narodni
N U dlozisté
1 L Sedé
6 literatury

A Subexponential Lower Bound on Read-once Branching Programs by a New
Argument

Z4k, Stanislav
2000

Dostupny z http://www.nusl.cz/ntk/nusl-33925

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 20.04.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33925
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A subexponential lower bound on read-once

branching programs by a new argument

Stanislav Zak

Technical report No. 813

May, 2000

Institute of Computer Science, Academy of Sciences of the Czech
Republic
Pod vodrenskou v 2, 182 07 Prague 8, Czech Republic
phone: (+4202) 66 05 36 90 fax: (+4202) 85 85 789

e-mail: stan@cs.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A subexponential lower bound on read-once

branching programs by a new argument

Stanislav Zak

Technical report No. 813
May, 2000

Abstract

We prove a subexponential lower bound (2”1/11) for read-once branching programs on
the Boolean function of so-called multisyms - matrices where for each pair of columns
there is a pair of bits on the same row with the same values.

The proof is based on the technique of so-called windows which allows us to
indicate what bits of the input in question at the moment in question are remembered
and what are forbidden.

Due to this technique the proof is promissing a possible generalization for branch-

ing programs running in superlinear time.

Keywords

read-once branching programs, lower bound

1 Introduction

Branching programs (b.p.) are a well-known model of sequential computation . Since
they are closely related to the configuration space of Turing machines, any superpoly-
nomial lower bound on their size would imply a superlogarithmic lower bound on the
tape of Turing machines. So, the problem of lower bounds for branching programs
is a very difficult challenge which is connected with the core problems of theoretical

computer science such as P=7LOG and others.

In the history, the main stream of research was concentrated on proving lower
bounds for restricted branching programs. The central restriction are read-once
branching programs for which a lot of lower bounds were proven. The main con-
tribution of the present report is the use of ideas concerning the information flow

along computations in b.p..

The mentioned ideas were firstly formalized in [2]. We are able to define formally
what input bits are known at the given moment and what are unknown. Based on
this formalization a general lower bound theorem was proven in [3], [1] which roughly
says that if we need to have remembered many inputs bits for many inputs then we

need a very large program.

Moreover using this formalization we were able to define a new restriction on b.p.
(and to prove a lower bound for it, of course) such that many Boolean functions
which were difficult for many restrictions till this time are easy for this new restric-
tion. According to this fact we see that our approach catches somewhat new. This
together with the new method for lower bounds is a good reason for investigation in

this direction.

In this report proving lower bound for read-once branchig programs we, in fact,
reduce the long-standing problem of lower bound for b.p. running in superlinear time
to the problem to prove a theorem which is not formulated in terms of lower bounds,
which has a very strong support from the intuition and which holds in the case of

read-once b.p.. This reduction is the main contribution of this report.

2 Windows

By a distribution of a set X of inputs into a program P we mean the set { X, ..., X, },
X, € X, together with a mapping ¢ of {1,...,r} to places (=edges and nodes) of
P such that for all ¢ and for all € X; ¢(i) € comp(x) where comp(z) denotes the

computation on x. The classes of the distribution Xi, ..., X, may be overlapping.

Let a class M of inputs be distributed to the node v (edge e, resp.). By a window
on @ € M with respect to M at v (e, resp.) we mean a string w(x,v, M) (w(x,e, M),
resp.) of length n over three-letter alphabet {0, 1, +} such that the noncrossed bits
have the same values as in and such that the bit ¢ is crossed iff there is an y € M

with y(¢) # x(¢) and y never leaves @ or y leaves « for the first time by test on ¢.

We have proven [3], [1] a theorem giving a lower bound method.

Theorem 2.1 Let {Xy,....,X,} be a distribution of some inputl into a program P.

Then

logr = log Y | X;| —n+ =2
=1 >

=1
in the window on x with respect to X;.

r

TSNS Y where Xids the number of non-crossed bits
Xil i=1zeX,

Now, we add a new theorem.

