
Upper Bounds for Gentle Branching Programs

Žák, Stanislav
1999

Dostupný z http://www.nusl.cz/ntk/nusl-33865

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 04.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33865
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Upper bounds for gentle branching programs

Stanislav �Z�ak

Technical report No� ���

November ��� ����

Institute of Computer Science� Academy of Sciences of the Czech Republic

Pod vod�renskou v��� �� �	�
� Prague 	� Czech Republic

phone� ��
� ��
����
 fax� ��
� 	�	��	�

e�mail� stan�uivt�cas�cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Upper bounds for gentle branching programs

Stanislav �Z�ak�

Technical report No� ���
November ��� ����

Abstract

In the theory of branching programs there are many results giving lower bounds for
restricted branching programs� In ��	
and also in ��	� � among other results � it is
demonstrated that the functions used for proving lower bounds are in fact easy func�
tions in many cases� Easy means that the functions in question are computable on
polynomially sized so�called gentle branching programs
gentle is a restriction based
on a more careful observation of the nature of computations��

The present report continues this trend and proves that also the functions used for
proving the latest lower bounds
Beame et al� ��	� Ajtai ��	� are easy in the sense
above� Some other results concerning upper bounds are added�

Keywords

branching programs� upper bounds

�The research was supported by the GA CR grant no� ������������

� Introduction

Branching programs are a general model of sequential computation with small
sub�
linear� memory� It is a well�known fact that the logarithm of any lower bound on the
number of nodes of branching programs implies a lower bound on the space complexity
on Turing machines� Especially� any superpolynomial lower bound on branching pro�
grams for a function in P would solve the P ��LOG problem�

Many lower bounds were obtained for so�called restricted branching programs� The
lower bounds for the basic restriction � the read�once branching programs � are ranging
from �c

p
n in ����
����� ��	
also ��	� to �n�O�logn�� for a function in P and �n�O�logn�

for a function in DTIME
�O�logn�� in ���� ��	�
The read�once branching programs
are such that during each computation each variable is tested at most once��

Some results were obtained for
���k��branching programs
during any computa�
tion each variable is tested at most once with exception of k of them� and for syntactic
k�branching programs
along any path in the program each variable is tested at most
k�times�� The latest lower bounds for branching programs of length
� � ��n ��	 and
for branching programs of length k�n ��	 were long�standing problems�

In ��	� the authors have considered the nature of computations more carefully and
they have obtained a new restriction based on the balancing the uncertainty � so called
gentle branching programs� Using a new method they proved two lower bounds for
such b�p� �

This new restriction is interesting also from the point of view of upper bounds�
In ��	 it is proved that each
polynomially sized� read�once branching program is a

polynomially sized� gentle one� Further it is proved that many functions which are
superpolynomially hard for restrictions mentioned above are polynomially easy for gen�
tle branching programs� It seems that gentleness captures something like simplicity of
functions or computations�

In this paper we add some new results to the study of relation between gentleness
and simplicity� Especially we demonstrate that the functions used for proving the lat�
est lower bounds ��	� ��	 are in fact very easy� To make the collection of upper bounds
from ��	 � ��	 more complete we prove also a small upper bound for D�
Dyck� lan�
guage which was used for the �rst lower bound of the form �n�c on read�once branching
programs ��	� Moreover we demonstrate that by a change of the de�nition of gentle
b�p� the pointer function used in ��	 for the proof of the lower bound becomes an easy
function�

�

� Branching programs and windows

Let us �x some
standard� notation concerning branching programs� A branching
program
b�p�� is a directed acyclic graph with one source� The out�degree of each

non�sink� node is �� Every node is labeled by an input variable xi
or equivalently� by
a bit i� and the two out�going edges are labelled by tests xi � � and xi � �� The

two� sinks
out�degree � nodes� are labeled by � and �� By the size of a branching
program P we mean the number jP j of its nodes� The computation comp
a� on an
input a � f�� �gn is a sequence of nodes of P which starts in the source of P and at
each node v labelled by i� comp
a� follows that edge going from v which corresponds to
the test xi � a
i�� If the computation comp
a� goes through a node v� then we also say
that the input a reaches this node� By compv
a� we will denote the part of the compu�
tation comp
a� starting from the node v� The program computes a Boolean function f
if� for every input a � f�� �gn� the computation comp
a� reaches a sink labelled by f
a��

By a branching program of length l we mean such a b�p� that each its computation
is of length at most l�

We want to catch what information about the input bits is remembered at each
moment of any computation on any branching program� For this purpose in ��	 the fol�
lowing de�nition of windows is introduced
the �rst attempt to de�ne windows is in ��	��

Let P be a branching program and v be a node in P � Let F � f�� �gn be an
arbitrary subset of inputs� each of which reach the node v�

De�nition ��� The window w
a� v� F � of input a � F at the node v with respect to
the set F is a string of length n in the alphabet f�� �����g which is de�ned according
to the following three rules� Let F
a� be the set of those inputs b � F for which
compv
b� � compv
a��

�� We assign a simple�cross ��� to the i�th bit of w
a� v� F � if

� either there is a b � F such that the �rst divergency of compv
a� and
compv
b� is caused by a test on i �in this case we call that cross the down�
cross�	

� or the bit i is not tested along any computation comp
b� for b � F
a� �in
this case we call that cross the up�cross��

� We assign a double�cross ��� to the i�th bit of w
a� v� F � if it was not crossed
according to the �rst rule	 and if a
i� �� b
i� for some input b � F
a��

�� The remaining bits of w
a� v� F � are non�crossed �i�e� speci�ed� and their values
are the same as in a�

By the same way it is possible to de�ne windows at an edge
instead of at a node��

�

If some bit is double�crossed
�� in a window of a � F at some node v with respect
to F � then this bit is not tested and remains double�crossed in the windows of a at each
subsequent node w of comp
a� with respect to the set of all inputs from F reaching w�

Double�crossed bits are forgotten forever��

The larger is F the smaller is the number of non�crossed bits in the windows relative
to F �

If a� b � F and compv
a� � compv
b� then the windows of a and b
at v with respect
to F � have the same sets of down�crosses� of up�crosses
�� and of double�crosses
���
and all non�crossed bits and down�crossed bits have the same contents in both a and
b�

From the intuitive point of view we expect that � in some sense� the window
w
a� v� F � says what bits are remembered
�non�crossed bits� and what bits are for�
gotten
 � crossed � ��� � bits� at the moment when the computation comp
a� reaches
the node v
with respect to the set F ��

In ��	� ��	 we introduce three arguments that the de�nition is reasonable�

�� The test on bit i at a node v of comp
a� causes exactly removing of the � on
the bit i of w
a� v� F �� It means that we have an analogy with the real world where a
test on a variable gives an information about exactly this variable�

�� Each branching program recognizing symmetric words
uuR� has the natural
property that during the computation on any symmetric word each pair of symmetric
positions is non�crossed
 it means remembered or known at the same moment� at least
once�

�� Moreover we have a theorem saying that if in a b�p� P many computations have
long windows then P must be large� This theorem corresponds with the property of the
real world that for remembering large information about many objects a large memory
is needed� The theorem is used as a method of proving lower bounds on branching
programs in ��	� ��	�

� Gentle programs

In ��	� via windows we have de�ned an interesting restriction as follows�

Let P be a branching program and v be a node in P � Throughout this section� let
F � f�� �gn be an arbitrary
but �xed� set of inputs which reach the node v� i�e� the
computations on inputs from F go through the node v� in this case we say also that
F is classi�ed at v� We will always assume that the set F is closed in the following
natural sense� a � F � b � f�� �gn and comp
b� � comp
a� imply b � F �

�

Let a be an input from F � Depending on what is the window w
a� v� F � for this
input a at the node v with respect to F � we de�ne the following subsets of f�� � � � � ng�

N
a� �df the set of all non�crossed bits�

D
a� �df the set of all double�crossed
�� bits�

S
a� �df the set of those bits i � D
a�� which were non�crossed in the window for a
immediately before the node v� i�e� which were non�crossed in the window for a
at the corresponding edge� feeding into v�

Let also

N �df the set of all bits which are non�crossed and have the same value in the
windows at v of all inputs from F
the common speci�ed part of F �� and

D �df the set of all bits which are double�crossed in the windows at v of all inputs
from F
the core of F �

De�nition ��� We say that F is classi�ed at v in a regular manner with �uctuation
� and deviation � if its core D �� � and	 for every input a � F 	 jN
a� n N j � � and
max fjD
a� nDj� jD
a� n S
a�jg � ��

The �uctuation tells that the mixed non�crossed part of N
a� has at most � bits�
whereas the deviation ensures that at least jD
a�j � � bits of a where double�crossed
at the node v for the �rst time�

De�nition ��� A branching program P is gentle on a set of inputs A � f�� �gn with
uctuation � and deviation � if there is a distribution � � A � V of these inputs
among the nodes of P such that each �non�empty� class F � fa � A � �
a� � vg of
this distribution is classi�ed at the corresponding node v in a regular manner with the
uctuation � and deviation �� We also say that a program is ��gentle if it is such on
some set of at least �n�� inputs�

Parameters �� � and � range between � and n� and re�ect the �degree of gentleness��
the smaller they are the more gentle the program is� In ��	 we show that read�once
branching programs
��b�p�� are very gentle
with � � � and � � � � ���

� Upper bounds for the latest witness functions

The latest results in the theory of branching programs are the exponential lower bound
for branching programs of length
�� ��n
Beame et al� ��	� and the exponential lower
bound for branching programs of length k�n
Ajtai ��	�� We want to prove that the
witness function from the both papers are very easy for gentle b�p�s� We start with
Ajtai�s function�

�

De�nition ��� A is a Bolean function such that for all a � f�� �gn	 a � a����an
A
a� � � i� the cardinality of the set f
i� j� k� j � � i 	 j 	 k and i� j � k and ai �
aj � ak � �g is an even number�

Ajtai ��	 has proved that A is exponentially di�cult
��k �n� for each branching
program of length at most k�n�

Theorem ��� A is computable on a ��gentle branching program with deviation � and
uctuation � of size ��n��

Proof�

We will describe a branching program P computing A of size ��n� and then we will
prove that P is a gentle branching program�

Informally speaking� P starts its computation from the right end of the input�
Whenever P �nds the symbol one on the position� say� k� P computes the parity of
the number of pairs
i� j� such that i� j � k and ai � aj �
ak �� �� P combines this
parity with the parities for the previous positions k�� k�
 k�

More formally� P consists of parts Pn� � � � � P�� Each part Pl has two output
nodes vl��� vl�� which are the input nodes of Pl��� The output nodes of P� are sinks of
the whole program P � The output node vl��
vl��� resp��
of the part Pl� represents
it
means� vl��
vl��� resp�� is reached by� all inputs a � a����an where the parity of the num�
ber of triads
i� j� k� such that i�j � k� ai � aj � ak� k 	 l is equal to zero
one� resp���

The two subprograms of Pl starting from the two input nodes of Pl have no com�
mon nodes� The edges going to two output nodes of Pl
� the input nodes of Pl��� are
combined in such a way that the condition on vl��� vl��
above� is satis�ed� In each from
the both input nodes of Pl we compute as follows� we test al � From vl����
vl����� resp��
the ��edge leads immediately to vl��
vl��� resp��� The ��edge leads to the consequent
tests on pairs
i� j� such that i�j � l� After each test the partial parity is remembered�

At this moment we see that P computes A and that the size of P is at most ��n��

For the purposes of the proof that P is gentle we need a more detailed description
of Pn� In the source of Pn there is a test on the variable xn� The ��edge of this test
goes immediately to the output node vn��� The ��edge goes to the chain of subparts
Qn�i�j where i
 j� i � j � n and Qn�i�j checks whether xi � xj � �� Each Qn�i�j

has two output nodes which re�ect the parity of the number of pairs
i�� j�� such that
i� 	 i� j� � j� i� � j� � n� xi� � xj� � �� These two output nodes are the input nodes of
Qn�i���j���

In each input node of Qn�i�j a full binary tree of depth � starts where the �rst test
is on xi and second one is on xj� Leaves of both trees are sticked to two output nodes
of Qn�i�j according to parity requirements�

�

We have described Pn� The next Pl� n � � 	 l 	 � are such that from both their
input nodes a subprogram similar to Pn starts where only the index n is replaced by l�
The output nodes of both subprograms are sticked to the output nodes according to
parity requirements�

We introduce a small irregularity to the part Pn��� The subprogram starting from
the ��sink vn�� of Pn tests �rstly xj and only then xi in his subparts Qn���i�j� This
change gives us the fact that the sequence of tests
xn�xn��x�xn��x�xn��x���� in Pn is
the same as the sequence of tests xn��x�xn��x����� in the subprogram starting from the
��sink vn�� of Pn�

Now� we start the proof that P is a gentle branching program�

We de�ne the set F �df fa � f�� �gnj
an � � and a reaches vn��� or
an �
� and in vn�� a joints an a� � a����an����g�

We distribute F to vn��� It is easy to check that jF j 	 �n��� Hence� if we prove
that F is regular we obtain that P is a ��gentle branching program�

For each a � F D
a� � D
a� vn��� F � contains the variable xn� This follows from
the de�nition of F and from the fact that below
after� vn�� there is no test on xn�
Hence D �df

T

a�F
D
a� �� ��

For each a � F comp
a� goes through the input tests of parts Pl� n � � 	 l 	 �
where the test is always on xl� Therefore some other double�crosses � in w
a� vn��� F �
may be at most on x�� x�� Thus we have jD
a�j � � which su�ces for jD
a��Dj � �
and jD
a�� S
a�j � �� Hence the deviation is at most ��

Now it su�ces to estimate the �uctuation� Let us take a branch b in the tree TF �

We know that the windows are the same for all inputs following b�� There are no
up�crosses since xn���x� are tested at the input nodes of Pn���P�� x�� x� are tested in Pn�
Above we have argued that double crosses are at most � � on xn and then maybe on
x�� x��

Let us take any variable y di�erent from the variables tested in the last Qn�i�j and
from xn�� for n even� Let us take a partial path in Pn which goes from the source
the
test on xn� by the ��edge and which ends in the test on y in Pn� There are two inputs
which follow this path� on y they branch and they join in F � In TF they follow the
same branch until the test on y since the path in Pn and Pn�� are the same
due to
the irregularity we have introduced to the de�nition of Pn���

Therefore there are at most three non�crossed bits�
P is a ��gentle branching program with deviation � and �uctuation �� Q�E�D�
�

�

We see that though A is very di�cult for branching programs of length k�n A is
easy for gentle programs even with small parameters
� very gentle��

Now let us consider one of the witness function of Beame et al� ��	�

Let M be an n
 n�matrix over GF
��� Let Mi�j �df
����i�j�� For � � ������n �
f�� �gn we de�ne f
������n� � � i� �TM� � � mod ��

They have proved that f is exponentially di�cult for branching programs of length

� � ��n�

Theorem ��� The function f s computable on ��gentle branching program P of size
��n� with deviation � � and uctuation � ��

Proof�

Before constructing the desired program P let us notice that
�TM� � a� b� c� d where
a � ����M��� � ����M��� � ����M��� � ����M��� � ����� � ���� � ���� �
b � ���

Pn
i�� �iMi�� �

Pn
j�� �jM��j��

c � ��

Pn

i�� �iMi�� �
Pn

j�� �jM��j� �
d �

Pn
i��

Pn
j�� �j�iMi�j�

The program P computes and adds the values a� b� c� d� At the top P starts with a
tree of depth � with tests on ��� ��� The four leaves of the tree are the input nodes of
the second part of P where b and c are computed and which have three output nodes
v�� v�� v�� Each output nodes vi represents one value of the sum a� b� c� These nodes
are input nodes of the last part where d is computed�

It is clear that P computes f and that the size of P is at most ��n��

We are going to prove that P is a gentle branching program� Let us take into
account the node v� and all inputs � reaching v� via the branch �� � �� �� � � or the
branch �� � �� �� � �� Let F be the union of all pairs of inputs which are the same on
������n and which reach v� by di�erent branches above� Since below v� there is no test
on �� we have double�crosses on �� for each � � F � Hence D �� ��

Now let us derive the value jF j� The computation of b starts in the node which
represents the value ��
of a�� To reach v� it must have the value � on b� We see that
b � ���

Pn
i�� �iMi�� �

Pn
j�� �jM��j� �

Pn
i�� �i���Mi�� �

Pn
i�� �i
����
����i����

For arbitrary values on ��� ���� �n�� by a choice on �n��� �n it is always possible to
reach the value b � � since with growing i the value 	 i� �
 changes �� � in a regular
way� Hence the expression
���
����i��� regularly changes the values ��� �� Thus the
size of F is at least �n���
P will be ��gentle��

�

The computation starting at v� begins by dummy tests on �������n� This implies
that for each � � F D
�� � f��g�
And D
�� � S
�� � � since � appears at v� for
the �rst time�� Therefore the deviation is equal to zero�

All inputs from F have � on ��� TF is a complete tree on ������n��� Therefore N
��
may di�er from N only on �n��� �n� Hence the �uctuation is at most two� Q�E�D�

�

We see that f is very easy for
very� gentle branching programs�

� Other upper bounds

Let f be a Boolean function of n variables such that f
x� � � i� x is the binary code
of a well�formed expression over two sorts of brackets �
� � and �� 	�
The code is a
mapping of f
� �� �� 	g to the length�two binary strings��

We know that f is di�cult for �� and real�time branching programs
�n�	
� � Kriegel�
Waack ��	�

Theorem ��� f is computable on a ��gentle branching program with deviation � and
uctuation � of size O
n���

Proof�

We will formulate a condition equivalent to the fact that some expression over the
alphabet f
� �� �� 	� g is a well�formed one�

We say that a pre�x p of an expression x is a leftmost
the �rst� interval i� p is the
shortest pre�x such that the projection of p to the alphabet f
� �g
if p starts with
�
or to f�� 	g
if p starts with �� is a well�formed expression in f
� �g
f�� 	g� resp���

The second interval is the �rst interval of the rest and so on�

Let I be an interval starting with� say� �� We are able to say what are its subintervals
in �� 	 and what are their dephts of nesting�

Our condition is�
�� The expression can be divided into intervals�
�� For each interval I
in ��	� for each its subinterval S
in ��	� of any depth l of

nesting the symbols
�� contained in S and non�contained in any subinterval S� of S

in ��	� of depth
 l form a well�formed expression�
Similarly for interval I starting
with
��

It is clear that this condition is equialent to the fact that the expression is well�
formed�

�

Further it is clear that the algorithmus verifying this condition can be implemented
on a b�p� P of size at most O
n���
n � interval� n � the level of nesting� n � the
subinterval� n � the counting of subintervals more deeply nested� n � for the sum of
��
running in time��

Now � let us construct a gentle branching program Q computing f � Q starts with
a full tree of depth �� with tests on x�� ���� x��� Its leaves are sticked into two nodes
v�� v�� v� is reached by all inputs with pre�xes �
�
� or �

��� The other inputs reach
v�� At v� the result does not depend on the pre�x� so at v� we start the program
P� � Px����x��������� At v� we start the program P � Q computes f and its size is at most
O
n���

We choose F the set of all inputs reaching v� and distribute it to v�� We see that
jF j 	 �n�� We want verify that F is a regular set with deviation � and �uctuation ��
At v� we develop the tree TF � In each branch there are two inputs which di�er only on
the �rst ten bits
�
�
� and �

��� and on the other bits are the same and moreover they
have there only down�crosses or up�crosses� Hence for each a � F we have non�crosses
on bits �� �� � and double�crosses on bits �� �� So� D
a� � S
a� � D � the deviation �
�� N
a� � N � the �uctuation � �� Q�E�D�

�

In the last theorem we work with the pointer function ��	 which is di�cult for
gentle branching programs� We perform an experiment that by replacing D �� �
from the de�nition of regular sets by only D
a� �� � we obtain more powerful �gentle�
branching programs�

Let s and k be such that ks� � n and k 	 log n� Arrange the n variables X �
fx�� x�� ���� xng into a k
 s� matrix� split the i�th row
� � i � k� into s blocks of size
s each� and let �i be the OR of ANDs of varibes in these blocks� The pointer function
is de�ned by� f
X� � xj where j is the number
between � and n�� whose binary code
is
��� ���� �k��

Theorem ��� f is computable on a ���gentle� branching program of size O
n�� with
�deviation� � and uctuation ��

Proof� Let us describe a program P � P starts by a full tree of depth � on variables
x���� x���� x���� The leaves of the tree are sticked into two output nodes� The leaves of
branches with at least one zero on the three variables in question are sticked to v��
the branch with x���x���x��� � ��� ends in v�� At v�� v� we start two identical copies
of the program P�� P� trivially evaluates the conjunctions in the blocks of the row
in question� then P� knows the value of the disjunction� hence it knows a bit of the
pointer vector� Then P� computes the next bit� After evaluating of the last bit of the
pointer vector P� tests the pointed input bit�

It is clear that P computes f and that jP j � O
n���

�

Let us distribute the set F �df
f�� �g� � f��g��f�� �gn�� to the node v�� Since
the variables x	� ���� xn are tested only after reaching v� each a � F has only down� or
up�crosses on them� In branches where the pointed input bit di�ers from x���� x���� x���
these three bits have double�crosses� If one of them is the pointed bit then the remain�
ing two have double�crosses� There are no non�crossed bits�

The conclusion� f is computable on ���gentle� branching program of size O
n�� with
�deviation� � and �uctuation ��

Q�E�D�
�

Conclusions� Taking into account the upper bounds from ��	� ��	 and the new
lower bounds from the present report it seems that the notion of gentleness catch some�
thing from the real world like simplicity of functions or human�like computation�

Acknowledgments� I thank Stasys Jukna for the cooperation in the research con�
cerning information �ow in branching programs �as expressed in terms windows and
gentle� in the last years�

��

Bibliography

��	 M� Ajtai � A Nonlinear Time Lower Bound for Boolean Branching Programs�
ECCC Trier� Report No���� ����

��	 A� Andreev� J� Baskakov� A� Clementi� J� Rolim � Small Pseudo�Random Sets
Yield Hard Functions� New Tight Explicit Lower Bounds for Branching Programs�
Proc� of ICALP���� Prague� Springer� pp���� � ����

��	 P� Beame� M� Saks� J� Thathachar� Time�Space Tradeo�s for Branching Programs�
ECCC Trier� Report No� ��� ����

��	 S� Jukna� S� Z!ak� On Branching Programs with Bounded Uncertainty� Proc� of
ICALP���� LNCS Springer� Berlin� ����� pp��������

��	 K� Kriegel� S� Waack� Exponential Lower Bounds for Real�Time Branching Pro�
grams� ���� pp� �������

��	 S� Z!ak� Information in Computation Structures� Acta Polytechnica� Prague� ��

IV���� ����� pp� �� � ��

��	 S� Z!ak� An exponential lower bound for one�time�only branching programs� Proc�
of MFCS���� Lect� Notes in Comput� Sci�� ���
Springer ������ ��������

��	 S� Z!ak� A subexponencial lower bound for branching programs restricted with
regard to some semantic aspects� ECCC Report Nr� ��� ����

��

