932

Avg-dom 9758 4226 1379

Table 10: Matrix mutex, � = 0:1

p 2 4 8

P-time 1.19 0.40 0.10

P-density 0.14 0.14 0.14

No. its 16 14 15

It-time 1.64 1.19 1.51

Tot-time 2.83 1.59 1.61

Sep-size 13476 17749 20654

Avg-dom 12864 5363 2319

Tables 9 and 10 give results for matrices ncd and mutex, respectively.
For the �rst matrix we see that the separator set is larger than the average
subdomain already for p = 4 subdomains; nevertheless, it is possible to use
e�ectively up to 8 processors. Matrix mutex exhibits a behavior that is
radically di�erent from that of matrices arising from PDE's in two or three
space dimensions. The separator set is huge already for p = 2. This is due to
the fact that the problem has a state space (graph) of high dimensionality,
leading to a very unfavorable surface-to-volume ratio in the graph partition-
ing. In order to solve this problem, we had to use two di�erent values of
� in the two levels of AINV; at the subdomain level we used � = 0:1, but
when forming the approximate Schur complement we dropped everything
outside the main diagonal, resulting in a diagonal Ŝ. In spite of this, con-
vergence was very rapid. Nevertheless, it does not pay to use more than
p = 4 processors.
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Table 11: Matrix qn, � = 0:1

p 2 4 8 16

P-time 4.12 2.37 2.26 2.82

P-density 1.27 1.23 1.18 1.14

No. its 49 49 48 45

It-time 13.4 6.33 4.58 5.68

Tot-time 17.5 8.70 6.84 8.50

Sep-size 2879 6579 13316 20261

Avg-dom 50873 24511 11414 5273

Table 12: Reliability model, � = 0:1

p 2 4 8 16 32 64

P-time 9.53 4.86 2.49 1.31 0.90 0.90

P-density 4.05 4.02 3.97 3.90 3.80 3.70

It-time 138.8 70.5 37.2 16.8 9.47 7.96

Tot-time 148.3 75.4 39.7 18.1 10.4 8.86

Sep-size 542 1229 2186 3268 4919 7336

Avg-dom 124729 62193 30977 15421 7659 3792

In Table 11 we report results with the largest example in our data set,
qn. This model consists of a network of three queues, and is analogous to a
three-dimensional PDE problem. Because of the fairly rapid growth of the
separator set, it does not pay to use more than p = 8 processors.

The test problems considered so far, although realistic, are relatively
small. Hence, it is di�cult to make e�cient use of more than 16 processors,
with the partial exceptions of matrices hard and telecom. To test the scal-
ability of the proposed solver on larger problems, we generated some simple
reliability problems analogous to those used in [2] and [5]; see also [26], page
135. These problems have a closed form solution. In Table 12 we show
timing results for running 100 preconditioned Bi-CGSTAB iterations on a
reliability problem of size n = 250; 000 with 1; 248; 000 nonzero entries. This
problem is su�ciently large to show the good scalability of the algorithm up
to p = 64 processors.
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We conclude this section on numerical experiments by noting that in
virtually all the runs, the preconditioner construction time has been quite
modest and the total solution time has been dominated by the cost of the
iterative phase.

7 Conclusions

We have investigated the use of a parallel preconditioner for Krylov subspace
methods in the context of Markov chain problems. The preconditioner is a
direct approximation, in factorized form, of a (1; 2)-inverse of the in�nitesi-
mal generator A, and is based on an A-biorthogonalization process. Paral-
lelization is achieved through graph partitioning, although other approaches
are also possible. The existence of the preconditioner has been justi�ed
theoretically, and numerical experiments on a parallel computer have been
carried out in order to assess the e�ectiveness and scalability of the proposed
technique. The numerical tests indicate that the preconditioner construc-
tion costs are modest, and that good scalability is possible provided that
the amount of work per processor is su�ciently large compared to the size
of the separator set.

The method appears to be well suited for problems in which the in�nites-
imal generator matrix can be explicitly formed and stored. Parallelization
based on graph partitioning is usually e�ective, with the possible exception
of problems with a state space of high dimensionality (i.e., a large descrip-
tor set). For such problems, a di�erent parallelization strategy is needed in
order to achieve scalability of the implementation.
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