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Abstract

A coherent, machine independent computational theory of mind is proposed. The
mind is presented as a specific learning algorithm whose functionality is inspired by
the cognitive abilities of real brains. The respective interactive self-organizing learning
mechanism, formally represented by the so-—called cogitoid, has been recently intro-
duced by the author.

It is shown that under a suitable training a cogitoid is able to acquire, besides
abilities to handle the basic cognitive tasks, also a behavior that in its manifestation
resembles that of the mind. The respective development will subsequently feature the
emergence of more complex patterns of behaviour, of the self concept, and of elements
of abstract thinking along with the rudimentary consciousness. Eventually, language
understanding, acquisition and generation will become possible, accompanied by fully
developed consciousness enabling further development of abstract thinking.

A thought experiment will show that in principle a properly trained cogitoid could
pass the Turing test.

At the conclusion of the paper the implications of the previous results to various
issues addressed in the philosophy of mind, such as the problem of phenomenology,
computational limits to the mind’s cognitive power, its efficient implementation, or
its modularity are discussed. In this light also some aspects of Searle’s Chinese room
experiment are addressed. Finally, the problem of the future of the Turing’s tests is
tackled. A possible general algorithmic approach to intelligence testing is outlined
without restricting it merely to human features.
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1 Introduction

Cognition is computation — this is a slogan whose validity seems to be increasingly
more difficult to deny (cf. [4]). Nevertheless, when it comes to specifying the respective
computation in greater detail, we have trouble: although apparently emerging, except
vaguely described models (cf. [9]), no sufficiently complete and formal computational
model of mind seems yet to exist.

A natural place where to look for computational models of whatever kind is com-
puter science or, more precisely, its two related branches, viz. computational complex-
ity and computational learning theory. Unfortunately, also for these fields computa-
tional brain and mind modeling is still a relatively new phenomenon. Except of a small
number of initiatory works, such as [7], [12], or [21] there is not much directly related
work that can be reported (cf. [25] for a recent overview of this topic). The common
denominator of all the respective works is the thesis that cognition is intimately related
to interactive (computational) learning. For a corresponding kind of computing whose
computational mechanism is based on our ideas about brain working and whose goal
is to model cognitive abilities of living organisms, the notion ‘cognitive computation’
has been coined by L.G. Valiant since 1995 [22].

Building on this paradigm and on the current knowledge from Al, psychology, neu-
rosciences, and cognitive sciences, J. Wiedermann has recently designed an algorithmic
model of mind that offers quite a plausible explanatory algorithmic framework for mind
evolution and its functioning [24], [26].

The purpose of the present paper is to present the first sketch of the algorithmic
theory of mind which is supported by the above mentioned model. In the heart of
this theory there is the statement that mind is a specific interactive learning algorithm
whose self-organizing knowledge base is formed in the course of a potentially endless
interaction of the mind’s ‘body’ with the environment. This algorithm is represented
by so—called cogitoids. Consciousness is an automatically emerging property of any
sufficiently developed mind. It is a self—checking mechanism of mind that makes it
‘fault tolerant’, i.e. tolerant against its own erroneous behaviour. Consciousness thus
monitors body’s activities to see if actions are going as envisaged and manages the
situations that cannot be handled mechanically by the previously acquired algorithmic
habits. This is done by finding new, creative ways of behavior what is perceived as
free will manifestation. According to their creative potential there is a continuum of
minds. The model also offers a framework for discussing various philosophical issues
related to the problem of computational mind.

In Section 2 we will present in a nutshell the computational model which under-
lies the approach at hand: the cogitoid. We will first informally explain its basic
design features and show how the model responds to the basic cognitive tasks, such
as simple, Pavlovian, or operant conditioning, similarity based reaction, etc. Then
we will describe the self-organizing properties of its memory structures in the course
of the cogitoid’s meaningful interaction with its environment. At the same time, this
self-structuring can be seen as the development of higher cognitive functions, such as
the emergence of the abstract concepts, development of attentional and classification
mechanisms, and habit acquisition. All this gives rise to a kind of an event—driven



behaviour. Under sufficiently rich external stimuli a sufficiently developed cogitoid will
subsequently feature the development of language understanding and production and
along with it the birth of the ‘self” concept and that of the consciousness. The related
notion of conscious experience is explained as well.

In Section 3 a thought experiment leading to a cogitoid’s passing the Turing test
will be discussed.

In Section 4 we will discuss the possible merits of the interactive learning approach
to cognition to the philosophy of mind.

Finally, in Section 5 we address the issues related to the future of the Turing test
as seen from the perspective of the results presented in this paper.

The idea leading to the presented computational theory of mind is based on the
pioneering work by L. Goldschlager [12] and is also close to Dennett’s multiple draft
model [9]; the theory matches most of Dennett’s ideas presented in his later book
[10]and also those of M. Minsky in his ‘society of mind’[16]. Of course, the model of
cogitoids that incorporates recent paradigms from computational complexity theory
and Al inevitably bears similarity with many other concepts in related branches of
science, which are too numerous to be mentioned here (cf. [1] for recent treatments of
related issues). The chapters on cognitive engines and language acquisition in Casti’s
book [3] present a short, readable and relatively up-to-date informal introduction into
the problems treated in this paper.

2 The Cogitoid

2.1 Informal definition

When it comes to computational mind modeling we will focus our attention on pro-
grams (or equivalently, on formal abstract devices or algorithms) that are able to
interactively learn, i.e. to acquire new knowledge, either all by themselves, or in a
supervised manner, or in a combined way, in any situation. Moreover, this knowledge
must be organized in the form of data in a way that enables the program to be ‘well up’
in the semantics of the respective data. By the semantics of the data we understand
the relation of the data to the real events or facts they represent. Here, the events can
be some external facts as perceived by system sensors, or the machine’s own actions,
or some internal events occurring within the program or machine. The relations can
be e.g. those of similarity, contiguity in time or space, cause and effect, abstractions,
etc. A general approach clearly asks for considering ‘multimedia’ inputs from different
sensory devices. Only then can we expect that the program (or at least an intelligent
agent simulating it) will understand its action in terms of the semantics anchored in
real events and actions.?

The respective model that is conformed with the previous requirements is called
a cogitoid and in greater detail has been presented elsewhere in [24] or [26]. Here we
will only give its concise description in order to support the proposed computational

ZNote that in our setting the predicate ‘understand’ has three arguments: & understands y in terms
of z.



theory of mind.

The cogitoid is seen as a central part of a device that interacts with its environ-
ment. Formally, this device is represented by a kind of a transducer that transforms an
infinite stream of inputs into an infinite stream of outputs. The cogitoid is equipped
by potentially infinite memory in which it stores the knowledge gained in the course
of its past interaction. Thus when computing the answer to the current input the cog-
itoid’s current memory contents depending on the inputs processed thus far is taken
into account

The information from and about the environment is mediated to the cogitoid via
its sensors. Their task is to preprocess this information and to pass the result in the
form of so-called concepts further to the cogitoid. The concepts are represented by
the elements of some (very large) finite alphabet I' but, on some occasions, we will
find it advantageous to see them as n-tuples over the alphabet ¥ (i.e. we assume that
[' = ¥™). In such a representation, each element in a tuple corresponds to the presence
or to a value of some feature in the description of the corresponding concept.

Based on its current input, and on the current cogitoid’s memory contents, the
cogitoid updates its memory and outputs some concepts. These concepts are sent to
effectors for some post-processing which finally results in some action, or behavior of
the cogitoid at hand.

Thus concepts are the basic entities that represent both the input (so-called stimuli
or perceptions) and the output (so-called actions, or behavior) of a cogitoid. They can
be seen as formal digital representations of events, of their both static and dynamic
aspects, as mediated by peripherals, or of actions, behaviors, as realized by (robotic)
effectors. The respective transformation from events, stimuli, perceptions into the
corresponding concepts is thus the matter of peripherals. In most cases, this transfor-
mation cannot be described formally as discrete mapping since at the input to sensors
we do not have a mathematical description of the perceived entity (the input can be
visual, aural, or olfactory perception, or a signal from other internal body organs, of a
continuous electrical, chemical, or any other nature) at our disposal. The task of the
respective preprocessing is to digitalize the perceived input. The situation is similar
at the output side where we do not know the formal description of (mostly motoric)
actions. The cognitive system as a whole is not a pure digital system; it is rather a
hybrid system (cf. [13] for a similar approach) that at the input and output side can
make use of other than digital representations. In this way, the concepts are grounded
(this is the term used by [14]) in the ‘body’ (sensors and effectors) controlled by the
cogitoid. Concepts that are images of some external events are called basic concepts.

For the proper functionality of a cogitoid it is important to note that due to their
very nature there hold certain relations among concepts which also hold among events
or facts that are represented by concepts. These are the relation of abstraction and
its inverse relation of concretization. Both relations induce a partial order among
concepts. According to this order, the smaller concepts represent abstractions of the
larger ones, while the larger concepts represent the concretization of the smaller ones.
Mathematically, the concepts with the above mentioned operations are modeled by
a finite lattice of concepts over I'. It has the property that to any pair of concepts,
a and b, there exists their greatest common abstraction and their smallest common



concretization in the lattice. This abstraction is given by the meet, or intersection,
a A b, while the concretization by the join, or union, a V b of the two concepts at
hand. There is one more relation defined over any pair of concepts — the relation of
concept similarity. Two concepts a and b are similar, a ~ b, iff they have a nonempty
intersection a A b. The latter relation can be easily determined by making use of the
tuple representation of concepts: concepts whose tuple representation coincides at some
positions are similar. According to the degrees of the ‘overlap’ of similar concepts we
can also introduce the degrees of similarity. If the previous tuples are seen as Boolean
vectors and the operations of meet and join are replaced by the operations of set union
and intersection then the respective lattice is a standard Boolean algebra.

