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Abstract

We prove a subexponential lower bound 	�n
����


 for read�once branching programs on

the Boolean function of so�called multisyms � matrices where for each pair of columns

there is a pair of bits on the same row with the same values�

The proof is based on the technique of so�called windows which allows us to

indicate what bits of the input in question at the moment in question are remembered

and what are forbidden�

Due to this technique the proof is promissing a possible generalization for branch�

ing programs running in superlinear time�
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� Introduction

Branching programs 	b�p�
 are a well�known model of sequential computation � Since

they are closely related to the con�guration space of Turing machines� any superpoly�

nomial lower bound on their size would imply a superlogarithmic lower bound on the

tape of Turing machines� So� the problem of lower bounds for branching programs

is a very dicult challenge which is connected with the core problems of theoretical

computer science such as P��LOG and others�

In the history� the main stream of research was concentrated on proving lower

bounds for restricted branching programs� The central restriction are read�once

branching programs for which a lot of lower bounds were proven� The main con�

tribution of the present report is the use of ideas concerning the information �ow

along computations in b�p��

The mentioned ideas were �rstly formalized in ���� We are able to de�ne formally

what input bits are known at the given moment and what are unknown� Based on

this formalization a general lower bound theorem was proven in ���� ��� which roughly

says that if we need to have remembered many inputs bits for many inputs then we

need a very large program�

Moreover using this formalization we were able to de�ne a new restriction on b�p�

	and to prove a lower bound for it� of course
 such that many Boolean functions

which were dicult for many restrictions till this time are easy for this new restric�

tion� According to this fact we see that our approach catches somewhat new� This

together with the new method for lower bounds is a good reason for investigation in

this direction�

In this report proving lower bound for read�once branchig programs we� in fact�

reduce the long�standing problem of lower bound for b�p� running in superlinear time

to the problem to prove a theorem which is not formulated in terms of lower bounds�

which has a very strong support from the intuition and which holds in the case of

read�once b�p�� This reduction is the main contribution of this report�



�

� Windows

By a distribution of a set X of inputs into a program P we mean the set fX�� ����Xrg�

Xi � X� together with a mapping � of f�� ���� rg to places 	�edges and nodes
 of

P such that for all i and for all x � Xi �	i
 � comp	x
 where comp	x
 denotes the

computation on x� The classes of the distribution X�� ����Xr may be overlapping�

Let a class M of inputs be distributed to the node v 	edge e� resp�
� By a window

on x �M with respect to M at v 	e� resp�
 we mean a string w	x� v�M
 	w	x� e�M
�

resp�
 of length n over three�letter alphabet f�� ���g such that the noncrossed bits

have the same values as in x and such that the bit i is crossed i� there is an y � M

with y	i
 �� x	i
 and y never leaves x or y leaves x for the �rst time by test on i�

We have proven ���� ��� a theorem giving a lower bound method�

Theorem ��� Let fX�� ����Xrg be a distribution of some input into a program P �

Then

log r � log
rP

i��

jXij � n� �
rP

i��
jXij

�
rP

i��

P

x�Xi

lXi
x where lXi

x is the number of non�crossed bits

in the window on x with respect to Xi�

Now� we add a new theorem�

Theorem ��� Let P be a branching program and fX�� ����Xrg be a distribution of

some inputs into P �

Let us put X �df

rP

i��
jXij and

o �df
�
X

rP

i��

P

a�Xi

lXi
a where lXi

a for a � Xi is the length of the window on a with

respect to Xi�

Let y � N � Further we put X �
i �df fa � Xijl

Xi
a � y�og for i � ����r� X � �

rP

i��

jX �
ij�

Then X � � X��
y�o�log X�n

r
�

Proof�



�

log r � logX � � n � �
X �
�

rP

i��

P

a�X �

i

lX
�i

a � from our lower bound theorem� then

log r � logX � � n � �
X �
�

rP

i��

P

a�X �

i

lXi
a

log r � logX � � n � �
X �

rP

i��

P

a�X �

i

y�o

log r � logX � � n � �
X �
�y�o�

rP

i��

jX �
ij

log r � logX � � n � y�o

log r � log X

ky
� n � y�o where ky �df

X

X �

log r � logX � log ky � n� y�o

log ky � logX � n� y�o� log r

ky � �y�o��logX�n��log r�

� Multisyms

De�nition ��� Two bits from two columns of a matrix are called twins 	for these

columns
 if they are on the same row� In any binary matrix by important twins we

mean any twins with values �� or ���

For a binary matrix we say that a pair of columns is covered if there is at least

one pair of important twins on these columns�

By a ��multisym we mean a binary matrix of the type �	n
� log n� n

��n�� logn 	where

�	n
 is a nondecreasing unbounded function of an appropriate magnitude
 having

covered each pair of columns�

	Sometimes we denote �	n
� log n as m and n�m as k�


w	m� e�Me
 is a �m�natural window on a multisym m at the edge e i� Me is the

set of all ��multisyms going through e�
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Theorem ��� The number M of ��multisyms is at least �n�	�� �
����n����� log n 
�

Proof�

M � �n �
�
k

�

�
��m��n��m � �n � �n�m��� logn � �n�	�� �

����n����� log n 
�

Theorem ��� The number M� of ��multisyms which on each pair of columns have

at least K 	e � K � m��
� 
 important twins is at least �n	�� �

����n����� log n�K� logm 
�

Proof�

M� � �n �
�
k

�

�
�
K��P

i��

�
m

i

�
��m��n��m �

�n � �� logn�
�
m

K

�
��n�m �

�n � �� logn��n�m�	 e�m
K

K �

�n	�� �� logn�m�K��log e�logm�logK�
 �

�n	�� �
����n���� log n�K�log e�logm�logK� 
 �

�n	�� �
����n����� log n�K� logm 
�

Theorem ��� Let P be a branching program computing ��multisyms� C �df jP j�

Then for each y � N � y � �� there is a set Ay�C of ��multisyms satisfying the

following three conditions�

�� For each m � Ay�C each its �m�natural window is not longer than s	n
 �

y�	� � logC
�

�� Each m � Ay�C has at least s	n
 � �� log n � y�	� � logC
 � �� log n important

twins for each pair of columns�

	� If Ky�C �df y�	� � logC
 � �� log n� � � m��
� then

jAy�C j � M�	� � �C
�y�o�logM�n 
 �

�n

����n����� log n�Ky�C� logm
� where M is the number of ��

multisyms� and o is the average length of windows with respect to the distribution of

all ��multisyms to the edges with the maximal �m�windows�



�

Proof� First let us construct a set By�C of ��multisyms satisfying �� and let us make

a lower estimate of its cardinality�

Let By�C be the set of all ��multisyms whose windows with respect to the distribu�

tion in question are not longer than y�o� According to the theorem from the previous

section jBy�C j �M�	� � r

�y�o�logM�n 
 �M�	� � �C
�y�o�logM�n 


where M is the number of all ��multisyms�

The 	maximal
 �m�natural windows of inputs from By�C are not longer than those

with respect to the distribution� hence they are not longer than y�o� According to

our lower bound theorem y�o � y�	log �C � logM � n
 � y�	� � logC
�

Ay�C �df By�C �Dy�C where Dy�C is the set of all ��multisyms having at most Ky�C

important twins for at least one pair of columns� According to the previous theorem

jDy�C j � �n �M� �
�n

�
���n����� log n�Ky�C� logm

�

Hence jAy�C j � jBy�C j � jDy�C j �

M�	� � �C
�y�o�logM�n 
�

�n

�
���n����� log n�Ky�C� logm

�

� The main theorem

The next theorem catches something from the intuition� Computing multisyms for

each pair of columns we must see both bits of at least one important twin in the same

moment � in the formal terminology of windows� both bits must be non�crossed�

Theorem ��� Let P be a ��b�p� computing ��multisyms� s	n
 be any function�

Let m be a ��multisym such that each its �m�natural window is shorter than s	n
�

Let I� J be a pair of its columns with at least s	n
 � � log n important twins�

Then there are important twins a� b on I� J and there is an edge e in comp	m


such that the �m�natural window on m at e is non�crossed for both a� b�

Proof� By contradiction�
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For each important twins a� b on I� J � a� b are not in a common �m�natural window

along comp	m
�

Let us take into account all important twins on I� J c� d such that both c and d

are tested during comp	m
� 	At least one such pair exists�
 The �rst test in such a

pair we denote L the second one 	in the corresponding twin
 R� Along comp	m
 we

take this L which 	after the test on it
 is the �rst L crossed 	not in �m�natural win�

dow
� We know that in the moment when the non�crossed L becomes a crossed one

m joins anm� a ��multisym 	a partial input
 which has the opposite value on the bit L�

Let Nask	m
 be the set bits on I� J which are not tested by comp	m
 before the

point of joining of m and m�� Similarly Nask	m�
�

Claim �� Nask	m
 contains at least � log� n important twins of m on I� J �

Proof�

Till the moment of joining of m and m� only L�s maybe tested 	a test on an R

would give a �m�natural window on a pair of important twins but this is forbidden


and they remain 	�m�
non�crossed� Our L is the �rst which is 	�m�
crossed � so all

