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Abstrakt

Behavior protocols are a formal notation for describing a communication among software
components. Their regular-like syntax makes them easy to comprehend while preserving ex-
pressive power required for this kind of description. However, the state-of-the-art behavior
protocols are not suitable for employing in real-world applications. One of the reasons is the
lack of support to make a description of the common communication patterns more convenient.
In this paper, we enhance the behavior protocols by definition of a special operator allowing
to describe the exception handling and by modification of already existing operators to incor-
porate the notion of exceptions. The proposed operator is inspired the traditional try-catch
semantics of programming languages dealing with exceptions. This way it clearly separates the
exception handling from the correct communication. Furthermore, the enhancements retain
the decideability properties of original behavior protocols.

1. Introduction

A lot of effort is being but into formal or semi-formal description of their semantics to help the
development of the software systems based on component concept. The target is to improve the
specification by reducing the number of errors and by detecting errors earlier in the process.

One of the approaches are behavior protocols introduced in Plasil et al [1]. Their purpose is to
describe a communication among software components by means of events. However, the state-
of-the-art behavior protocols are not suitable for employing to real-world applications. One of the
problems is the lack of support to make a description of the common communication patterns more
convenient.

The exceptions represent a typical kind of communication in distributed software systems, e.g.
CORBA [4]. Thus, it is natural to require their support in any notation used for describing this
kind of systems. One of the first approaches was the notation for exception handling in descriptions
of event-based communication in Sousa and Garlan [3]. A similar notation was introduced on ad hoc
basis into behavior protocols by Pospisil [2]. However, the ad hoc approach is enough. Therefore,



we define formally the necessary operators and present the necessary modifications of the current
behavior protocols specification.

To target the goal, the paper is structured as follows. In Section 2 we present behavior protocols.
The proposed solution for exception handling is in Section 3 and an example of the usage is in
Section 4. Section 5 evaluates the newly defined notation and concludes the paper.

2. Behavior Protocols

Behavior protocol (protocol for short) is a regular-like expression which syntactically generates
traces. A trace is a sequence of action tokens, each of them representing exactly one event-based
action in a system, e.g. the action token !d.Insert | representing emmiting (prefixed by !, ? is used
for absorbing) the response (suffixed by |, 1 is used for a request) of the d.Insert invocation. The
simplest behavior protocol is an action token from ACTs (the set of all action tokens in a system)
or the NULL symbol for empty trace. A protocol can be constructed in similar way as a regular
expression and can use the operators + (alternative), ; (sequence), * (repetition), | (parallel), /
(restriction), and some others. Furthermore, there is defined the set of abbreviations for describing
procedure calls, e.g. !d.Insert being equivalent to !d.Insert 1;!d.Insert | . For definitions of the
operators, see technical report [1].

To demonstrate behavior protocols, let us consider the following behavior protocol:

!da.Open ;

(

7d.Insert {! tr.Begin ; !'da.Insert ; !lg.LogEvent ; (!tr.Commit + !tr.Abort ) } +
?d.Delete {! tr.Begin ; !da.Delete ; !lg.LogEvent ; (!tr.Commit + !tr.Abort ) } +
?d.Query { !'da.Query }

)*

!da.Close

This example presents a protocol for describing a communication of a database front-end compo-
nent. This front-end changes the session-oriented communication of back-end database into session-
less and provides a logging facility of the database modifications. The methods invocations prefixed
by ! represents invoking of methods while ? represents receiving a method call from the environ-
ment, i.e. other components. The curly brackets, e.g. ?d.Insert{...}, denote the protocol describing
communication which takes place between a method d invocation and the emmiting reply to the
invocation. Inside every d.Insert invocation, any number of da.Insert calls can be executed, and
after each of these calls is finished, the modification is logged by invoking lg.Log Event.

The protocol generates the traces like !da.Opent, 7da.Open |, ?d.Query 1, da.Query T, 7da.Query |
Jd.Query |, 'da.Close 1, 7da.Close |. The language is infinite because of the x operator. However,
every trace starts with a pair of action tokens representing an invocation of !da.Open, then it follows
the handling of the database operations and it is finished by a pair of action tokens representing
an invocation of !da.Close.

3. Specifying exception handling

Nowadays, software component are specified in abstact definition languages, e.g. CORBA IDL [4].
These include typically define two basic paradigmas for returning of the method result. First of them
is a return value/return method arguments. Second option is, in case of unexpected situations and
errors, raising of exceptions. The exception handling, i.e. the way program deals with exceptions,
is typically based on notion of try and catch blocks as follows:

try {



operations can raise exceptions

}
catch( exceptions to be catched ) {

handling of catched exceptions

Any exception raised in try block stops the execution of the block and the program continues its
execution at the beginning of the catch block, which catches the raised exception. If there is no
such catch block, the exception is propagated through the call stack upwards. The catch block
presents the exception handling.

The behavior protocols do not provide any support for the exception-based communication.
However, even with current specification of behavior protocols, it is possible to express excep-
tions as follows: Let !a;!b;c! be a protocol specifying the sequence of invocations of a,b and ¢
methods. If a raises an exception e” (tilde denotes a general event), we could modify the protocol
to take the form !a; (?7e”+!b;!c). However, if b can also raise e exception, following the previous
pattern, we would write !a; (7e”+!b; (?e”+!¢)). It is obvious, that this way of specification leads
quickly to unreadable specifications and there is no specification of the exception handling itself.
Therefore, we define the following operator for specification of exceptions:

Definition: Let A, B be behavior protocols. The exception handling B in A (denoted AAB ) is
the language defined as follows:

LAAB)={B"<z>"§;<x>"0 € L(B)AB" <z >"v € L(A)for minf}

U{<y>"Bi<y>"BeLAA-Td<y>"6€L(B)}

Informally, the left operand of A represents a try block and the right operand represents a catch
block. To distinguish exceptions as being an event (not a RPC request nor a RPC response), we
use the general event notion of behavior protocol denoted by tilde (e.g. e~). Using the definition,
the example above could be rewritten as (la;!b;!c)A?e.

Furthermore, to easily use the exceptions in behavior protocols, we need to change the abbreviations
of the behavior protocols defined as follows:

m o~ mt(md+ler™+.. leyT)

where ey, ..., e, are all the exceptions specified as being throwed by the m method in its definition.

4. Example

The following example presents an improved part of a part of the protocol from Section 2 specifying
an invocation of d.Insert by adding the exception handling.

?d.Insert { (!tr.Begin ; !da.Insert ; !lg.LogEvent ; !tr.Commit ) }

A ( 7da.DuplicateKeyException™ ; !lg.LogEvent ; !tr.Abort ;
'd.DuplicateKeyException™
+ 7tr.RollbackOnlyException™ ; !lg.LogEvent ; !d.TransactionRolledBack”
)

In this protocol, there are two exceptions being caught when handling incoming invocation of
d.Insert. First, we are catching da.Duplicate KeyException being returned by a da.Insert invo-
cation. In this case, we log the exception by lg.LogFEvent and then we rollback the transaction



associated with the insert operation. At the end of the sequence, we propagate the exception
via sending general event d. Duplicate K ey Exception. For tr.RollbackOnly Exception being caugth
from invocation of tr.Commit, we do the logging by lg.LogFEvent and then propagating the ex-
ception by throwing a different exception — d.T'ransactionRolled Back. As the transaction is to be
rollbacked anyway, we do not specify it explicitly in the protocol.

5. Evaluation

In this paper, we proposed an enhancement of behavior protocols for specification of exception
handling. We addressed the problem of the easy to read notation by defining a new A operator
and by modifying existing behavior protocol abbreviations. The operator allows easily to describe
the try-catch semantics of exceptions supported in programming languages.

An important issue of any enhancement of behavior protocols is decideability of specification
testing. As the behavior protocols [1] preserve the regularity of generated languages, the new
operator should also. In fact, this it true, since if we have finite state machines for protocols A
and B, we could easily build a finite state machine for AAB as follows. If a node in M 4 contains
transition edge marked by the action token representing an exception handled by B, it is replaced
by a transition edge from the node to the target node of the transition in Mp. This edge represents
the start of exception handling. Therefore, all the results in [1] hold for the behavior protocols with
the A operator.

One of the open issues presented in [1] is the so-called internal/external choice problem. The key in
a proposed solution is the possibility to transfer information about choice being made by component
internally to the external client. As mentioned in Section 3, exceptions present a way to pass the
information about errors or unexpected situations to the client. Therefore, the A operator allows
to solve the internal/external choice problem.

However, there are some open issues with the exception handling in behavior protocols. One of
the most importat is that the /A operator does not ensure the protocol to return at least some
response by means of the | suffix or an exception raising. Thus, it is possible to write a protocol,
which specifies that there will be no reply to the request issued. Although this also holds for
behavior protocols as defined in [1], there are defined sound abbreviations to guide the user to write
semantically correct protocols. For exception handling, there should be also proposed reasonable
abbreviations for ensuring that all the time there is at least some reply to a request. This should
also incorporate an ”automatic” propagation of not caught exceptions.
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Abstrakt

Contemporary component model development is getting more and more important in an in-
dustrial world. But there are many differences between industrial view and academical view on
component model. Large companies implement theirs component models directly and pushes
users to use as-is. On the other hand academic world is spending long time on development and
refinement of theirs component models, and rarely they implement it and with pure support
and development environment. The goal of this paper is to reuse ideas gathered in component
system on the Enterprise JavaBeans component architecture developed by Sun Microsystem.

1. Introduction

Contemporary component systems are getting more and more important in an industrial world.
When Microsoft’s COM/DCOM [23] component system was introduced, Sun Microsystems an-
swered with Enterprise JavaBeans [7] component system. In academical world there are also re-
search groups developing component systems ([3] [18] [19]). But these component systems are not
successful in the real world due to lack of implementation and lack of support from companies. On
the other hand, comparing industrial and academical component models, the academical models
have better design, but the industrial have better support and implementation.

The paper presents the Enterprise JavaBeans component model, identifies weaknesses of the model
and presents the EOA - Enterprise Object Adaptor. The EOA is used to create generic component
and architectural model of the EJB.

2. EJB Component model

In the late of 90’s, the Sun Microsystems company starts to work on several Java component models
suitable for large applications. In 1997 the first widely acceptable component model, Enterprise
JavaBeans 1.0 [7], was presented. One year later, EJB 1.1 [8] was presented. This new standard
was a refined version of EJB 1.0. Latest version of EJB 2.0 public draft 2 [9], released in 2000, is
even more refined and enhanced than EJB 1.1.



Today, the EJB standard is not strictly influenced by the Sun Microsystems’ only, but it is cont-
rolled by Java Community Process (JSR-000019 [27]). Thus companies (members of the commu-
nity) can control, add changes to the standard. On the other hand, the standard is a property of
Sun Microsystems and a company willing to implement it, has to buy a license.

2.1. EJB component

The EJB component (in the EJB terminology ”JavaBean”) specification is tightly bounded to
the Java environment. Component has two interfaces - business interfaces, describe component’s
functionality, and home interface with methods controlling instance’s life-cycle of the component’s
instances. All these interfaces are java interfaces. Component definition has to contain one more
java class with business logic and code controlling its life-cycle. The last part of component defini-
tion is a deployment descriptor - an XML file containing nonfunctional properties and definition
of the component’s environment. The nonfunctional properties allow to modify usage of three
EJB services - transaction service, persistence service, and security service. Modification of these
properties can change the component’s behavior very much without its rewriting. Component’s
environment is composed of: environmental entries (named scalar values), EJB references (named
references to EJB home interfaces), resource connection factories (named references to data sour-
ces; e.g., databases) and resource environment references (named references to generic objects; e.g.,
JMS destination).

There are four EJB component modes - stateful session, stateless session, entity and message-
driven. Each type is specially designed for specific usage: stateful-session (interface based, fea-
turing internal state, nonpersistent, with notification of transaction state), stateless-session (in-
terface based, without internal state, nonpersistent), entity (interface based, persistent, with full
transaction behavior) and message-driven (event-based, without internal state, nonpersistent).

From the client’s point of view, an EJB component is represented by two remote java classes - one
is the home remote object used to create/remove the component’s instances and remote business
java interface for each component instance.

2.2. EJB application architecture

An EJB application is a composition of EJB components (not instances) bounded together via
environmental entries. The application is instantiated by a client. The client has to create (e.g.,
stateful session, entity, ...) or reincarnate (only entity) component instance(s) to work with. Con-
sequently, all other component instances are created indirectly by running component instances.
The EJB application description is done via the EJB deployment descriptor. The granularity of
the EJB application description is EJB components only.

3. Weak points of the EJB component model

Comparing EJB to CORBA component model (CCM) shows several pits in the design process of
EJB components. There is a lot of out-component functionality - persistence, life-cycle, transacti-
ons, security, but the real component model is missing. Also the process of deployment is weak
(e.g., there is no possibility to start an application indirectly - there has to be a client, which builds
up the application from accessible components).

3.1. Component model

The EJB component model is easy to learn. From the implementation point of view, a compo-
nent is a java class, implementing the methods required by EJB specification, and providing an
interface with the component’s business methods. The mode of the component type is one of the
EJB component modes given by the EJB specification (see Section 2.1). To deploy the component,
a user has to provide additional information to describe transactional and security nonfunctional
properties given by the application. So far so good. But there are some weak points, which limits
EJB usability. The first weakness is the impossibility to add user defined component modes or
at least to modify existing component modes (e.g., to allow sharing of the instance of a stateful



session bean). The second weakness coheres with the previous one: It is impossible to change the
transactional and security services behavior of a component modes. Of course, there are transacti-
onal attributes, but there is no possibility neither to add your own transactional ”attribute”, nor
to add your own transactional manager (similar to security service). The third weakness is related
to architecture model - a component looks like a ”parametrized distributed object” but not as a
component composed of other components (For example, imagine a bank component - it contains
teller components and a datastore component; in the current EJB specification, a bank component
is a complete application - all components are accessible to the user, they can create instances of
a teller component).

To solve these weaknesses we propose the possibility to specify user-defined component modes. To
solve the last weakness, a component model has to include following features: nested components,
multiple-interfaces (to allow different views on a component or to delegate interfaces of internal
components). The corresponding modifications to the EJB component model are proposed in this
paper described in Section 4.1.

3.2. Architecture model

The third weakness (lack of nested components) mentioned in the Section 3.1 is also related to the
architecture model of the EJB. In this respect, an additional problem is the impossibility to declare
a reference to a component instance in the deployment descriptor (it is similar to required interface
concept used in SOFA [13]) - it is implied by the original assumption of not allowing for component
nesting (e.g., in the bank example, the tellers cannot share the same datastore). Another weakness
is the number of interfaces - EJB component provides component one interface only. Thus, it is not
possible to make the interface of a contained component visible from its parent component. Any
change to the architecture model has an impact on the current view of the transaction, persistence
and security usage. The issues triggered by the modifications proposed above include: where and
how should be transaction attributes employed; what will be the persistence state of an instance?

4. Extensions of EJB component and architecture models

The first issue addressed in this section is the limited number of component modes. Via new com-
ponent modes, it is possible to specify a nested component model, allowing to create components
composed of already existing components.

4.1. Proposed EJB component model

The current EJB component model includes only four modes of components limiting thus the area
of EJB applications.

To provide more component modes, the EJB component model has to be modified - for example a
dynamic component type has to be defined, the limit of the number of component interfaces has to
be lifted, and the behavior of services has to be described. Modifications are described in following
sections.

4.1.1 New component modes: There are a number of ways how to describe the
behavior of a system - fully independent on the implementation (e.g., plain-english, CSP [10],
behavioral protocols [11], finite state machines [13]), parametrization of the implementation of a
system and source code. In this section we discuss possible ways of component type description.

Semantic description of component mode: As it is said, the best description is the
source code. But no one gives the source-code of a commercial software for free. The most common
way to describe semantics of a component type is plain-english approach, i.e., the semantics is
written in documentation (e.g., there is a book covering Excel component semantics as defined by
Microsoft), it consists of a written specification, state diagrams, etc. The EJB specification uses
the same means to describe component types. The drawbacks of the method include: (1) it is very
large (hundreds of pages), (2) informal, and (3) it is not possible to generate the source code. To
solve the weaknesses of plain-english specification, declarative languages were proposed. Using such
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a language, it should be easy to write down a specification and, reversely, to convert the written
specification into understandable language to human (plain-english) or to computer (source- code).
Very popular languages are CSP, regular-like languages (behavior protocols), different notions of
description of semantics, etc. But this approaches are hard to use. Descriptions tends to be large
and hard to understand to a human, but it can be in principle automatically converted into source
code. A problem is, that hand-written specification needs to be both written and verified by a
human.

Parametrized component mode: One of the approaches is to allow modifications of com-
ponent types using parametrization. In this way, the component model has to offer reasonable set
of properties to change. Current EJB specification support parametrization of component types
(e.g., entity beans can be reentrant), but this set of parameters cannot be modified.

4.1.2 Enterprise Object Adaptor: As discussed in the Section 4.1.1, a more suitable
approach to changing behavior of the component model is adding a set of properties to the current
component types and to allow to add user-written code in order to control the life cycle of a
component type, and to control the security, transactions and persistency services (also Abstract
Persistence Scheme as defined in EJB2.0). Such a user-written code will be called Enterprise Object
Adaptor (EOA). Thus any component modes will have its own implementation of EOA (including
the contemporary entity, session, and message- driven components modes). The idea of EOA is
inspired by CORBA’s POA (portable object adaptor) where servants are handled very similar as
bean instances. In principle EOA includes the following: run-time support controls life-cycle of an
instance. It is notified by the events generated by an EJB container (e.g., passivation, activation)
or a services (e.g., change to a transaction state). All client events (e.g., method invocation) are
supervised by this code and necessary actions are taken (e.g., transaction begun, security checked,
interceptor code invoked); this code can use the services provided by a server; stub/skeleton ge-
nerator which creates stub and skeleton code; it is necessary, for example, to propagate a special
contexts (e.g., transaction context of an application specific transaction service); deployment code
which creates and configures instances of an EOA run-time support (configuration is read from the
deployment descriptor). To incorporate EOA into current EJB does not imply any modification to
current component modes (entity, sessions and message-driven). Although EOA allows to create a
variety of component modes, it is not intended to create specifics EOA for each component mode
in an application. The actual intention is to provide a few ”useful” component modes to enhance
the application are of the current EJB model. In the following sections, the new EOA -related
features of the proposed component model are presented.

