
Stabilized and Block Approximate Inverse Preconditioners for Problems in Solid
and Structural Mechanics

Benzi, M.
2000

Dostupný z http://www.nusl.cz/ntk/nusl-33939

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 24.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33939
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Stabilized and Block Approximate Inverse

Preconditioners for Problems in Solid and

Structural Mechanics

Michele Benzi Reijo Kouhia Miroslav T�uma

Technical report No. 816

October 30, 2000

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodárenskou vì¾í 2, 182 07 Prague 8, Czech Republic

phone: (+4202) 6884244 fax: (+4202) 8585789
e-mail: tuma@cs.cas.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Stabilized and Block Approximate Inverse

Preconditioners for Problems in Solid and

Structural Mechanics

Michele Benzi1 Reijo Kouhia2 Miroslav T�uma3

Technical report No. 816

October 30, 2000

Abstract

The solution of linear systems arising in the �nite element analysis of shells and solids

by the preconditioned conjugate gradient method is considered. Stabilized and block

versions of the AINV factorized approximate inverse preconditioner are presented and

tested on a variety of di�cult problems. Comparisons with other preconditioning

methods are also included.

Keywords
Preconditioning, conjugate gradient, factorized sparse approximate inverses, block

algorithms, �nite elements, shells

1Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
(benzi@mathcs.emory.edu).

2Laboratory of Structural Mechanics, Helsinki University of Technology, PO Box 2100,
FIN 02015 HUT, Finland (reijo.kouhia@hut.�).

3Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vod�arenskou
v�e�z�� 2, 182 07 Prague 8, Czech Republic (tuma@cs.cas.cz).

Stabilized and Block Approximate Inverse

Preconditioners for Problems in Solid and

Structural Mechanics

Michele Benzi� Reijo Kouhiay Miroslav T�umaz

October 30, 2000

Abstract

The solution of linear systems arising in the �nite element analysis
of shells and solids by the preconditioned conjugate gradient method
is considered. Stabilized and block versions of the AINV factorized
approximate inverse preconditioner are presented and tested on a va-
riety of di�cult problems. Comparisons with other preconditioning
methods are also included.

Keywords: preconditioning, conjugate gradient, factorized sparse ap-
proximate inverses, block algorithms, �nite elements, shells

1 Introduction

In this paper, we address the question of devising robust and e�cient pre-
conditioners for the conjugate gradient method applied to problems in solid
and structural mechanics. Our main focus is on sparse linear systems of the
type

Ax = b (1)

arising from �nite element models of thin shells, which are known to be
especially challenging for iterative linear solvers. Problems from the model-
ing of three-dimensional solids will also be considered. The preconditioners

�Department of Mathematics and Computer Science, Emory University, Atlanta, GA
30322, USA (benzi@mathcs.emory.edu).

yLaboratory of Structural Mechanics, Helsinki University of Technology, PO Box 2100,
FIN 02015 HUT, Finland (reijo.kouhia@hut.�).

zInstitute of Computer Science, Academy of Sciences of the Czech Republic, Pod
vod�arenskou v�e�z�� 2, 182 07 Prague 8, Czech Republic (tuma@cs.cas.cz).

1

examined in this paper are mainly sparse approximate inverses in factor-
ized form; however, other techniques, like block Jacobi and point and block
versions of incomplete Cholesky preconditioning, will also be considered.

A sparse approximate inverse preconditioner is a sparse matrix M that
directly approximates the inverse of the coe�cient matrix A:

M � A�1:

The (left) preconditioned system, therefore, is of the form

MAx =Mb :

When A is symmetric positive de�nite and the preconditioned conjugate
gradient (PCG) method is being used, the preconditioner must also be sym-
metric and positive de�nite. One way to insure this is to take M to be in
factorized form, i.e.,

M = ZZ T

for a nonsingular sparse matrix Z . If Z is triangular, then nonsingularity
is trivial to check, and the preconditioner can be regarded as an incomplete
factorization of A�1. Thus, the preconditioned system takes the form

Z TAZu = Z Tb (2)

and the solution to the original system (1) is given by x = Zu . Note that
the coe�cient matrix in (2) is symmetric positive de�nite. In this paper, we
consider exclusively approximate inverses in factorized form.

Several techniques have been proposed to compute factorized sparse ap-
proximate inverse preconditioners; see, e.g, [32], [10], [42], [25], [31] and the
references therein. There are two major issues in computing a sparse approx-
imate inverse: the �rst is the choice of an appropriate sparsity pattern for
the approximate inverse factor Z , and the second is the actual computation
of the entries of Z . Determining a good sparsity pattern for the approximate
inverse can be di�cult, especially for unstructured problems. Techniques for
guessing a sparsity pattern a priori have been investigated, for instance, in
[19]. Once a sparsity pattern has been found, least squares techniques can
be used to compute an approximate inverse with the given sparsity pattern
[32]. Alternatively, the sparsity pattern can be computed dynamically, to-
gether with the nonzero entries, by applying a drop tolerance in the course of
an inverse factorization algorithm. This is the approach taken in the AINV
algorithm [10], and in this paper we will focus on variants of this technique.

2

Our interest in approximate inverse preconditioners stems in part from
the fact that they are comparatively easy to implement on modern high-
performance computers, particularly vector and parallel machines, since
their application only involves matrix-vector products. This is in contrast
with more traditional preconditioners, like incomplete factorization meth-
ods, which require highly sequential triangular solves and are di�cult to
implement e�ciently on current parallel architectures, especially for un-
structured problems. Another motivation for considering approximate in-
verse techniques instead of more traditional incomplete factorization pre-
conditioners is related to the issue of numerical stability. In a previous
paper [8], we ran into severe instability problems when trying to apply ap-
proximate inverse techniques to the sti�ness matrices arising in thin shell
analysis. Similar problems also plague the incomplete Cholesky methods, on
occasions. In this paper we report on recent progress that was made towards
ensuring the stable computation of factorized approximate inverse precondi-
tioners for thin shell problems and other highly ill-conditioned matrices. We
will argue that the new techniques are inherently more stable than standard
incomplete factorization methods. Indeed, factorized approximate inverse
preconditioners can be computed without the need for any kind of diagonal
correction; this is not true, in general, for incomplete factorizations of A.

Another contribution of this paper is to present block algorithms for
both the basic and stabilized approximate inverse preconditioners, and to
assess their performance on thin shell and solid mechanics problems. These
problems have a natural block structure (stemming from the fact that there
are several unknowns associated with each node), and exploiting this struc-
ture can result in increased robustness and improved convergence rates of
the PCG iteration. Furthermore, dense blocks can be exploited to achieve
reasonable performance on modern cache-based architectures.

The remainder of the paper is organized as follows. In section 2 we
review the basic AINV technique together with its stabilized variants. Block
algorithms are described in section 3. Section 4 is devoted to experimental
results. We present some conclusions in section 5.

2 A stable approximate inverse algorithm

In this section we recall the basic AINV technique [10] and its stabilized vari-
ants [7], [30]. The AINV algorithm builds a factorized sparse approximate
inverse of the form

M = ZD�1Z T � A�1 (3)

3

where Z is a sparse unit upper triangular matrix and D is diagonal.
The algorithm computes Z and D directly from A by means of an in-

completeA-orthogonalization process (that is, a Gram-Schmidt process with
respect to the \energy" inner product hx ;yi := xTAy) applied to the unit
basis vectors fe ig

n
i=1. In this process, small elements are dropped to preserve

sparsity. The resulting vectors fz ig
n
i=1 are approximately conjugate with re-

spect to A, i.e., approximately A-orthogonal. Letting Z = [z 1; z 2; : : : ; z n],
then Z TAZ is approximately diagonal. Letting D = diag(p1; p2; : : : ; pn)
where pi = z Ti Az i, it follows that ZD

�1Z T � A�1. The approximate in-
verse factor Z is a sparse approximation of the inverse of the LT factor in
the LDLT decomposition of A. When the A-orthogonalization process is
performed exactly, the diagonal matrix D is the same in the two decompo-
sitions, and contains the pivots down the main diagonal.

The underlying assumption here is that many entries in L�1 are small in
magnitude. This is true for many problems of practical interest, particularly
for discretizations of boundary value problems for partial di�erential oper-
ators of elliptic type, the Green's function of which is known to exhibit fast
decay in many cases. Sparsity can also be achieved by combining dropping
of small entries with suitable sparse matrix orderings, such as nested dissec-
tion and minimum degree. These orderings are bene�cial in that they result
in smaller time and space requirements for forming and storing the precon-
ditioner, while at the same time improving the quality of the preconditioner
in a signi�cant number of cases; see [11], [14], [25].

Denote by aTi the ith row of A. The A-orthogonalization process for
computing Z and D from A can be written in two mathematically equiv-
alent ways. We call these the left-looking and the right-looking algorithms,
respectively.

Algorithm 2.1 Left-looking A-orthogonalization algorithm:

Let z
(0)
1 = e1; p

(0)
1 = a11

For i = 2; : : : ; n

z
(0)
i = e i

For j = 1; : : : ; i� 1

p
(j�1)
i := aTj z

(j�1)
i

z
(j)
i := z

(j�1)
i �

p
(j�1)
i

p
(j�1)
j

!
z
(j�1)
j

End

p
(i�1)
i := aTi z

(i�1)
i

End

4

Algorithm 2.2 Right-looking A-orthogonalization algorithm:

Let z
(0)
i = e i (1 � i � n)

For i = 1; 2; : : : ; n
For j = i; i + 1; : : : ; n

p
(i�1)
j := aTi z

(i�1)
j

End

If i < n Then

For j = i+ 1; : : : ; n

z
(i)
j := z

(i�1)
j �

p
(i�1)
j

p
(i�1)
i

!
z
(i�1)
i

End

End If

End

Both of these algorithms can be used to construct an AINV precondi-
tioner by dropping entries below a prescribed drop tolerance in the z -vectors
(corresponding to entries above the main diagonal of Z) as they are com-
puted. We distinguish between two kinds of dropping criteria, absolute and
relative. In absolute dropping, a new entry in the Z matrix is dropped if
it is less than a prescribed drop tolerance > 0 times the largest entry in
A. With relative dropping, an entry is dropped if it is less than times the
in�nity norm of the current row of A. In either case, the dropping is ap-

plied after each update step for z
(j)
i in the left-looking algorithm, and after

each update step for z
(i)
j in the right-looking algorithm. The two variants

(left- and right-looking) of AINV are not computationally equivalent. The
numerical values of the entries in the resulting preconditioners are generally
not identical, and the di�erent implementations result in di�erent timings
for constructing the preconditioner. In our experience, the right-looking al-
gorithm is usually faster on the relatively dense matrices arising from �nite
element analysis.

It is worth stressing that in order to have an e�cient algorithm, the
AINV process must be carefully implemented. Not only the sparsity in the
rows of A and in the computed columns of Z must be exploited, but it is
also important to make sure that of the inner products involving the rows
of A, only those that are structurally nonzero are actually computed; see,
e.g., [15]. Then, for typical values of and assuming an even distribution of
nonzero entries in the incomplete inverse factor, all but a few of the inner-
most update loops in j can be skipped for each i, and the cost of computing

5

the preconditioner scales linearly in the dimension n of the problem.
A crucial issue is that of the stability of the AINV process. For the

preconditioner to be positive de�nite it is necessary that the pivots pi be
positive. In the absence of dropping, one has

pi = aTi z i = zTi Az i > 0;

since A is positive de�nite and z i 6= 0 . However, when dropping is used
the pivots may become non-positive, forcing the algorithm to terminate.
This is referred to as a breakdown. In [10], it was proved that the AINV
process cannot su�er a breakdown if A is an H-matrix (see [5] for a de�ni-
tion of H-matrix), similar to incomplete Cholesky. If A is not an H-matrix,
breakdowns are possible; unfortunately, sti�ness matrices arising in �nite
element analysis are not H-matrices in general, and breakdowns are a com-
mon occurrence. For instance, in [8] we found that thin shell problems lead
to massive breakdowns in the AINV algorithm. (Some incomplete factor-
ization algorithms are also susceptible to break down on these problems.)
Several diagonal compensation strategies have been proposed to deal with
pivot breakdowns in the context of incomplete Cholesky preconditioning.
Of these, the most popular in the structural engineering community is the
Ajiz-Jennings variant of incomplete Cholesky [1]. These techniques can be
readily extended to the case of factorized approximate inverses like AINV;
however, the resulting preconditioner is often of poor quality. Fortunately, it
is possible to prevent breakdowns without the need for any diagonal correc-
tions, simply by formulating the A-orthogonalization algorithm in a slightly
di�erent manner. This reformulation was recently developed, independently,
in [7] and [30]; see also [13] for a somewhat di�erent approach. We refer to
this algorithm as the SAINV (for stabilized AINV) algorithm. In passing,
we also note that there exist other algorithms for constructing factorized
approximate inverse preconditioners for positive de�nite matrices which are
guaranteed to be breakdown-free. These include the FSAI preconditioner
[32] and the bordering algorithm described in [42].

SAINV is based on a reformulation of the A-orthogonalization process,
presented below, which in exact arithmetic and in the absence of dropping
is mathematically equivalent to the previous ones. For brevity, we describe
the right-looking variant only.

6

Algorithm 2.3 Right-looking A-orthogonalization algorithm, version 2:

Let z
(0)
i = e i (1 � i � n)

For i = 1; 2; : : : ; n

v i = Az
(i�1)
i

For j = i; i + 1; : : : ; n

p
(i�1)
j := vTi z

(i�1)
j

End

If i < n Then

For j = i+ 1; : : : ; n

z
(i)
j := z

(i�1)
j �

p
(i�1)
j

p
(i�1)
i

!
z
(i�1)
i

End

End If

End

It is easy to see [7] that when dropping in the z -vectors is used in this

algorithm, the pivots pi = p
(i�1)
i remain positive, and no breakdown is

possible. In principle, breakdowns could still be possible because of round-
o� errors, but this is not likely to happen and we have never observed such
an occurrence in actual computations. A more real danger is that of positive
but very small pivots, which could potentially cause overow and strong �ll-
in in the z -vectors. In this case, some safeguarding might be necessary, such
as pivot shifts and imposing a limit on the number of nonzeros allowed in a z -
vector; however, we have not met any situation in actual computation where
these safeguards were needed. We found SAINV to be a robust procedure
in practice. With this preconditioner, we were able to solve a number of the
problems that we could not solve with the standard AINV preconditioner;
see the numerical tests in [7].

The price to pay for this robustness is a somewhat higher cost of com-
puting the preconditioner. This increase, however, is usually modest, and
the cost of computing the preconditioner remains reasonable|typically a
linear function of the problem dimension n; see [7]. This is especially true
if the preconditioner can be reused over di�erent solves, for in this case the
set-up cost would be easily amortized.

Although the stabilized approximate inverse algorithm is guaranteed to
avoid breakdowns, the quality of the preconditioning as measured by the
convergence rates of the conjugate gradient iteration may still be unsatis-
factory, particularly for very ill-conditioned problems. The situation can

7

sometimes be improved using block preconditioning, as described in the
next section. Diagonal and block diagonal scalings are also recommended.
If D denotes the main diagonal of A, then the preconditioning is applied

to the symmetrically (Jacobi) scaled matrix D� 1

2AD� 1

2 . When the matrix
has a natural block partitioning, a symmetric block Jacobi scaling is often
bene�cial. We will say more on scaling in section 4.

3 Block algorithms

A standard technique to improve performance in dense matrix computa-
tions is to use blocking; see, e.g., [22]. By partitioning the matrices and
vectors into blocks of suitable size (which usually depends on the target
architecture) and by making such blocks the elementary entities on which
the computations are performed, high-level BLAS can be used for cache ef-
�ciency on current architectures with a hierarchical memory structure. As
a result of such �ne-tuning, computational rates near the theoretical peak
are possible for many dense linear algebra calculations.

In contrast, computations involving sparse matrices are much more dif-
�cult to optimize, particularly when the matrices are irregularly populated,
and computational rates are typically only a small fraction of the theoretical
peak. This is largely caused by the presence of indirect addressing in the
innermost loops, e.g., in multiplying a sparse matrix by a dense vector. The
situation can sometimes be improved by extending the use of blocking to
sparse matrices.

Block iterative methods have been popular for many years in the solu-
tion of linear systems arising from the discretization of partial di�erential
equations on structured grids; see, e.g., [5] or [38]. Here the blocks arise
from some natural partitioning of the problem (grid lines, planes, or subdo-
mains) and they are usually large and sparse. For structured grid problems
in 2D, e�cient band solvers can be used to invert these blocks, leading to
good performance in many cases.

A more interesting case for us is when the blocks are small and dense, as
is the case when several variables are associated with a grid point, as with
systems of partial di�erential equations. In this case high-level BLAS can
be used as computational kernels and indirect addressing can be removed
from the innermost loops, e.g., in the execution of matrix-vector products.
For cache-based architectures, this leads to fairly good performance.

This block structure can either be naturally present in the matrix, or
it must be imposed. As already mentioned, matrices with a natural block

8

form often arise when the �nite element method is used to discretize a partial
di�erential equation or a system of them. In other cases there may be no
natural block structure for us to exploit. However, we may still be able to use
block algorithms by imposing a suitable blocking on the matrix, for instance
by reordering the matrix using row and column permutations. A natural
goal of the permutation should be to result in a block partitioned matrix
with fairly dense blocks. To this end, any band/pro�le minimizing heuristic
like reverse Cuthill-McKee (RCM) can be used; see [23] or [42]. Another
possibility is to use the PABLO algorithm and its variants; see [41], [18].
These schemes result in block partitioned forms in which the dense blocks
tend to be clustered around the main diagonal of the matrix. In our case we
opted for a block construction which provides a general distribution of the
blocks in the matrix. The algorithm to construct the blocks is based on a
graph compression procedure due to Ashcraft [4]. We will give now a brief
overview of this approach.

The block construction is based on the properties of the underlying
graph. The aim of the graph compression is to �nd cliques in the undirected
graph of the matrix. Consider the graph G = (V;E) of the symmetric ma-
trix A = (aij). V = f1; : : : ; jV jg is the set of vertices that correspond to
rows and columns of the matrix. E � V � V is the set of its edges, where
(i; j) 2 E if and only if the entry aij is nonzero. Then the adjacency set of
a vertex v is

adj(v) = fuj(v; u) 2 Eg:

Vertices u 2 V and v 2 V are adjacent if and only if v 2 adj(u) (this is the
same condition as u 2 adj(v).) A clique in G is a set of vertices which are
all mutually adjacent.

The task of �nding blocks as large and dense as possible in a matrix A
is equivalent to that of �nding all cliques which are maximal with respect
to inclusion in the graph G of the matrix A. Of course, this task could be
accomplished by brute force, comparing the adjacency sets of the vertices
in G. However, this would result in an unnecessarily time-consuming pro-
cedure. In the paper [4], some basic enhancements of this procedure are
described. Before actual computation and comparison of the adjacency sets
take place, a preprocessing phase is performed. The candidates for inclusion
into actual blocks are tested with respect to two easily computed additional
quantities: vertex degree (size of an adjacency set) and vertex checksum (a
simple function of adjacent vertices). These tests enable one to compute
and compare adjacency sets in a few cases only. This contributes to the low
cost of the graph compression routine.

9

The graph compression procedure was proposed as a tool for improving
the performance of sparse direct solvers based on triangular factorizations of
the system matrix. In this context, the compression contributes in a crucial
way to reducing the symbolic overhead associated with the decomposition
(reordering, elimination tree manipulation, symbolic factorization, etc.) As
for the numeric phase of the factorization, it represents a useful comple-
ment to another important blocking strategy used in modern direct solvers,
namely, the supernodal technique [35]. Note that the supernodal strategy
is actually based on the structure of the triangular factors of A, which are
usually much less sparse than the system matrix itself. Because we are in-
terested in block iterative algorithms, we focus on block strategies based on
the sparsity of the original matrix only, like graph compression.

3.1 Block AINV preconditioning

Although the right-looking AINV algorithm is often faster, in this paper we
restrict our attention to the left-looking block AINV scheme, which is easier
to implement.

Assume the system matrix has been partitioned in the following block
form:

A =

2
6664
A11 A12 � � � A1N

A21 A22 � � � A2N
...

...
. . .

...
AN1 AN2 � � � ANN

3
7775 :

Here Aij has order ni � nj, where 1 � ni � n. N is the block dimension of
the matrix, n is its dimension. Denote

P
j<i nj by mi (it is the o�set of the

ith block). Also, denote the block rows of A by AT
i , i = 1; : : : ; N . That is,

AT
i = [Ai1; : : : ;AiN]:

Note that the diagonal blocks Aii are square symmetric positive de�nite
matrices, and that Aji = AT

ij for i 6= j.
The block AINV algorithm computes block partitioned Z andD directly

from A based on a block A-orthogonalization process applied to blocks of
columns of the identity matrix. Note that D is now block diagonal.

Let E i denote the n�ni matrix with all zero rows except for rows mi+1
through mi+ni which correspond to the rows of the ni�ni identity matrix
I ni

. The block A-orthogonalization procedure can be written as follows.

10

Algorithm 3.1 Block A-orthogonalization algorithm:

Let Z
(0)
i = E i (1 � i � N); P

(0)
1 = A11

For i = 2; : : : ; N do

For j = 1; : : : ; i� 1 do

P
(j�1)
i := AT

j Z
(j�1)
i

Z
(j)
i = Z

(j�1)
i � Z

(j�1)
j [P

(j�1)
j]�1P

(j�1)
i

End do

P
(i�1)
i = AT

i Z
(i�1)
i

End do

End do

Let Z i := Z
(i�1)
i and Di := P

(i�1)
i , for 1 � i � N . Return

Z = [Z 1; Z 2; : : : ;ZN] and D = diag(D1;D2; : : : ;DN):

The block AINV preconditioner M = ZD�1Z T � A�1 is computed by
applying this block generalized Gram-Schmidt process incompletely. Blocks
with small norms (corresponding to positions above the block diagonal part
of the triangular matrix Z) are dropped to preserve sparsity after the block

updates for Z
(j)
i . In our implementation, we used the in�nity norm to gauge

the size of the matrix blocks, but other choices are possible; see [15].

The inverses of the pivot blocks appearing in the update step for Z
(j)
i

above are computed by means of a full triangular factorization. Notice that
because of dropping, the pivot blocks in the incomplete process may not be
positive de�nite, or even symmetric. In our implementation, we adopted

the following safeguards. First, an LU factorization of P
(j�1)
j is computed

(without pivoting). Then, the pivot block is symmetrized by replacing it,

if necessary, with LLT , where L is the lower triangular factor of P
(j�1)
j .

Pivot modi�cations may be used to enforce positive de�niteness if needed.
In practice, we found that such modi�cations are rarely needed, and the
block AINV procedure is much more robust than the point AINV one.

Nevertheless, stabilization can and should be used to obtain a fully re-
liable algorithm. The block stabilized AINV algorithm is obtained from

Algorithm 3.1 by replacing the expressions for P
(j�1)
i and P

(i�1)
i with

[Z
(j�1)
j]TAZ

(j�1)
i and [Z

(i�1)
i]TAZ

(i�1)
i , respectively. The pivot blocks are

now guaranteed to be symmetric and positive de�nite, at the price of a
somewhat higher construction cost.

Notice that the block AINV algorithms are rich in dense matrix-matrix
operations, hence BLAS-3 kernels can be used to attain high performance.

11

In practice, we found that the performance of the block AINV schemes
can be signi�cantly enhanced by explicitly applying a symmetric block Ja-
cobi scaling to the coe�cient matrix A prior to performing the block AINV
process. This preprocessing is based on the computation of the Cholesky
factorizations Aii = LiL

T
i for 1 � i � N , followed by the explicit formation

of the block scaled matrix

Â = G�1AG�T

where G = diag(L1; : : : ;LN). The additional costs incurred by this scaling
are usually small compared to the total solution costs.

The use of blocking in the context of the AINV algorithm is not entirely
new. Challacombe [16], [17] has used a natural blocking of the problem to
achieve high performance when applying the AINV transformation in quan-
tum chemistry applications; however, the approximate inverse itself was
computed using the point version of AINV (Algorithm 2.1). Bridson and
Tang [15] developed a block variant of AINV which is also guaranteed not to
break down; our approach di�ers from theirs in the blocking strategy, in the
A-orthogonalization scheme used and in the implementation, and appears
to result in more robust preconditioning. Indeed, we are able to solve some
problems for which they report failure in [15]. A di�erent kind of block ap-
proximate inverse preconditioner, based on Frobenius norm minimization,
has been recently described in [6]. Other recent references include [21] and
[40] for the use of blocking within incomplete factorization preconditioning.
It should be noticed that the e�ect of blocking is quite di�erent for di�er-
ent preconditioners. For instance, for the case of the SPAI preconditioner,
blocking has the e�ect of reducing the time to compute the preconditioner
compared to the unblocked version, but at the cost of slower convergence
rates [6]. As we will see in the next section, this is not usually the case for
AINV. In all cases, however, blocking results in improved cache-e�ciency
on hierarchical memory computers.

4 Numerical experiments

In this section several numerical examples are presented. Special emphasis
is given to problems arising in the modeling of thin shells, which are known
to be hard for preconditioned iterative methods. Di�erent parametric stud-
ies have been carried out. The e�ect of the regularizing parameter in the
Hughes-Brezzi formulation on the quality of the preconditioner is investi-
gated. The e�ects of point and block scaling and equation ordering are

12

discussed. In addition, results for some 3-D solid mechanics problems are
given.

The computations shown have been performed with a single processor on
an SGI Origin 2000 (R12k processor) and on a Compaq AlphaServer GS140
(EV6 processor) at the Center for Scienti�c Computing, Espoo, Finland. In
all the test runs, we used the zero vector as the initial guess and we stopped
the iteration when the Euclidean norm of the initial residual had been re-
duced by �ve or ten orders of magnitude depending on whether realistic or
arti�cial right-hand-side vectors are used, respectively. Reported CPU tim-
ings are in seconds and correspond to the SGI Origin 2000 computations if
not otherwise stated.

We also present results obtained with some incomplete Cholesky-type
preconditioners, e.g., pointwise and block versions of symmetric ILUT [42]
(denoted here by ICT) and of the robust Ajiz-Jennings incomplete factor-
ization [1].

4.1 Shell examples

In this subsection, we report on results of computations for some commonly
used shell test problems. In these models, the drilling rotation is accom-
plished by using the Hughes-Brezzi formulation [26] including an Allman-
type displacement �eld [2]. The plate bending part of the element is based
on the stabilized MITC theory [36] or the discrete-Kirchho� concept. In the
MITC formulation the stabilization parameter has been 0.4. The value of
the regularizing penalty parameter used in the formulation of Hughes and
Brezzi, unless otherwise stated, has been = 10�3G, where G is the shear
modulus. This value a�ects the condition number of the sti�ness matrix
and thus the convergence of the PCG iteration. The e�ect of the parameter
 on the spectral condition number as well as the convergence of the PCG
iteration is demonstrated in [33] and will be further studied in the following
examples.

4.1.1 On symmetric diagonal scaling and the e�ect of ordering

Diagonal scalings have a strong inuence on the behavior of the approximate
inverse preconditioning with (S)AINV. The reason is that the decay in the
inverse factors can be signi�cantly a�ected by symmetric Jacobi scaling.
To illustrate this e�ect for the pointwise SAINV approach, we consider the
analysis of a simple at plate. For at plates there is no coupling between
the membrane and bending deformation and they depend on di�erent nodal

13

unknowns, thus by using a speci�c numbering of the unknowns, the global
sti�ness matrix can be assembled in a block form"

Am O

O Ab

#
;

where Am and Ab are the global sti�ness matrices associated with the mem-
brane and the bending action, respectively.

The plate is discretized by an uniform quadrilateral 10�10 element mesh
with 4-node shell elements with drilling degrees of freedom, resulting in 610
unknowns.

In Figs. 1 and 2 the sparsity patterns of the stabilized AINV precondi-
tioner (incomplete inverse factor Z T) with and without Jacobi scaling are
shown. The drop tolerance is chosen in such a way that the density of the
preconditioners in Figs. 1 and 2 will be approximately the same. It is clearly
seen that without Jacobi scaling the dropping strategy will result in a pre-
conditioner which almost totally ignores the bending deformational part of
the system. In constructing these �gures the absolute dropping criterion
was used; however, similar patterns were also obtained with the relative
criterion.

In curved shells the coupling between membrane and bending deforma-
tions complicates the construction of optimal dropping strategies. However,
the numerical experiments strongly suggest to apply Jacobi scaling when
pointwise dropping is used in the preconditioner construction.1

To illustrate the e�ect of point and block scalings, we show some results
from an analysis of a pinched cylidrical shell. In [8] the basic AINV strategy
was tested for such matrices with modest results. As already mentioned, the
main reason for the observed failures of the AINV-preconditioned conjugate
gradient iteration in [8] was massive pivot breakdowns. If a static AINV
preconditioner with the same sparsity pattern as that of A, denoted by
AINV(0), is applied to an a priori shifted matrix A+�diag(A), breakdowns
can be avoided and the PCG iteration converges. However, the number of
iterations can be rather high; see Table 1, where the matrix S3RMQ4M1 is
used as a test case. This matrix can be obtained from the Matrix Market
[39]. Furthermore, the use of a drop tolerance (instead of a static sparsity
pattern) often resulted in instabilities and no PCG convergence [8].

Considerable improvements can be achieved with the stabilized pointwise
algorithm SAINV with Jacobi scaling, as was shown in [7]. However, even
better results are obtained with the block AINV method, particularly with

1The dropping strategy de�ned by Ajiz and Jennings [1] will implicitly do the same.

14

(a) (b)

Figure 1: Sparsity patterns of the SAINV preconditioner with two
drop tolerances: (a) = 0:2max jaij j; nz(Z T) = 3513; (b) =
0:02max jaij j; nz(Z T) = 20355.

(a) (b)

Figure 2: Sparsity patterns of the SAINV preconditioner with two drop
tolerances applied to the Jacobi scaled matrix: (a) = 0:2; nz(Z T) =
3521; (b) = 0:02; nz(Z T) = 21623.

15

Table 1: Matrix S3RMQ4M1, standard AINV algorithm, MMD nodal ordering.

preconditioner scaling � iterations notes

static AINV(0) - - 1.00 1834 � = 0:01

block AINV - 0.01 0.90 956
- 0.005 2.89 440
- 0.0025 4.82 294

block AINV Jacobi 0.5 1.18 873
Jacobi 0.25 2.07 568
Jacobi 0.1 4.67 298

block AINV block-Jacobi 0.1 1.21 424
block-Jacobi 0.05 1.73 331
block-Jacobi 0.02 3.66 186

block Jacobi scaling. This is shown in Table 1, where � denotes the relative
density of the preconditioner (i.e., the ratio of the number of nonzeros in the
preconditioner and the number of nonzeros in the coe�cient matrix). The
point Jacobi scaling has little e�ect on the performance of the block AINV
preconditioner, but the block scaling is very bene�cial.

In Fig. 3 we show the e�ect of block Jacobi scaling on the performance
of the block SAINV algorithm for another thin shell problem, S3RMT3M3,
also available from the Matrix Market. This is an unstructured matrix cor-
responding to a graded mesh with 1666 triangles, 5357 dof's, and a spectral
condition number cond2(A) � 2:4 � 1010. Again, it is clear that block Jacobi
scaling signi�cantly improves the quality of the preconditioning.

The results above were obtained with a minimum degree ordering of the
nodes. It is well known [24] that the numbering of unknowns may have
signi�cant inuence on the performance of preconditioned iterations. For
point versions of the AINV preconditioner, this has been investigated in [14]
and [11]. Here we consider nodal orderings, corresponding to orderings of
the block partitioned matrix or, equivalently, of the compressed graph. This
is standard practice in structural mechanics. All the unknowns in a node
are numbered consecutively before entering the next node. How to order
the nodes depends on which kind of preconditioning will be used. Implicit
incomplete factorization preconditioners tend to bene�t from reorderings
which try to minimize the RMS bandwidth, like RCM. On the other hand,

16

unscaled
Jacobi scaled

block Jacobi scaled

preconditioner density

it
er
at
io
n
s

43.532.521.510.5

1000

900

800

700

600

500

400

300

200

Figure 3: Test case S3RMT3M3, e�ect of scaling for the block stabilized AINV.

NO
dof
MC

MMD
GND

NO block
QMD block
MC block

MMD block
GND block

preconditioner density

it
er
at
io
n
s

14121086420

1800

1600

1400

1200

1000

800

600

400

200

0

Figure 4: Test case S3RMT3M3, comparison with pointwise stabilized AINV
and the block stabilized AINV, di�erent orderings.

17

factorized approximate inverse preconditioners do poorly with such order-
ings, and in [14] and [11] it was found that orderings like minimum degree
or nested dissection, which result in short and wide elimination trees and
sparse inverse factors, should be preferred.

Another possibility is to adopt an ordering by degrees of freedom (dof-
wise), where unknowns of similar type are ordered sequentially sweeping all
the nodes in the mesh.

In Fig. 4 we show the iteration count as a function of the preconditioner
density for two types of preconditioners (block SAINV and point SAINV)
and di�erent orderings for the shell problem S3RMT3M3. The ordering strate-
gies are multiple minimum degree (MMD), generalized nested dissection
(GND), multicoloring (MC) and quotient minimum degree (QMD), besides
the original ordering (NO). The block SAINV algorithm is scarcely sensitive
to the ordering of the nodes. This is unlike point SAINV, for which we can
see that the ordering makes a di�erence. Here, for reasonable preconditioner
densities, the dof-wise ordering clearly outperforms the other orderings; how-
ever, the performance is not as good as with block SAINV. Experiments with
other thin shell problems indicate that on average, MMD nodal ordering is
slightly superior to the other orderings when block (S)AINV is being used.

4.1.2 On the value of the regularizing parameter in the Hughes-

Brezzi formulation

In-plane rotational degrees of freedom, \drilling degrees of freedom", are
particularly convenient in the analysis of shells. Typical shell elements have
three translational and two rotational degrees of freedom at a node. This
results in many di�culties of model construction and of programming and
numerical ill-conditioning for certain types of element assemblages. Thus the
presence of all three rotations at a node is advantageous from a practical
point of view.

Early attempts to construct membrane elements with drill rotations were
unsuccessful. Hughes and Brezzi [26] presented a simple variational formu-
lation, which employs an independent rotation �eld and is also stable in the
discrete case. They also proved that elements based on their formulation
are convergent for all standard interpolations including equal order inter-
polation for displacements and rotation. Numerical experiments reported
by Hughes et al. [27] con�rm the a priori theoretical convergence estimates.
They compared linear and quadratic triangular and quadrilateral elements
and also bilinear elements with incompatible modes. Incompatible modes
signi�cantly improve the coarse mesh accuracy of the bilinear element. On

18

the other hand, the static condensation needed to eliminate the nodeless
generalized displacements is awkward, especially in nonlinear problems.

Ibrahimbegovi�c et al. [29] amended the displacement interpolation of a
four node quadrilateral element by the Allman-type [2] quadratic modes in
order to improve the coarse mesh accuracy of the element. This consid-
erably improves the bending behavior of the element. They also added a
hierarchical bubble interpolation mode to the displacement �eld.

The bilinear form of the variational equation of the Hughes-Brezzi for-
mulation isZ

�" : C : "d
+

Z

(skewr�u � ��)(skewru � �)d
 (4)

where " is the strain tensor, i.e., the symmetric part of the displacement
gradient, " = symm ru , � is a skew-symmetric tensor representing the
in-plane rotation and � denotes the variation. The fourth order tensor C
contains the material parameters.

An appropriate value of the regularizing penalty parameter is chosen
in accordance with the ellipticity condition. For the isotropic case the value
 = G (shear modulus) seems to balance the terms in the estimate and thus
seems reasonable [28]. The method is insensitive to the choice of the penalty
parameter in the region 0 < � G if discretization accuracy is considered.
Since the above formulation is extensively studied in the papers [26], [27]
and [28], additional details are not repeated here.

However, little is known about the inuence of the regularizing param-
eter on the conditioning of the sti�ness matrix. In [33] the e�ect of the
parameter on the condition number of a cylindrical shell modelled by a reg-
ular 30�30 quadrilateral element mesh (four noded stabilized MITC type
elements) was determined as well as the convergence of the IC(0)-PCG it-
eration. In the following, similar results are reported for a cylindrical shell
with an irregular mesh modelled by three node triangular elements. The
e�ect of symmetric Jacobi scaling is also studied.

In Fig. 5 the e�ect of the parameter, symmetric Jacobi scaling and
di�erent drill-rotation formulations on the spectral condition number of the
sti�ness matrix are shown. The matrix corresponds to a pinched cylindrical
shell discretized by means of an irregular mesh with 1666 triangular three-
node stabilized MITC-type shell elements. Note that the unscaled case
with = 10�3G and with Allman displacement �eld corresponds to the
CYLSHELL matrix S3RMT3M3 in the Matrix Market.

When iterative methods are used, the recommended value for the pa-
rameter lies in the interval 10�6 < =G < 10�2, see Fig 5 and Table 2, where

19

block Jacobi
Jacobi scaled

unscaled
block Jacobi, no Allman

J. scaled, no Allman
unscaled, no Allman

=G

sp
ec
tr
al
co
n
d
it
io
n
n
u
m
b
er

110�310�610�910�12

1014

1013

1012

1011

1010

109

Figure 5: E�ect of the parameter, symmetric Jacobi scaling and di�er-
ent drill-rotation formulations on the spectral condition number. Pinched
cylindrical shell, irregular mesh with 1666 triangular three node stabilized
MITC type shell elements, n = 5357; N = 938.

the number of SAINV-PCG iterations is shown. Jacobi scaling gives an ad-
vantageous e�ect in lowering the spectral condition number by two orders
of magnitude. Block Jacobi scaling gives consistently the best performance
of the PCG iteration, although the di�erence in the condition number in
comparison to the pointwise Jacobi scaling is not signi�cant.

If an Allman-type displacement �eld is not used, it is usually recom-
mended that the parameter should not be too small, owing to the fact
that the condition number grows again if < 10�6G. However, Jacobi or
block Jacobi scaling seems to inhibit the growth of the condition number for
small values.

4.1.3 Performance in shell problems

The performance of several preconditioning techniques in the case of the
CYLSHELL matrix S3DKT3M2 [39] is shown in Table 3. It corresponds to
a pinched cylindrical shell model (t=R = 10�3) discretized by a uniform
150�100 mesh of triangular three node discrete Kirchho�-type elements

20

Table 2: E�ect of the regularizing parameter on the convergence of block
SAINV preconditioned iterations (MMD nodal ordering). Irregular mesh
with 1666 triangular three node stabilized MITC type elements. The drill-
formulation includes Allman-type displacement �eld.

block SAINV, unsc. bl. SAINV, J. scaled bl. SAINV, bl. J. scaled
=G � iter � iter � iter

1 0.5 1.98 >10000 0.5 1.95 5905 0.25 1.52 3969
10�1 0.5 1.75 1892 0.5 1.47 1499 0.25 1.02 1535
10�3 0.5 3.12 379 0.5 1.34 672 0.25 0.76 689
10�5 0.5 2.76 500 0.5 1.33 688 0.25 0.76 673

(90499 unknonws). It is also the most ill-conditioned of the CYLSHELL
matrices, having a spectral condition number � 3:63 � 1011.

In this particular problem, the incomplete Cholesky-type precondition-
ers perform rather well, partly due to the narrow band of the system ma-
trix. RCM nodal ordering is used for IC-type methods (RMS bandwidth
497, maximum bandwidth 609) and MMD ordering for AINV. Although the
block ICT preconditioner gives the fastest execution in this single-processor
experiment, it is not easy to �nd a parameter pair (; lfil) for which the
decomposition exists without diagonal modi�cations, which usually destroy
the convergence properties of the preconditioned iteration. (Here denotes,
as usual, the drop tolerance and lfil the maximum number of additional
nonzero blocks allowed in each block column of the incomplete factor.) This
is true for almost all shell problems we have tried to solve with the ICT
preconditioner. Therefore this method cannot be considered robust for thin
shell problems.

For this particular problem, block SAINV preconditioning is not compet-
itive with the block version of the reliable Ajiz-Jennings IC preconditioner.
For = 0:1, however, it is faster than block Jacobi, so it may be useful in
a parallel implementation.

The e�ciency of the block methods is also studied by recording the Mop
rates for a sequence of cylindrical shell problems starting from a 30�30 ele-
ment mesh (matrix S2RMT3M1) having 5489 unknowns to a �ne discretization
by 180�180 element mesh with 194939 unknowns. Results are shown in Ta-
ble 4. Here, B-A-J denotes the block Ajiz-Jennings incomplete Cholesky
preconditioner. In all cases the number of nonzeros in the preconditioner is
approximately the same as the number of nonzeros in the lower triangular

21

Table 3: Cylindrical shell S3DKT3M2, n = 90499; N = 15251.

 � iter P-time I-time notes

Jacobi - >20000 - -
block Jacobi - 8149 - 959

IC(2) - 1.83 1428 4 910 � = 2 � 10�3

block Ajiz-Jennings 0.05 1.27 987 2 277
0.01 1.82 672 4 236
0.002 2.90 386 7 196

block ICT 0.1 0.75 3369 1 718 lfil = 10
0.001 2.31 248 4 107 lfil = 10

block SAINV 0.2 0.77 4338 5 911
0.15 1.17 3783 7 960
0.1 2.44 1903 15 782
0.05 4.01 1472 28 867
0.02 8.44 932 83 1050

part of the sti�ness matrix, denoted by nz(A).
The maximum performance of the SGI Origin 2000 R12k processor is

600 Mops, thus for problems small enough to �t in the processor's external
cache (8 Mb = one million double precision real numbers) we can achieve
over 25% of the processor's maximum performance.2 For bigger problems we
can see a rather rapid decay of performance with respect to op rates. Inter-
estingly, the op rate for the preconditioner construction phase is scarcely
a�ected by the dimension of the problem. For block SAINV on the Origin,
this was typically between 200 and 212 Mops (between 260 and 310 Mops
on the AlphaServer), regardless of problem size.

A test case where block SAINV tends to outperform the incomplete
Cholesky-type preconditioners, although it has a small bandwidth, is a sim-
ply supported T-beam problem from [34], where it has been used as a test
example of interactive buckling phenomena. The structured mesh consist
of 880 quadrilateral discrete-Kirchho� type shell elements, resulting in 5563
unknowns. A strongly orthotropic layer is used to model the overlap between
ange and web, having high bending rigidity in the transverse direction; see
[34] for details. This leads to a highly ill-conditioned equation system, the
spectral condition number of the sti�ness matrix being � 1:87 � 1014.

Results are shown in Table 5. In this particular case the ICT precondi-

2For the Compaq AlphaServer GS140 EV6 processor, the external cache is 4 MB.

22

Table 4: Cylindrical shell, Mop rates.

Origin 2000y AlphaServer GS140z

mesh n nz(A) B-SAINV B-A-J B-SAINV B-A-J

30�30� 5489 112505 173 128 217 180
40�40 9719 201605 160 128 134 110
50�50 15149 316505 139 109 101 90
60�60 21779 457205 101 92 81 78
70�70 29609 623705 83 80 76 75
80�80 38639 816005 77 73 75 70
90�90 49136 1034105 73 67 75 65
100�100 60299 1278005 71 67 74 62
140�140 118019 2511605 65 57 68 53
180�180 194939 4158005 65 62 67 53

y compiled with -mips4 -64 -r12k -OPT:Olimit=8000 -03 command
z compiled with -fkapargs='-o=5 -so=3' command
� case S2RMT3M1

tioner is completely useless. A stable preconditioner is obtained only with a
very small drop tolerance and large lfil, resulting in nearly complete factor-
izations. The block Ajiz-Jennings preconditioner is stable, but it is generally
inferior to block SAINV for reasonable amounts of �ll.

4.2 Solid models

In this section some typical results with 3-D solid models are given. A
standard displacement-based element formulation is used.

4.2.1 Surface mounted transistor

The �rst 3-D solid �nite element model is from a thermal stress analysis
of a surface mounted transistor, see Fig. 6. Only half of the transistor
is modelled with a piece of a printing wiring board (PWB). The model
consists of 1704 reduced triquadratic 20 node brick elements, resulting in
25710 unknowns. The number of nonzeros in the lower triangular part of
the matrix is nz(A) = 1889447.

23

Table 5: T-beam, n = 5563; N = 945.

block SAINV

 � iter

0.8 0.15 >10000 = block Jacobi
0.7 0.29 3669
0.6 0.36 3689
0.5 0.52 2851
0.4 0.76 >10000
0.3 1.11 4943
0.25 1.27 4298
0.24 1.39 4426
0.23 1.43 4029
0.225 1.47 731
0.22 1.49 800
0.2 1.66 699
0.1 3.11 948
0.05 4.57 550
0.02 6.89 191
0.01 9.13 73

block Ajiz-Jennings IC

0.1 1.00 >10000
0.01 2.10 5403
0.005 2.64 4405
0.001 4.99 1221
0.0005 5.46 840
0.0002 5.61 308

24

Figure 6: Surface mounted transistor, 1704 triquadratic elements, 8744
nodes.

Table 6: Surface mounted transistor, n = 25710; nz = 1889447; N = 8744.

preconditioner � iterations P-time I-time P+I

block IC(0) - 1.00 308 14 80 94
block Ajiz-Jennings 0.02 0.99 422 9 103 112
block Ajiz-Jennings 0.01 1.19 286 13 92 105
block SAINV 0.2 0.20 917 34 111 145
block SAINV 0.1 0.44 633 112 99 211
SAINV 0.03 0.43 379 26 99 125
SAINV 0.02 0.63 307 43 89 132
SAINV 0.01 1.17 218 96 85 181

25

In this problem the standard IC and AINV approaches need shifting
to behave well, and only block IC(0) succeeds without shifts. The ICT
preconditioner was unsuccessful; without shifting the matrix, it is impossible
to �nd a working pair of parameters and lfil. Therefore only robust
preconditioners, i.e. the Ajiz-Jennings IC and SAINV approaches are used
in the comparison.

There is no big di�erence between nodal reorderings like MMD, QMD
and GND, in terms of preconditioner density and number of iterations. The
computing times are also comparable, thus only results with MMD reorder-
ing are shown in Table 6.

The Gibbs-King reordering gave the smallest RMS bandwidth (1231)
and it was used with incomplete factorization-based preconditioners.

It should be mentioned that the iteration CPU-times for the pointwise
SAINV can be reduced if the matrix is stored in the block format although
the preconditioner is formed in a pointwise fashion. When using the block
format one matrix-vector multiply takes 0.095s while in the pointwise Com-
pressed Storage by Columns (CSC) format the time is 0.18s, thus 25-36
seconds can be substracted from the iteration times of the pointwise SAINV
results in Table 6. In this example the SAINV preconditioner results in
similar convergence rates to the IC-based preconditioners although the pre-
conditioner is only half as dense as the IC-type ones. Hence, SAINV gives the
fastest iteration time of the compared methods even in this single-processor
experiment. This makes SAINV quite attractive, especially in a parallel
environment.

4.2.2 Engine head

In Fig. 7 a �nite element model of an engine head is shown. Unstructured
discretization in 151483 linear 4-node tetrahedral elements results in 143571
unknowns (number of nonzero elements in the lower triangular part of the
sti�ness matrix nz(A) = 2424822). The loading used in the computations
corresponds to a temperature increase by one degree centigrade.

This problem is an easy one to solve with preconditioned iterative meth-
ods. The standard AINV approach as well as IC preconditioners can be
constructed without shifting. Nevertheless, the standard AINV performs
worse than its stabilized variant, therefore such results are omitted. MMD
reordering of nodes has been used in computations with the AINV algo-
rithms, and the Gibbs-King pro�le reduction resulted in the smallest RMS
bandwidth (2566), and it was used for the IC-type preconditioners.

26

Figure 7: Engine head, 151483 linear tetrahedral elements, 48989 nodes.

27

Table 7: Engine head, n = 143571; nz = 2424822; N = 47857.

preconditioner � iterations P-time I-time P+I lfil

Right-looking SAINV preconditioners

SAINV 0.1 0.29 568 15 226 241
SAINV 0.05 0.63 427 26 209 235
SAINV 0.025 1.24 375 51 236 287
Left-looking SAINV preconditioners

block SAINV 0.2 0.48 695 14 218 232
block SAINV 0.1 1.02 485 33 202 235

Incomplete factorization-based preconditioners

IC(0) - 1.00 312 1 162 163
block IC(0) - 1.00 320 3 148 151
block A-J 0.02 1.38 275 7 129 136
block A-J 0.01 1.69 209 10 109 119
block ICT 0.05 0.81 560 3 206 209 10
block ICT 0.01 1.34 211 6 90 96 10

It can be seen from the results in Table 7 that block SAINV gives slightly
slower convergence rates in comparison to the pointwise version.

One matrix-vector multiply takes 0.25s or 0.14s depending on whether
the pointwise or block storage format is used, respectively. As explained in
the previous example, 41 to 62 seconds could be saved from the pointwise
SAINV iteration times if the matrix were stored in the block format.

4.2.3 Sensitivity to element aspect ratio

Current approaches for analyzing complex laminated structures with solid
elements will usually result in element gometries where one dimension is
small compared with the others. The convergence rate of the PCG iteration
deteriorates with increasing aspect ratio.

An elastic block composed by three material layers and occupying the
region (in cartesian coordinates) 0 < x; y < L and 0 < z < H is considered.
The material interfaces are horizontal layers parallel to the xy-plane, and
having positions z = 2

5H and z = 3
5H. The stack models a ceramic (AlN)

to metal (Ti) joint brazed together with Ag-Cu �ller alloy. The constitutive
parameters used for these materials are given in Fig. 8. A uniform 20�20�20

28

re

x

z

y

Ti

Ag-Cu

AlN

� -L = 10 mm

?

6
2
5 H

?
61
5 H

?

6
2
5 H Ti Ag-Cu AlN

E/GPa 118.6 94.4 315
� 0.36 0.36 0.25

106� 6.441 17.995 2.85

Figure 8: Three material solid block: geometry and material data.

element mesh with eight node trilinear brick elements is used. Loading is
temperature change de�ned by �T = �T0xyz=L

3. Minimal constraints
which prevent the rigid body motion are imposed.

Table 8: Trimetallic block

SAINV BSAINV
L=H � iter � iter

1 0.025 0.48 185 0.1 0.46 244
10 0.025 0.75 493 0.1 0.82 745
100 0.025 0.71 3036 0.1 1.03 9987

Computations are carried out with three di�erent aspect ratios L=H.
As usual, the convergence of the preconditioned iterations deteriorates with
increasing aspect ratio distortions. The block preconditioner su�ers more
severely from high aspect ratios than the pointwise one. Only if the element
aspect ratios are in a feasible range, say L=H < 10, the performance of the
block preconditioner is reasonable. This is exactly the opposite of what is
observed in thin shell applications, where the block preconditioners are more
robust also with respect to mesh distorsions. Hence, the relative behavior
of block and pointwise versions of SAINV can be quite di�erent depending
on whether they are applied to shells or to solids.

29

error
residual

iteration

er
ro
r
n
or
m

10008006004002000

100

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

10�10

Figure 9: Relative Euclidean norms for CG residual and the true solution er-
ror when arti�cial rhs-vector is used. Pinched cylindrical test case S3RMT3M3.

4.3 On the use of arti�cial right-hand sides

A frequent problem when testing iterative solvers is the di�culty in procur-
ing physically realistic right-hand side vectors b . Especially when using
matrices from sparse matrix collections, such as the Matrix Market [39],
corresponding right-hand sides may not be provided nor there are any hints
for the construction of such vectors. As a consequence, developers of lin-
ear solvers are often forced to use arti�cially constructed right-hand sides,
having no relation to the problem from which the coe�cient matrix arises,
and devoided of physical meaning. A typical choice is to compute b as the
product ofA times a given vector x . In this way, the exact solution is known
and the accuracy of the computed solution can be checked. Here we would
like to emphasize the pitfalls involved in the use of arti�cial right-hand sides
when testing iterative methods.

The convergence histories in Fig. 9 illustrate the fact that when using an
arti�cial right-hand side, declaration of convergence based on the relative
residual norm can be completely misleading. As it can be seen from the
�gure, the relative residual drops rapidly to the level of 10�4 � 10�5, even
though there is practically no progress in the accuracy of the solution. How-

30

ever, if a physically realistic load vector is used, the relative residual behaves
like the true solution error in Fig. 9. Nevertheless, residual tolerances can
still lead to inaccurate results in some cases; more reliable stopping criteria
have been proposed, e.g., in [3] and [37].

4.4 On the use of post-�ltration

Dropping selected entries in the computed approximate inverse factor Z ,
usually referred to as a posteriori �ltration, may result in considerable sav-
ings and a more e�cient solution strategy. The idea is to reject entries that
contribute little to the quality of the preconditioner, thereby reducing the
cost of applying the preconditioner without too much a�ecting the rate of
convergence of the PCG iteration. A simple criterion is to drop entries be-
low a prescribed drop tolerance. A posteriori �ltration has been shown to
improve the e�ciency of the FSAI preconditioned iteration in [31]. Here
we consider post-�ltration for the SAINV preconditioner. Because SAINV,
unlike FSAI, is already computed using a drop tolerance, the usefulness of
applying post-�ltration is not immediately obvious.

E�ects of post-�ltration on point and block SAINV preconditioning are
shown in Fig. 10 for the thin shell test example S3RMT3M3. The solid mark-
ers represent computations with un�ltered preconditioners while the open
circles correspond to �ltered cases obtained from the most dense precondi-
tioners of the un�ltered case. Drop tolerances for the un�ltered case (solid
markers) are 0.1, 0.05, 0.04, 0.03, 0.025, 0.02 for block SAINV and 0.06,
0.035, 0.025, 0.02, 0.015, 0.01 for pointwise SAINV. The �ltration toler-
ances are 0.05, 0.1, 0.15, 0.2, 0.3 for block SAINV and 0.06, 0.1, 0.15, 0.2
and 0.4 for pointwise SAINV. It can be seen that pointwise SAINV retains
its convergence properties even though 50 % of its elements are dropped.
However, block SAINV is scarcely a�ected by �ltering.

Table 9: Surface mounted transistor, e�ect of post-�ltration.

preconditioner pf � iterations P-time I-time P+I

SAINV 0.01 0.05 0.53 244 96 67 163
SAINV 0.02 0.07 0.33 341 43 82 125
SAINV 0.02 0.1 0.23 375 43 88 131

 pf : post �ltration tolerance
�: density of the preconditioner after post-�ltration

31

no �ltration
�ltered

pointwise SAINV

block SAINV

preconditioner density

it
er
at
io
n
s

43.532.521.510.5

1800

1600

1400

1200

1000

800

600

400

200

Figure 10: E�ect of a posteriori �ltration on behavior of SAINV precondi-
tioned CG. Test case S3RMT3M3.

In 3-D solid examples the behavior appears to be somewhat di�erent.
For the engine head problem there is hardly no improvement in iteration
times when post-�ltration is used.

Slight improvements are obtained for the surface mounted transistor
case. However, if the total time for a single solve is considered, the higher
preconditioner set up times appears to o�-set the gain in iteration time;
compare Tables 6 and 9.

5 Conclusions

While direct solution techniques, like skyline or multifrontal solvers, are still
widely preferred for solid and structural mechanics problems, preconditioned
iterative methods are rapidly gaining in popularity. As computer technology
advances, the use of increasingly detailed and sophisticated models results
in problems of ever growing size. While direct solvers are very e�ective for
problems of moderate size, the use of iterative methods becomes unavoidable
for very large systems. Indeed, the storage requirements for large problems
make direct methods unfeasible.

32

Iterative methods require less storage than direct ones in most cases and
can be more easily implemented on parallel architectures. Unfortunately,
iterative solvers still lack the reliability of direct methods, and they can fail
on challenging problems. Models of thin shells typically result in very ill-
conditioned linear systems which are di�cult to solve with iterative methods.

In order to increase the reliability of iterative solvers, more robust pre-
conditioning techniques are needed. In this paper we have introduced some
new preconditioning techniques for the conjugate gradient method and ex-
amined their performance on di�cult shell and solid mechanics problems.
Besides the SAINV preconditioner, which was �rst described in [7] and
[30], we have developed new block variants of AINV and SAINV, as well
as block versions of various incomplete Cholesky preconditioners, including
ones based on drop tolerances and the stabilized variant of Ajiz and Jen-
nings. Of these methods, the pointwise and block versions of SAINV are
the only ones that do not require any diagonal modi�cations, and are always
well-de�ned.

For the block methods, the block structure naturally comes from the
�nite element formulation. Exploitation of this block structure improves
robustness and performance on current cache-based architectures.

The importance of point and block diagonal scalings and the e�ect of dif-
ferent (block) orderings were investigated. In general, scalings and reorder-
ings are found to signi�cantly increase the robustness and performance of
the preconditioning. For shell problems, we found that scalings also reduce
the inuence on the condition number of parameters like the regularizing
parameter in the Hughes-Brezzi formulation.

Concerning the performance of approximate inverse techniques, we found
that the block methods performed better overall than the pointwise ones on
thin shell models, where the block size is typically six. On the other hand,
for problems in solid mechanics, where the typical block size is only three,
we found that the block methods, while reliable, were no better than the
pointwise SAINV algorithm. We also found the block methods to be more
sensitive to bad aspect ratios than the point ones, exactly the opposite than
for the shell models.

Our experiments indicate that while incomplete Cholesky-type methods
are often faster than approximate inverse techniques, it may be di�cult to
�nd parameter values that will result in a stable incomplete factorization.
As for the Ajiz-Jennings robust IC factorization, the diagonal modi�cations
needed to stabilize the decomposition can lead to slow convergence in some
cases (as in the T-beam example). In contrast, robust approximate inverse
preconditioners like SAINV and block SAINV cannot break down, do not

33

need any diagonal modi�cations, and often result in convergence rates that
are comparable with those for incomplete Cholesky-type preconditioners or
even better. Thus, approximate inverse techniques can be a useful alterna-
tive to the popular incomplete Cholesky-type preconditioners, even on serial
computers. However, they are expected to be especially useful on parallel
computers, since their application only requires matrix-vector products.

Parallel implementations of the basic AINV algorithm have been de-
scribed in [9] and [12], with good results on a range of scalar PDE problems
from the modeling of di�usion and transport phenomena on both structured
and unstructured grids. Future work will focus on developing parallel imple-
mentations of the SAINV and block SAINV preconditioners for large-scale
problems in solid and structural mechanics.

Acknowledgements Part of this work was done while the second au-
thor was visiting Institute of Computer Science, Academy of Sciences of the
Czech Republic: The hospitality of the Institute is greatly appreciated. The
work of the third author was supported by Grant Agency of the Academy
of Sciences of the Czech Republic grant No. 2030801 and Grant Agency of
the Czech Republic grant No. 201/00/0080. Part of this work was done
while the third author was visiting the Laboratory of Structural Mechanics
at Helsinki University of Technology: The hospitality of the Laboratory is
greatly appreciated.