In order to make a cogitoid from such a lattice, additional computational machinery
realizing a certain universal learning algorithm is necessary.

First of all, the concepts within a cogitoid can be in two possible states: in a passive
and in an active state. A currently active set of concepts, called cogitoid’s configura-
tion, corresponds to the single ‘mental state’ of a cogitoid. Initially, all concepts are in
a passive state. Concepts can get activated directly from the input by so-called external
stimuli, and from the currently active concepts, by internal stimuli, via so-called asso-
ciations. Associations keep developing among the concepts automatically, as a result
of interaction with the environment or as a consequence of similarity of concepts. An
association between two concepts, a and b, is represented by an ordered pair of concepts
{a,b} and is denoted as a — b. Thanks to its symmetry, the similarity relation, a = b,
is represented by the pair of associations, ¢ — b and b — «a. Each association carries
a weight (a non—negative rational number) that is initially set to zero and is strength-
ened by a small amount whenever both concepts defining the association get activated.
There can be excitatory, and inhibitory associations. The kind of an association that
gets strengthened is determined by the quality of the first concept in the respective
pair. The quality of active concepts is inferred from a distinguished subset of concepts
called affects, or operant concepts. Affects occur in two forms: positive affects that
are always of positive quality and model the pleasurable feelings, and negative affects
that are always of negative quality and model painful feelings. Any other concept will
inherit the quality of an active affect that is subsumed by the concept at hand. In this
way, some concepts can obtain both qualities. Concepts that do not obtain a quality
by these rules obtain a positive quality. The selection of concepts to be activated and
selection of associations to be strengthened is described by the following computational
cycle of a cogitoid.® Each cycle consists of four steps that are iterated all over again.

e Input/Output: At the beginning of each cycle, there is a set of active concepts
that have been activated as the result of the previous cycle. This set forms the
cogitoid’s output. Simultaneously, a new set of basic concepts is activated by
external stimuli. Automatically, all abstractions and concretizations of active
concepts, and concepts similar to active concepts, are also activated. This cor-
responds to the formation of new concepts by their simultaneous occurrence, or

3In the sequel, due to the restricted space the description of a cogitoid’s computational activities is
somewhat simplified as opposed to the original work [24], [26] . Especially, the details concerning the
initialization of concepts, the various degrees of concepts and associations strengthening and those of
their gradual forgetting, are omitted.



by their similarity. Call the set of all currently active concepts — i.e. those
activated at the end of the previous step, and those activated from the input, as
O (stands for “old” concepts).

e Transition to a new configuration: Next, the excitations of all currently
passive concepts, from the set O, are computed. Here, the excitation of a passive
concept is given by the sum of weights of all excitatory associations, diminished by
the sum of weights of all inhibitory associations, leading from the currently active
concepts to the passive concept at hand. From among all excited passive concepts
the cogitoid’s selection mechanism selects the most excited one for activation.
Simultaneously with this concept, its abstractions are also activated. Call the
resulting set of newly activated concepts as .

e Updating the knowledge: Now, the quality of each concept in O is computed
and the associations between any concept from O and any from N are strength-
ened by a small amount. Doing so, when the quality of the first concept was
of positive (negative) quality, then the excitatory (inhibitory) association gets
strengthening. Otherwise, both associations are strengthened. This models the
association’s emergence by cause and effect and of contiguity in time. Simulta-
neously, all associations between the active concepts and the respective similar
concepts, and vice versa, are strengthened.

e Deactivation: Finally, the concepts from O are deactivated — set to a passive
state, while the concepts from N remain active.

Note that the sequence of configurations after each computational cycle corresponds
to the ‘train of thoughts’ in our cogitoid. Also note that there is but a finite number of
configurations, but an infinite number (countably many) of different weight arrange-
ments. This is why a cogitoid, finding itself in the same ‘mental’ configuration as it
did some time ago, can react to it differently — i.e. can enter a different successor
configuration as it did in the past.

