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� Introduction

The proofs of many important results in analysis are based on inverting the order of
two limit processes� Accordingly	 it seems natural to look for the basic ideas which
make these results possible� This is not only a requirement of aesthetic character
 the
desire to �nd a simple and transparent proof invariably leads to the discovery of the
essential principles ensuring the validity of such results�

It is not	 perhaps	 immediately obvious that theorems on inverting the order of limit
processes may be deduced from results about the combinatorial structure of families
of �nite sets� This fact was pointed out	 in ����	 in a short note by the author �����
The combinatorial approach has been developed further in a series of papers ���	 ����	
����	 ����	 ��	 ���� and has found its way into monographs ���	 ��� and even elementary
textbooks ���� However	 no systematic account has yet been published� It is the
purpose of the present note to discuss the main ideas in an elementary manner in order
to explain the �possibly some what unexpected� connection between limit processes
and combinatorial properties of families of �nite sets�

We begin by reformulating the classical de�nitions of di�erent forms of convergence
in a form in which the connection with combinatorial notions becomes more evident�
We limit ourselves � in this introduction � to convergence of sequences of functions�
The principles of the combinatorial approach will become evident even in this tradi�
tional particular case� the combinatorial treatment of possibly uncountable families of
functions is not essentially di�erent�

We consider a set T and a sequence of �complex�valued� functions fn de�ned on T
such that fn�t� � � for every t � T �

In general the convergence fs�t� � � depends heavily on t and may be considerably
slower in some t than in others� In a number of cases it is possible to show that
there are large subsets of T on which the convergence behaviour is to a certain extent
comparable	 that there is certain uniformity�

We shall use the symbol S for the set of all nonnegative integers since we are dealing	
in this introductory section	 with convergence of sequences� We shall keep the symbol
S for the set of indices for families of functions in the general case to be treated later�

We start by reviewing the standard notions of di�erent types of convergence and
by showing how to reformulate their de�nitions in combinatorial terms�

We say that the convergence fn�t� � � is uniform	 if	 for each � � �	 there exists
an integer n��� such that

jfs�t�j � �

for all t provided s � n����
For our purposes it will be convenient to reformulate the de�nition as follows


For each � � � and each in�nite set R � S there exists r � R such that� for each t � T 	

jfr�t�j � �

A weaker form of uniformity is the following notion of almost uniform convergence�
We say that the convergence fn�t� � � is almost uniform if� for each � � � and

each in�nite R � S there exists a �nite K � R such that� for each t � T � the inequality
jfk�t�j � � is satis�ed for at least one of the indices k � K�

�



In the case of uniform convergence we may say that	 for each � � � and each in�nite
R the zero function may be approximated within � uniformly on T by one of the fr
�the index r depending on � and R��

In the case of almost uniform convergence the analogous formulation has to be
modi�ed as follows
 The zero function may be thus approximated on the whole of T
not necessarily by one function but by a �nite family fk� k � K in the sense that	 for
each t � T 	 at least one function of this �nite family will approximate zero�

In other words the zero function is uniformly approximated by the function

fmin�t� � minfjfk�t�j� k � Kg�

the function fmin depending on � and R�
Now let us introduce yet another notion of convergence� we shall call it convergence

in the mean


For each positive � and each in�nite R � S there exists a �nite set K � R and
nonnegative numbers ��k�� k � K with

P
��k� � � such that

j
X

��k�fk�t�j � � for all t � T �

the zero function is uniformly approximated	 this time	 by the function

fconv�t� �
X

��k�fk�t��

The fact that the sequence fn tends to zero pointwise on T means	 in particular	
that	 for each t � T and each � � �	 the set of those indices s for which jfs�t�j � �	 is
�nite� Keeping � �xed and varying t	 we obtain a family of �nite sets the structure of
which clearly is closely related to the degree of uniformity of the convergence
 let us
examine this connection more closely�

Fix � � �� let W� be the relation on S � T de�ned by

�s� t� � W� i� jfs�t�j � ��

This relation may also be considered as a multivalued mapping from S into T � in
accordance with this we may use the notation W �s� for the set of those t for which
�s� t� � W� or the set of those t for which jfs�t�j � �� Using this notation	 the conditions
for uniform convergence and almost uniform convergence appear in the following form


For each in�nite R � S and for each � � � there exists r � R such that

W��r� � ��

For each in�nite R � S and for each � � � there exists a �nite K � R such that�
r�K

W��r� � ��

In a manner of speaking	 the notion of almost uniform convergence is more natural
than that of uniform convergence� The following observation shows how it appears in
a natural situation�





Let T be a compact topological space and consider a sequence fn of continuous
functions on T such that fn�t� � � for each t � T � Then the convergence is almost
uniform�

Proof� Given � � � and an in�nite set R � S	 consider for each r � R	 the set

W��r� � ft � T � jfr�t�j � �g�

Since the sets W��r� are closed and T compact	 if follows that the familyW��r�	 r � R
cannot have the �nite intersection property�

We have seen that	 in the particular case of continuous functions on a compact
space	 almost uniform convergence appears in a natural manner
 so does convergence
in the mean	 for that matter	 if we restrict our attention to equibounded sequences�
This fact	 however	 is less immediate
 it is essentially nothing more than the equivalence
of weak and pointwise convergence for bounded sequences of continuous functions on
a compact space� Let us recall	 in a few words	 the statement and the proof of this
result�

Let T be a compact topological space and consider a sequence fn of continuous
functions such that fn�t� � � for each t � T � If the sequence is equibounded then fn
converges to zero in the mean�

To prove this fact it su�ces to know that	 for equibounded sequences	 pointwise
and weak convergence are equivalent� Knowing this	 we may invoke the separation
theorem from which it follows that	 for convex sets	 the weak and uniform closures
coincide� The equivalence of pointwise and weak convergence for bounded sequences	
in its turn	 is based on two results which are far from super�cial�

By the Riesz theorem every bounded linear functional m on C�T � may be rep�
resented by a measure m on T � by the Lebesgue dominated convergence theorem	
boundedness of a sequence fn � C�T � together with pointwise convergence fn�t� � �
implies hfn�mi � ��

This shows that	 in the particular case of bounded sequences of continuous func�
tions on a compact T 	 almost uniform convergence and convergence in the mean are
equivalent� the proof	 however	 as sketched above	 uses important theorems that are
far from super�cial�

It is not immediately obvious that the implication is essentially combinatorial in
character�

It is natural to examine the relation between the two types of convergence in the
general case� it turns out that the above equivalence remains in force for arbitrary
bounded sequences � to prove this our main tool will be the combinatorial lemma that
we now proceed to explain� We shall state the lemma in its full generality� we do admit
that	 at �rst glance	 its connection with convergence will not be immediately obvious�
we hope however	 that the preceding discussion has given the reader a �avour of the
questions that we are going to ask now�

Recall that we considered families of sections of a relation W� � S�T � Here S was
the set of integers used as indices of the sequence fn� We shall drop this restriction on
S now	 it was imposed in the introductory section for didactic reasons only�

�



Suppose a family W � expS is given� for each s � S we shall denote by W �s� the
subfamily of those w � W for which s � w� The mapping s �� W �s� may be viewed
as a multivalued mapping from s into expS� It is thus natural to write	 for K � S	

W �K� �
�
k�K

fw � W � k � wg

�
�
k�K

W �k�

� fw � W � w �K 	� �g�

A convex mean on a set S is a nonnegative function � de�ned on S with the following
properties

�� the carrier of �	 the set of those s � S for which ��s� � �	 is �nite� we shall
denote it by N���	

�
P
s�S

��s� � ��

Given a convex mean � on S it is natural to de�ne	 for an arbitrary set a � S	 the
value ��a� as the sum

P
s�a

��s�� in this manner clearly a convex mean on S may also

be considered as a probability measure on S with �nite support� The set of all convex
means on S will be denoted by P �S��

Let W be a family of subsets of a set S� Given a convex mean � � P �S� consider
the maximum of the ��nite� set f��w��w � Wg� For reasons that will become clear
in the sequel	 we are interested in convex means � for which this maximum will be as
small as possible � the lower bound will be

inf
�

sup
w�W

��w��

In our considerations we shall have to take into account also convex means the carrier
of which is contained in a given subset R � S� The following quantity

inf
N����R

sup
w�W

��w�

� to be denoted by e�W�R� � re�ects certain aspects of the combinatorial structure of
the family W � Let us consider two extreme cases of this optimization problem


�� The union of the family W does not cover the whole if S	 in other words	 there
is an s� for which W �s�� is void� clearly	 in this case e�W�S� � �� Indeed	 the
convex mean concentrated in s� will realize the minimum� In fact	 e�W�R� � �
for every R which contains s��

� The other extreme case is the one when the family W �s�	 s � S possesses the
�nite intersection property� In this case	 for each �	 there exists a w � W such
that ��w� � �
 indeed	 if s�� � � � � sn is the carrier of �	 consider an arbitrary
w � W �s�� � � � � �W �sn�� The carrier of � will thus be contained in w whence
��w� � ��

�



Now let us consider a situation where a weaker form of the �nite intersection prop�
erty is satis�ed�

Suppose r�� r�� � � � is a sequence of distinct elements of S such that the intersection

W �r�� � � � � �W �rn�

is nonvoid for every n� if R stands for the set consisting of the rj then e�W�R� �
�� Indeed	 if � is a convex mean with carrier N � R then N � fr�� � � � � rmg for
m su�ciently large and ��w� � � for any w � W �r�� � � � � � W �rm� since N �
fr�� � � � � rmg � w�

Here we are confronted with a situation where it is impossible to �nd a convex
mean � with ��w� small for all w � W 	 at least as long as we want the carrier to be
contained in R�

The basic lemma to be proved now shows that this situation is essentially the only
case when means � with uniformly small ��w� may fail to exist�

We have seen that the existence of a sequence rn of distinct elements with W �r���
� � � �W �rn� nonvoid for every n implies e�W�R� � �� In a manner of speaking	 the
main result is the converse of this statement�

The full statement of the main result is the following


���� The Combinatorial Lemma� Let S be a set and let W � expS� Then these
are equivalent�

�� e�W�R� � � for some in�nite R � S�

� e�W�R� � � for some in�nite R � S�

�� there exists a sequence r�� r� � � � of distinct elements of S such that W �r��� � � ��
W �rn� is nonvoid for every n�

We have just discussed the implication �� � �� The implication � � �� being
immediate	 the substance of the combinatorial lemma lies in the implication �� � ���
Reversing the implications	 the combinatorial lemma assumes the following form�

����� Combinatorial lemma restated� These are equivalent�

�� e�W�R� � � for every in�nite R � S�

� given any sequence s�� s�� � � � of distinct elements of S� the intersection W �s�� �
� � � �W �sn� will be eventually void�

In other words	 either there exists	 for every in�nite R � S and every � � �	 a
convex mean � with carrier in R such that ��w� � � for all w � W 	 or there exists a
sequence rn of distinct elements such that W �r�� � � � ��W �rn� is nonvoid for every n�

The equivalence of �� and � in the combinatorial lemma leads to a restatement of
the result in the form of a

����� Dichotomy� The maximum of e�W�R� as R ranges over all in�nite sets R � S
exists and can only assume one of the values � and ��
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We postpone the proof of the lemma to the next section
 we �rst demonstrate its
usefulness by showing how it will be applied� Its meaning will become evident as soon
as we see how it is used� Again we restrict ourselves to convergence of sequences of
functions only � even this very particular case is amply su�cient to illustrate the main
idea used in the proofs of the stronger results to follow�

Assuming the combinatorial lemma proved we are ready to prove the equivalence
of convergence in the mean and almost uniform convergence for bounded sequences�

���� Let T be a set and fn a sequence of functions such that fn�t� � � for each t
and jfn�t�j 
 � for all n and t� If the sequence converges almost uniformly then it
converges in the mean�

Proof� Let � � � be given� De�ne the relation W� � S � T by setting �s� t� � W� i�
jfs�t�j �

�
��� Let W be the family of subsets of S de�ned as follows


w � W i� w � W��
� �t� for some t � T�

In particular	 w � W �s��� � � ��W �sn� if and only if w � W��
� �t� for some t � W��s���

� � � �W��sn�� In this manner W �s�� � � � � �W �sn� is nonvoid i� W��s�� � � � � �W��sn�
is nonvoid� It follows that the assumption of almost uniform convergence implies that
e�W�R� � � for every in�nite R � S�

Now let an in�nite R � S and a positive � be given� The combinatorial lemma
yields the existence of a convex mean � on S with carrier in R such that ��w� � �

�
� for

every w � W � We intend to show that	 for this �	 j
P
��s�fs�t�j � � for every t � T �

To see that	 consider a �xed t � T � the sum
P
s
��s�fs�t� will be split into two parts

according to whether s � W��
� �t� or s � SnW��

� �t�� For s outside W��
� �t� we have

jfs�t�j �
�
�� whence ���X��s�fs�t�

��� � �


�

as s ranges over SnW��
� �t��

To estimate the remaining sum
P

s�W �t�
��s�fs�t� it su�ces to observe that

P
s�W �t�

��s� �

�
�� and that jfs�t�j 
 � for any s� t� In this manner we have split the sum into two
parts
 one	 where the values of the functions are small and the other	 where we have
no bound for fs�t� except one but where the sum of the weights

P
��s� is small�

It follows that j
P
��s�fs�t�j � � for every t � T � �

The proof of the converse implication being straightforward	 this shows that	 for
equibounded sequences	 the concepts of almost uniform convergence and convergence
in the mean coincide�

� Proof of the Combinatorial Lemma

Now it is time to present the proof of the combinatorial lemma� For brevity	 we
introduce the following notation� If W � expS	 R � S	 � � �	 let

M�W�R� �� � f� � P �S�� N��� � R� ��w� � � for all w � Wg�

�



In particular	 this set is nonvoid if and only if e�W�R� � ��
The proof of the combinatorial lemma proceeds in three steps� The �rst essential

step is a sort of �principe de condensation des singularit�es�� The second is a standard
combinatorial construction and the third a simple technicality�

First step� For every in�nite R � S

e�W�R� � sup e�W �K�� R�

as K ranges over all �nite subsets of R�

Proof� Observe that e�W�R� � e�W �� R� if W � W �� This inequality proves the
assertion in the case e�W�R� � �� furthermore	 it shows that it su�ces to prove the
following


If e � e�W�R� � � and � � e� � e then there exists a �nite K � R such that
e�W �K�� R� � e��

According to our assumption M�W�R� e�� � ��
Suppose that M�W �K�� R� e�� is nonvoid for every �nite K � R� Take an arbitrary

nonvoid �nite A� � R and a �� � M�W �A��� R� e��� Set A� � A� � N���� so that A�

is a nonvoid �nite subset of R� Accordingly	 there exists a �� � M�W �A��� R� e��� Set
A� � A��N����	 choose a �� �M�W �A��� R� e�� and continue this process inductively�

Let us show that	 for each w � W 	 the sequence ���w�	 ���w�� � � � contains at most
one term � e�� Indeed	 if �p�w� � e� for some p then w intersects the carrier of �p�
Since N��p� � Am for every m � p it follows that w � W �Km� whence �m�w� � e� for
every m � p� Take n large enough so as to have

�

n
�� � �n ��e�� � e�

it su�ces to take n � ��e�

e�e� � Then

�

n
��� � � � �� �n� �M�W�R� e��

a contradiction� �

Second step� Suppose that e�W�R� � � for some in�nite R� Then there exists a
sequence of mutually disjoint �nite sets Kj � R such that

W �K�� � � � � �W �Kn�

is nonvoid for every n�

Proof� Write e for e�W�R�� By the preceding proposition	 there exists K� such that
e�W �K��� R� � �

�e whence e�W �K��	 RnK�� � e�W �K��� R� � �
�e� Applying the

proposition to the pair W �K��	 R nK�	 we obtain the existence of a �nite K� � RnK�

such that

e�W �K�� �W �K��� RnK�� �
�

�
��

�



Now consider the pair W �K�� � W �K�� and Rn�K� � K�� and choose a �nite set
K� � Rn�K� �K�� with

e�W �K�� �W �K�� �W �K��� Rn�K� �K��� �
�

�
��

Continuing is this manner	 we obtain a sequence of disjoint �nite sets K��K�� � � � such
that W �K�� � � � � �W �Kn� is nonvoid for every n� �

Third step� Suppose W is a family of subsets of a set S and let K��K�� � � � be a
sequence of �nite subsets of S such� that� for each n the set W �K�� � � � � �W �Kn� is
nonvoid� then there exists a sequence kj � Kj such that� for each n the set W �k�� �
� � � �W �kn� is nonvoid�

It is easy to give a straightforward elementary proof of this fact� For brevity	 we
present a more sophisticated one� The space X � K� �K� � � � � is compact� For each
n de�ne a set Rn � X as follows
 a sequence x � X	 x � �x�� x�� � � �� belongs to Rn if
and only if W �x��� � � ��W �xn� is nonvoid� The sets Rn are nonvoid	 closed in X and
Rn � Rn��� Use compactness of X� �

� An Example

The following example is included to show the advantages of the combinatorial ap�
proach� it also indicates connections with other branches of mathematics�

Let S be the set of all positive integers and consider the family W of all �nite
subsets w of S such that card w 
 minw� We intend to show that e�W � � �� To see
that	 it su�ces to show that	 given an arbitrary sequence s� � s� � � � �	 the intersection