Multiple interfaces: A component compliant to the current EJB specification has only one
interface. This interface can be method-call-based (it contains methods) or event-based (supported
by message-driven bean). To support hierarchical components, a component model has to allow for
multiple interfaces of a component. This feature is required in order to delegate interfaces of internal
components or to expose the component’s functionality via different views. As a consequence, the
presence of multiple interfaces allows for a component to provide both a method-call-based and
event-based interfaces. However allowing for multiple interfaces rises the following issues: (1) Session
stateful component instance can be accessed by one client thread (i.e., it is not possible to use an
component instance by other threads except for its creator thread). (2) Entity component instance
can be accessed by more clients/threads; unfortunatelly, it is not clear where the synchronization-
related component state is to be stored (in the component instance itself or in the underlaying
database). (3) Transactional attributes and security properties of parent component’s interface
and sub component’s interface should not collide. As an aside, multiple interfaces of a component
typically include a control interface that provides a method to list all other interfaces of the
component and a method to navigate to a requested interface. It is clear that the control interface
is the component’s home-interface.

Composed components: Composed components (also called nested components) were dis-
cussed in a number of publications on component models (e.g., SOFA [13], Wright [10]). The key
features of composed components includes: a composed component has a hierarchical structure,

11



subcomponents are not directly accessible outside the component (its provides interfaces has to
be delegated via parent’s provides interfaces) and they cannot call directly across hierarchy (its
requires interfaces has to be subsumed via parents requires interfaces). In the same way, the EJB
composed components are designed The EJB composed component type should provide these
following features: hierarchical structure a component is build of components (subcomponents); it
is possible to share one instance of a subcomponent through one of its interface; multiple inter-
face used to create different views of a component and/or to delegate a subcomponent interface
to the parent component interface; a component provides a set of interfaces and requires a set of
interfaces; delegation of subcomponent’s interface used to add subcomponent’s interface to compo-
nent provides interfaces; subsumetion of the component’s interface used to bind a subcomponent’s
requires interface to the components’ requires interface; traversing of component internal structure
for development and special usage describe component by properties in deployment descriptor
description of service usage by the component and in the component (e.g., transaction, service,
persistence); references to the runtime environment (e.g., databases, JMS) and properties of the
runtime environment.

All these features do not collied with the current EJB specification - they can be seamlessly
included into an EJB implemention. New problems identified include: (1) what is the persistent
state of the component that contain a set of entity beans and stateful session beans? (2) can
composed component be passivated or not?

4.2. Architecture enhancements

Architecture enhancements are tightly bound to the enhancement to the EJB component model.
The EJB specification captures description of an application’s architecture as a role of the appli-
cation assembler, who define properties of the components (e.g., transaction attributes, mapping
to databases) and environmental the properties (references to other component’s homes, datasour-
ces and values of scalar properties) related to the application. The architecture description should
define these features, including those features specific for the proposed model. As the component
can be composed of subcomponents, it is desirable to describe where the subcomponent’s instances
should be deployed. This decision can be implicitly defined by a policy or some Al-based stra-
tegy (e.g., load balancing). Such a feature requires an inter-EJB-server protocol which can transfer
the code and deployment descriptor of a component, and additional server- specific information
(e.g., the load on a machine). A subcomponent instance can be shared by another subcomponent
instance. Thus, an instance of subcomponent has to be created. To do it, it has to be described
how to create the instance (e.g., session stateless bean instance does not need any additional in-
formation, because its create() method is parameter-less, but session stateful bean instance needs
typed-arguments for create() method; entity instance needs typed-arguments for the create() and
findByXXX() method). A solution to it can be an XML description of types and arguments.

4.3. Added features

EOA introduce a new component and architectural model for EJB. At the same time, it is possible
to use EOA for anther purpose. One of the goals for new EJB specification 2.1 is to add support
for interceptors (i.e., methods called when a component method or instance’s state has changed).
This can be easily done via EOA, because EOA is defacto an ”interceptor” manager. EOA can be
used as an implementation skeleton of APS (Abstract Persistency Scheme), not currently specified
at the implementation level in the EJB 2.0 specification.

5. Conclusion

This paper presented the current EJB component and architectural model, and discussing their
weaknesses. A new component and architectural model of the EJB was proposed, which solve
all weakness identified. A key idea is to introduce Enterprise Object Adapter (EOA), that control
lifecycle and service employment of the component types. This approach is seamlessly incorporated
into current EJB specification with respect to backward compatibility and functionality. This model
will be tuned and implemented as a part of PEPiTA /ITEA project.
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Abstrakt

The paper is a rearranged part of my Ph.D. thesis which deals with employment of neuro-
fuzzy systems for identification tasks. Within the paper the idea of neuro-fuzzy systems is
presented together with short review of Wang fuzzy system and radial basis function (RBF)
neural networks. Further it is presented how this fuzzy system and RBF neural network can
be combined into neuro-fuzzy system. The main goal of the paper is to present new algorithm
of off-line structure learning of this neuro-fuzzy system.

1. Introduction

According to Zadeh [1] soft computing research area should be considered as area for investigation
of creative fusion of three main (possibly others) nature inspired computational models - neural
networks, fuzzy systems and genetic algorithms. Apparently, the most developed domain from this
point of view is a domain of combination of neural networks with fuzzy systems, especially the
area of what is now called as neuro-fuzzy systems. According to [10] this preference is probably due
to fact that neural networks and fuzzy systems - especially fuzzy controllers - became popular at
the same time, at the end of the 80’s. Those applying fuzzy controllers, having problems to tuning
them, have admired the apparent ease with which neural networks learned theirs parameters.
Therefore intensive effort was aimed on combination of these two computational models. However,
at this time numerous papers dealing with combination of other two or even all three computational
models are published and the interest in the soft computing area is growing.

Now let us shortly characterize fuzzy systems and neural networks respectively. Before we do it
remain that both computational models perform some function f; : R™ — R™. This function,
actually a system representing it, is build on base of some other, partially known, master function
fm- An information about f,, is either given in a form of vague linguistic terms - the case of fuzzy
system’s representation of fs - or by set of input/output examples - the case of neural network’s
representation of fs. The intention behind a building a system is to represent master function f,
by function fs as good as possible. Therefore in both cases a task of system building is actually a
task of function approximation. However each approach, fuzzy or neural, has different methodology
and different form of initial information.
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Fuzzy systems are known as computational models whose are capable to acquire and process
information given in a form of vague linguistic terms commonly used by humans. To accomplish
this task they represent linguistic terms as fuzzy sets whose are combined into form of IF-THEN
rules to express more complex linguistic information. Particular fuzzy sets are then given by theirs
membership functions typically represented by some parametric functions from R to interval [0, 1].

When we are setting a fuzzy system’s real application we are typically encountered with a problem
of particular rules and fuzzy sets specification. Standard approach is to ask an expert for rules
and meaning of employed linguistic terms. However, even if it can be without problems done -
an expert is at our disposal, the shapes of fuzzy sets has to be usually tuned (tuning of values
of membership functions parameters) to fuzzy system would achieve desired performance because
obtained representation of linguistic terms from expert is always in some degree subjective.

Manual tuning of given fuzzy system on base of trials and errors is a tedious task and it would
be nice to have some tool/algorithm which enables to set required parameters on base of given
experimental data. We know that especially neural networks are able to effectively solve this task.
So it is natural to seek for some kind of fuzzy systems and neural networks combination which
enables to utilize learning capability of neural networks when building a fuzzy system. However,
resulting form of combination is required to do not destroy the main feature of fuzzy systems -
linguistic interpretability in the form of IF-THEN rules.

Now let us consider neural networks. As it is well known, the main feature of neural networks
is theirs learning ability. Utilizing some learning algorithm they can (theoretically in parallel fa-
shion) acquire information given by set of examples. However, standard neural network is a black
box. When a network is learned we have acquired information but this information is encoded in
actual setting of network’s parameters without any straightforward meaning. Therefore it would be
advantageous to give some rearrangement, of neural networks paradigm to retain ability of learning
but to have possibility to “easily” interpret the learned information typically in form of some rules.
Since by rules interpretation of information is a native feature of fuzzy systems we have again here
a reason for investigation of neural networks and fuzzy systems combination.

From the above discussion it is clear that an investigation of neuro/fuzzy combination is reasona-
ble and it should issue in a qualitatively new computational model which retains advantages of
both “parent” approaches. Of course, there are several other views of this fusion presented in the
literature, not only the one induced by the above discussion. To have an unified view of current
approaches they can be sorted into three main groups.

e neuro-fuzzy systems
Neuro-fuzzy systems are fuzzy systems realized in a neural network fashion. Neural network
architecture brings into fuzzy systems learning ability known from neural networks theory,
but despite of architecture, a neuro-fuzzy systems can be still considered as (certain type
of) fuzzy systems. Neuro-fuzzy systems then combine main features of neural networks and
fuzzy systems - ability to learn from examples and ability to incorporate and process vague
information given in a form of linguistic terms.

e fuzzy-neuro systems
Fuzzy-neuro systems are enhanced neural networks endowed by fuzzy weights and/or capable
to compute with fuzzy inputs. More specifically, inputs, weights and outputs of a general
fuzzy-neuro system are fuzzy numbers. A single neuron in such a system then performs
operations based on arithmetic of fuzzy numbers [2]. For a survey about these systems with
extensive references on relevant literature see [11].

e cooperative neuro/fuzzy systems
These systems can be characterized as non-homogenous combinations of neural networks and
fuzzy systems to improve the performance of one of these systems. Typical example is when
fuzzy system is used to operate learning rate of neural network’s learning process; or when
one system is used for some kind of preprocessing/postprocessing of input/output data of
the other system.
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The approaches of first two groups represent homogenous combinations of considered paradigms
resulting into the new computational models. In opposition, approaches of the third group repre-
sent solutions with only mutual intercommunication between fuzzy system and neural network.
Regarding homogenous combinations currently domination of neuro-fuzzy systems in applications
can be observed. Partial reason for this fact is high computation effort required for fuzzy-neuro
systems than for neuro-fuzzy ones.

The aim of my thesis is to investigate applicability of neuro-fuzzy systems for identification tasks.
Therefore in the following text we will proceed only with neuro-fuzzy systems.
2. General architecture of fuzzy systems / Wang fuzzy system

It is well known that general fuzzy system consists of four building blocks a fuzzifier, a rule base,
an inference engine and a defuzzifier [2]. These blocks are mutually interconnected as presented
in Fig.
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Obrazek 1: Architecture of general fuzzy system.

A general fuzzy system with n inputs and m outputs (system of (n, m)-type) performs some function
fmimo @ R™ — R™, ie., in control terminology, it represents MIMO (multiple input multiple
output) system. It can be shown that MIMO fuzzy system can be seen as parallel connection of m
MISO (multiple input single output) systems. From this reason it is sufficient to investigate fuzzy
systems in MISO configuration ((n, 1)-type) which performs some function f,is : R" — R.

Fuzzifier: A fuzzifier performs a process of fuzzification, which is a mapping from input space
X CR"™ into the set F(X) of all fuzzy sets defined on this space.

fuzz: X —» F(X). (1)

The work of a fuzzifier can be seen as transformation of crisp but inprecise (due of noise, error of
measurement) input to a fuzzy set which just represents the inprecise nature of the input.

In practice, general fuzzifier is often replaced by so called singleton fuzzifier. In this case a crisp
input &* C X is related with corresponding fuzzy singleton. Hence, fuzz function has the form:

1 forx=ax*
®\ Al _
fuzs(®) = Al () = { b @)
The employment of singleton fuzzifier represents a situation when we consider given crisp input
x* as precise enough for our purposes. Other and probably more influential reason for employing
singleton fuzzifier is a simplification of fuzzy system output computation [2, 3].

Rule base (MISO): A rule base of fuzzy sytem is mathematically a fuzzy relation defined on
cartesian product X X Y, of fuzzy system’s input and output space. It will be denoted RB(X,Y),
note X C R™, Y C R. Canonical form of rule base is given by a set of IF-THEN rules. Single rule
is also a fuzzy relation defined on universum X x Y. Traditional linguistic form of a (jth) rule is

R;:IF x; is Aj1 and ... and x,is Aj, THEN yis Bj, (3)
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where Aj;, i = {1,...,n} and B; are fuzzy sets represented by linguistic terms. Membership
function of fuzzy relation represented by rule (3) is given by formula

Rj(z,y) = Rj(z1,...,2n,y) = (Aj1(21) * ... % Ajn(zn)) > B;j(y), (4)

where @ = (21, ...,%,); * denotes a t-norm which is a representation of lingvistic conection and,
and > is a operation which will be defined later. Sometimes a shorter notation of a particular rule
is used in the form

RJ‘ : AJ(m) > Bj(y) s (5)

where A;(x) is so called antecedent and B;(y) so called succedent of jth rule. Antecedent then has
then form
AJ({L‘) = Ajl(l‘l)*...*Ajn(l’n). (6)

Now there are two basic approaches how the overall rule base is combined from particular rules.
That is, how fuzzy relation RB(X,Y’) is constructed on base of particular relations R;(X,Y’). In
the following, we consider the rule base consisting of m rules, i.e., j = {1,...,m}.

e DC-type (disjunction of conjunction)

RB($7y) = U Rj(il:,y), (7)
RB(w,y) = | J [(Aj1(21) x ... % Aju(@n)) > B;(y)]- (8)

j=1

Union J operation is generally given by some t-conorm, however, maximum operation is
typically used. The operation >, in DC-type representation of rule base, is given by a t-norm,
usually the same which is used in antecedents of rules. Membership function of RB(X,Y’)
has then the final form

RB(z,y) = U [Aji(@1) x oK Ajn(20) % B (y)] - 9)

e Cl-type (conjunction of implication)

R(:c,y) = ﬂ Rj(wvy)a (10)
R(z,y) = ﬂ [(Aj1 (1) * ... x Ajn(an)) > Bj(y)] (11)

Intersection [ operation is generally given by some t-norm, however, minimum operation is
typically used. The operation >, in CI-type representation of rule base, is given by a fuzzy
implication. Membership function of RB(X,Y’) has then the final form

m

R(x,y) = () [(Aj1(21) % .. % Aju(n)) = B;(y)]- (12)

Jj=1

Within the applications, however, the first type (DC) of construction is almost always used. The
reason is that with second type (CI) there are severe computational difficulty regarding fuzzy
implication.

Inference engine: An inference engine performs a mapping from cartesian product of F(X) x
F(X,Y) to F(Y); F(X,Y) is the set of all fuzzy relations defined on X x Y. That is, an inference
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engine makes projection of fuzzy set given by fuzzifier through fuzzy relation given by rule base
into a fuzzy set defined on output space Y. Membership function of output fuzzy set is given by
so-called compositional rule of inference (CRI) [2]. It has the form:

B/(y) = sup [4}. (z) x BB(,y)]. (13)

where « is generally some ¢-norm.

The solution of CRI formula with respect to explicit form of B’(y) cannot be generally given in
advance i.e., (13) cannot be further rearranged until forms of A!. and RB are given. When fuzzy
set, A/ is generated on base of singleton fuzzifier then the following simplification can be made.
In the case of singleton fuzzifier the value of A!,.(x) is equal to one only at point z*, otherwise it
is zero. Since for each t-norm i, i(0,a) = 0 holds, the CRI rule for singleton fuzzifier’s A’. has the
form:

B'(y) = RB(",y). (14)

The possibility of this simplification induces the popularity of singleton fuzzifier for fuzzy systems
design purposes.

Defuzzifier: A defuzzifier performs a process of deffuzification which is mathematically a mapping
from set of all fuzzy sets defined on output space Y to crisp points of this output space

defuzz: F(Y) - Y. (15)

A process of defuzzification is, in fact, reverse process to process of fuzzification performed by
fuzzifier. The purpose of deffuzification is to convert fuzzy set given by inference engine B'(y) €
F(Y) to point y5, € Y. This task is rather complicated because we need to compress information
given by fuzzy set to one point of universum the fuzzy set is defined on. That is why there are many
methods of deffuzification suggested in the literature. Unfortunately, nowadays there is no unified
complex approach to justify among them. In practical applications, however, the most often used
methods are the ones with the less computational complexity.

At this place, with respect to need of our work, we mention only two deffuzification method. Other
methods can be found anywhere [2, 3, 4]. Remain again that we consider the case of Y C R.

e Center of Area/Gravity method (COA): This is the most often method reffered in the
literature. The idea behind this method is to transform given fuzzy set to point at which the
area under the graph of membership function is divided into two equal subareas. This point

is given by formula:
_Jy- By dy

Yp = T mr o

P Bydy

Formula (16) is universal, applicable to all reasonable (integrals in (16) exist) fuzzy sets

B'(y). However, if B'(y) is a general fuzzy set, then computation of integrals in (16) is hard

because it cannot be usually given in analytic form. In this case numeric computation has

to be taken which is time consuming. The way of handling this problem is to take into the
account the form of B'(y)’s construction.

(16)

e Centroids methods (CM, CMs): Formulation of CM method (sometimes called as cent-
roid average defuzifier) results from effort for computational simplification of COA method.
Consider the case of composition of B'(y) from m fuzzy sets Bi(y),...,Bm(y) combined
together by minimum. Then as approximation of (16) it can be taken formula

. i Bileg) ¢

yp = DS (17)
P i1 By(ey)
where ¢; is so called centroid of fuzzy set B;, given as
Jy-Bj(y) dy

ci = 18

' B dy a8
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i.e., centroid ¢; is given by application of COA method on fuzzy set B;. Sometimes (and it
will be also our case) is denominator in (17) omitted and deffuzification is performed in only
in the form of

m
v = > Bjl) - ¢, (19)
j=1

which will be called as simplified centroid method (CMs).

Centroids ¢y, . .., ¢y, can be (possibly numerically) computed in advance, when fuzzy system’s rule
base is formed and need not be recomputed during fuzzy system computation. These two factors
together with mathematical form of (17) or (19) substantially simplify computation of deffuzified
value in opposition to situation of COA’s original method formulation where integrals of (16) has
to be recomputed in each step of fuzzy system’s computation.

Wang fuzzy system: Currently when we gave description of basic building blocks of a general
fuzzy system we can proceed to particular example of a fuzzy system. This example will be so-called
Wang fuzzy system.

Wang fuzzy system (WFS) was proposed by Wang in [5, 6]. This fuzzy system is based on employ-
ment of gaussians functions for fuzzy sets representation and product ¢-norm for representation of
and connective in particular rules. Wang fuzzy system is considered in MISO configuration with
singleton fuzzifier. Rule base is represented as DC type.

Let’s start with gaussians function which represent membership functions of fuzzy sets in WFS.
Gaussian function is given by well know formula, which will be writen in the following form

9(z) = a-exp [~a(z - §)?], (20)

where, using probability terminology, 8 is mean value and « is usually writen in form of a =
1/(20?%), where sigma is variance. a is a scalling parameter, which is set equal to unity when (20)
represents a fuzzy set.

In the case of product t-norm and DC type of construction or rule base we represent > and x
symbols as products and we have (5) in the form

Rj(z,y) = Aj(x) - B (y), (21)
with antecedent given as
Aj(®) = Aji(21) - Ajo(@2) - - - Ajn(@n)- (22)
Considering A;; and B; to be gaussians
Aji(zi) = exp [~aji(zi — B7:)?], Bjly) = exp [~a;(y — B;)°] (23)

we have for (22)
Aj(@) = [ (exp [—azi(ws — B:2)°]) (24)

i

which can be rearranged according to gaussians properties into the form

Aj(x) —e:rp[ Zaﬂ z; — Bji) ] (25)

Now when singleton fuzzifier is employed together with DC type of rule base composition we have
for output fuzzy set B'(y)

= J 4;(=") - B;(y). (26)

j=1
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Considering simplified centroids method (CMs) and the fact that B;’s centroid is given by value
of §; and the fact that B;(5;) = 1, we have for overall computation of Wang fuzzy system the

following formula
m

V=Y A 5 1)

which is employing (25)

WFSMISO Zeﬂv‘pl Zagz ﬂ]z ]B (28)

3. RBF neural networks / Gaussian RBF networks

Radial basis function (RBF) neural networks are beside perceptron networks the second large
group of networks used in applications. General computation of RBF network’s neuron is mainly
given by specification of so-called radial basis function. Radial basis function is a function which
is symmetrical about a given centre in a multidimensional space. The most common way of radial
basis function’s definition, rbf : R™ — R, is to give it in the form

rof () = f(lle - B, (29)

where € R"; B € R"™ is a center the rbf is symmetric arround; || - || is some norm in R"
and f: R — R is a decreasing function. Radial basis functions of form (29) then represent RBF
network’s neuron computation

rbfneuron(x) = f(||lz — Bl))- (30)

To equation (30) matches common concept of general neuron computation

o(x) = act(agr(x)), (31)

we can decompose (30) to aggregation function agr : R™ — R and activation function act : R = R
in the following way. The aggregation function is given by some norm in R", i.e

agr(x) = ||z - Bl (32)

where as standard choice Euclidean is commonly used

n

le —BI* =D (xi — 6:)°. (33)

i=1

As activation function f function of (30) is taken. As it was stated it can be any decreasing function
from R to R. The most prominent choice for f is the exponential function

act(s) = f(s) = exp(—as), (34)
where a > 0.

When we combine aggregation function (33) with activation function (34) we get for the whole
RBF neuron’s computation expression

rbfunit(x) = exp(—al|lx — B||?) = exp [—a Z(wl - Bi)Q] ) (35)

which forms gaussian type of RBF unit.

After we have single neuron’s computation specified we can procced to construction of the network.
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Obrézek 2: Architecture of three-layered feed-forward RBF neural network.

The most common architecture of RBF networks used in application is a three-layered feedforward
network. However, networks with higher number of layers can be constructed. The notation of
particular parts of RBF network is the following, see Fig.2.

In this architecture we have three layers denoted as L - input layer, Ly - hidden layer, Lo -

output layer. Each layer consists of set of its neurons. Neurons of input layer Ly = {uy,...,u,}
only transmit input signals into neurons of hidden layer. Neurons of hidden layer Ly = {hy,..., i}
are neurons of form (35). Computation of neurons of output layer Lo = {o1,...,0n} is usually

application depend. Sometimes they are of form (35) sometimes they perform only aggregation if
hidden neurons inputs

O = ijk - h]‘. (36)
J

The interconnections of layers are feed-forward only in one direction from preceding layer to con-
sequent layer. Interconnections endowed by weights are only the ones leading from hidden layer to
output layer. Weight from neuron of hidden layer h; to neuron of output layer o is denoted as
Wik € R.

4. General architecture of NFS / Wang NFS

A general view of neuro-fuzzy system is a view of fuzzy system designed in neural network fashion
to parameters of fuzzy system could by set according to learning algorithms known from neural
networks theory. Therefore architecture of neuro-fuzzy system is determined by architecture of
some type of neural network. In the area of neural networks several different architectures are
recognized. However for design purposes of neuro-fuzzy systems only architectures which enable
interpretability in form of fuzzy system can be employed.

It is natural to investigate combination of dominating architectures of neural networks with domi-
nating types of fuzzy systems. From this point of view it seems as reasonable to use feed-forward
networks because they propagate input in one direction (without cycling) similarly as fuzzy sys-
tems. When we considering type of a network there are two big groups - perceptron and radial basis
function networks. Since fuzzy sets are typically represented by bell shaped functions, it seems to
be convenient to use RBF neural networks instead of perceptrons, because RBF networks work
with bell shaped functions in a native way.

The last question regarding architecture of used RBF network is its configuration in sense of
number of layers used. It is natural to start with the simples case i.e., three-layered configurations.
It is known from application that three-layered configuration is sufficient and in fact multilaeyred
solutions can be often equivalently reformulate in three-layered fashion [10].

When we resume above paragraphs we can state that it seems to be reasonable used as underlaying
network architecture three-layered RBF neural networks, with computation of particular networks
utilizing gaussians and product operation, which will be case of Wang neuro-fuzzy system.

Wang neuro-fuzzy system is a Wang MISO fuzzy system represented by three-layered RBF neural
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network with one output neuron in the following manner, see Fig.3.

Obrézek 3: Architecture of Wang MISO neuro-fuzzy system.

First layer of the network is the standard input layer, with neurons distributing input signals into
neurons of hidden layer. In fuzzy system representation they act as singleton fuzzifiers. Neurons of
hidden layer then represents antecedens of particular rules of fuzzy system rule base. jth neuron
computes value A;(x) of jth rule. Weights connecting neurons of hidden layers with output neurons
are given (represents) values f3;, i.e., centroids of succedent of the rule. Output neurons computation
is considered according to CMs method, i.e.,

0= ZAJ'(?B) - Bj- (37)

On base of above representation we can seen RBF neural network as fuzzy system designed in
neural network fashion. Hence we can consider it as neuro-fuzzy system which has intrpreatability
of fuzzy system and learning ability of neural networks. Learning of such a systems treated in next
section.

5. Learning of neuro-fuzzy systems

Here we shortly mention general aspects of neuro-fuzzy systems learning. Since underlying network
structure of neuro-fuzzy systems there is a significant similarity with neural networks learning.
Therefore we also recognize two types of learning for neuro-fuzzy systems - structure learning and
parameters learning.

Structure learning is a harder part of learning. Within this learning number of neurons/rules of
neuro-fuzzy system is set together with rough assessment of parameters of membership functions of
fuzzy sets. There are several approaches to this type of learning depending heavily on type of confi-
guration - off-line or on-line. For off-line configurations there are used optimization methods known
from area of nonlinear multidimensional functions’ minima searching. For on-line configurations
incremental learning with dynamic adding/merging/deleting of rules is used.

Parameters learning is process of tuning of neurons parameters and network’s weights. It is usually
based on some type of gradient descent algorithm typically on back propagation (BP) algorithm.
Since aim of this paper is to present a new structure learning algorithm we will not deal with
parameters learning in more details.

6. Off-line structure learning of Wang NFS

Wang neuro-fuzzy system (WFNS) was presented in section 4, there was shown that it is given
by combination of Wang fuzzy system with RBF neural network. The combination is based on
employment of gaussian functions for representation of fuzzy sets and for representation of acti-
vation function of network’s neurons. Since gaussians employment parameters of WNFS are the
following

e number of neurons in hidden layer K,
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e parameters aj;, 3j;, for each neuron h; of hidden layer,

e weights of connections from hidden layer to output layer.
The same can be said in fuzzy system like language as

e number of rules of fuzzy system,
e parameters aj;, 3;; of fuzzy sets building antecedent A; of each rule,

e centroids building succedent of each rule.

Since here we are interested in learning aspects we will adopt neural network’s language for de-
scription of neuro-fuzzy system.

The goal of (supervised) neuro-fuzzy system’s learning, both structure learning and consequent
parameters learning, is to provide a system representing a function fs : R"™ — R™ which match
some master function f,, : R™ — R™ which is only partially known. The information about f,
is given by set of examples (training set) 7 = {z¢,t:}. Hence we are solving a task of a partially
known function approximation.

From this point of view, structure learning, if it could be reasonable, should issue in such an initial
setting of neuro-fuzzy system’s parameters to this system represents f,, given by 7 “as best as
possible”. The reason is that we require for consequent parameters learning good starting setting
of parameters to be theirs learning succesful.

The quatitazition of term of “as best as possible” is typically given by minimization of some metrics
in R™ for all points in consideration. The most often choice is the Euclidean metrics in the form

d?(a,b) = (a; —b)* + ...+ (am — bp)?, (38)
for a,b € R™.

To be our explanation clearer we will consider within the following text only the case of MISO
neuro-fuzzy system i.e., system with multiple inputs (n > 1) and only one output (m = 1). Our
considerations can be extended for general MIMO system.

The next simplification made at this time is that in equation (25) we will consider equality of «; for
particular j. That is we consider a; = a1 = aj2 = ... = a;,. With respect to this simplification
and denoting 3; as c¢; we can write for Wang NFS computation the equation

WNFSurso(x) Zc] e:np[ a]Z — Bji) ] (39)

With repspect to Euclidean metrics a task of structure learning can be reformulated as optimization
task of minimization of objective function J

T (K, 1, o CK 01, oy 0K, B, s Brn) = D (s — Gl(5))” (40)

S

with respect to J parameters. Note that we are considering MISO system hence point ¢; C R.
Equation (40) can be rewritten into optically more comfortable form omittig J parameters and
explicit expressing G as

2

jzz ts —Zc] erp [—ajz — Bji) ] . (41)

8§
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This task can be solved by some method of multivariable optimization if number K of neurons of
NFS is known in advance. Of course K can be stated a priori on base of some additional information
to T set. But usually such information is not at our disposal. Hence K has to be set only on base
of set 7, which will be discussed in the following paragraphs.

Before we state our proposal note that aim of structure learning is not necassary to obtain the
mininimal solution of (41) but some approximate (tolerance to suboptimality) solution, which is
further tuned by parameters learning algorithm.

Now our approach to K determination is based on incremental adding of neurons and partial
optimization of objective function J; of the form

Ji(e) = Z (ts —cj-exp [—a Z(ml — ﬂji)2]> . (42)

S

This is a function of parameters c;,a,3; = (Bj1,--.,8jn) but consider that we know in advance
values of ¢; and 3;, then the task is only in form of one-dimenzional minimization. For this task
there are many numerical methods. Task of minimization of (42) with respect to « is in fact non
linear least squares task, which is for gaussian not analytically solvable. To not complicate our
course, consider that we are able to solve (42) with respect to a. For example see [12] for several
methods.

In the above paragraph there was stated that we assume that we know values of ¢; and 3; in (42).
In the following sections we show how these values can be determined. We will show two possible
approaches.

Grid specification procedure: The idea of grid specification is simple. Consider set 7, =
{z|(x,t) € T}, ie, set of all x € T. Since T, is finite it can be considered as subset of car-
tesian product of n real intervals X;

T, C X=X %x...x X, (43)

Grid specification is then process of grid setting within the set X. This can be done by stating
vector r = (r1,...,ry), where r; gives the number of lines (in geometrical representation) dividing
equidistantly interval X; to r; — 1 subintervals. Instead of a precise and somewhat confusing formal
definition, consider the two dimensional case, with X; = [0,2], X5 = [0,1] and vector r = (5,3)
then grid within the space X; x X5 is displayed in Fig.4. A generalization to multidimensional case
is a straightforward.
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Obrazek 4: Grid specification for r = (5, 3).

Intersections of lines defined by vector r define set of core candidates. It will be denoted B,,) =
{B1,-..,B.,}, where cn is cardinality of the set B. In Fig. 3. core candidates are marked by circles.
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Now each core candidate B’ will be associated with its height ¢’ according to following rule. For
given B’ € Byys) its height is a value of ¢ from pair (z,t) € 7 such that d*>(B',x) is minimal with
respect to all & € T,. That is, height of given B’ is corresponding ¢ value of point @, (x,t) € T,
which is in the nearest distance to 3'. If there are multiple such points then one is randomly chosen.

The result of above process of heights specification is a set C of respective heights C(ys) =

{ci,...,cl.}.

When we summarize grid specification procedure with respect to its inputs and outputs we can
conclude the following. Inputs to procedure are set 7 of training examples and an optional para-
meter (vector) r defining density of grid specification. Output of procedure are two sets, set B,
of core candidates and set C'(,,) of candidates associated heights.

Fuzzy cluster analysis: Fuzzy clustering is an alternative approach to grid specification it will
also issue into stating of set of core candidates and set of associated heights.

There are several fuzzy clustering algorithms [13], but the best known algorithm is probably FCM
algorithm [13] so we will consider it here. Main inputs to FCM is number of clusters denoted is as
cn which need to be specified in advance.

Therefore if we specify value cn and we process FCM analysis on set 7T,, which is defined the in
the same way as for grid specification procedure, we will obtain a set of cluster candidates. This
set will represent set B, similarly as for grid specification B¢y = {B1,...,8..}.

Process of setting of heights C(;.,,) specification is the same as in the case of grid specification
procedure.

Summarization of FCM analysis with respect to inputs and outputs then yields that inputs to the
procedure are optional number cn of core candidates and set 7 of examples. OQutputs are set of
core candidates B(fcp) and set C(f.m) of associated heights.

Now we can proceed with our algorithm for number K specification and in fact with specification
of other parameters of neuro-fuzzy system.

When we have at our disposal set B and associated set C from grid specification or fuzzy cluster
procedure then in jth loop of algorithm the following exhaustive search is performed.

For each 3}, and associated height ¢}, k = 1,...,cn optimization task (42) is solved with respect
to a. Particular solution is denoted as «j;, and its stored together with value J;(a;x). After this
is done then the value aj; with minimal J;(«a;x) is chosen (we go within index &, for fixed j) and
it is denoted as «j. For this value corresponding B), and ¢}, are specified and denoted as ,8;‘ and
c¢j. Parameters o and ,8;‘ then constitutes jth neuron in hidden layer, i.e., parameters of A;, see

J
(25). Value of ¢} gives then weight of connection from jth hidden neuron to output neuron.

The last step of one loop of incremental algorithm is updating of set of examples from preceding
loop 7j—1. Updated set 7; is created as

Vs, (mS:tS) € 7; = (mS:ts - C; . Aj(ms,a;,ﬂ;)ﬂ(ms,ts) € 7}*1 (44)

where 7y is original set of examples we start structure learning with.

The whole process of neurons/rules searching is then repeated (the next loop of algorithm j = j+1)
with updated set 7; until maximal value of ¢ within 7; = {¢|(z,t) € T;} is less then € - maxz(Tp),
where € is some terminal parameter, for example € = 0.1. After algorithm terminates then value of
j gives number of neurons K.

25



Algorithmic transcription of the whole algorithm for structural learning of Wang NFS in MISO
configuration is as follows.

01 set e T = maz(To);j =0

02 specify sets B and C' according to grid specification or fuzzy clustering
03 repeat

04 j=7+1

05 for k=1 to cn do

06 solve minimization of (42) for ¢}, B}, with respect to «
07 store solution «;j, and value J;(a;)
08 end

09 choose values o, c;, B}

10 create 7; by updating of 7;_1 according to (44)
11 until maz(Tj) < T

12 number of neurons K is given as K = j

7. Conclusion

Within the paper fuzzy systems and RBF neural networks were very shortly reviewed. Further
architecture and computation of Wang neuro-fuzzy system in MISO configuration was presented.
As main result of the paper we gave new structure learning algorithm for this type of neuro-fuzzy
system.
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obor studia:
Matematicka logika

Abstrakt

Tento referat si klade za cil informovat predevsim tcastniky konference DD2000 o vybranych
zpusobech rozvijeni teorie mnozin (jakoZto teorie prvniho fddu) v neklasickych logikéch.

Uvod

Nejprve je snad tfeba upfesnit, co minim pojmem neklasické logiky; a¢ se totiz tento pojem vysvét-
luje ¢astecné sam jakozto “logiky, které nejsou klasické”, mohlo by mapiiklad dojit k diskusi (a také
k ni ¢asto dochézi) o obsahu samotného pojmu logika. Zde je jim minéna (klasickd) predikatova lo-
gika prvniho fadu, tj. axiomaticky systém s jistym jazykem a sémantikou, skytajici formalni aparat
pro matematické ivahy a predstavujici jakysi konsensus ohledné pravidel spravného usuzovani.

Neklasické logiky, jimz budeme vénovat pozornost, jsou v jistém ohledu velmi podobné logice kla-
sické: zachovavéji totiz (aZ na jisté drobné vyjimky) jazyk logiky klasické a pfedevsim chapani né-
kterych klasickych pojmu, jako je formule, axiom, odvozovaci pravidlo ¢i dukaz. Od klasické logiky
se odlisuji sémantikou, tj. volbou algebry pravdivostnich hodnot, jejiz prvky predstavuji pravdi-
vostni hodnoty atomickych formuli a v niz dale interpretujeme logické konstanty (coz jsou spojky
a kvantifikitory). PovS§imnéme si, Ze tato algebra je vidy elementem “klasického” matematického
svéta, tj. prvkem néjakého mnozinového univerza generovaného klasickou Zermelo-Fraenkelovou
teori{ mnozin (ZF).

Napftiklad vicehodnotové logiky (kterymi se budeme hlavné zabyvat a mezi néz spadd i fuzzy lo-
gika) vychézeji z toho, Ze obor pravdivostnich hodnot vyroku je néjakd mnozina ¢itajici obvykle obé
pravdivostni hodnoty klasické, a jesté néjaké dalsi. Na tuto mnozinu jsou obvykle kladeny pomérné
restriktivni pozadavky, napi. byva zpravidla svazové usporadana, pri¢emz nejmensi a nejvétsi pr-
vek odpovidaji pravé klasickym hodnotam 0 a 1. Pravdépodobné nejjednodussi je predstavovat si
linedrné usporadanou mnozinu neptilis velké mohutnosti, tj. napf. nékterou podmnozinu redlného
intervalu [0, 1].

V nésledujicich odstavcich je co moZnéd nejstruénéji nastinén forméalni systém BL (basic logic) a
nékterd jeho schematickéd rozsireni, které obvykle pouzivdm ve vlastnich vahéach. V plné §ifi je
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tento systém rozpracovan v monografii [2], z niz ¢erpam a z niZ problematiku pochopi i ti, ktefi se
vicehodnotovymi logikami nezabyvaji.