2.2 Basic results

The previous notion of a cogitoid can be precisely, mathematically formalized with
the help of sets and mappings [24]. Within this framework rigorous mathematical
theorems describing the behavior of cogitoids under a specific circumstance can be
proven. This circumstance corresponds to the simplest cognitive tasks as described in
the basic textbooks in psychology. First of all, any cogitoid is able to realize so-called
stmple conditioning. Confronting a cogitoid with two subsequent inputs, a followed by
b, will give rise to an association ¢ — b. Providing that there are no other concepts
excited from a stronger than b is, after any future activation of a, the cogitoid’s selection
mechanism will activate b in the next step. This will also happen in the case when a
concept @’ & a is activated. Namely, by the virtue of similarity, «’ will activate ¢ which
in turn will activate b. This is the basic mechanism that enables a cogitoid to behave
similarly under similar situations. Learning of longer sequences of concepts is possible



as well. Pavlovian conditioning is also within the reach of cogitoids. Such a behavior is
modeled first by learning the cogitoid, by a simple conditioning, an association a — b.
Then, the cogitoid is confronted simultaneously with a and ¢, followed by b. This gives
rise to an association a V ¢ — b. Later on, when merely ¢ is activated, and ‘nothing
else’ represented by a special concept ¢, is activated in the next step, b will be invoked
in the third step. The semantics of concept e is ‘systems are running OK, there is
nothing special to be reported’. Concept b is invoked because a V ¢ will invoke a by
similarity and a will invoke b via the previously acquired association. After repeating
such a ‘cheating’ (i.e. activating ¢ instead of a) a few times, we will observe that the
cogitoid ceases invoking b (this is called an extinction). The reason for that is that,
in the meantime, the cogitoid has acquired a stronger association, ¢ — e. Hence, the
selection mechanism chooses to activate e instead of b.

Note that no use of affects was needed in any of the previous cognitive tasks.
This is not the case with operant conditioning, which deals with the acquirement of
behavior, a — b, whose appropriateness (or inappropriateness) is confirmed by the
cogitoid’s subsequent reward (or punishment). The reward (punishment) is modeled by
activation of a positive affect, r (of a negative affect, p). For this mechanism to work it is
necessary that the whole ‘educational process’ is systematically carried under the same
circumstance that is called operant context and is modeled by simultaneous activity
of the respective operant concept, denoted as k. In the case of positive reinforcement
this operant concept is a positive affect, while in the opposite case, a negative affect.
By the virtue of the cogitoid’s computational mechanisms this context gets tied to
the initially activated concept a. When activated, this concept will inherit the quality
of k. Therefore, depending on this quality, there will be an excitatory, or inhibitory
association established, or strengthened, between a and b. Thanks to this association,
the activation of b will be enabled, or suppressed, as necessary.

Delayed reinforcement can also be handled by cogitoids.

It is important to note that all the afore-mentioned tasks can be acquired by a
cogitoid mostly in an unsupervised ‘training process’ whose scenario is essentially de-
termined by the environment. This scenario can freely mix the tasks, interrupt them
for some time. Moreover, the training goes on also under similar circumstances. Last
but not least, the same or different cognitive tasks can be ‘taught’ over various sets of
concepts, so to speak in a concurrent way. The resulting entity is called by Dennett
Skinnerian creature [10] since its behaviour is governed by Skinnerian (i.e., operant)
conditioning.

In the sequel we will see that more complex patterns of behaviour can emerge.
Namely, due to the lattice properties the concepts that have a nonempty intersection
‘interact’ with each other during such a process. This will give rise to a more interesting
behavior that we will deal with in the sequel.

2.3 Self-organizing of the cogitoid’s memory

What follows is of a somewhat speculative nature. This is because we will be interested
in a complex interaction among concepts. So far, such a case seems to be beyond the
limit of what is amenable to a rigorous, formal treatment. Even though no theorems



in a mathematical style can be formulated for such an interaction, we will see that the
framework of cogitoids still offers a room for a plausible explanation of the underlying
happenings.

When a sufficiently large cogitoid becomes a subject of a long-term, ‘purposeful’
interaction, in a number of increasingly complex situations, in various contexts, a cer-
tain process of self-organization of concepts will automatically start and keep running
in its memory. Namely, concepts sharing the same abstraction start to ‘cluster” around
this abstraction. Thus a cluster with center a is a set (' of all concepts that have ever
been activated and a = Apecb. Any concept b € (' is called an episodic memory. Each
time an episodic memory, or a similar concept, is activated by the virtue of the cogi-
toid’s computational rules (rule 1), the center of the respective cluster gets activated.
Hence the centers of clusters are activated more often than the individual episodic
memories. Therefore, associations leading from, and to, cluster centers are stronger
than any other associations. Note also that the centers of clusters, being abstractions
of episodic memories, correspond to a more general circumstance than any individual
episodic memory. Therefore the clusters represent ‘invariants’ which hold for all par-
ticipating episodic memories. Since each activation of any episodic memory activates
the respective center, the whole system works as a kind of attentional mechanism that
‘concentrates’ only to features that are common to all members of a cluster. The sys-
tem works at the same time as a classification system, since no matter what episodic
memory is activated, the computational mechanism of cogitoids will activate the ‘most
similar’ abstraction that subsumes the given episodic memory.

Note that clusters and their functioning resemble in many aspects the mechanism
of so—called K-lines as introduced by Minsky [16].

The clusters present the basic tool for a cogitoid’s understanding of semantics of in-
dividual concepts. The understanding is grounded in the basic concepts that represent
directly the respective external event or actions and correspond to episodic memories.

In any cogitoid fundamental clusters and specific chains of associations evolve
around three fundamental semantic categories. These categories correspond to spe-
cific operant contexts in which the interaction takes place, to objects involved in the
interaction at hand, and to the way these objects are dealt with.

Contextual clusters evolve by a superimposition of episodic memories that are all
pertinent to frequently occurring similar operant contexts, such as ‘in the forest’, ‘in
the street’, ‘Christmas’, ‘winter’, etc. Their centers are formed by abstract concepts
corresponding to objects that usually participate in these contexts. In the previous
examples, it could be concepts corresponding to ‘trees’, ‘paths’, ‘animals’, or ‘cars’,
‘houses’, ‘myselt’, etc. As explained in the previous part, when a particular context
is activated in a cogitoid, the respective centers of contextual clusters get excited.
Thus this mechanism presents a kind of an attentional mechanism — the cogitoid is
‘reminded’ of (i.e. excites concepts corresponding to) objects that used to play an
important role on specific occasions. At the same time contextual clusters resemble
the idea of frames as used in Al (cf.[16]).

Object clusters evolve around specific objects. The respective object presents the
center of the respective cluster, while the members of the cluster provide the specific
contexts, in which the object has frequently found its use in the past. A specific



object cluster will evolve e.g. around the concept ‘key’. It can be used for unlocking
or locking a door, a safe, a car, etc. When an object is activated, all the respective
contexts in which the object at hand occurred frequently in the past will be excited. It
is like offering all the possible occasions in which the object has been manipulated in
the past. Thus, this mechanism presents some kind of role assignment mechanism for
objects. To select a concrete role, additional excitation from other concepts (e.g. from
consciousness — see in the sequel) is needed.

The previous two types of clusters are complemented by functional clusters. These
are formed around frequently performed activities represented by previously mentioned
specific contexts that are members of object clusters. A common abstraction of each
of these activities presents the center of the respective cluster. Thus there can be e.g.
a functional cluster for unlocking: its members are episodic memories for unlocking a
door, a safe, etc. The respective cluster members then contain the starting operant
contexts of a chain of ‘algorithmic description’ of the respective activities, inclusively
the description of an elementary action which moves the activity towards the next
step in its realization. In this sense the respective mechanism partially plays a role
of the so—called scripts that have been known within Al for a while (cf.[16]). Since
potential activities are centered around any functional clusters the cluster members
also correspond to intentions.

Note that while the first two types of clusters — contextual and object clusters
— present a kind of static descriptions free of any action, functional clusters already
involve some elementary actions. To push forward the actions of a cogitoid, a specific
type of its memory organization evolves along with the previously mentioned clusters.
This executive part of the cogitoid’s memory is given by algorithmic descriptions.

Algorithmic descriptions or habits are sequences of clusters are chained by associa-
tions among their centers. Each member in such sequences presents a further atomic
stage in the process of realizing the algorithm at hand. By realizing one step in such a
chain, the cogitoid finds itself in a new context. This new context can either activate
the next step in the algorithmic chain at hand, or can trigger another activity.

Initialization of the respective chains starts at the level of corresponding basic con-
cepts. Namely, from the computational rules described in Step 3 it follows that when-
ever two concepts a and b are activated in a cogitoid in two subsequent steps, an
association @ — b will emerge or will be strengthened. However, since both a and b are
activated, all their abstractions get activated as well, by virtue of the cogitoid’s com-
putational law. Thus associations among all abstractions of @ and all abstractions of b
will also emerge, or will also be strengthened. This concerns especially the associations
among the centers of corresponding clusters to which @ and b belong. If associations
among different pairs of members of different clusters are strengthened, the association
among the respective centers is strengthened on each such occasion as well. It follows
that the respective centers are associated stronger than any individual pair of their
respective members.

Thus habits are present very strongly since they are continuously reinforced by
their repeated execution under similar circumstances. Included is also an aspect of
self-stimulation since the cogitoid’s computational mechanism is designed so as to ac-
tively seek for opportunities to make use of habits that are appropriate for the given



occasion. On these occasions habits are continuously shaped and therefore are becom-
ing increasingly general.

We can conclude that the behaviour of a cogitoid is driven both by the chains
of acquired associations as well as by the current context in which a cogitoid finds
itself. The current context activates similar, more abstract concepts that ‘trigger’ the
respective behaviour as dictated by the chain of the respective associations. Only
occasionally, at ‘crossings’ of some habits, the cogitoid might enter a situation where
an additional input, i.e. an additional excitation from other concepts (accompanied in
the typical case by the activation of consciousness — see in the sequel), is needed to
direct the cogitoid’s further steps. Nevertheless, under similar circumstances a cogitoid
with a sufficiently evolved clusters and chains of associations will behave similarly as in
the past. Even under a novel circumstance, chains of abstraction at higher levels will
be found that ‘match’ the current circumstance and will drive the cogitoid’s behaviour.
Thus in practice a cogitoid can never find itself in a position when it does not ‘know’
what to do.

Note that in standard cases the cogitoid’s behaviour will unfold effortlessly, without
the necessity of making use of some inference rules.

2.4 Shaping the cogitoid’s mind

The process of mind evolution can be traced in all cogitoids whose sensors are suffi-
ciently powerful to mediate for the cogitoid a number of different basic concepts and
whose effectors can realize a variety of different behaviors. Furthermore, such a cogitoid
must be complex enough to accommodate a large number of concepts and of their ab-
stractions and must be equipped by sensors and effectors that allow not only its efficient
interaction with the environment, but also communication with similar species. Last
but not least, such a cogitoid must undergo a slow, long-term, goal-oriented training.

The aim of this training is to learn the cogitoid to react appropriately to all stimuli.
For this purpose the respective contextual, object, and functional clusters, along with
the respective habits, must be established and repeatedly strengthened. Depending on
the cognitive task, the training is a mix of a rehearsal, trial and error approach and
supervised learning. Especially the tasks acquired by supervised learning should be
taught in the order of their increased complexity. Namely, the cogitoid needs some
time in order to establish and strengthen the respective habits and to link them with
the current structures. It is the proper linkage of all emerging habits and clusters, their
grounding in basic concepts, and their richness that take care about proper reactions
to current stimuli. In this way, the basis for essential ‘understanding’ (‘semantics’)
of cogitoids of ‘what is going on’ is prepared. So far this understanding is blind,
unconscious. The abstract concepts needed for conscious understanding are present,
but mechanisms for their direct activation by external or internal stimuli are not yet
fully developed.
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2.5 The emergence of the self concept

Among the already ‘ready—made’ abstract concepts there is one very special emerging
distinguished concept — the self concept formed at the intersection of all activities
governed by the mind (and its body). Hence the self concept participates in most of
the concepts. In the case of animals, as a single concept it can be externally invoked
by calling the animal by its name. Since the activity of this concept ‘survives’ from one
computational cycle to the other, it participates in all operant contexts and its succes-
sive activations form a sequence to which the time arrow can be assigned. Functional
clusters containing the ‘self’ represent activities that, according to the circumstance at
hand, can or can not be activated. These potential activities may be seen as the ‘self’s
intentions’.

The concept self alone seems to be involved in algorithmic actions that a related to
the cogitoid’s self—checking abilities by which it monitors its activities.

The idea about the working of the respective selt—checking mechanism is roughly
the following: Thanks to the rule on ‘binding’ simultaneously occurring active concepts
the current context ¢; gets bound to the ever present self concept s and the concept
¢ V s is activated. In the next step, an action ¢, dependent on the current context
is chosen. This action is again bound to the surviving self concept and thus ¢; V s
is activated. Thanks to the similarity ¢; V s & ¢y V s, the previous context and the
current one are activated simultaneously. The respective concept sV ¢; V ¢y (or rather
its abstraction x in the appropriate cluster) will now automatically trigger the next
action ¢z by following some habit. In addition to = the action ¢3 also depends on the
current input from sensors that ‘see’ the result r of the previous action. Thus ¢3 can
be of a ‘rescue’ nature, trying to remedy the result of ¢y in case that it was not as it
has been ‘intended’, or ¢3 can go along the standard line of behaviour.

In any case, ¢ must be inferred from the previous experience. As explained before,
due to the abstraction potential of cogitoids some ¢3 matching the current situation will
be always found, but it may not be the best one for the current state of the matters.
In any case, invocation of ¢3 will follow automatically, effortlessly, smoothly, without
any additional actions. Last but not least, if realized in the way as described before,
it will be an unconscious action.

However, the same action can occur also in a conscious mode. This, of course, calls
for explaining the emergence of consciousness.

2.6 The emergence of consciousness

Consider again the object cluster centered at the self concept. Among the episodic
memories participating in the respective cluster, there will be abstract concepts corre-
sponding to ‘registering’, or ‘perceiving’, or ‘being aware’, in the widest sense. In the
functional cluster centered on ‘registering’, there will be objects that can be perceived,
registered. Among these objects, there will also be the concept of the self. A prologue
to the consciousness is such a configuration of the cogitoid’s memory in which the ‘self’
excites ‘observing’ as its possible activity, and ‘observing’ excites the ‘self’” as a sub-
ject of observation. Since the self concept survives thanks to the cogitoid’s mechanism
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both concepts will become active simultaneously. In our model this corresponds to the
activation of a single encompassing concept that corresponds to consciousness. Once
started, the feedback between the self and the other concepts involved in consciousness
will continuously strengthen the associations among the respective concepts. The habit
of being conscious will emerge.

Of course, now the concept of consciousness can also take part in the previously
described self-checking mechanism. In the result, all the previously described actions
will be carried out ‘consciously’. When compared to the previous unconscious, by
the experience driven automatic self-checking, there is one important difference now.
Namely, if the previously mentioned result r of action ¢; was unsatisfactory, r V ¢y can
trigger an action of conscious reconsideration of the current situation. Such an action
involves a kind of forecasting, introspection, and some planning.

The respective higher level mental notions can also be explained along the similar
lines as before. For instance, ‘forecasting’ of the results of the cogitoid’s specific actions
is done via recalling their results from the past experience. Introspection involves the
self observing (thinking about) (it)self while thinking. Both foreseeing and planning is
essentially a matter of a mental simulation. It involves the self observing (it)self while
‘mentally’ simulating a certain train of activities. ‘Mental’ simulation means activation
of the respective abstract concepts without letting them invoke basic concepts that
control the effectors. This is achieved via inhibitory associations. The suppressing of
activation of effectors must be acquired by operant conditioning.

By forecasting the consequences of possible cogitoid’s actions consciousness enables
to (a posteriori) compare the results of an action with the original intention, with what
was envisaged or realized. Thus this implements a kind of an a posteriori self—checking
mechanism.

From the above-mentioned algorithmic description of an a posteriori checking mech-
anism it is clear that action ¢y can be consciously checked any time after the progress
report 7 of ¢ has been delivered. This seems to be well in line with the empirically
observed phenomenon called action—before—consciousness. If the result was not as has
been expected, then a remedy — e.g. a repetition of the original action, or a completely
different action, can be consciously taken.

A more developed consciousness enables even a priori detection of situations in
which the ‘habit-driven’ behaviour triggered by the automatic selection mechanism on
the basis of the previous experience would not be beneficial. This is again done by the
above-mentioned ‘mental’” simulation of an action (or even of a sequence of actions)
to see how it could end. Note that in this way the choice of the ‘best’ alternative is
done without actually carrying out all alternatives. In [10] the respective creatures
possessing these mental abilities are called ‘Popperian creatures’. The respective pro-
cess is perceived by humans as an act of free will, if selection is made from among some
alternatives which are more or less equally good, or as an act of planning, if there is
some prevailing alternative.

Thus consciousness is a prerequisite to the creative behaviour. In various degrees
of maturity it is probably present in all but the simplest animals.

There is yet another aspect of the just described mental processes: after some time
an activity requiring originally conscious processing may become unconscious. This is
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the case of all activities that initially required some conscious training (such as piano
playing or driving a car) but, along with the acquired proficiency, are becoming more
and more automatic. In accordance with Dreyfus [11], in such a case the subject passes
subsequently the stage of a novice, advanced beginner, competence, proficiency, and
expert. It is the way starting with solving problems consciously, making a creative
use of knowledge and experience acquired especially for the purpose at hand. At
the end of this way, there is no need to solve the respective problems consciously, to
make conscious decisions. The subject understands ‘intuitively’, what to do on what
occasion, and how to do what has to be done.

The underlying cogitoid’s mechanism is almost obvious: by practicing in a correct
manner, the associations among the right concept activations are becoming increasingly
stronger and general. The role of conscious attendance is less and less important since
the new ways of behaviour are transformed into habits, ‘are wired into associations’,
so to speak. The self is taking the role of a monitoring, self-checking mechanism.
As explained before, it can work both in an unconscious and conscious mode. This
algorithmic explanation is in a contrast to the main thesis of phenomenology (cf. [11])
— viz the just mentioned cognitive activities cannot rely solely on an algorithmic basis.

2.7 Conscious experience

According to Chalmers [5] conscious experience (also termed as ‘phenomenal conscious-
ness’ or ‘qualia’) is the hardest problem related to consciousness. It is a highly sub-
jective experience of various sensations to which there is no generally agreed-upon
definition. Therefore, it is quite difficult in any model to argue that ‘this is what peo-
ple feel/understand as conscious experience’. In our model we can offer the following
explanation of this phenomenon.

Conscious experience is equal to the activation of the respective sensual concepts
accompanied by the awareness of what the sensation is about. In other words, conscious
experience is a conscious understanding of what is perceived possibly attended by the
activation of some affects.

