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Abstract

In the article, we present an anisotropic version of the phase-field system of equations
with efficient coupling arising in modelling of microstructure growth in solidification of
pure crystallic materials. The anisotropy is introduced into the model using the concept
of Finsler geometry, applied previously by other authors. The model is studied from
point of view of existence and uniqueness via a semi-discrete scheme. We give a brief
information about the asymptotical behaviour of the solution. Finally, we summarize
computational results situated even beyond the scope of the theory - the model is able
to work in case of non-convex anisotropy.
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Figure 1.1: Single-crystal isotropic growth; parameters: L = 6.0, § = 25.0, a = 4.0,
a=1.0,1; = L, =1.0, u(0) = —6.0, £ = 0.0025, At = 0.0015, Np =6, Ny = Ny =
400.

1 Introduction

The solidification of crystallic substances is accompanied by formation of microstruc-
tures as a result of self-organization of particles in the solid part of the material.
Simulation of such phenomena and related mathematical aspects are in the scope of
researchers for certain time, as their understanding contributes to the development
of new, especially material technologies. The classical solidification model based on
the Stefan problem is modified using the isotropic Gibbs-Thompson law relating the
interface undercooling, curvature and normal velocity.

ou )
Fri Au in Q, and Q, (1.1)
u|89 =0, u|t:0 = Uo,
ou ou
— - — = L NG 1.2
e~ = e ot (12
F(u) = —r—avr on (1), (1.3)
Qs(t)|t:0 = Qsm

where (), ; are solid and liquid phases, respectively, melting point is 0, v temperature
field. Discontinuity of heat flux on I'(¢) is described by the Stefan condition (1.2), where
vp is the velocity in the direction of the outer normal nr to ,, and L is the latent



heat. The formula (1.3) is the Gibbs-Thompson relation on I'(#) whose mean curvature
is denoted as k. F' is related to the interface undercooling. The parameter « is the
coefficient of attachment kinetics. Applied mathematical treatment of this problem
lead to the use of various numerical techniques which were more or less able to produce
relatively complex crystallic morphology. Here, we mention the use of adaptive BEM
in [20], levelset methods in [18], [12], front tracking and FEM in [17], [13], variational
methods in [1]. The presented work is related to the phase-field approach used within
the context in question e.g. in [15], [8], [4], [5]. The system of equations analysed in
[6] reads as:

ou ,, Op
E — AU—I'LX(p)Ev (14)

W& = EAp+ folp) + FEIT

with initial conditions
u|t:0 = Uo, p|t:o = Po,

and with boundary conditions of Dirichlet type

u|aQ =0, p|aQ =0,

Here, £ > 0 is the "small” parameter, and f; derivative of a double-well potential.
The coupling function F(u) is bounded and continuous, or even Lipschitz-continuous,
|.| denotes the Euclidean norm in R". We consider fo(p) = ap(l — p)(p — 3) with
a > 0. The enthalpy is given by H(u) = u — Ly(p), where the coupling function y
is monotone with bounded, Lipschitz-continuous derivative: x(0) = 0, x(0.5) = 0.5,
(1) =1, supp(x’) C< 0,1 >. For the sake of simplicity, n = 2, Q is a bounded domain
in R™ with a C? boundary, and boundary conditions are homogeneous. Obviously, the
extension to higher dimensions, and to other boundary conditions is possible.

The above cited results concern isotropic models (see Figure 1.1), or models with
weak anisotropy in the sense that the graph of surface energy density is strictly con-
vex, which is the case for many metals. The crystalline case, when the strict convexity
condition is no more valid, was treated e.g. in [19], [3], [2], [14]. We use the re-
sults of [3], where the Finsler geometry was introduced into the anisotropic motion by
mean curvature, which is the special subproblem related to (1.1-1.3). Consequently,
the Gibbs-Thompson law holds in the direction of Cahn-Hoffman vector ([11]). Our
aim is to extent such approach to the solidification model, to show basic mathemati-
cal properties, and to perform computational studies demonstrating behaviour of the
anisotropic model.

2 Equations

Before introducing the anisotropic form of equations, we give a brief summary of the
Finsler-geometry concept, which seems to be a natural way of introducing anisotropy
into the model in question. We stress out that details about this approach can be
found in [3] and in references therein.



A nonnegative function ® : R* — R+ which is smooth, strictly convex, C*(R"—{0})
and satisfies:

®(tn) = [t|®(n), tE€RrR,necR",
Al < ®(n) < Alnl,

where A, A > 0, is called Finsler metric. The function given by
(") = sup{n™-y | ®(y) < 1},

is called dual Finsler metric. They satisfy the following relations

) (tn*) = mq>2(n ), 9 (in") = m‘%(n ), ter—{0},
O(n)=@,(n)-n , M )=)n")-n", nn"€R"

where the index 7 means derivative with respect to. We define the map 79 : R — R"
as

() = (") @ (n7) for n” # 0,
7°(0) := 0.

It allows to define the ®-gradient of a smooth function wu:
Vou :=T%°Vu) = Q)O(Vu)q)g(Vu).
Normal vector and velocity of a levelset of a field p
I'(t) ={x € R"| p(t,x) = const.} :
are
_ Vep _ T%Vp) o
®°(Vp)  2O(Vp)’ (V)

ure =
The anisotropic curvature is give by the formula

nre =

KD, = div(np@).

Compared to [3], we do not consider an explicit dependence of ® on space, for the sake
of simplicity.
Consequently, we can investigate an anisotropic motion by mean curvature

avr.g = —kr,0 + I,
in the direction of Cahn-Hoffmann vector nr ¢. Manifold described as
D(t) = {x € 8" | p(t,x) = 0.5},

with convention

Q1) = {x €rR™| p(t,x) > 0.5}
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induces the Hamilton-Jacobi equation

op _
“or T

\Y
VPV - (o) + °(Vp)
in analogy with isotropic case

0 v
o=l = |Vp|pV - (

p
= - VpleE.

Similarly, we derive a modified (see (1.4)) anisotropic Allen-Cahn equation for curve
dynamics in plane

ag’0p = &V - T°(Vp) + folp) + FES°(Vp). (2.1)
Example. We typically use the Finsler dual metric set as
(") = 0¥(0), (2.2)

where [p, ©] are polar coordinates of n*. Our choice is ¥(0) = 1 + Asin(m®), where
A is the anisotropy strength, and m the order of symmetry. The convexity condition
reads as A < —L

1-m?2"*
Finally, we establish an anisotropic phase-field model of solidification, using (1.4),
Ju 5 dp
b I (p) =2
P Viut LY (p) 5,
dp . 0 1 0
by = EV-TUVP) + 2olp) + F()¢8 (V). (2.3)

with boundary and initial conditions as in (1.4). We notice that the forcing term can
include another type of anisotropy given by different dual Finsler metric: F'(u)é®'(Vp),
as indicated by experiment - [16].

3 Theoretical results

First, we introduce the following notations:
(u,v) = / w(z)o(z) de, |u| = / w(z)2de for u,v € Ly(Q),
Q Q

(Vu, Vo) = /QVU(:L') -Vo(z) de, ||Vu|| = /Q |Vu(z)]2dx for u,v € Hy(Q).

We also notice that the assumptions on y imply that there are constants C', L, > 0
such that |x/'(s)| < Cy, X (s1) — X'(s2)] < Ly|s1 — sof for all s, 81,82 € R. Similarly,
the assumptions on F' imply that there are constants Cp, Ly > 0 such that |F(s)| <
Cr, |[F(s1) — F(s2)| < Lp|sy — s2| for all 5,51, 52 € R. We define the notion of the weak
solution as usual in:



Definition 1 Let Q@ C R™ be a bounded domain with Lipschitz-continuous boundary.
Weak solution of the boundary-value problem with homogeneous Dirichlet boundary
conditions for the phase-field equations (2.3) is a couple of functions [u, p] from (0,T)
to [H5(2)]? such that it satisfies

%(u — Lx(p),v)+ (Vu,Vv) = 0 a.e. in (0,7, (3.1)
u|t:0 = Yo,

08 5 (p0) + E(TVD).Ve) = (folp)g) + E(F@)P(Vp).q) acc. in (0.7),
p|t:0 = Do

Jor each v,q € HY(Q).

The continuous imbedding of H*(£2) into L(Q) for each s € (1,+00) (dimQ = 2)
ensures that fo(p) € L2(Q) for almost all ¢ € (0,7). If [u,p] € [Loo(0,T;H())]?
solves (3.1), then [u, p] is a continuous mapping from (0,7T) to [H™*(Q)]?. Thus, the
definition has proper sense. Our existence and uniqueness result is contained in the

following theorem. The proof by its virtue contains the investigation of convergence of
a semi-discrete scheme based on the Faedo-Galerkin method.

Theorem 1 Consider the problem (3.1) in a bounded domain Q C R? with a C*
boundary, and with F' being a bounded continuous function, x a function with x(0) =
0,x(1) = 1,x(0.5) = 0.5, " bounded, Lipschitz continuous with the support in (0,1).
Assume that £ > 0 is fized, and

ug, po € H'(Q). (3.2)
Then, there is a solution of the problem (3.1) satisfying
u,p € Loo(0, 75 Hy(Q)), p € La(0, T; H* (),
o o
ot’ ot
Additionally, if F' is Lipschitz-continuous, X' = 1, and T° is strictly monotone, the
solution is unique.

€ La(0, 75 12(9)).

Proof. Here, we sketch main points of the proof, which follow the results of [6] and
[7]. We derive a sequence of approximate solutions [u™, p™] to the original problem.
Assume that there is an orthonormal basis of the Hilbert space Ly(€2) denoted as {v; }ien
where (Vi € N)(v; € H{(Q)). Let V,, = span{v;}ien,, be a finite-dimensional subspace
(N, = {1,....m}); Pn : L2(Q) — V., be the projection operator. Then, [u, p™] is
obtained from

%(um — Lx(p™),v)+ (Vu™,Vv) = 0ae. in (0,7), Yo € V,,,

u™(0) = Pnuo,

ozfQ%(pm,q) +E(T(VPT), V) = (folp™),q) + E(F (™)@ (Vp™).q) (3.3)
a.e. in (0,7T), Yq € V,,,
p™(0) = Pupo,
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and is defined for ¢ € (0,7,,). The a priori estimates bellow show the independence of
T, on m.

Multiplication by derivatives yields the energy equalities
IV = L@ ("), D),
¢ d
2 dt

10cu™]* +

o |0p™ |1 + = (V" )* = (fol(p™), 0ep™) + E(F (™)@ (V™) 0p™).

and a priori estimates

d
10w " + V™ < LT[ 0™ 1, (3.4)
2

1 2 2 d 0 2 d 0}27' 2 50 2
- T > T _ T < i T
5% 0™ ||” + 57 (Vp™) +dt(wo(p ), 1) < 5 & @ (Vp™)*,

where wi = — fo, |[F'(u)] < Cr, [X'(p)] < C?. This implies that we are able to pass to
the limit in (3.3), as

1. Vp™' converges strongly in Ly(0,7;Ly(Q)) to Vp (by compact imbedding and
testing by p™' — p), Vu™ converges weakly in Ly(0,7; Ly(Q)) to Vu,

2. fo(p™) converges strongly in Ly (0,7 Ly(Q)) to fo(p) (polynomial nonlinearity),
x(p™) converges strongly to y(p) in Ly (0,7T; Ly()),

3. Pmipo, Pmitig converge strongly to po, ug in La(£2),

4. pm/(()) = Ppo, um/(()) = Pug.
In addition, we observe that the function p belongs to Ly(0,7;HS(Q2) N H*(Q)), and

that the weak solution satisfies the initial condition.

The uniqueness of the weak solution is shown using the Lipschitz continuity of
F, strong monotonicity of T° (i.e. strict convexity of anisotropy), and the Gronwall
lemma. O

4 Asymptotical behaviour

This section is devoted to a direct extension of results described in [4], which were
inspired by [9]. A priori estimates imply that the energy functional

Belpelt) = [[[658°(Tne)* + gl

is bounded as

Blpd(1) < Bipel0) expl SE1) 1€ (0.7),

where pg is second component of the solution of (3.1). From [4], there is an estimate
for the time derivative by

1 T 9
Sa& [ lowell*dt + Eclpel(T) < CrEelpe)(0)

This allows to state the following theorem:
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Theorem 2 Let [ug, pe| is the solution of (3.1) with the initial data satisfying Ee[pe](0) <
My independently on &, and let

/Q 16(0, %) — vo(x)|dx — 0,

as & — 0, for a function vy € L1(Q). Then for any sequence &, tending to 0 there is a
subsequence &, such that
lim pe ,(1,x) = v(t,x),

& —0

is defined a.e. in (0,T) x Q. The function v reaches values 0 and 1, and satisfies
[ Tt x) = o(t2,x)ldx < Cliz = %,
Q
where C' > 0 is a constant, and

sup |Vo|pdx < O,
te<0,T> /0

in the sense of BV(Q), where Cy > 0 is a constant. The initial condition is

tl—lgi_ U(t,X) = vO(X)v

Matching procedure known from [10] can be used in recovering of the Gibbs-
Thompson law

avr.e = —kre + F + O(&%).

Details exceed the scope of this article. We also observe, that the phase equation in
(2.3) is independent on particular form of the double-well potential wq (as it isin (1.4)),
in difference to the Allen-Cahn equation (see [3], [10]).

5 Computational results

This section contains a summary of computational results obtained by the model using
the equations (2.3). Numerical algorithm of the method of lines uses the FDM space
discretisation on an uniform grid, and higher order time solvers such as Runge-Kutta-
Mersn scheme. Detailed analysis and convergence results can be found in [4].

We introduce the following notations:

Ly Lo
h=(h.h hi=—, hg = —
( 1 2)7 1 va 2 sz

Xij = [lejvx?j]v Uiy = u(Xij)v

Wh:{[lhl,]h2]|lzl,,N1—1, jzl,...,NQ—l},
@h:{[ihlvth]|i:07"'7N1; j:()v"'vNQ}v Yh = &Wh — Wh,
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Figure 4.1: Anisotropic mean-curvature flow - initially circular curve (rq = 0.1) shrinks
(left - forcing F' = 0.0), or expands (left - forcing F' = —11.0). The parameters of
simulation are: ¢ = 0.012, « = 4.0, = 1.0, m = 4, A = 0.2, 41 = Ly = 0.3,
Ny = Ny = 50, At =0.001.
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Figure 4.2: Single-crystal anisotropic growth with convex anisotropy; parameters: [ =
6.0,3=25.0,a =4.0,aa=1.0,m =4, A=0.05¢=0.01, u(0) = —6.0, L; = Ly = 1.0,
At =0.004, Ny =5, Ny = Ny, = 200.
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Figure 4.3: Single-crystal anisotropic growth with non-convex anisotropy; parameters:
L =6.0, 5 =250,a =40, =10, m =4, A =02 ¢ =0.01, u0) = —6.0,
Ly =Ly =1.0, At =0.003, Ny =5, Ny = Ny, = 200.
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Figure 4.4: Single-crystal anisotropic growth with non-convex anisotropy; parameters:
L =6.0, 5 =250,a =40, =10, m =6, A=0.1, ¢ =0.01, u0) = —6.0,
Ly =Ly =1.0, At =0.003, Ny =5, Ny = Ny, = 200.
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Uij — Ui, Uitl,j — Wij

Uz, = Ugq 5 =
1,87 hl 9 1,87 hl Y
Uz — Ug 51 Ug j41 — Uy
ui’27ij — J h sJ , ug;27ij — sJ h ]7

2 2
1
Uziarij = gz (Ui = 2ui +uiog)
and
vhu = [ui’m ui’2]7 vhu = [ul’mum]v Ahu = Uz + Uzomy-

The semi-discrete scheme has the form

u" = DoApu™ + L' (p™")p" on wy,
u” g, = 0, u"(0) = Ppuo,

al*p" = V- TUVap") + fo(p") + EOUVip" ) F(u") on oy,
" 1y=0, p"(0) = Pupo,

where its solution is a map u”,p" :< 0,7 >— Hy, and P;, : C(Q) — Hy, is a restriction
operator.
We use a non-trivial coupling function

x(p) = 22 ip?r for p <

Y

| — DN =

1 =211 —-p)* forp>

mostly with r = 2. We always set
F(u) = pu" —u) for |u—u™| < C,,

and

F(u)=-Cyp for u>u"+ C,,
F(u)=Cyp for u <u™—C,,

in order to satisfy basic theoretical requirements imposed on F. If C, is sufficiently
large, the model behaves as if F' were linear, and is applicable in real situations. The
Finsler dual metric is set according to (2.2).

Our results are always in 2D, and show the solution for convex anisotropies, where
our theory is valid. In addition, the model is able to treat even non-convex anisotropies.
Figure 4.1 shows how a circle evolves according to the anisotropic mean-curvature flow
given by Finsler geometry (2.1). As the anisotropy is non-convex, we observe the
presence of wrinkles in "forbidden” directions, which depend on the numerical mesh.
Figure 4.2 shows a single pattern growth under a convex anisotropy. Figures 4.3 and
4.4 have the same parameters, only the anisotropy is non-convex. Again, we observe
wrinkling of phase boundaries, and almost flat parts corresponding to facets. Figure
4.5 compares a single-dendrite growth with identical physical and numerical setting,
and with convex and non-convex anisotropies. We observe formation of corners and
almost flat parts of phase boundary in the non-convex case.
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