L�s tested till now are non�crossed in the �m�natural window� But all �m�natural

windows of m must be shorter than s	n
� So at least � log� n important twins remain

not tested at all 	before joining m�
�

Claim �� Nask	m
 � Nask	m�
�

Proof� By contradiction� Let a be the bit in I� J which is not tested by comp	m


but tested by comp	m�
 before joining of m and m�� Let b be the twin of a� In the

following we shall concentrate our attention on the partial input m exclusively� We

prolong m to m��m� as follows � m�	a
 �df m	b
�m�	a
 �df non�m	b
� The further

prolongation of m��m� to complete inputs will be the same� Hence the complete

inputs m��m� will di�er only on a� Therefore they reach the same sink since m��m�

are not testable on a 	m� was tested on a
�

On all columns with exception of I� J we give the same value as in m� Hence all

pairs 	K�M
� K �� I�M �� J are covered in m��m��
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On columns I� J in twins where only one bit was tested we give the opposite value

in the corresponding twin�

In nontested twins on I� J we prolong m��m� by values �� or �� as follows� First

we take into account all pairs I � fCjC is a column �C �� I� Jg which are not cov�

ered by the prolongation m� till now� In the �rst twins we give �� i� at least one

half of non�covered pairs become covered� In the opposite case we give ��� After at

most log� n such steps all mentioned pairs are covered� Similarly after at most log� n

further steps all non�covered pairs of columns with J become also covered� Claim �

says that we have enough of nontested twins�

We see that m� is a ��multisym�

m� is not ��multisym by the following arguments � In m� the pair 	I� J
 is not

covered� The twins on I� J with the only one test before joining were completed by

the opposite value� Some L can be tested but no R since we are in the situation when

only the �rst L becomes crossed� 	Otherwise� a 	�m
�window on some important

twins � impossible with respect to the assumption� no common �m�windows over

important twins
� A contradiction�

Case A
 m� has tested some important twins 	both
 in I� J before the point of

joining with m�

Let us take the partial inputs m�m�� We will extend them in the following way�

on columns outside I� J we follow m�� On I� J where on twins exactly one bit was

tested by comp	m
 we give the opposite value in the remaining twin� The pair of

columns fI� Jg� fCjC is a column� C �� I� Jg still non�covered by m� will be cover

by our standard technique from Claim � on twins nontested by m � Both complete

inputs m�m� go to the same sink and� in contrary� on one hand m� covers each pair

of columns and on the other hand m does not cover the pair 	I� J
� A contradiction�

Case B
� Non�A
�



�

No important twins in I� J are both tested by comp	m�
 before joining of comp	m


and comp	m�
�

Outside of I� J we extend according to m� on R corresponding to the �rst L of m

we take R � L 	m� has the opposite value on L
� There are enough of twins not tested

at all till now� We give the value �� or �� on them using our standard technique from

the proof of Claim � to cover all pairs in fI� Jg � fCjC is a column� C �� I� Jg� m

was extended to a ��multisym�m� to a non�multisym 	m� does not cover the pair I�J
�

A contradiction�

� The lower bound

The next theorem holds for general branching programs� We use the fact about non�

crossed twins from the previous section for construction of long windows for many

inputs�

Theorem ��� Let P be a branching program running in time t	n
�

Let m be an input�

If for each pair of columns at least one pair of twins are non�crossed in at least

one �m�natural window on m 
during comp	m
�

then at one moment of comp	m
 m has a �m�natural window of length at least
� n
��n�� log n

�

�
�t	n
�

Proof� Let d be the maximal length of �m�natural window during comp	m
� So�

at each moment of comp	m
 at most d twins are newly non�crossed in the window�

Therefore t	n
�d �
� n
��n�� log n

�

�
�

Now we are able to prove the lower bound�

Theorem ��� Let P be a ��b�p� computing ��multisyms of type m� k � n
�
� � log n�

n

n
�
� � logn

�

Then jP j � �n
�
�� �



�

Proof� Let C �df jP j� y � N and A � Ay�C be the set of multisyms from Theorem

����

According to Theorem ��� for each m � Ay�C each its �m�natural window is not

longer than y�	� � logC
� On the other hand according to Theorems ���� ��� at least

one �m�natural window on m is of length at least
� n
��n�� log n

�

�
�n� Hence� if for some y

Ay�C is non�empty we obtain that

	�

� n
��n�� log n

�

�
�n � y�	� � logC
�

Let us put y � � � logC and logC � n
�
�� � Hence Ky�C � m��

�
�

Therefore jAy�Cj �M�	�� �C
�y�o�logM�n 
�

�n

�p where p � 	�	n
��
� log n�Ky�C � logm�

Since o � �

jAy�C j � �n�	�� �
����n����� log n 
�	��

�
�y�logM�n���logC 
� �n �

�p
�

jAy�C j � �n��
�
� �n �

�p
�

Since logC � n
�
�� then p � � and Ay�C is nonempty�

Then we may substitute in 	�
 the values for y� �	n
 and C� We obtain a contra�

diction� Hence logC � n
�
�� � Q�E�D�

Comment�

The problem of the lower bound for branching programs is now reduced to the

problem of the proof of an analogue of the main theorem 	Th� ���
 for� say� general

branching programs� The same argument as in the proof of Th� ��� would work for

branching programs running in superlinear time�
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