Vyrokovy fragment BL jsou tautologie (v8ech) tzv. standardnich algeber, coZ jsou struktury na
redlném jednotkovém intervalu [0, 1] s operacemi % (spojitd t-norma, tj. bindrni operace, kterd
je asociativni, komutativni, neklesajici a spliiuje 1 * x = z) a = (tzv. reziduum, které lze na
redlném intervalu definovat jako = y = maxz{z;z x ¢ < y}) a (formdlné) konstantou 0. Tyto
operace realizuji zédkladni vyrokové spojky BL, kterymi jsou binarni konjunkce & a implikace — a
konstanta 0.

Jazyk predikatového poctu je obohacen o predikatové symboly a dva kvantifikatory V a 3; pravdi-
vostni hodnota formule Yz v modelu M je infimum hodnot ¢ po dosazeni m za proménnou x pies
vSechny prvky m € M, obdobné 3 interpretujeme jako suprémum. Forméalni pravidla pro praci s
kvantifikdtory lze nalézt v [2].

Znama schematicka rozsireni BL jsou tato: Lukasiewiczova logika, kterd vznikne ze systému BL
pridanim vyrokového schématu —=—p — ¢, Godelova logika, ktera vznikne z BL pfiddnim schématu
p = p& p, a produktova logika, kterd vznikne z BL pfiddnim dvou schémat ——x — ((p& x —
v&x) = (p 2> 9) ap&(p =) =0

Komprehenze v Lukasiewiczové logice

Prvnim mné zndmym pokusem o (jistou) teorii mnozin ve vicehodnotové logice je Skolemuv ¢lanek
[6] z roku 1957, a pokracovani [5], v nichZ autor upozorhuje na moZnosti vyuzit vicehodnotovych
logik pro eliminaci mnoZinovych paradoxu typu Russelova.

Uvazujme formuli ¢(z,z1,...,2,). Schéma komprehenze pro ¢ je trvzeni
Vay,...,z,3yVz(z € y = p(z, 21, ...,2p))

Z tohoto tvrzeni plyne v klasické logice okamzité spor, a to i omezime-li se na oteviené formule
bez parametri—zvolime-li totiz za ¢(z) formuli =(z € z), dosp&jeme (po dosazeni y za ) k
formuli y € y = —(y € y). Skolem ovSem ve svém ¢lanku [7] konstruuje (v klasické logice) model
schématu komprehenze pro oteviené formule s parametry, v nichz se vSak nevyskytuji jiné spojky
nez konjunkce a disjunkce.

Povsimnéme si nyni, Ze pro uvedenou konkrétni volbu ¢ (totiz -z € z) pfinejmensim neni zjevné, Ze
je systém sporny, nahradime-li klasickou logiku naptiklad tfihodnotovou Lukasiewiczovou logikou—
sta¢l uvazovat hodnotu formule y € y pro hledané y jako 1/2. V tomto systému ovSem pocho-
pitelné zahy opét nalezneme formule, pro néz komprehenze vede ke sporu. Clanek [6] podava
dukaz bezespornosti komprehenze pro oteviené formule s parametry nad nekone¢néhodnotovou
Lukasiewiczovou logikou. Prace [5] konstruuje spofetny model schématu komprehenze pro ote-
viené formule s parametry v logice s negaci interpretovanou jako 1 — z a konjunkei a disjunkei
interpretovanou jako minimum a maximum z obou argumentu (pfi¢em? jiné nez uvedené spojky
se ve formuli ¢ nepiipoustéji). O tomto modelu se dale v ¢lanku prokazuje, Ze je extenziondlni
(tj. pro kazdé jeho dva prvky x a y, pokud pro kazdé u plati e(u, z) = e(u,y), pak také pro kazdé
v plati e(z,v) = e(y,v), kde € je funkce interpretujici v modelu predikat naleZeni €).

Booleovska univerza

Booleovské univerzum je jistym zpusobem zkonstruovand tiida v ramci univerza teorie mnozin
(napf. klasické ZF). V Booleovském univerzu (nad tGplnou Booleovskou algebrou v klasické ZFC)
“plati” (pfi vhodné definici platnosti) vSechny axiomy a odvozovaci pravidla ZFC, tato t¥ida je
tedy “modelem” ZFC (jeji existence tedy prokazuje konzistenci ZFC, bohuZel pouze za pFedpokladu
konzistence opét ZFC, v niZz pracujeme).
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Konstrukce probiha takto: zvolme libovolnou tplnou Booleovu algebru B. Transfinitni indukei
definujme mnoziny
VP =0

VB, ={f:Dom(f) C VE&Rng(f) C B}

pro izolované ordindlni ¢isla «; pro limitni ordindlni ¢isla A polozme

ve=Uve
aEN
Nakonec
vEB=J VP
acOn

Kazdé dvojici prvki x,y € VP pitadme dva prvky Booleovy algebry B, které ozna¢me ||z € y|| a
||z = y|| (Ize chapat jako pravdivostni stupné p¥islusnosti z do y, p¥ipadné rovnosti z a y). Tyto
funkce definujme indukei takto:

lzeyll= \/ @@ Allg=a2l)

g€Dom(y)
le=yll= A (—z@Vligeyhr N\ (=yla) Allg € zll)
geDom(z) geDom(y)
Indukei dle slozitosti formule piifadme nyni kazdé formuli p(z1, ..., z,) funkci (zobrazujici (V 5)"
do B) takto:
e, .o mn)l] = =[le(er, - zn)l|

||<p&1/1(m1,,xn)|| = ||(10(1'1,,1'n)|| A ||1/1(331,,93n)||

1Fzp(z, 21, z)ll =\ ez, @)l
zeVE
Pfipadné lze prokézat i induktivni kroky pro ostatni (odvozené) logické spojky a kvantifikdtor
na jedné strané a prislusné Booleovské operace na strané druhé, nebo lze kazdou formuli nejprve
vyjadrit pomoci pouze vyse uvedenych spojek a kvantifikatoru.

Turzeni: Je-li p uzaviend dokazatelnd formule jazyka ZF, pak lze v ZF prokazat || = 1||.

Aplikace konstrukce Booleovskych univerz

Princip konstrukce Booleovského univerza lze vyuzit ke konstrukci “kanonického modelu” pro teo-
rie mnozin (jakozto teorie 1. fddu) nad neklasickymi logikami, pop¥. k prokazovani relativni (vuci
ZF) bezespornosti axiomatickych systému teorii mnozin; staci, kdyz v konstrukeci nahradime (apl-
nou) Booleovu algebru (Gplnou) algebrou pravdivostnich hodnot pfislusné logiky (pochopitelné pak
musime pFizpusobit i pojmy typu “zékladni spojka” atd.). Prokazovani relativni bezespornosti m4
pochopitelné smysl pouze v pripadé, kdy uvazovany systém obsahuje v jazyce nebo v axiomatice
prvky nevyskytujici se v klasické ZF; jinak, jelikoz neklasické logiky jsou formalné slabsi nez logika
klasicka, je relativni bezespornost ziejma.

Tak napiiklad v ¢lanku [8] je jako vychozi algebra vyuZzita standardni algebra pro Godelovu logiku
na intervalu [0, 1]; axiomy, které se zde uvazuji, jsou extenzionalita, €-indukce, vydéleni, kolekce,
dvojice, sjednoceni, potence, nekonec¢no, axiom zavislého vybéru a axiom existence nosice, ktery
k4

VeIzVu(u € 2 = =~ (u € x))
(nosi¢ mnoziny x je tedy (ostrd) mnozina, do niZ patii pravé viechny mnoziny, které v nenulovém
stupni patii do x). Posledné jmenovany axiom umoziuje konstrukei tfidy S tzv. dédiéné stabilnich
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mnozin, kterd zadava interpretaci klasické ZF v mnozinovém univerzu generovaném vyse uvedenym
axiomatickym systémem.

Tento vysledek byl puvodné uverejnén v ¢lanku [3] pro logiku intuicionistickou, a pfevzat v ¢lanku
[9], navazujicim na [8]. Préce [3] a nékolik jinych ¢lanku, publikovanych prevazné v sedmdeséatych
letech (viz [1]) a rozvijejicich teorie dané Zermelo-Fraenkelovymi axiomy nad intuicionistickou
logikou (INT), je z hlediska vicehodnotovych logik je podstatna, protoZe obohacenim axiomatického
systému (vyrokové) intuicionistické logiky o jediny axiom ¢ — V1) — p vznikne (vyrokova) logika
Godelova, jedno z moznych schematickych rozsifeni BL. Proto jsou tyto vysledky velmi zajimavé;
ukazuje se napiiklad, Ze axiom regularity (spolu s axiomem vydéleni a existence prazdné mnoziny)
implikuje princip vylouceného tietiho (¢V - pro libovolnou sentenci ¢), ktery spolu s INT dava jiz
logiku klasickou, a tento vysledek se tedy pochopitelné pienasi i do libovolného forméalné silnéjsiho
systému. Axiom regularity tedy nelze v axiomatice pouZit.

Konstrukci obdobnou konstrukci Booleovského univerza lze provést i uvniti neklasického mnozino-
vého univerza, oviem aZ po zkonstruovéani prislugné algebry pravdivostnich hodnot (napft. néjaké
standardni algebry pro fuzzy logiku apod.). V ¢lanku [9] je v rdmci teorii generovaného mnoZino-
vého univerza V provedena konstrukce jiz zminéné t¥idy S jakoZto interpretace klasické ZF, v ni
jsou pak ovéfeny existence a vlastnosti klasickych pojmi, jako jsou redlnd ¢isla, a uvnitt tiidy S
je pak provedena konstrukce t¥idy V%1 analogicka konstrukci Booleovského univerza, nad stan-
dardni Godelovou algebrou [0,1]. O tomto univerzu se prokazuje, %e je “izomorfni” s vychozim
univerzem, v némz se pracuje. K tomu je tfeba mj. sestrojit uvniti V néjakou strukturu reflektujici
strukturu pravdivostnich hodnot pouzité logiky (v tomto p¥ipadé Godelovy). Touto strukturou je
potencéni mnoZina mnoZiny 1; patii do ni pravé vsechny podmnoziny mnoziny 1 = {0}, a to jsou
pravé vSechny mnoziny obsahujici (pouze) 0 v jistém stupni (napf. ve stupni 0.8).

Jinou variantou vyuZiti konstrukce Booleovského univerza lze najit v ¢lanku [4]; a¢ to neni na prvni
pohled patrno, pracuje se zde (jak ovéfil Petr Hajek) se standardni algebrou danou Lukasiewiczovou
t-normou na intervalu [0, 1], obohacenou o operator A (jehoz sémantika vypada takto: A(z) =1
pro z = 1, jinak A(z) = 0). Tohoto operétoru je vyuZzito pfedevsim k definici rovnosti (ptresnéji
funkce reprezentujici predikat rovnosti v kanonickém modelu), kterd vypada takto:

le=yll=A A (-z@Vigeylhrr A (-yl@)Allg € zl))

geDom(x) geDom(y)

Pfislugné forma axiomu extenzionality je potom z = y = A(z C y)&A(y C x); rovnost je tedy
predikat “ostry”, nabyvajici (ve standardnim modelu) pouze hodnot 0 a 1. V takto vystavéném
“modelu” lze ovérit, kromé zminéného znéni axiomu extenzionality mj. platnost axiomu prazdné
mnoziny, dvojice, sjednoceni, vydéleni, kolekce a nekone¢na (coZ je obsahem zminéné prace).

Ukol, na némz pracuji, je pfeneseni této konstrukee do (ponékud obecnéjsiho) prostiedi predikatové
BL s operatorem A. Dalsi axiomy, které uvazujeme a které lze konzistentné pridat, jsou axiom
existence nosife (formulace V3y(Crisp(y)&x C y), kde Crisp(y) = Vz(A(z € y) V A(=z € y)), a
axiom existence ostré potenc¢ni mnoziny, ktery pravi

VeIzVu(u € 2 = A(u C )

Tento axiom v jednom konkrétnim piipadé tvrdi, Ze existuje ostrd (crisp) potenéni mnozina mno-
ziny 1 alias {0}. Jak lze snadno ovéfit, tato mnozina opét obsahuje pravé vSechny mnoziny obsahu-
jici (pouze) 0 v jistém (pravdivostnim) stupni. Na této mnoziné lze vhodnym zpusobem definovat
vSechny operace BL-algeber a prokazat

Tvrzeni: Pro libovolné axiomatické rozsireni systému BLA lze z axiomu tohoto rozsifeni, vyse
uvedenych mnozinovych axiomu a axiomu rovnosti prokazat, ze P(1) je BL-algebra, a 1ze pfedpo-
kladat, Ze plati i viechny axiomy odpovidajici tomuto rozsifeni (a¢ tuto hypotézu nemam ovérenou).
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Takto sestavenou mnozinu axiomu (o niz z vyse uvedené konstrukce plyne, Ze je konzistentni, a také
ze predikdt € ma ne-ostrou interpretaci) lze jiz rozvijet jako formdlni teorii. Obvykle je potieba
nejprve vytvorit technicky aparat, jako jsou ordinalni ¢isla a indukce. Dalsim obvyklym vysledkem
je interpretace klasické ZF v neklasické teorii, tak jak se tomu dé&je v pracech [3], [9]. Je tieba
ovérit, zda lze tuto konstrukci zopakovat pro BLA.
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Abstrakt

We present a one parallel version of learning algorithm that is based on Kolmogorov theo-
rem concerning composition of n-dimensional continuous function from one-dimensional conti-
nuous functions. In our work we follow the approach by Sprecher who proved the most general
version of the theorem as well as proposed numerical implementation details. The feasible lear-
ning algorithm is presented and its performance demonstrated, together with the discussion
of further possible improvements.

1. Introduction

In 1957 Kolmogorov [5] has proven a theorem stating that any continuous function of n variables can
be exactly represented by superpositions and sums of continuous functions of only one variable.
The first, who came with the idea to make use of this result in the neural networks area was
Hecht-Nielsen [2]. From the resemblance of the superposition formula and the form of function
realized by neural network he derived that any continuous function on a n-dimensional cube can
be exactly represented by a certain neural network. It was objected by Girosi and Poggio [1] that
such a network requires units computing quite complicated functions, depending on the function
it represents, and without any known way to train the network on a particular data.

Kurkova [3] has shown that it is possible to modify the original construction for the case of appro-
ximation of functions. Thus, one can use a perceptron network with two hidden layers containing
a larger number of units with standard sigmoids to approximate any continuous function with
arbitrary precision. This result was used as an argument for the universal approximation property
for two-hidden-layer perceptrons. In the meantime several stronger universal approximation results
has appeared, such as [6] stating that perceptrons with one hidden layer and surprisingly general
activation functions are universal approximators.

In the following we review the relevant results and show how a parallel learning algorithm can be
derived based on Sprecher improved version of the proof of Kolmogorov’s theorem. We focus on

32



implementation details of the algorithm, identify the problems, and show how they can be handled.
Simple illustrating examples are given. Proposition of parallel versions of algoritmus finish this
review.

2. Kolmogorov theorem

The original Kolmogorov result shows that every continuous function defined on n-dimensional
unit cube can be represented by superpositions and sums of one-dimensional continuous functions.

Theorem 1 (Kolmogorov) For each integer n > 2 there are n(2n+1) continuous monotonically
increasing functions ,, with the following property: For every real-valued continuous function
f:I™ = R there are continuous functions ¢4 such that

f@y,...,zn) = Z¢q [Zﬂ’pq(%})] . (45)
q=0 p=1

Further improvements by Sprecher provide a form that is more suitable for computational algori-
thm. Namely, the set of functions ), is replaced by shifts of a fixed function ¢ which is moreover
independent on a dimension. The overall quite complicated structure is further simplified by sui-
table parameterizations and making use of constants such as A, 3, etc.

Theorem 2 (Sprecher) Let {\;} be a sequence of positive integrally independent numbers. There
erists a continuous monotonically increasing function v : Rt — RT having the following property:
For every real-valued continuous function f : I™ — R with n > 2 there are continuous functions
¢ and a constant B such that:

E(xq) =D Apt(y + 4B) (46)
Fx) =D g0 &(xy) (47)

Another result important for computational realization is due to Kurkova who has shown that
both inner and outer functions ¢ and ¢ can be approximated by staircase-like functions with
arbitrary precision. Therefore, standard perceptron networks with sigmoidal activation functions
can, in principle, be used in this approach. The second theorem of hers provides the estimate of
units needed for approximation w.r.t. the given precision and the modulus of continuity of the
approximated function.

Theorem 3 (Kurkova) Letn € N withn > 2, 0 : R — T be a sigmoidal function, f € C(I"),
and € be a positive real number. Then there exists k € N and functions ¢;, ¥p; € S(0o) such that:

k n
[f(@r, - mn) = Y & (Z%m) |<e (48)
i=1 p=1

for every (z1,...,2,) € I™.

Theorem 4 (Karkovd) Letn € N withn > 2, 0 : R — Z be a sigmoidal function, f € C(Z"),
and € be a positive real number. Then for every m € N such that m > 2n+1 andn/(m —n)+v <
e/|lfll and we(l/m) < v(m — n)/(2m — 3n) for some positive real v, f can be approzimated with
an accuracy € by a perceptron type network with two hidden layers, containing nm(m + 1) units
in the first hidden layer and m?(m + 1)™ units in the second one, with an activation function o.

33



3. Algorithm proposal

Sprecher sketched an algorithm based on Theorem 2 that also takes into account Theorem 4 by
Kurkova. Here we present our modified and improved version that addresses crucial computational
issues.

The core of the algorithm consists of four steps: in each iteration r we first construct the mesh
Q™ of rational points dj dissecting the unit cube (cf. (50)). The functions & (see (54)) are defined
by means of these points. The outer functions ¢ (see 52)) make use of sigmoidal steps ¢ defined
in (53). In the end, the r-th approximation f;, of original function f is constructed according to (57)
using ¢g. The terms (bg are computed by means of previous approximation errors e, (see (56)).

3.1. The support set Q

Take integers m > 2n and v > m + 2 where n is the input dimension. Consider a set of rati-
onal numbers Q = {dk = Ele isy %05 € {0,1,...,y— 1}k € N} Elements of Q are used as
coordinates of n-dimensional mesh

Qn:{dk:(dkl,...,dkn);dkjEQ,jzl,...,n}. (49)

Note that the number £ determines the precision of the dissection.

For ¢ = 0,1,...,m we construct numbers dj € Q" whose coordinates are determined by the
expression
k
di, =dip+q) 7 (50)
s=1

Obviously dzp € Qforp=1,2,...,n. We will make use of dj in the definition of functions &.