W �s�� � � � � �W �sk�

will become void if k is large enough� Indeed	 we prove the following fact


If s� � s� � � � � is an arbitrary sequence then

W �s�� � � � � �W �sk�

is void as soon as k � s��

Proof� If w � W �s�� � � � � �W �sk� then sj � w for j � �� � � � � k so that

k 
 card w 
 minw 
 minfs�� � � � � skg � s��

�

This example shows the power of the combinatorial lemma� It is	 of course	 possible
to give ��	 for each � � �	 an explicit construction of a convex mean � with ��w� � �
for all w � W � The construction is based on the divergence of the harmonic series
and is not simple
 indeed	 it may be shown that arithmetic means are not su�cient
to solve this optimization problem� To be more precise
 a convex mean � is said to

�



be an arithmetic mean if � is carried by a �nite set M � S of cardinality m and
��s� � �

m
for all s � M � It is not di�cult to prove that	 for this particular family W 	

inf� supw ��w� � � if � is only allowed to range over the set of arithmetic means�
This fact is an immediate consequence of the following observation�

Given any arithmetic mean �� there exists a w � W such that ��w� � �
�
�

Given an arithmetic mean �	 there exists a �nite set M of cardinality k such that
��s� � �

k
for s � M and ��s� � � otherwise� Suppose s� � s� � � � � � sk are the

elements ofM � Let m be the smallest even number� k�� so that m � k�� � m��
The set

a � fsm� � � � � skg

has k m� � elements� Since

mina � sm � m � k m� � � card a�

it follows that a � W � At the same time ��a� � �
k
�k m� �� � �

�
�

This example is related to a problem treated in another context in ���

� Weak Compactness

The combinatorial lemma may be interpreted as an existence theorem for a system of
inequations

��w� � �� w � W�

Observe that no assumption on the cardinality of W is made� On the other hand the
condition for the existence of a solution is of countable character�

This remarkable fact has important applications in analysis� we now proceed to
explain how it may be used to extend classical results and present them in a new light�
this will be done in two directions

��� the sequential character of the condition may be used to explain why	 in the weak
topology of a Banach space	 sequential compactness implies compactness

�� the sequential character of the condition will permit us to prove results which say
that the assumption of invertibility of the order of two simple sequential limit
processes implies that the same holds for more complicated ones�

In the introductory section our main purpose was to explain the principles of the use
of combinatorial methods� to that end its was convenient to study the convergence of
sequences� We now pass to applications in their full generality	 to families of functions
�as opposed to only sequences�� We adopt a duality approach� given a family F of
functions on a set T we establish complete duality by considering the pair F 	 T as a
function B de�ned on F � T by the formula

B�f� t� � f�t�

�



and by treating both variables in the same manner� in particular this point of view
makes it natural to consider convex combinations of elements of T �

We have seen that an ingenious application of the lemma yields �for equibounded
sequences� the equivalence of almost uniform convergence and convergence in the mean�
For families of functions the condition of almost uniform convergence will be replaced
by a closely related condition known as the iterated limit condition�

De�nition� A 	complex valued
 function f de�ned on the cartesian product of two
sets X and Y is said to satisfy the iterated limit condition if the following implication
holds� given two sequences xn � X� yn � Y such that the limits

lim
n
f�xp� yn� � fp��

lim
n
f�xn� yq� � f��q

lim
p
fp�� � f���

lim
q
f��q � f���

exist� then f��� � f����

This important condition appears �rst	 in a particular form	 in the work to S� Ba�
nach � the present symmetric form is due to A� Grothendieck�

The following proposition exhibits a typical situation where the iterated limit con�
dition is satis�ed�

A completely regular topological space T is said to be countably compact if every
sequence Fn � Fn�� of closed subsets of T has a nonvoid intersection�

In particular	 given a sequence tn � T 	 de�ne	 for each n	 Fn are the closure of the
set consisting of all points tj for j � n� Then the intersection �Fn is nonvoid� A point
t � �Fn is called a cluster point of the sequence tn� If f is a continuous function on T
and tn � T a sequence for which the limit limn f�tn� � � exists then � � f�t� for each
cluster point t of the sequence tn�

���� Let T be a countably compact completely regular topological space� Let A � C�T �
be bounded and countably compact in the topology of pointwise convergence on C�T ��
Then A satis�es the iterated limit condition� more precisely� the function a� t � a�t�
de�ned on A� T satis�es the iterated limit condition�

Proof� Suppose ak � A	 tj � T are two sequences such that

lim
j
ak�tj� � fk� for all k�

lim
k
ak�tj� � f�j for all j�

furthermore	 suppose limk fk� � f�� and limj f�j � f���
Let t be a cluster point of the sequence tj and a a cluster point of sequence ak� It

follows that fk� � ak�t� for every t� Furthermore a�tj� � lim
k
ak�tj� � f�j for every j

and a�t� � limak�t� � limfk� � f��� Also	 f��� � lim
j
f�j � lim

j
a�tj� � a�t�� �

��



The preceding proposition exhibits a typical concrete situation in which the iter�
ated limit condition may easily be veri�ed� we do not aim at the greatest generality	
countable compactness could easily have been replaced by pseudocompactness or by
other weaker conditions �����

The iterated limit condition closely related to the notion of almost uniform con�
vergence� It may be restated in several other forms in which the connection becomes
more evident� It will be convenient to introduce a

De�nition� A double sequence apq of complex numbers is said to be convergent if
lim
q
apq � ap� exists for each p and lim

p
apq � a�q exists for each q�

The following equivalence throws more light on the meaning of the iterated limit
condition�

���� Let apq be a bounded convergent double sequence� Then the following statements
are equivalent�

�� the convergence lim
q
apq � ap� is almost uniform with respect to p�

� the convergence lim
p
apq � a� is almost uniform with respect to q�

�� both limits lim
p
ap� and limq a�q exist and are equal to each other�

�� the covergence lim
q
apq � ap� is uniform in the mean with respect to p�

�� the convergence lim
q
apq � a�q is uniform in the mean with respect to q�

We intend to concentrate on the purely combinatorial essence of the results� Observe
that in the following two propositions no assumptions of continuity are made on the
function B��� ���

The iterated limit condition is closely related to the notion of almost uniform con�
vergence� the connection will be evident from the following lemma�

���� Let fn be a sequence of functions de�ned on a set T such that fn�t�� f��t� for
each t � T � Suppose that jfn�t�j 
 � for all n and t and that the function

�s� t�� fs�t�

satis�es the iterated limit condition� Then the convergence is almost uniform� thus fn
converges to f� in the mean�

Proof� Suppose that	 for some � � �	 there exists	 for each n	 a point tn such that

jfi�tn� f��tn�j � �

for i � �� � � � � � n� Thus	 for each i	 the di�erence jfi�tn�f��tn�j � � for all n � i� Use
the assumption of boundedness to select a subsequence t�n of the sequence tn in such
a manner that the limits lim

n
fi�t�n� exist for each i including �� The double sequence

fi�t�j� contradicts the iterated limit condition� �

��



Now we are ready to reproduce the historically �rst application of the combinatorial
lemma ���	 ���� The result presents an opportunity to exhibit the use of combinatorial
methods in their purest form	 without any additional topological assumptions� In
conformity with our general duality principle we shall consider a bounded function f
de�ned on the cartesian product of two sets U �A� It will be convenient to regard f as
the restriction of a bilinear form �denoted again by f�� Indeed	 it is natural to extend
f to a bilinear form f� in the following manner

f�

�� pX
j	�

�juj�
qX

k	�

	kak

�A �
X
j�k

f�uj� ak��j	k

�the sum
pP

j	�
�juj has the obvious meaning if U is contained in a vector space	 otherwise

it is to be taken as a formal sum� the same applies to the other sum�� This convention
makes it possible to formulate the following

���� Theorem� Let f be a bounded real valued function on U �A� If f satis�es the
iterated limit condition on U � A then f satis�es the iterated limit condition also on
U � conv A�

Proof� Consider two sequences ui � U 	 cj � conv A such that

f�ui� cj�
	
j f�ui���

i �

f��� j�
	
j f�����

and such that f�ui��� f����� � � � � for all i� There exists a countable T � A
such that all the cj are convex combinations of elements of T � It is possible to extract a
subsequence of the sequence ui �we shall call it ui again� such that	 for each t � T 	 the
limit limi f�ui� t� � f��� t� exists� Since f is bounded and satis�es the iterated limit
condition	 it follows from lemma ����� that there exists a convex mean ��k�	 k � F
such that ���X��k��f�uk� t� f��� t��

��� � �

for every t � T � If we agree to write f ���
P
�rtr� for

P
�rf��� tr� the previous

estimate extends to conv A	 so that j
P
��k��f�uk� c�f��� c��j � � for all c � conv T �

Now choose cj such that
jf�uk� cj� f�uk���j � �

for all k � F and jf��� cj� f�����j � �� We have then

� 

X

��k��f�uk��� f������ �
X

��k��f�uk��� f�uk� cj��

�
X

��k��f�uk� cj� f��� cj�� �
X

��k��f��� cj� f�������

Each of these summands being less than � in absolute value	 the preceding inequality
yields a contradiction if � � �

��� �

�



In conformity with our general principle we deal with bounded functions of two
variables� In applications these functions will mostly be pairings of elements of a
Banach space and of functionals from its dual so that in most cases the arguments in
the function

B�s� t� on S � T

will come from sets with a linear structure of their own� Even if this is not the case	 we
shall consider B as the restriction of a bilinear form� Indeed	 it is possible to extend
B to an bilinear form on the linear span of S and the linear span of T in the obvious
manner� If T is a topological space and the functions f � F are continuous on T then
the following statements are equivalent


��� B�f� t� is separately continuous	

�� F is taken in the topology of pointwise convergence�

The algebraic extension to a bilinear form may go a little further in this case
 in fact
given s	 the function B�s� �� is a continuous function on T 	 so that for any continuous
linear functional q on C�T �	 the scalar product hB�s� ��� qi is a natural candidate for
B�s� q�� Given a continuous linear functional p on C�S�	 it would seem natural to take
B�p� q� � hB��� q�� pi�

This	 of course	 is not possible in general since it presupposes that B��� q� is contin�
uous on S� This raises the question under what conditions B��� q� will be continuous	
a problem interesting on its own� The problem will turn out to be important for
applications� We now proceed to treat it in detail�

If T is a completely regular topological space	 denote by C�T � the Banach space of
all bounded continuous functions on T equipped with the norm

jxj � supfjx�t�j� t � Tg�

Let C�T �� be the dual of C�T � taken in the w� topology	 
�C�T ��� C�T ��� For each
t � T the mapping

x� x�t�

clearly de�nes a linear functional on C�T �	 obviously of norm one� We call it the
evaluation functional corresponding to t and denote it by e�t�� In this manner

hx� e�t�i � x�t�

for x � C�T � and t � T � In view of the complete regularity of T the mapping

e 
 T � C�T ��

is one�to�one� at the same time the topology in C�T �� is chosen in such a manner that
e is homeomorphic� Identifying t with e�t� we obtain an embedding of T in C�T �� as a
topological space	 not only as a set� Since e�T � is contained in the unit ball of C�T ��

its closure is easily seen to be homeomorphic with the Stone��Cech compacti�cation of
T � The mapping e makes of possible to consider each completely regular topological
space T as a subset of a topological vector space �C�T ��	 
�C�T ��� C�T ���

��



In this manner we obtain an embedding of T in a topological space with an addi�
tional algebraic structure� a number of important problems may be formulated in the
following form
 given a continuous mapping of T into a topological vector space	 under
what conditions does it possess a continuous extension to C�T �� which also respects
the linear structure of C�T �� We intend to show how this approach may be used with
advantage to treat weak compactness�

As a �rst application of the combinatorial method we state the following general
theorem which essentially says that invertibility of the simplest sequential limit oper�
ations implies the invertibility of substantially more complicated ones�

Now we are ready to present the main result� It will be stated in two theorems�
though formally di�erent	 essentially their information content is the same�

���� A theorem of Fubini type� Let S and T be two completely regular topological
spaces�

Suppose f is a bounded separately continuous function or S�T which satis�es the
iterated limit condition on S � T � Given p � C�S��� q � C�T ��� consider the functions

hf�s� ��� qi � ��s� for s � S�

hf��� t�� pi � ��t� for t � T�

Then

�� the functions � and � are continuous�

� h�� pi � h�� qi�

���� The Extension Theorem for separately continuous functions�
Let S and T be two completely regular topological spaces and f a bounded separately
continuous function on S � T �

There exists a separately continuous bilinear form on C�S���C�T �� which extends
f if and only if f satis�es the iterated limit condition on S � T �

Sketch of proof� The only if part is immediate
 indeed	 if a separately continuous
extension to C�S�� � C�T �� exists it su�ces to consider its restriction to 	S � 	T 	
	S and 	T being the closures of S and T in C�S�� and C�T ��� these closures being
compact	 proposition ����� applies�

To explain the notation 	S and 	T 
 The reader will have observed that the closure
of a completely regular space M in C�M�� may be identi�ed with the Stone��Cech
compacti�cation of M �

On the other hand	 let us turn to the construction of the extension� A moment!s
re�ection shows that such an extension B	 if it exists	 must satisfy

B�s� q� � hf�x� ��� qi for s � S

and that the value B�p� q� is obtained by applying the functional p to the function
s� B�s� q�� The same applies if this process is applied starting with the function

t� hf��� t�� pi

��



and applying the functional q to it�
In this manner we see that B is uniquely de�ned if it exists� To prove the existence	

consider a �xed q � C�T �� and the corresponding function s � hf�s� ��� qi � B�s� q��
Using the iterated limit condition	 prove that the function B��� q� is continuous on S
so that hB��� q�� pi is meaningful� Repeating this construction with the order of p and
q inverted	 we obtain

hB�p� ��� qi �

The preceding theorem shows that both these processes are meaningful and lead to
the same result�

� Application to Weak Compactness

For metrizable topological spaces the notions of countable compactness and compact�
ness coincide� in the general case	 without metrizability	 countable compactness can be
weaker than compactness� Although the weak topology of a Banach space is far from
metrizable	 W�F� Eberlein was able to prove	 in ����	 the following surprising theorem�

Let E be a Banach space taken in its weak topology� If A � E is countably compact
then the closure of A is compact�

We shall see how this may be deduced from the extension theorem� In fact	 we get
at the same time considerably more	 the compactness of the closure of the convex hull
of A� In view of ����� if su�ces to prove the following�

���� Let S be a bounded subset of a Banach space E� Denote by T the unit ball of
the dual space E�� Suppose that the scalar product hs� ti on S � T satis�es the iterated
limit condition� Then the bipolar of S is weakly compact�

Proof� Take T � �U�� 
�E�� E�� and de�ne f on S � T as the scalar product

f�s� t� � hs� ti �

In this manner f is bounded	 separately continuous and satis�es the iterated limit
condition on S � T � By the extension theorem	 there exists a bounded separately
continuous bilinear from B on C�S�� � C�T �� which extends f � Consider a �xed es �
C�S�� and the corresponding linear form

B�es� ��
on C�T ��� When restricted to the linear hull of T of U� �which is nothing more than E��
it may be considered as an algebraic linear form on E �� It follows from the continuity
of B in the second variable that B�es� ��	 when restricted to U�	 is 
�E�� E� continuous�
accordingly	 it may be identi�ed with an element of E� This element will be denoted
by P �"s�� For y � U� we have thus

hP �"s�� yi � B�"s� y��

��



Observe that the linear mapping P 
 C�S�� � E obtained in this manner acts as the
identity on S
 indeed	 if e � S	 we have � B being an extension of f �

hP �e�� yi � B�e� y� � he� yi �

whence P �e� � e for e � S� Since B is continuous in the �rst variable	 it is easy to see
that P is a continuous mapping of C�S�� �in its w� topology� into �E	 
�E�E ���� If V
is the unit ball of C�S�� its image P �V � will thus be 
�E�E�� compact� Thus

S � P �S� � P �V �

and P �V � is an absolutely convex weakly compact subset of E� �

� Duality

Among the many possible interpretations of the combinatorial problems discussed
above the formulation as an optimization problem is of particular interest� The quan�
tity

inf
��P

sup
w�W

��w�

represents a numerical characteristic of the familyW which re�ects some aspects of its
combinatorial structure� When interpreted in geometric terms if assumes a form the
intuitive meaning of which we now proceed to explain�

This characteristic may be given an intuitive geometric interpretation in terms of
what we call the thickness of a set in a normed vector space� If M is a subset of a
normed vector space E we de�ne the thickness e�M� of M by the formula

e�M� � inf sup f�m� m��

as m��m� range over the set M and f over all linear functionals on E of norm not
exceeding one� In this manner	 e�M� is the smallest distance of two parallel hyperplanes
in E such that the set M lies between them�

In our case	 E will be the Banach space B�S� of all bounded complex functions on
S with the norm

jxj � supfjx�s�j� s � Sg�

Given a complex function ��s� on S with �nite support	 the mapping

x�
X

��s�x�s�

is clearly a bounded linear functional on B�S�� its norm equals
P
j��s�j� In particular	

each probability measure � � P �S� is a linear functional on B�S� of norm ��
In our case we shall use this geometric idea to describe a combinatorial characteristic

of families of subsets of S� Given a family W � expS and identifying each w � W
with its characteristic function we may consider W as a subset of B�S��

It will be convenient to introduce the notion of thickness of a family of subsets of S�

��



For each � � P �S�	 considered as a functional on B�S�	 and each w � W considered
as an element of B�S�	 we have

hw� �i � ��w��

In this manner	 the whole family W is contained in the set

fx� � 
 hx� �i 
 supf��w�� w � Wg�

The study of the combinatorial structure of families of sets discussed in the preceding
chapter made it possible to interpret e�W � as a characteristic of an optimization prob�
lem	 giving it	 in this manner	 an intuitive geometric meaning� It is to be expected
that the dual interpretation of the optimization problem will provide further intuitive
insight into the matter� this is indeed so � a standard application of the separation
lemma for convex sets will present e�W � in a di�erent light	 giving further support to
the intuitive interpretation as thickness�

In a manner of speaking	 the two mutually dual interpretations of e�W � correspond
to two natural ways of visualizing a relation R � P � Q
 we may either view it as a
multivalued mapping of P into Q setting

p � fq � Q� �p� q� � Rg�

p� R�p��

or as a family of subsets of P parametrized by Q

q � fp � P � �p� q� � Rg�

q � R���q��

In order to obtain a dual description of e�W � it will be convenient to use the second
approach to S �W and assign to every w � W the characteristic function of R���w�	
in other words	 to write

w�s� � � i� s � w� otherwise w�s� � ��

Our �rst observation will be the following estimate�

���� Let W be an arbitrary family of subsets of S� Then

e�W � � inf
F

sup
��P �W �

inf
s�F

X
w�W

�w�w�s�

as F ranges over all �nite subsets of S�
The intuitive meaning of this estimate is obvious
 if 	 is such that	 for each �nite

F � S	 there exists a convex combination b of the functions w with b�F � � 		 then
e�W � � 	�

Proof� Write 	 for
	 � inf

F
sup

��P �W �
inf
s�F

X
�w�w�s�

��



and suppose that e�W � � 	� Choose 	�� 	�� so as to have e�W � � 	� � 	�� � 	�
Since e�W � � 	� there exists a � � P �S� such that ��w� � 	� for every w � W �
Set F � N���� Since sup

��P �W �
inf
s�F

P
��w�w�s� � 	 there exists a  � P �W � such that

inf
s�F

P
�w�w�s� � 	��� Thus 	�� 
 h

P
�w�w���� �i 


P
�w���w� �

P
�w�	� � 	�	 a

contradiction� �

If the w � W are interpreted as functions on S then	 for each  � P �W �	 the sumP
�w�w�s� is nothing more than the value at the point s of the convex combinationP
�w�w of the functions w
 as � ranges over P �W � these functions range over the

convex hull of W � The inequality above may thus be rewritten in the form

e�W � � inf
F

sup
b�conv W

inf
s�F

b�s��

The dual characterization of e�W � may be formulated as follows�

���� Let W be an arbitrary family of subsets of a set S� Then

inf
��P �S�

sup
w�W

��w� � inf
F

sup
b�conv W

inf b�F �

as F ranges over all �nite subsets of S�

Proof� The preceding lemma may be interpreted as the inequality �� Thus it remains
to prove the opposite inequality� Let us show that	 for every �nite F � S there exists
a b � conv W such that b�s� � e�W � for all s � F � If s�� � � � � sn are the elements of F 	
de�ne a mapping G of B�S� into Rn by the formula

G�x� � �x�s��� � � � � x�sn���

Denote by M the subset of Rn consisting of all �y�� � � � � yn� � Rn for which all yj �
e�W �� Suppose the intersection G�conv W ��M is void� Since G�conv W � is compact
there exists a linear form � on Rn

��x� � ��x� � � � �� �nxn

such that sup��G�conv W �� � inf ��M�� Since inf ��M� is �nite	 it follows that all
�j are nonnegative� Since � is nonzero we may assume that

P
�j � �	 in other words

� � P �S�� Now inf �M 
 e�W � so that

sup��W � � sup��conv W � � sup��G conv W � � inf �M 
 e�W ��

a contradiction� The proof is complete� �

� Number Theory

The motivation for the optimization problem inf
�

sup
w
��w� was a study of limit processes

� accordingly	 the set S was in�nite� In this section we intend to show that the

��



optimization problem is not without interest in the case when S is �nite� Among the
many relationships with other branches of mathematics we single out	 in this section	
the connection with number theory�

If the set S is �nite then so is the family W � Identifying each set w � W with its
characteristic function we may write

��w� �
X

��s�w�s��

Thus X
w

��w� �
X
w

X
s

��s�w�s��

inverting the order of the summations we obtain the identityX
w

��w� �
X
s

��s�n�s�

where n�s� is the number of w such that s � w�
This leads to a lower estimate for e�W ��

���� If the family W is �nite then

e�W � � min
s

card W �s�

card W
�

Proof� Writing n for card W and n�s� for card W �s� we have the following estimate�

ne�W � � n inf
�

sup
w
��w� � inf

�

X
w

��w� � inf
�

X
s

��s�n�s� � inf n�s��

�

This estimate has a dual counterpart� to state it	 we introduce an abbreviation
 the
cardinality of a set M will be denoted by kMk�

���� Consider a relation R � S�T and denote by W the family R���t�� t � T � Then

inf
s

kR�s�k

kTk

 e�W � 
 sup

t

kR���t�k

kSk
�

Proof� e�W � � inf
�

sup
w
��w� � inf

�
sup
t

��R���t�� 
 sup
t

���R���t�� where �� is the

arithmetic mean de�ned by ��s� � �
kSk for all s� Thus ���R���t�� � kR���t�k

kSk �

The lower bound for e�W � is a consequence of ������ �

This section will be devoted to the study of the relationship between the combi�
natorial structure of a family W and its thickness � in particular to the question of
constructing	 for a given number �	 � � � � �	 a family W for which e�W � � ��
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There are many ways to represent a given rational number k

n
in the form e�W � for

a suitable family W � The most economic one would be one for which

kSk � kTk � n�

kR�s�k � kR���t�k � k for all s� t�

Such a relation may be described as follows
 S � T � f�� �� � � � � n �g� To de�ne R	
we distinguish two cases� If i� k  � 
 n � we set

�i� j� � R i� i 
 j 
 i� k  ��

For i� k  � � n

�i� j� � R i� i 
 j 
 n � or � 
 j 
 i� k  �  n�

For k � �	 n � �	 we obtain the following pattern

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Given n and k �� 
 k � n�	 S may be viewed as the set of residue classes of integers
modulo n and the family W consists of all intervals of length k arranged on a circle�
there are n such intervals�

Let us turn now to the problem of representing an irrational number� Intertwin�
ing the families corresponding to rational approximations of the number in a suitable
manner �� we obtain�

���� Suppose � is an irrational number� � � � � �� Then there exists a set S and a
family W of subsets of S such that e�W � � ��

Proof� For each m � �� � � � � let km be the integer de�ned by the requirement that

km  � � m� 
 km�

It follows that � 
 km 
 m and km�m � ��
Let S be the set of rational numbers de�ned as the union S � S� � S� � � � � where

Sk is the set of all rational numbers of the form m�k with � � m 
 k� For each
m � �� � � � � we de�ne a family Wm of subsets of Sm

Wm � fwmj� j � �� � � � � � mg�

wmj �

�
j

m
�
j � �

m
� � � � �

j � km  �

m

	
�

�



the numerators being taken modulo m� In this manner the family Wm consists of m

subsets of Sm	 each of cardinality km� The family W will be de�ned as the union of
the families W��W�� � � ��

Given � � P �S�	 there exists an m such that the support of � is contained in Sm�
For every s � Sm there are exactly km sets wmj such that s � wmj�

We begin by proving the inequality e�W � � �� identifying the sets w with their
characteristic functions on S our task is to compute the in�mum

inf
F

sup
b

inf b�F ��

here F are arbitrary �nite subsets of S while b ranges over all convex combinations of
the functions w�

Observe that sup
b

inf b�F � � sup
b

inf b�F �� if F � F �� since every �nite F is contained

in one of the Sm if m is large enough the in�mum above equals

inf
m

sup
b

inf b�Sm�

and is bounded below by inf
m

inf bm�Sm� for any sequence bm of convex combinations of

the functions w� Taking bm � �
�m

�mP
j	�

wmj we have bm�s� � km
�m

for all s � Sm and the

estimate e�W � � � follows�
On the other hand	 �x an n and de�ne �n � P �S� by setting �n�s� � �

�n for
s � Sn and ��s� � � otherwise� Consider an arbitrary w � W 	 w � wmr for some
r	 � 
 r 
 m� Clearly �n�wmr� equals �

�m times the cardinality of the intersection
wmr � Sn�

To estimate the cardinality of wmr � Sn we consider a sequence of km consecutive
numbers of the form x

�m
and ask for the number of those among them that are of the

form y

�n � We distinguish two cases� If m 
 n we have wmr � Sm � Sn so that the
cardinality is km� Thus

�n�wmr� �
�

n
km �

�

n
�km  �� �

�

n



�

m
�km  �� �

�

n
� ��

�

n
�

In the case m � n the cardinality does not exceed km
�m�n

� � so that

�n�wmr� �
�

n
card �wmr � Sn� 


�

m
km �

�

n
�

�

m
�km  �� �

�

n��
�

It follows that e�W � � �� �
�n�� for every n whence e�W � 
 ��

In this manner every number between zero and one may be represented as the
thickness of a suitable family of �nite sets� This representation not only re�ects some
number theoretical properties of the number� it has the additional advantage that arith�
metical operations with the numbers correspond in a natural manner to combinatorial
constructions with the corresponding families of sets�

We now de�ne combinatorial operations on families of sets in such a manner that
a combinatorial operation performed on two families of sets corresponds to a corre�
sponding arithmetical operation performed on their thicknesses�

�



We begin by showing that the product of numbers corresponds to the cartesian
product of the representing families� More precisely�

���� Let W� and W� be two families of subsets of S� and S� respectively� Set S �
S� �S� and let W the family of sets of the form w��w� with wi � Wi� Then e�W � �
e�W��e�W���

Proof� Given � � �	 let �i � P �Si� be convex means such that

�i�wi� � e�Wi� � �

for all wi � Wi� De�ne �� � P �S� as the product of �� and ��	

����s�� s��� � ���s�����s���

Given w� � W� and w� � W� we have

���w� � w�� � ���w�����w�� 
 �e�W�� � ���e�W�� � ���

Thus
e�W � 
 sup

w��w�

���w� � w�� 
 �e� � ���e� � ��

whence
e�W � 
 e�W��e�W���

The opposite inequality may be obtained in a similar manner using the dual charac�
terization of e� �

In this manner the product of numbers corresponds to the cartesian product of their
representations� There is a similar correspondence between the operation of addition
and the union of the representations�

Consider two pairs �S��W�� and �S��W��� To avoid complications assume that S�
and S� are disjoint� Set S � S� � S� and W � W� �W�� For every convex mean � on
one of the Si we write �� for the convex mean on S obtained by setting ��s� zero on
the other set�

���� �
e�W � �

�
e�W��

� �
e�W��

�

Proof� For i � ��  let �i � P �Si� satisfy

�i�wi� � e�Wi� � �

for all wi � Wi� Set

�� �
e�

e� � e�
��� �

e�
e� � e�

����

Consider a w � W � Suppose w � W�� Then ���w� � e�
e��e�

���w� 

e�

e��e�
�e� � �� 


e�e�
e��e�

� �� we obtain the same estimate if w � W�� It follows that

e�W � 
 sup
w
���w� 


e�e�
e� � e�

� �





so that e�W � 
 e�e�
e��e�

�
The opposite inequality may be obtained in a similar manner using the dual char�

acterization of e�
Given a �nite set F � S� � S� and a positive �	 there exist bi � conv Wi such that

vi�F � Si� � e�Wi� �� Let b� be the function de�ned on S� � S� as follows


b��s� �
e�

e� � e�
b��s� for s � S��

b��s� �
e�

e� � e�
b��s� for s � S��

thus b� � conv W � Furthermore b��s� �
e�e�
e��e�

 � for every s � S� In this manner

inf
F

sup
b� conv W

inf b�F � �
e�e�

e� � e�
 �

for every � � �� It follows that e�W � � e�e�
e��e�

� �

In view of these facts it seems that the relationship between numbers and their
combinatorial representations could be worth investigating�

It would be interesting to relate the properties of a number and the combinatorial
structure of its representation� in particular	 is there a combinatorial characterization
of algebraic numbers 

�
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