References

[1] M. A. Ajiz and A. Jennings, A robust incomplete Cholesky conjugate

gradient algorithm, Int. J. Numer. Methods Engrg., 20 (1984), 949{966.

[2] D. J. Allman, A compatible triangular element including vertex rota-

tions for plane elasticity analysis, Computers and Structures, 19 (1984),
pp. 1{8.

[3] M. Arioli, I. S. Du� and D. Ruiz, Stopping criteria for iterative solvers,
SIAM J. Matrix Anal. Applic., 13 (1992), pp. 138{144.

[4] C. Ashcraft, Compressed graphs and the minimum degree algorithm,
SIAM J. Sci. Comput., 16 (1995), pp. 1404{1411.

[5] O. Axelsson, Iterative Solution Methods, Cambridge University Press,
Cambridge, 1994.

34

[6] S. T. Barnard and M. J. Grote, A block version of the SPAI pre-

conditioner, in B. A. Hendrickson et al., editors, Proceedings of the
Ninth SIAM Conference on Parallel Processing for Scienti�c Comput-
ing, SIAM, Philadelphia, 1999 [CD-ROM].

[7] M. Benzi, J. K. Cullum and M. T�uma, Robust approximate inverse pre-

conditioning for the conjugate gradient method, , SIAM J. Sci. Comput.,
22 (2000), pp. 1318{1332.

[8] M. Benzi, R. Kouhia and M. T�uma, An assessment of some precondi-

tioning techniques in shell problems, Comm. Numer. Methods Engrg.,
14 (1998), pp. 897{906.

[9] M. Benzi, J. Mar��n and M. T�uma, A two-level parallel preconditioner

based on sparse approximate inverses, in Iterative Methods in Scienti�c
Computation IV, D. R. Kincaid and A. C. Elster, eds., IMACS Se-
ries in Computational and Applied Mathematics, Vol. 5, IMACS, New
Brunswick, NJ, 1999, pp. 167{178.

[10] M. Benzi, C. D. Meyer and M. T�uma, A sparse approximate inverse

preconditioner for the conjugate gradient method, SIAM J. Sci. Com-
put., 17 (1996), pp. 1135{1149.

[11] M. Benzi and M. T�uma, Orderings for factorized approximate inverse

preconditioners, SIAM J. Sci. Comput., 21 (2000), pp. 1851{1868.

[12] L. Bergamaschi, G. Pini and F. Sartoretto, Approximate inverse precon-

ditioning in the parallel solution of sparse eigenproblems, Numer. Linear
Algebra Appl., 7 (2000), pp. 99{116.

[13] R. Bridson, Multi-Resolution Approximate Inverses, M.Sc. thesis, Uni-
versity of Waterloo, Ontario, Canada, 1999.

[14] R. Bridson and W.-P. Tang, Ordering, anistropy, and factored sparse

approximate inverses, SIAM J. Sci. Comput., 21 (1999), pp. 867{882.

[15] R. Bridson and W.-P. Tang, Re�ning an approximate inverse, J. Com-
put. Appl. Math, to appear.

[16] M. Challacombe, A simpli�ed density matrix minimization for lin-

ear scaling self-consistent �eld theory, J. Chem. Phys., 110 (1999),
pp. 2332{2342.

35

[17] M. Challacombe, A general parallel sparse-blocked matrix multiply for

linear scaling SCF theory, Comp. Phys. Comm., 128 (2000), pp. 93{107.

[18] H. Choi and D. B. Szyld, Application of threshold partitioning of

sparse matrices to Markov chains, in Proc. IEEE International Com-
puter Performance and Dependability Symposium, IPDS'96, Urbana-
Champaign, Illinois, September 4{6, 1996, pp. 158{165, IEEE Com-
puter Society Press, Los Alamitos, CA, 1996.

[19] E. Chow, A priori sparsity patterns for parallel approximate inverse

preconditioners, SIAM J. Sci. Comput., 21 (2000), pp. 1804{1822.

[20] E. Chow and M. A. Heroux, An object-oriented framework for block

preconditioning, ACM Trans. Math. Software, 24 (1998), pp. 159{183.

[21] E. Chow and Y. Saad, Approximate inverse techniques for block-

partitioned matrices, SIAM J. Sci. Comput., 18 (1997), pp. 1657{1675.

[22] J. J. Dongarra, I. S. Du�, D. C. Sorensen and H. A. van der Vorst,
Numerical Linear Algebra for High-Performance Computers, SIAM,
Philadelphia, 1998.

[23] I. S. Du�, A. M. Erisman and J. K. Reid, Direct Methods for Sparse

Matrices, Oxford University Press, Oxford, 1986.

[24] I. S. Du� and G. Meurant, The e�ect of ordering on preconditioned

conjugate gradients, BIT, 29 (1989), pp. 635{657.

[25] M. R. Field, Improving the Performance of Factorised Sparse Approx-

imate Inverse Preconditioner, Technical Report HDL-TR-98-199, Hi-
tachi Dublin Laboratory, Dublin, Ireland, 1998.

[26] T. J. R. Hughes and F. Brezzi, On drilling degrees of freedom, Comput.
Methods Appl. Mech. Engrg., 72 (1989), pp. 105{121.

[27] T. J. R. Hughes, F. Brezzi, A. Masud and I. Harari, Finite elements

with drilling degrees of freedom: Theory and numerical evaluations, in
R. Gruber, J. Periaux and R. P. Shaw, editors, Proceedings of the
�fth International Symposium on Numerical Methods in Engineering,
pp. 3{17, Springer-Verlag, Berlin and New York, 1989.

[28] T. J. R. Hughes, A. Masud and I. Harari, Numerical assessment of

some membrane elements with drilling degrees of freedom, Computers
and Structures, 55 (1995), pp. 297{314.

36

[29] A. Ibrahimbegovi�c, R. L. Taylor and E. L. Wilson, A robust quadrilat-

eral membrane �nite element with drilling degrees of freedom, Int. J. Nu-
mer. Methods Engrg., 30 (1990), pp. 445{457.

[30] S. A. Kharchenko, L. Yu. Kolotilina, A. A. Nikishin and A. Yu. Yeremin,
A Reliable AINV-Type Preconditioning Method for Constructing Sparse

Approximate Inverse Preconditioners in Factored Form, Preprint, Rus-
sian Academy of Sciences, Moscow, 1999.

[31] L. Yu. Kolotilina, A. A. Nikishin and A. Yu. Yeremin, Factorized sparse

approximate inverse preconditioning IV: Simple approaches to rising

e�ciency, Numer. Linear Algebra Applic., 6 (1999), pp. 515{531.

[32] L. Yu. Kolotilina and A. Yu. Yeremin, Factorized sparse approximate

inverse preconditioning I: Theory, SIAM J. Matrix Anal. Applic., 14
(1993), pp. 45{58.

[33] R. Kouhia, Using iterative solvers in non-linear continuation algorithm,
in J. Aalto and T. Salmi, editors, Proceedings of the 6th Finnish Me-
chanics Days, pp. 253{267, 1997.

[34] R. Kouhia and M. Mikkola, Tracing the equilibrium path beyond com-

pound critical points, Int. J. Numer. Methods Engrg., 46 (1999),
pp. 1049{1074.

[35] J. W. H. Liu, E. G. Ng and B. W. Peyton, On �nding supernodes for

sparse matrix computations, SIAM J. Matrix Anal. Appl., 14 (1993),
242{252.

[36] M. Lyly, R. Stenberg and T. Vihinen, A stable bilinear element for the

Reissner-Mindlin plate model, Comput. Methods Appl. Mech. Engrg.,
110 (1993), pp. 343{357.

[37] G. Meurant, Numerical experiments in computing bounds for the norm

of the error in the preconditioned conjugate gradient method, Nu-
mer. Algorithms, 22 (1999), pp. 353{365.

[38] G. Meurant, Computer Solution of Large Linear Systems, North-
Holland-Elsevier, Amsterdam etc., 1999.

[39] National Institute of Standards, Matrix Market, available online at
http://math.nist.gov/MatrixMarket.

37

[40] E. Ng, B. W. Peyton and P. Raghavan, A blocked incomplete Cholesky

preconditioner for hierarchical-memory computers, in D. R. Kincaid
and A. C. Elster, editors, Iterative Methods in Scienti�c Computation
IV, IMACS Series in Computational and Applied Mathematics, vol. 5,
pp. 211{221, 1999.

[41] J. O'Neil and D. B. Szyld, A block ordering method for sparse matrices,
SIAM J. Sci. Stat. Comput., 11 (1990), pp. 811{823.

[42] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing
Co., Boston, 1996.

38