Theorem 2.2 Let P be a branching program and {X;, ..., X,} be a distribution of

some inputs into P.

Let us put X =4 > |X;| and
=1

0 =4 % 231 Z;(X where IX for a € X; is the length of the window on a with
1=l agcX;
respect to X;.

Lety € N. Further we pul X! =4 {a € X;|lXi > y.o} fori=1.r, X' = |X]].
=1
Then X' < X/ 270"

Proof.

r

logr > log X' —n + % ST 3 X - from our lower bound theorem, then
=1 aeX!

r

logr 2 log X' —n+4 5.5, > [N

=1 acX/

logr 2log X' —n+ 5> > y.o

i=1l aeX/

logr > log X' —n + s5.y.0. 3 | X]]

=1

logr > log X' —n+y.o

logr > logi(—y —n + y.o where k, =4 %
logr > log X —logk, —n+y.0

logk, > log X —n+y.o—logr

ky > 2y.o—l—(logX—n)—logT]

3 Multisyms

Definition 3.1 Two bits from two columns of a matrix are called twins (for these
columns) if they are on the same row. In any binary matrix by important twins we
mean any twins with values 00 or 11.

For a binary matrix we say that a pair of columns is covered if there is at least
one pair of important twins on these columns.

By a 2-multisym we mean a binary matrix of the type e(n).logn x e where

.nlogn (
€(n) is a nondecreasing unbounded function of an appropriate magnitude) having
covered each pair of columns.

(Sometimes we denote €(n).logn as m and n/m as k.)

w(m, e, M,) is a 2m-natural window on a multisym m at the edge e iff M, is the

set of all 2-multisyms going through e.

Theorem 3.2 The number M of 2-multisyms is at least 2".(1 — m)
Proof.

M > 20 — (§).amaon-2m 3 gn _gromtlesn — g0 (] — A1),

n

Theorem 3.3 The number My of 2-multisyms which on each pair of columns have

at least K (e < K < 22L) important twins is at least 2"(1 — z(e(n)_z)),lolg) -

Proof. .
Mz ()T (e
=1

on _ 2210gn‘2n—m‘(%)1(>

on (1 — 92 log n—m+K.(log e+log m—log K)) >
=

n 1
2 (1 - 2(e(n)—2)log n—K(log e+log m—log I\")) >

2%(1 - 2(€(n)—2),lolg n—K.logm)

Theorem 3.4 Let P be a branching program computing 2-multisyms; C =g |P|.

Then for each y € N, y > 0, there is a set Ayc of 2-mullisyms satisfying the
following three conditions:

1. For each m € A,c each its 2m-natural window is not longer than s(n) =
y.(2+log C).

2. Fach m € Ay ¢ has at least s(n) + 2.logn = y.(2+ log C') + 2.log n important
twins for each pair of columns.

3. If Kyo =g y.(24+logC)+2.logn — 1 < mT_l then

|Aycl = M.(1 — 2y.0+120§M_n) 2 where M is the number of 2-

- 2(e(n)—2).log n—K, c.logm’

multisyms, and o is the average length of windows with respect to the distribution of

all 2-multisyms to the edges with the maximal 2m-windows.

5

Proof. First let us construct a set B, ¢ of 2-multisyms satisfying 1. and let us make

a lower estimate of its cardinality.

Let B, ¢ be the set of all 2-multisyms whose windows with respect to the distribu-
tion in question are not longer than y.o. According to the theorem from the previous
section |Byc| 2 M.(1 = symmmm=) = M.(1 — 5orbew=)

2y.o+log M—n

where M is the number of all 2-multisyms.

The (maximal) 2m-natural windows of inputs from B, ¢ are not longer than those
with respect to the distribution, hence they are not longer than y.o. According to

our lower bound theorem y.0 < y.(log 2C' —log M + n) < y.(2 + log C).

Ayc =4 Byc—D,c where D, ¢ is the set of all 2-multisyms having at most K, ¢
important twins for at least one pair of columns. According to the previous theorem

|Dy70| S2" =M < o =

e(n)—2).log n—IK, c.logm "

Hence |Ay70| Z |By70| - |Dy70| Z

2C 2"
M(l - 2y.o+log M—n) - 2(e(n)—2).log n—I\"yyc.logm .

4 The main theorem

The next theorem catches something from the intuition. Computing multisyms for
each pair of columns we must see both bits of at least one important twin in the same

moment - in the formal terminology of windows: both bits must be non-crossed.

Theorem 4.1 Let P be a 1-b.p. computing 2-multisyms, s(n) be any function.
Let m be a 2-multisym such that each its 2m-natural window is shorter than s(n).
Let 1,J be a pair of its columns with at least s(n) + 2logn important twins.
Then there are important twins a,b on I,.J and there is an edge e in comp(m)

such that the 2m-natural window on m at e is non-crossed for both a,b.

Proof. By contradiction.

6

For each important twins a,bon I, .J, a, b are not in a common 2m-natural window

along comp(m).

Let us take into account all important twins on I, .J ¢, d such that both ¢ and d
are tested during comp(m). (At least one such pair exists.) The first test in such a
pair we denote L the second one (in the corresponding twin) R. Along comp(m) we
take this I which (after the test on it) is the first L crossed (not in 2m-natural win-
dow). We know that in the moment when the non-crossed L becomes a crossed one

m joins an m’ a 2-multisym (a partial input) which has the opposite value on the bit L.

Let Nask(m) be the set bits on I, .J which are not tested by comp(m) before the

point of joining of m and m/. Similarly Nask(m').

Claim 1. Nask(m) contains at least 2log, n important twins of m on I, .J.

Proof.

Till the moment of joining of m and m' only L’s maybe tested (a test on an R
would give a 2m-natural window on a pair of important twins but this is forbidden)
and they remain (2m-)non-crossed. Our L is the first which is (2m-)crossed , so all
L’s tested till now are non-crossed in the 2m-natural window. But all 2m-natural
windows of m must be shorter than s(n). So at least 2log, n important twins remain
not tested at all (before joining m').

n
Claim 2. Nask(m) C Nask(m').

Proof. By contradiction. Let a be the bit in /,.J which is not tested by comp(m)
but tested by comp(m') before joining of m and m'. Let b be the twin of a. In the
following we shall concentrate our attention on the partial input m exclusively. We
prolong m to mg, my as follows : mg(a) =4 m(b),mi(a) =4 non —m(b). The further
prolongation of mg,my to complete inputs will be the same. Hence the complete
inputs mg, my will differ only on a. Therefore they reach the same sink since mq, my

are not testable on a (m’ was tested on a).

On all columns with exception of I, .J we give the same value as in m. Hence all

pairs (K, M), K # I, M # J are covered in mg, m;.

7

On columns 7, J in twins where only one bit was tested we give the opposite value

in the corresponding twin.

In nontested twins on I, .J we prolong mg, my by values 01 or 10 as follows. First
we take into account all pairs [x {C'|C is a column ,C # I,J} which are not cov-
ered by the prolongation mg till now. In the first twins we give 01 iff at least one
half of non-covered pairs become covered. In the opposite case we give 10. After at
most log, n such steps all mentioned pairs are covered. Similarly after at most log, n
further steps all non-covered pairs of columns with J become also covered. Claim 1

says that we have enough of nontested twins.

We see that mg is a 2-multisym.

my is not 2-multisym by the following arguments : In my the pair (I,.J) is not
covered. The twins on [I,.J with the only one test before joining were completed by
the opposite value. Some L can be tested but no R since we are in the situation when
only the first L becomes crossed. (Otherwise: a (2m)-window on some important
twins - impossible with respect to the assumption: no common 2m-windows over
important twins). A contradiction.

Case A) m’ has tested some important twins (both) in I,.J before the point of

joining with m.

Let us take the partial inputs m,m’. We will extend them in the following way:
on columns outside I,.J we follow m’. On [,.J where on twins exactly one bit was
tested by comp(m) we give the opposite value in the remaining twin. The pair of
columns {I,J} x {C|C is a column, C # I,J} still non-covered by m’ will be cover
by our standard technique from Claim 2 on twins nontested by m . Both complete
inputs m,m’ go to the same sink and, in contrary, on one hand m’ covers each pair

of columns and on the other hand m does not cover the pair (/,.J). A contradiction.

Case B). Non-A).

8

No important twins in 1, .J are both tested by comp(m’) before joining of comp(m)

and comp(m').

Outside of I, .J we extend according to m, on R corresponding to the first L of m
we take R = L (m' has the opposite value on L). There are enough of twins not tested
at all till now. We give the value 01 or 10 on them using our standard technique from
the proof of Claim 2 to cover all pairs in {/,J} x {C|C is a column, C #1,J}. m
was extended to a 2-multisym, m’ to a non-multisym (m’ does not cover the pair I,J).

A contradiction.

5 The lower bound

The next theorem holds for general branching programs. We use the fact about non-
crossed twins from the previous section for construction of long windows for many

inputs.

Theorem 5.1 Let P be a branching program running in time t(n).

Let m be an input.

If for each pair of columns at least one pair of twins are non-crossed in at least
one 2m-natural window on m (during comp(m))

then at one moment of comp(m) m has a 2m-natural window of length at least

(77757) ().

Proof. Let d be the maximal length of 2m-natural window during comp(m). So,

at each moment of comp(m) at most d twins are newly non-crossed in the window.

Therefore t(n).d > <€<">~:1°g">.

Now we are able to prove the lower bound.

Theorem 5.2 Let P be a 1-b.p. computing 2-multisyms of type m X k = ne. logn x

.

T .
n5.logn

Then |P| > 2",

9

Proof. Let C =4 |P|,y € N and A = A, ¢ be the set of multisyms from Theorem
2.4.

According to Theorem 2.4 for each m € A, ¢ each its 2m-natural window is not
longer than y.(2 4+ log C'). On the other hand according to Theorems 2.5, 2.6 at least
one 2m-natural window on m is of length at least <€<">~§°g">/n. Hence, if for some y

Ay ¢ is non-empty we obtain that

(1) (W)/n < y.(2+4+1ogC).

L

Let us put y = 6 +log C and log C' < ni1. Hence K, ¢ < mT_l

Therefore [A,c| = M.(1— s=isw—)— 2 where p = (¢(n)—2).log n— K, ¢ log m.

Since o > 1

|Ay,0| > 2”(1 - 2(e(n)—12).logn)‘(1 - 2y+log M—ln—l—logC) - 2”2%

Ay o] =202 —2" .

Since log C' < nit then p > 1 and A, ¢ is nonempty.
Then we may substitute in (1) the values for y, e(n) and C'. We obtain a contra-

diction. Hence log C' > nit. Q.ED.m

Comment.

The problem of the lower bound for branching programs is now reduced to the
problem of the proof of an analogue of the main theorem (Th. 4.1) for, say, general
branching programs. The same argument as in the proof of Th. 5.2 would work for

branching programs running in superlinear time.

Bibliography

[1] Stasys Jukna, Stanislav Zak - On Branching Programs with Bounded Uncer-
tainty, [CALP 1998, Proceedings Springer, LNCS 1443, pp. 259-270

[2] Stanislav Zak - Information in computation structures, Acta Polytechnica 20,

IV/4, 1983,pp.47-54

[3] Stanislav Zak - A Subexponential Lower Bound for Branching Programs Re-
stricted with Regard to Some Semantic Aspects, ECCC Trier, 1997, TR97-050,
37p.

10