3.2. The inner function v

The function ¢ : Q@ — 7 is then defined with the help of several additional definitions. For the
convenience, we follow [11] in our notation.

k
W(dy) = 3 a2 ey Pl me), (51)
s=1
n®—1
p(z) = 1

ms = (is) (1 + z_:[zl] Cea [il_1]> )
=1
Z~s =i, — (7 - 2)<Zs>
Let [i1] = (i1) = 1 and for s > 2 let [i5] and (i) be defined as:

liy] = 0 for i,=0,1,...,v—3
s 1 for is=v—-2,v—-1

g [0 B =012
/T 1 for is=v—1

Figure 3.2 illustrates the values of ¥ for £k =1,2,3,4;n = 2;y = 6.
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Obréazek 5: Values of ¢(dy,) for various k.

3.3. The outer functions ¢

The functions ¢, in equation (47) are constructed iteratively as functions ¢,(y,) =
lim, o0 Z;Zl #}(y,). Each function ¢} (y,) is determined by e; ; at points from the set Q™. The
construction is described in the following.

For ¢q=0,1,...,mand j =1,...,r we compute:
: 1
b o€(xe) = = %jej_l(dk) B(d];€(x,)), (52)
k
where d;, € Q.

The real-valued function 6(dy; &(x,)) defined for a fixed point dj € Q™. The definition is based on
a given sigmoidal function o:

6(df;y,) = (" (y, —€(d}) +1) (53)
o (7" (y, = €(f) = (v = 2)br)

where y, € R, and by, is a real number defined as follows:

by = i 7—P<S>2njxp.
p=1

s=k+1

The functions £(d}) are expressed by equation

§(di) =Y \u(dr) (54)

where t(df) are from (51), and coefficients A, are defined as follows.

Let Ay =1 and for p > 1 let

o0
Ay = Z 7*(1)71)0(8) (55)
s=1

Figure 3.3 shows values of {(dy) for k = 2.
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Obrazek 7: Approximation of sin(6.28z) - sin(6.28y) for k = 1, 2.

3.4. Iteration step

Let f is a known continuous function, eg = f. The r-th approximation error function e, to f is
computed iteratively for r =1,2,...

er(x) = e 1(x) — Y ¢7 0 &(xy), (56)

where x € 7", x, = (x1 + ¢B,...,zn + ¢B), and S =y(y—1)"L.

The r-th approximation f, to f is then given by:

Fr(x) =)0 ¢l og(x,). (57)

j:l q=0

It was shown in [11] that f, — f for r — oo.

4. Ways of parallelization
Neural net like structure of proposed algoritmus provides massive parallelization. We can delegate

nodes to compute even such small pieces as dy. Unfortunately this leads to exponentially increasing
number of nodes, and communication between nodes. For such reasons this type of parallelization
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is not suitable for cluster’s computing. We must find new, better level. Feasible candidate can be
parallel computation of the members of the sum 57.

In each iteration step r we use 2n+ 1 nodes for computing of ¢, from inputs r, f,. The disadvantage
of this dividing is the fact, that nodes can’t share all dj. But finally it leads to faster version of
learning algorithm we have tried.

In our implementation we use the cluster of workstations Joyce and PVM environment. Approxi-
mated functions was two dimensional, and we exhausted five clusters nodes.
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Abstrakt

Enthusiastic for the concept of combining various modern artificial intelligence methods
— namely neural networks, genetic algorithms and fuzzy logic controllers — embodied by
soft computing area, we are developing a unified software platform, called Bang2. The system
serves as a library for many artificial intelligence methods and allows for easy creation of such
combinations, and possibly their semiautomated generation or even evolution. It also ensures
their deployment through the computer network and parallel processing. Inspired by software
agents paradigm we have designed Bang2 as a community of cooperating autonomous software
agents.

This paper shows the ideas behind Bang2, together with the brief description of how the
system works.

1. Introduction

Since the practical use of artificial life methods like neural networks, genetic algorithms as well
as their simple combinations (genetics learning neural net, ...) seem to be widely explored ([1]),
we have turned our effort to more complex combinations, which are completely out of focus of
scientific community, probably because of the lack of a unified software platform that would allow
for experiments with hybrid models.

Design of Bang2 pursues two goals. At first to serve as a library for many artificial intelligence
methods and thus help developers to design their own applications. Moreover the unified interface
allows to switch easily e.g. between several learning methods and to choose the best combination for
application design. Parallel processing is the expected and useful advance here as well as a rapid and
easy design. Second goal of Bang2 design involves creation of more complex models, semiautomated
models generation and even evolution of models. Evolution of more complex schemata, such as
neural network with weights trained by back-propagation and topology trained by genetic algorithm
trained by another genetic algorithm and probabilities of genetic operators trained by fuzzy logic
controller will constitute the future power of Bang2.
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For distributed and relatively complex system like Bang2 it will be favorable to make it modular and
to prefer the local decision making against global intelligence, and therefore to take advance of agent
technology. Employing software agents also simplifies the implementation of new AI components
(unified interface) and addition of them without recompiling and restarting.

Next sections give you a glimpse to the depth of the Bang2. Section 2 describes the overall archi-
tecture. Section 3 give you a look-in to the inwards of the environment and the agent. Section 4
will be about agent and agent languages and finally about Bang2 language. Section 5 describes
the agent’s life cycle and section 6 contains description of the special agents in Bang2. Section 7
outlines our future intentions.

2. Overview of Bang?2

Bang2 consists of a population of sundry agents living in the Environment. The Environment pro-
vides the necessary support for Bang2’s run such as creation of agents, giving them information
necessary to survive and be able to communicate (e.g. where are other agents), distribution pro-
cesses to their computational nodes (parallelism, load balancing). It also delivers messages and
transfers data.

Agents are the basic building blocks of Bang2. Each agent provides and requires services (e.g.
statistic agent provides statistic preprocessing of data and requires data to process). Agents com-
municate via special communication language encoded in XML. There are several special agents
necessary for Bang2’s run (like the Yellow Pages agent maintains information about all living agents
and about the services they provide). Other (not special) agents do the real work (read data from
files, represent neural net, learn neural net, provide numeric calculation for other agents etc.)

Before any further insight to Bang2 the term agent should be approached. Exact definition of agent
doesn’t exist, every group using agents provides its own definition. For introduction to software
agents see [3]. Generally software agent is a computer program, which is autonomous, reacts to its
environment (e.g. to user’s commands or messages from other agents) and when nothing interesting
happens it doesn’t wait for the next event as regular program, but does its own work. It usually
follows its own goal. It is adaptive and intelligent in sense that it is able to obtain information
it needs by asking somebody (other agent, a human, a server). Moreover it is usually mobile,
persistent, and sometimes tries to simulate human character.

Intelligence and mobility of building blocks is one of the essentials and we hope advantages of
Bang2. We would like to construct among others RBF net, which looks around if there is any
other agent able to learn RBF net’s weights or genetic algorithm which sets the suitable genetic
operators according the structure of the population to learn.

3. Architecture

As we have said before, we can divide the Bang2 system into two fundamental parts — the envi-
ronment and the agents. The environment serves as a living space for all the agents, giving them
resources they need and serves as a communication layer. These are the main aspects we want to
keep on mind when designing and programming the environment:

Abstraction — hiding of raw hardware and OS to our agents and providing most of services and
resources in friendly and comfortable manner.

Transparency — hiding as much implementation details as possible and suitable while still
allowing agents to explicitly request such informations. The first task the transparency comes
to our mind is communication — the goal is to make the communication being simple for
the agent programmer and exactly the same for local and remote case while still exploiting
all the advantages of the local one.
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char* Sync( Module* agent, char* message )

void Async( Module* agent, char® message )

Request® Dsync( Request* req, Module* agent, char* message )

CData* BinSync( Module* agent, int session, int funcnum, CData* data )

Request® BinDsync( Request* req, Module* agent, int session, int funcnum, CData* data )

UFastNX
Tabulka 1: Agent communication functions
Medium XML strings CData* function parameters
Call Sync BinSync UFastNX (hidden by macros)
Generality High Agents negotiate at run-time Hardwired by programmer
Speed Normal Fast The fastest

Tabulka 2: Communication functions properties

Scalability — hope to design and write program with no built-in limits of amount of usable
resources. We want our program to be run on computers of very different performance: from
small laptops for agents programmers to huge clusters for real number crushing.

Adaptability — ability to run agent schemas developed on small systems on huge ones and vice
versa. Preferably with only small need of manual interference.

Helper functions — being friendly to agent programmer. Insert a lot of functionality to agent
base class and provide a code generators.

3.1. Communication layer

What we call communication layer is mainly the environment and a small code in agent base class.
Purpose of it is to allow communication between agents. What we expect from it:

Simplicity — we want the communication to be simple from the agent programmer’s point of
view, something like a single function call.

Location transparency — there should be no difference for the agent programmer between com-
munication to local and remote agent.

Synchronicity — we want to provide an easy way how to select synchronous, asynchronous or
deferred synchronous mode of operation for any single communication act.

Efficiency — we want to be efficient both in passing XML strings and binary data.

As the best abstraction for the agent programmer we have chosen the model of object method
invocation. From its advantages let us mention the facts that programmers are more familiar with
concept of function calling then message sending and that the model of object method invocation
simplifies the trivial but much common cases while keeping the way to the model of message
passing open and easy. The communication functions visible to agent programmer can be found
in table 1 and their characteristics in table 2. Sync is a blocking call of the given agent returning
its answer, Async is non-blocking call discarding answer and Dsync is non-blocking call storing
answer at negotiated place. BinSync and BinDsync are same as Sync and Dsync but the exchange
binary data instead of XML strings. UFastNX is a common name for set of functions with number
of different parameters of basic types usually used for proprietary interfaces.

3.2. Agents

All agents in Bang2 are regular C++ classes derived from base class Agent which provide common
services and connection to environment (Fig. 8). Each agent behavior is mainly determined by
its ProcessMsg functions which serves as main message handler. The ProcessMsg function parses
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Obrazek 8: Agent inwards

TRIGGER1( request_setfriend, id )
{

SETAGENT( friend, id );

0K;
}

TRIGGERO( request_pingfriend )
{
return Sync( friend,
"<request><ping/></request>" );

Obrazek 9: Triggers code

the given message, runs user defined triggers via RunTriggers function and, if none is found, the
DefaultBehavior function is called. The DefaultBehavior function provides standard processing
of common messages. Agent programmer can either override ProcessMsg function on his own or
(preferably) write trigger functions for messages he want to process (Fig. 9). Triggers are functions
with specified XML tags and attributes. RunTriggers function calls a matching trigger function
for a received XML message and fills up the variables corresponding to specified XML attributes
with the values (see 4).

Magic agent pointer is in fact an association of a regular pointer to Agent object with a string
containing its stringified handle registered to the Agent class, so DefaultBehavior function can
automatically adjust the pointer and the handle according to information emitted by Black Pages.

Finally inner state is a general name for values of relevant member variables determining the
mode of agent operation and its learned knowledge. The control unit is its counterpart — program
code manipulation with the inner state and performing agent behavior, it can be placed in all
ProcessMsg/ProcessFast functions or triggers.

4. Communication language

Consider a simple example that iterates various stages in a design of an agent communication.
Let’s have a neural net. It looks around for a learning agent, negotiates with other agents if they
are able to learn it, are free (do not learn any other agent already) and negotiates format of data
to transfer. Then these two agents connect together and exchange data (neural nets weights and
error). We need to:

e specify message headers. Should be human readable.
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Special messages — only Yellow Pages understands them:

<broadcast><halt/></broadcast>
<inform><created myid="!000000000001" name="Lucy"
type="Neural Net.MLP"/></inform>

Reply from Yellow Pages:
<ok>Agent Lucy, id=!000000000001, type=Neural Net.MLP created</ok>
All agents understand this message:

<request><ping/></request>

Obrazek 10: Example of Bang2 language for agent negotiation

e language for agent messages (negotiation, control sequences). Should be human readable,
declarative.

e language for data transfer. Should be able to transfer complex data structures through
simple byte stream.

There are several languages for these purposes. ACL ([4]) and KQML ([2] — widely used, de facto
standard) define (among others) format of message headers and communication protocols. They
are lisp-based.

KIF (KQML group — [5]), ACL-Lisp (ACL group — [4]) are languages for data transfer. They
both came out of predicate logic and both are lisp-based, enriched with keywords for predicates,
cycles etc. XSIL [8] and PMML [7] are XML-based languages designed for transfer of complex data
structures through the simple byte stream.

Messages in Bang2 system are syntactically XML strings. Headers are not necessary, because the
inner representation of messages (method invocation), so the sender and receiver are known. First
XML tag defines the type of the message (similar to message type defined in an ACL header).
Available message types are: request, inform, query, ok (reply, no error), ugh (reply, an error
occurs).

The rest of the message (everything between outermost tags) is the content. It contains commands
(type request), information provisions, etc. Some of them are understandable to all agents, others
are specific to one agent or a group of agents.

There are two ways how to transfer data:

e As a XML string — human readable, but lack performance (the lack of performance is
not fatal in agents’ negotiation stage (as above), but is a great disadvantage when they’re
transferring data).

e As a binary — much quicker, but receiver have to be able to decode it.

Generally in Bang2 the XML way of data transfer is implicit and the binary way is possible after
the agents make an agreement about the format of transferred data.

5. Life cycle

Now we look at the agent life cycle and focus on what the agent really is, how is it brought to life,
what actions can it perform during its life and finally how it dies.
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<request><getvector row="45"/></request>
<request><getvector/></request>
<ok><data separator=",">Here are binary data</data></ok>

<query><bin><request><getvector/></request></bin></query>
<ok session="5" funcnum="1"/>

Then the communication is completely binary, realized with function calls.

BinSync(...)

Obrazek 11: Example of Bang2 language for data transfer

Agent code is stored in form of shared library binaries prepared for loading on demand. Agent
memories and initial states are stored and retrieved via White Pages which serve as a database
for agent inner states and object repository. White Pages also provide a search across all possible
agent service. Wanting to create an agent, one can send a message to a Launcher agent to create a
new agent of specified type. The first thing a newly created agent does is receiving the request init
message. The agent can do all initializations here and should also send an inform created message
to Yellow Pages — the database of all living agents. Yellow Pages in turn gives a human friendly
name to agent and store information about services it provides. When an agent needs to find some
other, it can use Yellow Pages and query an information.

When an agent learned anything worth, it can store it into the White Pages in order to make
it accessible by all future incarnations of the same agent type. Of course agents can retrieve
information they stored to White Pages. And finally as all of us, even our agents die. They cooperate
with Black Pages to let the others know about it to avoid call of non-existing agents code.

6. Agents

In this section we will describe the most important special agents: Black Pages, Launcher, Yellow
Pages, White Pages and then give you an example of an Al agent — an agent representing generic
genetic algorithm.

6.1. Black Pages

Black Pages is an agent responsible for correct processing of agent death. The need of Black Pages
have arisen from our thoughts upon agents destruction. If an agent dies while others keep a pointer
to it and may call it, we must to find a way of signaling the agents death to other to avoid of
calling destroyed agent code. We found two different ways: First, at the moment of agent death
do a broadcast telling this fact to all. Second: leave some residual object (we call it zombie) in the
place of dead agent and let it answer an error message for all requests form others. The first is
slow, the second memory inefficient. We decided to combine the two in the following manner: If
an agent dies, it leaves zombie and signals its death to Black Pages. Black Pages in turn in some
time intervals do a broadcast with all dead agents list and finally destroy the zombies. By tuning
the time interval and dead list maximal length we can easily change the speed/used memory ratio.
In fact Black Pages cannot destroy any agent or zombie directly since the only agent with legal
connection to these environment function is Launcher, so Black Pages calls it for the real dirty
work. Similarly Black Pages has not its own timer functions but uses the Cron agent for them and
uses Yellow Pages for broadcasting. The way agent dying is implemented has much in common
with agent moving, upgrading and cloning, so Black Pages is used also in these cases. Also for
the messages broadcasted by the Black Pages is provided a default behavior which automatically
adjusts the magic agent pointers. Magic agent pointer is something as a regular agent pointer but
registered to be automatically updated.
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6.2. Launcher

Launcher is an agent providing special environment (more exactly said airport) functionality in
agent-like manner. It name comes from it main service — launching new agents into life. It also
can destroy them or halt the whole airport. For the tight connection between Launcher agent and
the environment’s airport, there must be an one to one correspondence between them.

6.3. Yellow Pages

Yellow Pages maintains information about all agent currently existing in the Environment —
that means agents that are already invoked by a Launcher. In the opposite White Pages contains
information about all agent type, which can be invoked. Yellow Pages knows about each agent its

e name — human comprehensible name, e.g. lucy, david, alice, etc. Is unique among all agent
in Yellow Pages’ database,

e id — 12 hexadecimal digits, encoding some internal information, e.g. on which computer the
agent resides, etc., unique inside the Yellow Page s’s database,

e type — specify a function of special agent or a (Al or other) functionality provided by an
agent — e.g. launcher, console, MLP (multi layer perceptron), FLC (fuzzy logic controller),
etc.

e connections to other agents. To which agents is this agent connected. And character of the
connection (input/output, learning, error function, some auxiliary agent — provides complex
numeric calculations, conversion between something, etc.)

Each agent immediately after creation sends to Yellow Pages information about its name, id and
type. Yellow Pages is then able to answer arbitrary queries about name, id and type: e.g. translates
between names and ids — serves as a name server, or returns id (or names) of all agents of specified
type (and thus able to provide specified function), broadcasts to all agents or to agents of specified
type. It is also gathering information about connections between agents and is able to answer
queries about connections.

6.4. White Pages

White Pages maintains information about all agent types. It is partially unimplemented so carefully:
it contains information about the name of the agent type (same as the type of agent in the Yellow
Pages’ database). Then for each agent it contains information about structure of the type (it will
be used when transferring data) and moreover contains information about configurations of agents
(agent persistence).

6.5. Genetix

The goal is to create as generic and universal genetic algorithm engine as possible and even little
more. For this reason the GA of our has neither the fitness function or genetic operators hardwired
into it but rather uses external agents as a plug-ins for these functionalities. Now Genetix (how our
genetic algorithm agent is called) exploits the outer agents for fitness function, genetic operators,
selection method and genetic operators rates tuning (Fig. 12). The Genetix is able to let the genetic
operators, selection method and genetic operators rates tuning be set in advance from the client
or anyone else, let them be set on the actual teach request or if any or all of them are not set when
really needed look for the suitable agents on its own via Yellow Pages or White Pages. So when
for example neural network wants to be taught it can simply ask Genetix to teach its weights and
the Genetix will in turn look up the genetic operator package for floating point numbers vectors
and a basic selection method — roulette wheel. When we want to use Genetix for anything else,
we only need a fitness function evaluating agent — that is definition of a problem — and a genetic
operators package — that is a way of manipulation with genoms or in other words a definition of
how to get from a set of problem solution candidates to candidates modified in some way.
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Obrazek 13: Task parallelization

7. Conclusion

For now, the design and implementation of the environment is complete. Agent class as a base class
for all agents is ready to use and provides a set of useful services while still getting new features.
Inter-agent communication language is near to become stable. So for now, we are to create a
set of agents of different purpose and behavior to be able to start designing and experimenting
with adding real agentness to the system. We have a simple script called GenAgent to help agent
programmers by generating a empty skeleton of new agent class. Actually the work on the agents
has started, there are going to be GA and RBF agents in near future.

For experimenting on agent schemes, we need agents of various types. We want to try mirrors,
parallel execution, automatic scheme generating and evolving. Also concept of an gent as the
other agent’s brain by means of decisions delegating seems to be promising. Another thing is
the design of load balancing agent able to adapt to changing load of host computers and to
changing communication/computing ratio. To make interaction with human more comfortable we
want to create a user-friendly graphical user interface. Preferably in way allowing easy swap to non-
graphical representation. And finally we think about some form of inter Bang2-sites communication.

In the following we discuss some of these directions in more details.
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7.1. Task parallelization

There are two ways of parallelization: by adding ability to parallelize its work to a computation
agent or by creating generic parallelization agent able to manage non-parallel agent schemes. Both
have their good and weak sides, but here is no reason not to implement both and let the user or agent
programmer to choose. Consider an example of a genetic algorithm. It can explicitly parallelize by
cloning fitness function agent and letting the population being fitnessed simultaneously. Or on the
other hand, the genetic algorithm can use only one fitness function agent, but be cloned together
with it and share the best genoms with its siblings via a special purpose genetic operator. We can
see this in figure 13, where agents of Camera and Canvas are used to automatize the subscheme-
cloning. Camera looks over the scheme we want to replicate and produces its description. Canvas
receives such description and creates the scheme from new agents. You can imagine cases where
each of the above approaches is better then the other, so it make sense to defer this decision till
the real task is considered.

7.2. Agents scheme evolving

When thinking about implementing the task parallelization, we found very useful to have a way
of encoding scheme descriptions in way understandable by regular agents. Namely we think about
some kind o XML description. This leads to idea of agents not only creating and reading it, but also
manipulating with it. All we need to be able to evolve agent schemes by generic genetic algorithm
is to create a suitable genetic operator package. You may ask, what will be the fitness function for
such genoms. The answer is simple: the part of generic task parallelization infrastructure (namely
the Canvas, see fig. 14). For genetic evolving of schemes we can use the Canvas for testing newly
modified schemes. In fact the only thing we want to add to be able from task parallelization
advance to scheme evolving is the actual scheme genetic operator package. I find this a nice proof
of reusability and good design of Bang2.

7.3. Agent as a brain of other agent

As it is now, the agent has some autonomous - or intelligent - behaviour encoded in standard
responses for certain situations and messages. A higher degree of intelligence can be achieved by
hard-coding some consciouseness mechanisms into agent. One can think of creating a planning
agents, Brooks subsumption architecture agents, layered agents, or Franklin “conscious” agents.
We plan to create a universal mechanism via which a standard agent can delegate some or all of its
control to a specialized agent that serves as its external brain. This brain can independently seek
for supplementary information, create its own internal models, etc, and finally advise the original
agent what to do.
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Abstrakt

Pfistupu k problematice vyuZiti imunitnich principu k vypoctum je v soucasnosti jiz celd
fada. Ve svém studiu jsme se zaméfili na pristup formalné vychézejici z oboru umeélych neu-
ronovych siti. Vysledkem je v8ak sif pfipominajici IBMs (Individual Based Models) zndmé z
biologie. Popis takovych siti je ¢asto do zna¢né miry empiricky a muZe tfeba nékomu pfipadat
i jako neplodné hrani. Koneckonct, posudte sami.

1. Zarazeni

Na pocatku byla myslenka zobecnit do zna¢né miry strukturné neménné neuronové sité na sit bunék
pohybujicich se ve vymezeném prostoru a komunikujicich lokalné. Po zna¢ném programéatorském
usili se zdafilo postavit funkéni model. Popis modelu v8ak narazi na mnohd tskali, navic kontrola
popisu se skutecnym vystupem je komplikovana pritomnosti ndhodného prvku - pohybem bunék.

Z literatury se zdd byt zfejmé, tento IBM (Individual Based Model) p¥istup z vySe uvedenych
divodi neni pfili§ popularni. Snad jen pro ilustraci uvedu prace ukazujici sméry dosavadniho
vyvoje umélych imunitnich siti. Pfedstavme si tedy prostor, kde se pohybuji butiky schopné mezi
sebou komunikovat, délit se a zanikat. Kazda z nich muze byt jedinec¢na a rozliSitelna.

e Alan Perelson [1] koncem 80. let predstavil mySlenku ”tvarového prostoru” (shape space),
kterd mu poslouzila jako argument podporujici postulat tplnosti repertoaru imunitniho sys-
tému (tj. Ze imunitni systém je v pripncipu schopen rozpoznat jakykoli vzor).

Perelson uvaZzuje, Ze tvar je popsan n-tici redlnych éisel z omezeného intervalu (ryhy a boule
povrchu). Jestlize vzor ktery ma byt rozpoznén je rovnéz z omezeného intervalu n-rozmérného
intervalu a bunka je schopnd rozpoznat vzor s néjakou odchylkou e , potom nutné staci
kone¢ny pocet bunék k pokryti uvedeného intervalu vzoru. (za pfedpokladu rovnomérného
rozlozeni bodu tvarového prostoru)

Co se tyce paméti, Perelson uvazuje dva mozné pristupy - staticky a dynamicky. U statického
pristupu se dany vzor zapamatuje prostiednictvim bunék dany vzor rozpoznéavajici. Tyto
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bunky maji pak dlouhou Zzivotnost. U pfistupu dynamického, je informace o vzoru uloZena
do cyklu reakci bunék, které se timto stale udrzuji v pohotovosti. Dalo by se fici ze prvni
pristup je mozno chapat jako ¢ast druhého s tim, ze pamétové bunky nevyzaduji neustalou
aktivaci okoli, jako je to u vSech ostatnich bunék.

e Perelson nastinil spiSe obecné otdzky rozpozndvani vzoru a funkce sité bunék. De Boer [3]
pak dosti podrobné popisuje konkrétni model zalozeny na dalsich biologickych inspiracich.
Pridanim dalsich podminek se vSe dosti komplikuje a proto jeho model, obsahuje pouze dva
klony bunék. (Buiiky jednoho klonu jsou schopné rozpoznat jen butiky z druhého a naopak.)

Model je tvoren soustavou dvou diferencidlnich rovnic popisujicich pfisun novych buneék,
jejich zanikani, a déleni aktivovanych bunék (tzv. B model). K témto dvéma rovnicim jsou pak
pridany dalsi rovnice, popisujici dynamiku protilatek, které jsou témito klony produkovany
(tzv. AB model).

vvvvvv

Popsat chovani podobnych modeli je snadné pouze v jednoduchych piipadech. Slozitéjsi
modely vSak jsou ve své podstaté nestabilni, v nejlepsim pfipadé osciluji kolem néjaké hod-
noty.neobsahuji jeden stabilni stav. Zaroven vsak podstatné vice odpovidaji skute¢nosti, kdy
pocty bunék jednotlivych klont osciluji - ¢asto chaoticky. Zhang [4] napfiklad zkoumd za-
vislost chaotického chovéani (Ljapunoviv exponent) De Boerova AB modelu. Ukazuje se Ze i
mald zména nékterych parametri muze zpusobit zménu charakteru oscilaci.

e Tretim pohledem na imunitni systém je pohled zvenéi. V této oblasti vznika nejvice aplikaci
napfiklad v oboru fizeni nebo rozeznavani defektu, piipadné vira. Zde se bere v ivahu celkova
strategie imunitniho systému vcetné soucinnosti jednotlivych orgéni.

Soucasti mechanismu téchto komplexnich umélych imunitnich siti jsou ¢asto i genetické al-

goritmy. Vysledky jsou pak porovnavany s neuronovymi sitémi, fuzzy regulatory ¢i ” ¢istymi”
genetickymi algoritmy.

e Ted by mél nasledovat odstavec o IBM pristupu. Bohuzel se ndm nepodafilo v oblasti umélych
imunitnich siti cokoli podobného najit. Snad aspon ¢lanek srovnavajici chovani klasického
IBM u nés znamého jako ”lisky-zajici” ve dvou rezimech komunikace: lokalnim a globalnim
[8]. V prvnim piipadé komunikuji subjekty pouze ve svém okoli a ve druhém pak vSichni se
vSemi. Stabilni stavy i chovani za dostatecné dlouhou dobu byly shledany v obou rezimech
shodnymi, coz umoznuje ponékud zjednodusit popis takovéhoto systému. I tento vysledek je
vSak z veétsi Casti zaloZzen na empirii.

2. Trocha popisu

Nyni bude asi t¥eba osvézit pamét étenafe a pripomenout alespoii zdkladni principy modelu [6, 7].

Stavba sité:
Cela sit je tvorena plochou (tfeba ¢tvercem) sklddajici se z malych plosek (¢tverecku), které pred-
stavuji mista vyskytu bunék. Pocet bunék pritomnych najednou kazdém takovém misté je omezen.

Bunky se pohybuji v jednotlivych krocich po siti. K kazdém kroku je prozkoumano okoli bunky,
z kterého mize bunka ptijmout signal.
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Obréazek 16: Zény pusobeni bunky

V daném kroku buiika nejprve zpracuje signal pomoci vztahu

S
INP, = Z w; ;X;; —THR; (58)
j=1
INP; vstup i-t€ bunky
S pocet bunék v okoli
w; j vaha vztahu mezi i-tou a j-tou bunkou

X j signdl prichdzejici od j-t€ do i-t€ bunky
THR; prdh i-t€ bunky

Déle pak pouzije svou aktiva¢ni funkci. V praxi se nejlépe osvédéila zvonovita funkce vznikla
ode¢tenim dvou sigmoid, kterd svym tvarem nejlépe vystihuje biologickou skutecnost [2, 5].

DSigm(IN P, posunuti) = Sigm(INP) — Sigm(IN P — posunuti) (59)

Neékteré parametry sité:

PRO CELOU SIT

I x J - rozméry sité

K - maximalni pocet bunék na jednom misté

ampl - zesilovaci konstanta signalu v siti

omezeny prostor pusobi zménu hustoty (intenzity) signdlu pii ménicim se poctu bunék

PRO KAZDY TYP ZVLAST

max, steep - parametry aktivac¢ni funkce

W; - vahovy vektor

klasické parametry neuronu, matice vah je vZdy ndsobena jesté konstantou ampl

PRO JEDNOTLIVE BUNKY
i, j - pozice bunky
parametr ovlivnény ndhodou a pusobici Sum

Cinnost sité:
Nejprve se sit inicializuje. Nastavuji se po¢ateéni hodnoty parametru platnych pro cely model, pro
jeden typ bunék i pro jednotlivé bunky.
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Dalsim krokem je prijem signalu z okoli bunky a jeho zpracovani popsané vyse.

Vysledek tohoto zpracovani se pak porovnava s mezemi pro déleni a zanik. Je li vysledna aktivita
prilis mald, bunka zanika, je-li naopak dostatecné vysoka, buiika se rozdéli.

Nakonec se bunky premisti na své nové misto. Pfesun je ndhodny maximalni vzdalenost pfesunu
je jednim z parametru.

3. Vysledky

Vyvoj této sité probihal klikatymi cestickami. V Prvni fazi se podarilo formalizovat imunitni prin-
cipy do sité bunék pripominajici neuronovou sit. Faze ladéni byla spojena s vybérem a studiem
parametru sité. Na tomto zdkladé se podafilo sit stabilizovat do stabilniho oscila¢niho stavu. Tento
stav byl robustni vaci zasahim zvenci, avSak dosti citlivy na nastaveni parametri.

Nasledoval pokus definovat a vyzkouset uceni. Uc¢eni bylo definovano jako schopnost sité zareagovat
na zndmy signdl efektivnéji a rychleji se uvést do rovnovazného oscila¢niho stavu. Probéhly pokusy
s nékolika uc¢icimi parametry.

Vyvoj se prozatim odehraval pouze na empirické bazi, proto jsme se pokusili alespon cCastecné
popsat sit matematicky. Vliv matice vah na stabilitu sité se vSak zatim nepodafilo uspokojivé
vysvétlit.

Déle jsme se snazili popsat sif rekurentnim vztahem vychézejicim ze zjednoduSenych principu
algoritmu sité. V zajmu usnadnéni popisu bylo tfeba vSe maximalné zjednodusit. Zanedbali jsme
i to ze komunikace je lokélni a vyjadfili aktivitu buniky (p¥ip. klonu bunék) vztahem

S
Aot = (3" wi;ACT Y — THR;) (60)

=1
Zdanlivé totozné se stavem neuronu v neuronové siti. Stav bunky vsak neni jedinym nositelem
signalu. Lépe feCeno, je-li aktivita dostatecné vysoka, bunka se rozdéli a cely klon se posili. Opacné

je to pak, je-li jeji aktivita pod mezi zdniku. My pak muZeme sledovat zménu poctu bunék v
jednotlivych klonech, které jsou nutné zavislé na predchozi aktivité.

S
N = 3 wiACT Y — THR;) (61)

Jj=1

Zde vsak jiz neni tak docela jasné jaka je funkce f. Navic zpracujeme-li realné vystupy sité, zjistime,
ze vztah by mél byt posunut o krok dozadu (t-2):

S
N = (3" wijACT{""® - THR;) (62)

=1

Navic aktivita bunky musi souviset s poc¢tem bunék v minulosti.

Je vidét, ze cely systém mad urcitou vazbu na minulost. Proto mé smysl hledat vztah ve tvaru

S
N = N 4 N s Konst + £ wi jACT ™ — THR;) (63)

=1
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kde Nj je pocet bunék v jednotlivych klonech a z je zpozdéni reakce.

Zd4 se v8ak, ze systémy s timto popisem diverguji (pfip. konverguji k nule, tj. k vymizeni sit¢) pokud
uvazujeme bézné funkce f. Napriklad pfi pouziti klasické sigmoidy systém, ktery ve skuteCnosti
osciluje kolem néjaké hodnoty, by mél teoreticky exponencialné rust.

Podstatnou roli zde hraje pravdépodobné jiz zminénd proménliva hustota signdlu v souvislosti s
disproporci zpozdéné aktivity a momentalnim poctem bunék.

4. Zavérem

Takto zjednoduSend bunécnd sit ukazuje, Ze zvolime-li vhodné vahy sif je stabilni a nezavisi na
pocatecnich hodnotéch. Pomoci empirického popisu chovani sité muzeme navrhnout rekurentni
vztah popisujici dynamiku sité. Zajimavou vlasnosti sité je vnitini pamét jednotlivych klona bunék,
kterd zpusobuje obtize v matematickém popisu, av8ak zjevné prispiva spolu s omezenym prostorem
ke stabilité site.
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Abstrakt

In this paper we describe new tools developed in the frame of the project I4C-TripleC of
the 4th Framework Programme for easy and flexible entering of patient data. This program
named ORCA (Open Record for Care) uses structured data entry and storage, which enables
easy processing of entered data. Several information measures and algorithms for extracting
the optimal variable set for decision making at the minimal costs are also described. This
approach is based on information measures of stochastic dependence and conditional stochastic
dependence and methods of information theory.

Data acquisition using electronic patient records

Patient-record data (history, physical examination, laboratory data, prescribed drugs, diagnoses,
etc.) and cardiac signals (ECGs, blood pressure curves) nowadays are mainly collected in paper
records and folders. Such folders are available at one place only and frequently are not available
when required by the clinicians. New approaches for data collecting, storing and using for further
research were developed in the framework of the European project I14C. The data are transmitted
to care providers in an electronic and integrated manner by using multimedia workstations. All
data may then be accessed through these workstations located in practices, consultation rooms,
outpatient clinics, preferably interconnected and integrated through computer networks. Then such
data in principle can be used for direct patient care, but also for quality assessment of care, research
and education or management and planning.

The project 14C of the 4th Framework Programme (1996 - 1998) was carried out for the further
advancement of cardiac care. It was focused on clinical applications and its main goals were as
follows.

e integrated access to data wherever stored;

e support of evidence-based care by remote electronic consultation and peer review;
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e more comprehensive and more consistent recording of patient data, images, videos and bio-
signals, all combined in a multiple patient record.

With the support of the I[4C project the new approach for multimedia electronic patient record has
been developed. Multimedia patient record ORCA (Open Record for CAre) is a system that inte-
grates a possibility of structured patient data entry including history, medication, symptoms and
more with multimedia objects as ECG, angiography or laboratory data [11]. Data can be entered
either using prepared custom forms for special purposes or directly using a knowledge tree. The
main advantage of the data model implemented in Orca is the structured data storage which makes
possible to translate the entered data easily to other languages, to further process the data using
statistical methods or to show entered data according to specific user needs. When it is impossible
to enter determined facts using information in a knowledge tree, Orca provides a possibility to
insert free text entry into the patient record. However, the prefered way is the structured data
entry. Current version of Orca includes a knowledge tree and user interface translation into eight
languages. The Orca system uses client-server model, which gives good performance, security and
scaleability. For small installations like general practicioner’s office, Orca can be used on a single
computer with Windows95 using locally installed SQL server. The project I4C-TripleC intends to
validate integrated workstations and ORCA system in three hospitals in Central Europe (Prague,
Bratislava and Caslav) to support the continuity of cardiac care.

Decision making support using information theory tools

Special problem in decision making occurs when a decision maker has too much empirical infor-
mation at his/her disposal. Mostly it is large database of observations where many variables are
recorded. The aim of decision maker is to reveal variables that will bring him/her quickly sufficient
information for decision making at the minimal costs. In fact, it is a special case of a general
problem of choice of a relevant piece of information for decision making.

Let us specify our assumptions in more detail. We denote X = {X1,X2,...,Xr},r > 1, a set of
variables (independent variables) than can be quantitative (e.g. weight, temperature) or qualitative
(presence or absence of certain factor). The vector of independent variables X has finitely many
possible values € X occurring with probabilities px (z) > 0. Each subset of independent variables
X' C X is assigned with certain nonnegative cost ¢(X’) > 0, describing the cost of obtaining the
values of the combination of variables X'. It can reflect monetary expenses, nevertheless, mostly it
expresses the cost in more general way. For example, in a special case of medical decision making,
invasive methods of obtaining value of symptom variables can be painful or risky, therefore the
cost ¢(X’) should be high. We denote ¥ = (Y1,Y2,...,Ys) a set of variables describing possible
decisions (dependent variables), s > 1. Our task is to find a set of symptom variables X', called set
of independent variables, such that variables X’ make it possible to estimate with high credibility
possible decisions Y. In the process of searching of variables in X’ we should minimize the total
cost of selected set of variables X'.

Information measures of stochastic dependence

Our approach for extracting relevant information from database is based on information measu-
res of stochastic dependence and conditional stochastic dependence and methods of information
theory, described in [1], [2], [3], [4], [5]- Roughly speaking, information measures are nonnegative
numerical characteristics of strength of stochastic dependence between two variables (respectively
the strength of conditional dependence between two variables given values of the third variable).
They have been developed and studied in information theory as tools to estimate Bayes risk. Im-
portant properties of measures of stochastic dependence have been pointed out by A. Perez [6],
[7] one of the founders of the Czech school of information theory. Mainly the measures of depen-
dence based on Shannon’s information were studied, but also measures based on general concept
of f-information were proposed by I. Vajda [5]. The concept of multiinformation, introduced as a
measure of simultaneous dependence, was studied by M. Studené [8], [9]. It was shown that mul-
tiinformation has close connection to conditional Shannon’s mutual information, which serves as a
measure of conditional stochastic dependence.
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Let us denote H(X) entropy of independent variable X, calculated as

— Y px(z)Inpx()

zeX

and H(Y) entropy of dependent (decision) variable Y, calculated as

> py(y)Inpy(y)

yey

and I(X;Y) Shannon mutual information calculated as

I(X;7) =303 pxy(z,y)n pxv(@,y)_

px(@py )

where pxy (x,y) is the joint probability distribution of XY, px(x) and py (y) are corresponding
marginal distributions.

According to well known Shannon inequality 0 < I(X;Y) < min{H(X),H(Y)} and therefore
Shannon’s information measure of stochastic dependence Y on X is defined as

SV | X) =

Further we will call this measure as the influence of X on Y.

Our task is to find if it is possible to make justified decision described by decision variables Y using
independent variables X . If yes, we should find a relatively small set X’ of variables from the set of
independent variables X where strong stochastic dependence between variables X' and variables
Y is seen. It allow us to estimate with high credibility the values of decision variables in V" (set
of dependent variables) on the basis of independent variables in X'. The choice of X’ should take
into account the cost of obtaining variables, i.e. ¢(X') should be as low as possible. Therefore costs
of variables should be standardized. Let us denote ¢y,q; as the maximal cost of all combinations
of variables and ¢, as the minimal cost of all combinations of variables. In the following, we will
restrict ourselves to the special case, where the cost of variable combination is defined as sum of
costs of variables X; creating this combination.

e(X") =3 e(X;) , for all X; belonging to X'. Then

Cmaz = C(X) = Z C(Xt)
Cmin = mini€{1,2,...,r}c(Xi)

Standardized cost of variable combination is defined as

Cmaz — Cmin

cstp(X') =

This equation implies that cgrp(X') €< 0,1 >.

We can define the following criterion function used as criteria of optimality:
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JX)=adV | X))+ (1—-a).(1 —csrp(X")),a €<0,1>

The constant a allows us to state the preference of influence 6(Y | X)) to standardized cost csrp (X)
during the search in selection algorithm. The bigger the constant « is, the more important is the
influence, the smaller the « is, the cost becomes more important.

Algorithms for selection of optimal subset of variables

Our problem is to find the optimal or at least sub-optimal combination X' C X of independent
variables, bringing sufficient information to predict set Y of dependent variables. As shown in
Cover [12], in order to guarantee the finding of an optimal subset of 7' variables from the given
r variables, exhaustive search is a necessary procedure. Exhaustive search examines all subsets of
size r'. In many practical cases the values of ' and r result in the number of possible subsets
that are too large, i.e. the search takes too long, requires much memory, etc. Therefore, some
computationally feasible procedures to avoid the exhaustive search are essential even though the
variable set obtained may be suboptimal.

The variable search procedures can be classified into two categories, according to the way that
possible candidate variable sets are searched. One are the optimal and the other are the suboptimal
search procedures. In the next section, two suboptimal search procedures [13] will be described.

Influence-cost forward algorithm

An influence-cost forward algorithm uses a parameter Jy € (0,1), that is a priori chosen close to 1.
The procedure starts from X' = () and we proceed in selection of available variables from X in the
following way. The i-th step of procedure is described as follows. X1~ = {X;, Xy, ..., X;_; } are
already selected variables from X. We search for a variable Z from X \ X~! maximizing J(X'),
where X’ = (X?~1, Z). This variable is denoted as X’ and considered as the next selected relevant,
variable for decision making task. If J(X') > Jy, then the procedure stops and the set of variables
Xt ={X1,Xs, ..., X;} is the result of the influence-cost forward algorithm, i.e. X’ = X%. Otherwise
we repeat this procedure till all variables are selected.

Influence-cost backward algorithm

An influence-cost backward algorithm starts with all variables from X . Then we proceed in omitting
variables in the i-th step as follows. Z?~! = {Z}, Z5, ..., Z; 1} are already omitted variables from X.
We search for such a variable Z; from X \ Zi~! maximizing J(X'), where X’ = X \ (Z*~1, Z;). This
variable is considered as the next omitted variable for a given decision task and Z¢ = {71, Zs, ..., Z;}
. If J(X') is less or equal to Jo, the procedure stops and the set of variables X' = X \ Z ! is
the result of the influence-cost backward algorithm. Otherwise we continue in selection of the next
unrelevant variable till all variables are selected.

Possible improvement of this searching techniques can be the combination of above mentioned
algorithms, e.g. the floating algorithm. This algorithm combines forward inclusion of variables into
set X' and omitting of unrelevant variables using backward algorithm. This approach improves
the selection by examining the other combinations and better handles with the nesting effect.
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M11 — Védecko-technické vypocty

Abstrakt

Jeden z parametri metod pro feSeni soustavy linedrnich rovnic zalozenych na Lanczosové
procesu, jez vytvari biortogonélni posloupnosti vektort, je levy startovaci vektor, ¢asto ozna-
¢ovany jako stinovy vektor. UkaZeme volby tohoto vektoru, které zptisobi rovnost nékterych
residui spocétenych Lanczosovou metodou s rezidui jiné Krylovovské metody. V pravdépodob-
nostnim smyslu je skoro-vzdy mozné nalézt stinovy vektor vedouci k rovnosti k-tych residui.
Pokusime se naznadit, na ¢em zavisi vztah residui Lanczosovy metody a libovolné Krylovovské
metody.

1. Uvod

Uvazujme systém linearnich rovnic
Az =b, (64)

kde A € R*"*" je redlnd regularni matice, b € R" je vektor pravé strany, z* € R™ presné feSeni
soustavy (64). Dulezitou tfidu metod na feSeni soustavy (64) tvoii metody zaloZzené na projektiv-
nich technikéch, hledajicich aproximaci feSeni soustavy (64) ve vhodném prostoru K € R"* dimenze
k. Aby bylo mozné tuto aproximaci sestrojit, je nutné predepsat k urcujicich podminek. Jednim
z moznych zptusobl volby téchto podminek jsou ortogonalni podminky, presnéji feceno, aproximace
x € K je ddna podminkou kolmosti residuového vektoru b — Az na k linedrné nezavislych vektort,
jez spolecné urcuji prostor £ dimenze k. Tento prostor byva ¢asto nazyvan levym prostorem. Po-
psané urcujici podminky jsou bézné pouzivany v mnoha rtznych matematickych metodéach a jsou
zndmy jako Petrov-Galerkinovy podminky a pii volbd £ €' K jako Galerkinovy podminky.

Pri feseni soustav linedrnich rovnic je nékdy k dispozici poc¢atecni priblizeni zqy a je tedy vhodné ho
zabudovat do nasich Gvah naptiklad tak, Zze aproximaci feseni x nebudeme hledat v homogennim
prostoru K, ale ve varieté zo + K a opét bude uréena podminkou b— Az L L.V konkrétnich realiza-
cich tohoto pristupu vytvarime postupné posloupnosti prostort Ky a £y a pouzivame vyse popsany
projekéni krok. P¥ikladem volby posloupnosti téchto prostori je Ky = Ly = span{ey, ..., ey}, kdy
dostavame Gaussovu-Seidelovu itera¢ni metodu.
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Dulezitou tfidu metod na FeSeni soustavy (64) tvoii metody, u nichZ se za posloupnost prostora
Ky voli posloupnost Krylovovych prostorii Ky, (A, o) <" span{ro, Arg,..., AF~"Irg}, ro b — Az,
a k-t4 aproximace feSeni xj, € xo+ K(A,rg) soustavy (64) je ddna pomoci k urcujicich podminek
aplikovanych na vektor rp &' b— Axy. Tuto tifdu metod nazveme “metody Krylovovych prostort”,
v dal8im budeme uzivat oznacteni Krylovovske metody. ProtoZe lze tyto podminky pro residuum
prevést na podminku ortogonality residua k uréitému prostoru, jsou nami definované Krylovovské
metody metodami projekénimi a plati pro né

T € To + ’Ck(A;TO); b— Al’k 1 Ek) (65)

kde L je vhodné zvoleny prostor dimenze k. Poznamenejme, Ze residuum ry lez podle (65) ve
varieté
ro + AK(A,70). (66)

Z (65) plyne, Ze rostou-li dimenze obou prostord, ziskdme v nejvyse v n-tém kroku presné fefeni z*
soustavy (64). Zna¢nou liboviili madme v uréovani levého prostoru L. Volime-li £y, <" AK, (A, ro),
docilime vlastnosti
b — Az = min b — Az]|
z€xo+Kr(A,rg)

a residuum r, = b — Axp mé nejmensi euklidovskou normu ze v8ech pripustnych residui. Metoda
pro pocitani téchto residui a aproximaci je zndma jako GMRES (Generalized Mimimal Residual
Method). Volba Ly =" Ki(A,ro) zptisobi, ze poc¢itand residua budou vzajemné ortogonalni. Me-
todu pocitajici uvedené vektory oznacime jako FOM (Full Orthogonalization Method). Kone¢né,
volime-li £ % K1 (AT,7), kde 7y je libovolny nenulovy vektor zvany téz stinovy vektor, zis-
kédme Lanczosovu metodu (LM). Upozornéme jesté, Ze pod pojmem metoda rozumime libovolny
algoritmus pocitajici vektory uvedenych vlastnosti.

Praveé diky volbé levého prostoru se svét Krylovovskych metod déli na dvé ¢asti. Na metody, které
maji jisté “dobré” teoretické vlastnosti (GMRES, FOM) av8ak vysoké pamétové néroky (splnéni
ortogonalni podminky obecné vyzaduje piitomnost vSech vektor baze prostoru K (A,r9)) a na
metody s nizkymi paméfovymi naroky, postradajici “dobré” teoretické vlastnosti (LM, QMR),
avSak v praxi vétsinou dobte fungujici vzdy, kdyz funguji metody GMRES a FOM. Prvni tiidu
metod nazyvame metody s dlouhymsi a druhou tfidu metody s krdtkymse rekurentnimi vztahy
(dale jen rekurencems).

Zatimco konvergencni kiivky GMRES a FOM jsou jednoznacné urceny pocateéni aproximaci xg
a matici A, vystupuje v Lanczosové metodé navic parametr 79, pomoci néjz mizeme “hybat” s
konvergenc¢ni kiivkou této metody a snazit se priblizit ji ke konvergenénim kiivkam ostatnich me-
tod. I kdyZ tento postup pravdépodobné postradé prakticky vyznam (spocteni takovéhoto vektoru
bude jisté pocetné velmi naro¢né), mohl by zna¢né piispét k porozumnéni konvergence Lanczosovy
metody a jejiho vztahu k metoddm s dlouhymi rekurencemi.

2. Lanczosova metoda a obecnd tiikrokovd metoda!

Lanczosova metoda po¢ita aproximace z% a residuové vektory ri = b — Azk urcéené podminkami

.Tz € xg + Kk(A,TO), T,ﬁ L /Ck(AT,Fo). (67)
Jiz Lanczos samotny [3], [4] ukézal, Ze 1ze tyto vektory pocitat pomoci tiikrokovych rekurenci

ri = (AT —agri_y — Brrg_2),

Ty, = —(rg—y +arTi_y + BrTy_o)-

Abychom vyhovéli podmince 7f € ro+AK(A,rg), volime v, = —(ay, +B;) ™. Cheeme-li efektivné
pocitat koeficienty ay, a By, je obecné nutné generovat bazi {Fi}f;(} prostoru K (AT, 7). Volime-li
tuto bazi tak, ze 7, L Kr(A,19), lze ji opét politat pomoci tiikrokové rekurence tvaru

~ ~ T~ ~ = o~
Tk = Ye(A Tp—1 — arTh—1 — BrTr—2)-

ITento odstavec je inspirovan &lanky A. Greenbaum [1, 2]
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Koeficienty 7 a Ek je nutné volit tak, aby vyhovovali podmince %Ek = Bryk. Volme v nasi
implementaci LM 7 € Bi a Br = Yi.

Pii znalosti vektort rz_,, T5_5, Tk—1, Th—2 Potom muzeme pocitat ¢isla ay a B jako

(T 1, AT ) (T o) ATg )

(Pe—17—1) (Fe—2rTh—2)
K ukonceni algoritmu dochdazi, je-li (¥;,7f) = 0 nebo a; + B; = 0 pro néjaké i. Roste-li dimenze
Krylovovych prostorti az do n a nedojde-li k ukonéeni algoritmu, dostavame r, L K,(AT,7) a

™ L Kn(A,1) a tudiz r, = o = 7,. ZapiSeme-li uvedené rekurence maticové, mame v n-tém
kroku

) Bk:

ap =

AV =VT, ATW =WT,
kde V € R™*" je matice se sloupci rg,...,"n—1, W € R"*"™ ge sloupci g, ...,7,—1 a T resp. T

je tiidiagondlni matice slozend z koeficienttt ag, Bk, vr resp. ag, B, Y- Volime-li, jak jiz bylo
naznaceno v piedchozim, By &' v4, plati navic

T =17,

Uvedme nyni, co rozumime pod pojmem obecnd t¥ikrokova metoda.

Definice 1. Necht dim(K,,(A,r9)) = n. Obecnou trikrokovou metodou rozumime metodu,
pocitagict residua a aproximace podle predpisu

e = Y(Arg—1 —agpre—1 — Brrr—2),
rr = —(re—1 + apxp_1 + Prrr_2),

kde ay, a By jsou libovolné koeficienty, By # 0, vi = —(ag + Br) L. Obecnou tiikrokovou metodu
nazveme n-finitnt, jestlize nedojde k predéasnému ukonceni algoritmu a plati-li r, = o.

Véta 1. (O vztahu mezi Lanczosovou metodou a obecnou titkrokovou metodou) Necht
dim (K, (A, ro)) = n. Potom plati

1. Nedojde-li k predcasnému ukonceni LM, je LM obecnou n-finitni tiikrokovou rekurenct.

2. Pro kaZdou obecnou n-finitni 8-k metodu existuje stinovy vektor Ty takovy, Ze Lanczosova
metoda pocitd residua a aprozimace dan€ 3-k metody.

3. Pro kazZdou obecnou 3-k metodu existuje stinovy vektor Ty takovy, Ze Lanczosova metoda
pocitd residua a aprozimace 3-k metody aZ do kroku [*/2).

Diikaz: Bod 1. je diisledkem vlastnosti Lanczosovy metody r, L K, (AT,7). Je-li obecnd 3-k
metoda n-finitni, miZeme jeji rekurence psat v maticovém tvaru AV = VT. Matice V je reguldrni,
coz to plyne z linedrni nezavislosti poc¢itanych vektort (a ta plyne z rostouci dimenze Krylovova
prostoru). Definujme nyni W ' V=7 tj. plati W7V = I. Transponujeme-li maticovou rovnost
AV = VT a prenasobime-li ji matici W zprava i zleva, dostavame

ATW =wTT,

Zvolme stinovy vektor jako prvni sloupec matice W. Protoze jsou touto volbou uréeny vektory
Lanczosovy metody jednoznacné a vektory matice W jsou biortogondalni k vektorim matice V,
pocita ziejmé LM stejné vektory jako dana tiikrokové rekurence.

Pro dfikaz bodu 3 pouzijeme vlastnosti skalarnfho soucinu a sice ze ((AT)*7y,ry) = (7o, AFry).
Zvolime-li 7o napt. jako ortogonalni projekci vektoru rg na prostor generovany vektory ry, ro, Ara,

vy Ty AT, ,AF1rp spliji vektory r; podminky r; L K;(AT,7) a z jednoznac¢nosti uréeni
Lanczosovych residui plyne, ze r; = r}. Dimenze prostoru, na ktery ma byt 7o kolmy je 2k — 1.
Jakmile k presdhne hodnotu [?/2], je obecné dimenze tohoto prostor rovna n. Pro korektni dikaz
tohoto tvrzeni bychom museli jit hloubé&ji do vlastnosti specialniho prostoru generovaného vektory
ri,...,Tk, coz u€inime v nasledujicim odstavci. O
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Zavér
Pomoci stinového vektoru muizeme parametrizovat v8echny n-finitni obecné tiikrokové metody a

déle v8echny obecné t¥ikrokové metody az do kroku [?/2]. Z téhoZ plyne, Ze libovolnou 3-k metodu
pocitajici residua ro, r1,...,7np) lze dodefinovat tak, aby byla metodou n-finitni.

3. Lanczosova metoda a residua jiné Krylovovské metody

Necht jsou nyni rq,...,r residua libovolné Krylovovské metody. Definujme prostor
1, r2, T3, T4 Tk,
Ary, Ars, Ary, ... Arg,

A2rg, A2y, ... AZrg,
def
We(A,r1,...,71;) = span . .

Akilrk

Mohlo by se zdat, ze zvolime-li stinovy vektor kolmy na tento prostor, budou residua splhovat
ri L Ki;(AT,7) a tudiz budou pocitatelnd Lanczosovou metodou. Uk4zeme, pro¢ tomu tak neni.
PiSme v dalsim pouze W;, budeme-li mit na mysli obecnou mnozinu residui rq,...,r.

Lemma 1. Plati bud Wy, = Kai,(A,10) nebo je dim(Wy) =2k — 1 arg ¢ Wy.

Dukaz: Kazdy vektor z prostoru W, lezi v Kok (A,70) a proto je Wy C Kor (A, o). Jelikoz lze
nalézt 2k — 1 linedrné nezavislych vektort plati dim(Wy) > 2k — 1. Pokud rg € Wy lze nalézt v
W, 2k linedrné nezavislych vektori a Wy, = Ko (A, 70). V opacném piipadé je Wy C Kax (A, 10) a
tudiz je dim(Wy) = 2k — 1. m|

Lemma 2. Predpoklidejme Krylovovskou metodu jejiz residua jsou pocitiny podle predpisu
i—1 i—1
ri = o Arp g + Z airy, Za;’) =1, a” #0. (68)
=0 =0
Potom vektor ro nelezi v prostoru Wy, tehdy a jen tehdy, je-li rekurence (68)

(a) obecnd titkrokovd

(b) tvaru
ry = Cl(ll)AT‘o + 7ro
_ () ()
r;j = aj’ Arj_ + ajllrj_l + ajﬂ2rj_2,
) . .
o, #0, j=2,...,i—1.
r; = agi)AT‘i,1 +7ri_1
rs = aPArs; +al e+ .o+ al rio,
s=i+1,...,k.
Dukaz: Je technického charakteru a neuvadime ho. O

Lemma 3. Volme 79 L Wy, k < [7/]. Potom nastane pravé jedna z ndsledujicich moznosti
1. dim(Wy,) =2k = ro € Wi a dojde k ukonceni algoritmu LM v prunim kroku (7l'ro = 0).
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2. dim(Wy) = 2k — 1 a rekurence pocitajici residua jsou tvaru (b). Potom dojde k ukonceni
algoritmu LM v kroku i a plati FiTri =0.

3. dim(Wy) = 2k — 1 a rekurence jsou tvaru (a). V tomto pripadé spocte LM residua r1, ..., 7.

Dukaz: Dtkaz prvniho tvrzeni je zfejmy. Prokazani zbylych dvou je technického charakteru. 0O

Vidime, Ze vSechna residua rq,...,r; néjaké Krylovovské metody lze pocitat LM pravé tehdy,
jsou-li pocitatelnd obecnou 3-k metodou. Vektor 7y v8ak nemusime volit kolmy na cely prostor
Wy, ale pouze na néjaky jeho podprostor, spliujici nutné podminky, ze neobsahuje vektor ro a
jeho dimenze je mensi nez 2k.

Véta 2. (Lanczosova metoda a residua jiné Krylovovské metody)

e Necht'ry, je residuum pocitané obecnou rekurenci (68). Zvolme stinovy vektor tak, Ze (7o, 10) #
0 a7y L Kr(A,ri). Nedojde-li k predcéasnému ukoncent algoritmu LM, je ry = ry.

e Necht r; jsou residua pocitand obecnou rekurenci (68), i = 1,2,4,8,...,2!, 20 < [nh]. Defi-

nujme prostor
l

ZQZ ’l:Cf U Kzi (A, Toi ),
i=0

a volme stinovy vektor tak, Ze je ortogonalni k tomuto prostoru, 7o L Zy, (Fo,r0) # 0.
Nedojde-li k predcasnému ukonceni algoritmu LM, jery = 71,75 =72, Tf =T4, ..., T5 = To.

Dukaz: plyne z existence a jednoznac¢nosti urceni residui LM. O

Véta 3. (Lanczosova metoda a k-té residuum) Necht ry je residuum politané obecnou re-
kurenci (68). Definujme prostory Ry, < Ky (A,rr) a Hi ¥ Ri-. Potom plati jedno z ndsledugicich
dvou turzeni

e Lanczosova metoda spocte residuum ry pro skoro vSechny stinové vektory 7o € Hy,.

o Pro kaZdy vektor ro € Hy, dojde k predcasnému ukondeni v kroku i < k.

Dukaz: Provedeme v podobném stylu jako jsou dokazovéana tvrzeni v [5]. K pfed¢asnému ukonéeni
LM dochézi tehdy, je-li (7, 7;) = 0 pro néjaké i. Volime-li 79 € Hj,, miZeme ho vyjadfit ve tvaru

n—k
Fo =y &hi,
i=1

kde h; tvofi bazi prostoru H;,. Potom skaldrni souciny (7;,7;) nejsou nic jiného nez raciondlni funkce
proménnych &;,...,&, k. Tyto racionélni funkce jsou bud netrividlni a tedy skoro-vSude nenulové
a nebo identicky rovny nule a pak dojde k ukonceni v i-tém kroku pro kazdy vektor 7 € Hy. O

Priklad:
n—k
(ro,To) = Z &i(ro, hi),
i=1
je dle definice prostoru H;, a faktu ro ¢ Ry netrividlni linedrni funkci proménnych &;. Déle

(o, A%ro) (7o, m0) — (T, Arp)?

(To,70)

(F1,m1) =N
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je dobfe definovana racionalni funkce, kterd vSak muze byt identicky rovna nule napiiklad tehdy,
jsou-li si projekce vektori 7o, Arg, A%ry na prostor H; rovny. Kazdy vektor v € R® miizeme totiz
psat ve tvaru

v=y+z, y€H, 2€ R, (y,2) =0,

kde y je projekce na prostor Hj a z na prostor Ry. Oznacime-li Alrg = y; + 2;, yi € Hr, 2; € Ra
potom je .

(o, A'ro) = (70, 2i + yi) = (To, yi)-
Plati-li tedy yo = y1 = y2, je (T1,71) = 0 pro kazdy 7o € Hy. O

Zavér

Miuze nastat situace, kdy k-té residuum néjaké Krylovovské metody neni pocitatelné Lanczosovou
metodou. Jak je vidét z prikladu, tato situace nastava pti velmi specialni volbé pocatecniho residua,
matice A a k-tého residua z variety ro + AKXy (A, rg) jez chceme pocitat.

4. Vztah Lanczosovy metody a obecné Krylovovské metody z hlediska residui

Ve své praci [2] Anne Greenbaum ukazuje, Ze existuje dvoukrokovd metoda, kterd je velmi blizka
optimélni GMRES, konkrétnéji, residua této dvoukrokové rekurence r, a residua metody GMRES

splnuji nerovnost
Irell <V (k+ 1)(n = k)s(Z)[I7E |,

kde k(Z) je ¢islo podminénosti nejlépe podminéné matice vlastnich vektorti matice A. Protoze
je trida dvoukrokovych metod pouze podmnozinou tiikrokovych, lze tusit existenci “optimalniho”
stinového vektoru, ktery bude zajistovat blizkost Lanczosovy metody k danné Krylovovské metodé.
Neni zatim jasné jak tento vektor zkonstruovat, zfejmeé jeden z podstatnych vlivi bude poloha sti-
nového vektoru a kazdého z prostorii Ky (A, 7). Dalsim nastrojem k poodhaleni problému stinového
vektoru by mohly byt numerické experimenty, zkoumajici “citlivost” pii jednotlivych reziduich me-
tody, k niz se chceme priblizit, konktrétnéji, k danému residuu r;, umime sestrojit lokalné optiméalni
stinovy vektor 7§ takovy, ze LM pocita residuum 7. Nyni mizeme zkouset volit

k
/FO - ?(L)IO + E €My,
i=1

kde m; je ortonormalni baze Ky (A, r) a sledovat zmény normy residua, méni-li se stinovy vektor
v riznych smérech o rizné hodnoty a doufat, Ze dostaneme odpovét na podstatné otazky pro
praktické vypocty. Generujeme-li totiz stinovy vektor ndhodné, dostavame velmi podobné kiivky,
které maji stejné globalni chovani, ackoliv teorie iikd, ze mtizeme ocekavat témér cokoliv. Podstatné
otdzky tedy zni: Proc jsou si podobné konvergencni kiivky a na ¢em zavisi toto globalni chovani?
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Abstrakt

The bulk-synchronous parallel (BSP) computer — introduced by Valiant in [1] — is a pa-
radigmatic example of a bridging model of parallel computation. It is a parametrized model
that realistically describes performance of existing parallel computers while retaining indepen-
dence on concrete architectures. We define an extended model: decomposable BSP (dBSP).
To illustrate the power of dBSP, we will show how some elementary BSP algorithms (broad-
casting, prefix sums, matrix multiplication, and simulation of cellular automata) are sped up
by their adaptation to the decomposable BSP model.

1. Introduction

The bulk-synchronous parallel (BSP) computer [1] is a widely accepted model of parallel com-
putation. An extensive research on BSP algorithms and implementation of the model on real
computers has been done in recent years [2, 3, 4, 5, 6, 7].

The standard BSP charges communication between any pair of processors equally. Thus, it cannot
exploit communication locality present in many algorithms. By communication locality we mean
that a processor communicates not with all, but only with “close” (in some sense) other processors.
Not distinguishing between communication to “short” and “long” distances yields too pessimistic
estimates of time complexity in some cases.

The BSP model can be extended with ability to exploit locality. One possible extension is the
decomposable BSP (dBSP) defined in [8]. We will describe how some simple BSP algorithms can
be adapted for dBSP. For each algorithm, we will compare execution times on both models and
show that dBSP provides a significant speedup.

2. BSP and dBSP Models

The Bulk Synchronous Parallel (BSP) Computer consists of p processors with local memories. The
processors can communicate by sending messages via a router. The computation runs in supersteps,
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i.e., the processors work asynchronously, but are periodically synchronized by a barrier. A superstep
consists of three phases: computation, communication, and synchronization. In the computation
phase, the processors compute with locally held data. The communication phase consists of a
realization of so-called h-relation, i.e., processors send point-to-point messages to other processors
so that no processor sends nor receives more than h messages. The data sent in one superstep are
available at their destinations from the beginning of the next superstep. In the final phase of each
superstep, all the processors perform a barrier synchronization. The performance of the router is
given by two parameters g (the ratio of the time needed to send or receive one message to the time
of one elementary computational operation — the inverse of the communication throughput) and [
(the communication latency and the synchronization overhead). If a BSP computation consists of
s supersteps and the i-th superstep is composed of the w; computational steps in every processor
and of the h;-relation, then the time complexity of the computation is defined
8§
TP = (wi + hig+1) =W + Hg+ sl ,
i=1

where W =37 w; and H =37 h;.

If the BSP model is realized by some real computer, the complexity of communication typically
increases with the number of processors p. Therefore the parameters g and [ are not constants, but
nondecreasing functions of p, i.e., g = g(p) and [ = I(p).

The Decomposable Bulk Synchronous Parallel (dBSP) Computer is an extension of the BSP model.
An algorithm for dBSP works exactly in the same way as a BSP algorithm except that it can state
explicitly that no communication is performed among some processors during a part of compu-
tation. Two new instructions split and join are introduced. After a split, the processors of the
dBSP machine are partitioned (decomposed) into clusters. No communication is allowed between
processors from different clusters until the partitioning is cancelled by join. Processors within a
cluster can communicate freely. Splitting and joing occurs as a part of synchronization at the end
of a superstep. Partitioning can be recursive (splitting clusters into sub-clusters). Repartitioning
into different clusters is also possible, but only by a join followed by another split. A processor
cannot be directly moved from one cluster to another. The values of parameters g and [ depend
on the size of a cluster, thus smaller clusters yield faster communication. The time complexity of
a dBSP computation is
s S
TIPSF = Z(wz + hig(pi) +1(pi)) =W + Z(hzg(pz) +1(pi)

=1 i=1
where p; is the size (number of processors) of the largest non-partitioned cluster existing in the
superstep s.

3. Algorithms for dBSP Computers

For each presented algorithm, BSP and dBSP time complexities are compared. General formulas
determining the time complexity and the speed-up factor (in comparison with the BSP) are shown
as well as results for concrete functions g(p) = I(p) = ©(p®) for some constant 0 < a < 1. These
values correspond to an implementation of the BSP model by a mesh network of the dimension 1/a.

3.1. Broadcasting

A value z stored in the processor 0 is to be transferred to all processors. Classical parallel broad-
casting algorithm [5] uses communication structured as a binary tree. Assume that the number of
processors is p = 2™. The algorithm has log p phases (supersteps). In the first superstep, the value x
is sent from the processor 0 to the processor p/2. In the second superstep, the processor 0 sends to
the processor p/4 and p/2 to 3p/4. Generally, in every superstep, each processor already possessing
x sends it to another processor. After logp supersteps, = is distributed to all the processors. The
BSP time complexity of the algorithm is

TP (p) = 9((9(1)) +1(p))logp + l(p)) = O(p"logp) .
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All communication between the first and the second half of processors is done in the first superstep.
Then the halves of the computer work independently for the rest of the computation. Thus a dBSP
machine can split itself into 2 clusters of p/2 processors after the first superstep. This halving can
be done recursively and after s supersteps, the computer will be partitioned into 2¢ clusters of p/2°
processors. The corresponding execution time is then

log p logp
TP (p) = © (i(g@i) +1(2Y)) + l(l)> ==0 (Zg: 2‘““) =0(p*) .

i=1 i=1

The speedup factor achieved by the dBSP computer in comparison with the standard BSP is
TP (p)/T4P5F (p) = logp.

The broadcasting algorithm can be generalized to a k-ary tree, i.e., a processor sends the value
x to k — 1 other processors in each superstep. There are several algorithms which use the same
communication scheme as broadcasting, e.g., aggregation and computation of prefix sums.

3.2. Broadcasting of n Elements

This task is similar to the previous one, but now an array [zo,...,Z,_1] on n values has to be
broadcasted. There is an optimal BSP algorithm for the n-element broadcast running in three
supersteps [5]. In the first superstep, the processor 0 splits the array X into p chunks of n/p
elements and sends each chunk to a different processor. In the second superstep, each processor
sends a copy of its chunk to every other processor. Every processor receives all chunks in the third
superstep. The algorithm runs in time

TB5P (n,p) = ©(ng(p) + (p)) = O(np®) .

This algorithm uses an all-to-all communication pattern. Hence the communication cannot be
easily partitioned into disjoint clusters. Adaptation of the BSP algorithm for the dBSP model uses
repartitioning of clusters. The machine is first partitioned into ,/p clusters of |/p processors. The
BSP algorithm is run in the cluster C' containing the processor 0. Then repartitioning into different
/P clusters is performed so that each of the new clusters contains exactly one processor from C.
Finally, The BSP algorithm is run separately on every cluster. The algorithm time complexity is
composed of the cost of repartitioning and of the BSP n-element broadcasting on a ,/p-processor
machine.

T (n,p) = ©(21(p) + 2777 (n, ) = O (ng(v/p) +1(p)) = O(p™/? +p°) .

The speedup is TP (p)/TIBSP (p) = p»/2, assumed n = Q(p®/?). Again, a similarly structured
algorithm can be used also for aggregation.

3.3. Dense matrix multiplication

We describe an algorithm for multiplication of 2 matrices with n x n elements [7]. The matrices
A and B are both partitioned into ,/p X /p equally sized blocks. Hence, the number of processors
used during the computation is p < n?. The processor p; ; holds the blocks A; ;, B; ; and computes
the block C; ; of the result. The BSP computation runs in 2 supersteps. First, every processor p;_;
sends A; ; to all p;x and B;j to pg,j, for all & € {0,...,/p — 1}. Using the received blocks, p; ;
computes Cj; = ), A;xBg,j in the second superstep. The dBSP modification of this algorithm
has 5 supersteps. In the first one, the machine is partitioned so that every row of ,/p processors
belongs to a separate cluster. The second superstep includes exchanging of A blocks in rows and the
join operation. Then, a similar partitioning into columns and distributing B blocks is performed
in the next 2 supersteps. Finally, blocks of C' are computed. The time complexity for p = n?,
0<b<2is

3 2

% (n,p) = © (% + %g(p) + l(p)> =0 (nH + n2+“b"’/2) :

3 2
TdBSP(np) _ g <”_ L i) 41 > — O (n3-h 4 p2tab/2-b/2
) \/ﬁg(\/ﬁ) (p) +1(v/p) ( )
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The speedup values according to relation between parameters a and b are summarized in the
following table:

[0<b<2/(2a+1)|2/a+1)<b<2/(a+1)|2/(a+1)<b<2

TBSP(TL) @(n37b) @(n2+ab7b/2) @(n2+ab7b/2)
TdBSP(n) @(n3_b) @(n3_b) @(n2+ab/2—b/2)
TBSP(n)/TdBSP(n) @(1) @(naber/zfl) > w(l) @(nab/2)

3.4. Simulation of Cellular Automata

We will restrict ourselves to simulation of 1-dimensional cellular automata, although CA’s of any
dimension exist. The RAM simulation algorithm straightforwardly initializes an array represen-
ting the states of individual cells of the automaton and periodically updates it according to the
transition function. The parallel algorithm is based on the RAM algorithm and its structure is
the same as in the well known finite difference algorithm [9]. Each processor is assigned a subset
of cells. Information about states of cells is periodically exchanged among processors. The auto-
maton is partitioned into blocks of n/p cells, where the number of processors is p < n. Every
processors is responsible for processing of one block. In each simulation cycle, k steps of the CA

is simulated. To evaluate ql(t), one must know ql(t:ll), ql(t*l), and ql(izl). To compute these three
values, qESQ), e, qgi_;) is needed, and so on. If a processor wants to perform & steps, i.e., to find
qZ(Hk), R S:lk/)pfl, it has to get the values qﬁ?k, .. "qgi)n/pflJrk' Consequently, in every simu-

lation cycle, each processor receives 2k values from other processors. To make the communication
pattern simpler, we require k£ < n/p. Then messages are sent only between processors holding nei-
ghbouring blocks. The communication is performed in two phases. During the first one, the dBSP
machine is partitioned into clusters of ¢ processors and data are exchanged among processors be-
longing to the same cluster. The second phase consists of repartitioning and performing the rest
of communication between processors, which were in different clusters during the first phase. Note
that simulation of more than 1 step in one cycle induces some redundant computation, because
the values of qjn/p—kt1,---,%in/p+k—2 are computed twice (by two neighbouring processors) for
i €{1,...,p—1}. The computational part of every simulation cycle takes time

kn . kn
Wn,k)=0[—+2> i|=0(—+k
p = p

The term ©O(k?) corresponds to the redundant computation. The communication consists of one
(BSP) or two (dBSP) 2k-relations. The whole simulation cycle (simulation of k steps) consists of
a constant number of supersteps. In total, we get the average time of a single CA step:

TP (n.p.k) = %@(W("’k) +2kg(p) +1(p)) == (% +k+g(p) + %) ,
TSP (0, k) = FOV(1,8) + dkg(c) + 2(0) +2() == © (% 4 ko g(0) + 12 )

a

For g(p) = I(p) = p® and with optimal values of other parameters, the optimal execution time is

TBSP(n) — @(na/(aJrl))’
TdBSP(n) — @(na/(a+2)) .

This yields the speedup TB5F (n)/TB5F (n) = © (%) =0 (n (a+1)a(a+2)).

4. Conclusion

We have shown how the dBSP model can be used to improve time complexity of some elementary
BSP algorithms. All the presented algorithms possess a regular communication structure and do not
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use general all-to-all communication patterns. Thus it is possible to perform an efficient partitioning
of the decomposable BSP machine.

More detailed description of the algorithms can be found in [10], together with formal definitions
of BSP and dBSP, mutual simulations between BSP and dBSP, and results about their relation
to other sequential and parallel models of computation.
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