In greater detail the whole mechanism works like this. Conscious understanding is
caused by activating initially the concept corresponding to the sensual phenomenon.
Since the consciousness is involved, the concept of the self is activated as well. The
resulting concept may be appropriately called as the self-sensual concept. This con-
cept will in turn activate all the respective concepts related somehow to the sensual
phenomenon at hand. Essentially, these concepts are abstractions, ‘invariants’ of all
(or the majority) of episodic memories and grounding concepts that in the past have
lead to the formation of the self-sensual concept at hand. If there have been some af-
fects involved they will also be activated to form a kind of an individual enjoyment of
the sensual phenomenon. This corresponds to what is sometimes called an ‘inner feel’.
Of course, if there have been also some motoric activities related, they are suppressed
similarly as in the case of the ‘mental simulation” mentioned previously, but the inner
feeling of them remains.

Altogether, these activations give rise to activation of a unique configuration of
concepts (what, in our model, is equivalent to the activation of the single smallest
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encompassing concept) that correspond to the conscious experience of some particular
sensual phenomenon. This configuration is a highly individual one since it is based on
the previous experience with the phenomenon at hand. For different species (cogitoids)
living in different environments these configurations are naturally different since they
are formed under different conditions. For ‘non-speaking’ cogitoids their conscious
experience (if any) is unreportable since there is no way to express the respective
information to us (people). On the other hand, for speaking cogitoids it is almost
impossible to speak about the conscious experience of other species since we have no
idea what it is like to be them. Therefore asking about the kind of conscious experience
of the non-human mind is probably an ill-posed question.

2.8 Language understanding, acquisition and generation

When a cogitoid possesses powerful sensors and effectors that enable it to interact
with its environment in an increasingly complex manner, when its memory capacity is
sufficient and when subjected to the right training, a further development of mental
abilities is to be expected.

Namely, the increased complexity of interaction leads to the development of an
increased number of new concepts. If this is accompanied by a better mastering of,
and extended sensitivity to, abstract internal stimuli, then an advanced mind evolution
results.

The respective algorithmic explanation is as follows. An animal has no other than
indirect means to activate certain abstract concepts. For instance, it cannot activate
an abstract concept ‘hunger’ without being really hungry or unless seeing some food.
This is because it is more or less input driven, as explained at the close of the previous
paragraph, and there are no stimuli, except those mentioned, that would activate
exactly and directly the abstract concept for hunger.

It there are such direct stimuli, then the cogitoid’s mind would be able to treat
them as any other direct stimuli. Consequently, habits, along with the corresponding
attentional mechanisms, dealing only with abstract stimuli could develop in much the
same way as they did in the case of concrete external stimuli.

These additional inputs that can directly activate so far unaccessible abstract con-
cepts, are provided by the language. In the most general case a language need not be a
spoken language, but for simplicity we will concentrate on this particular case. More-
over, we will consider only the case when there is already a language that a cogitoid
has to learn, rather than the case when a language has to be invented (although we can
treat this case as well — see the part on abstract thinking in the close of this section).

In the former case, it appears that the language to be learned must be compatible
with the cogitoid’s ability to generate the corresponding sounds. Generation of such
sounds can be the subject of a specific training preceding that of binding the sounds
to some contexts.

Namely, when a cogitoid hears a spoken language along with perceiving respective
visual stimuli, by the simultaneous occurrence composed concepts consisting of words
(or better: of representations of the respective sounds), and of the representation
of their visual counterparts, start to emerge. By hearing the respective word the
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corresponding concepts will be activated by the virtue of resemblance. The same can
be achieved by pronouncing the respective word by the cogitoid itself. In the course
of such a self stimulation a specific attentional mechanism will emerge, as a part of
a habit that may be called ‘internal speaking’. The effect of this mechanism will
be that a concept can be activated without actually hearing its name. This internal
activation can in turn lead to the pronunciation of the respective word, in the right
operant context. This seems to be the starting point of comprehending the algorithms
underlying both language acquisition, understanding, and language generation.

In cogitoids, the hearing or utterance of each word is bound to a proper semantic
operant context that is automatically shaped in the process of language acquisition.
In fact, it is the semantic operation context that provides the essential ‘understanding’
to cogitoids of what is spoken about. In such cases the semantic operant context can
consists of complex abstract concepts reflecting the real linguistic context. What to
hear and what to say in which semantic context must be acquired by a rehearsal.

Fortunately, not everything what a cogitoid can ever hear, understand, or say must
be literally learned. Due to its abstraction potential, along with semantic operant con-
texts corresponding to the current circumstances also more abstract, syntactic operant
concepts start emerging in the cogitoid’s memory.

The syntactic operant concepts are based on the syntactic similarity of sentences.
Namely, during the acquisition of a language by a cogitoid the respective abstracting
mechanisms will automatically classify (i.e. ‘allocate’ them into the respective clusters)
certain words as nouns while the other ones as verbs, adjectives, etc. Each word
gets associated with the corresponding syntactic class. Moreover, by the mechanism
of learning sequences the cogitoids ‘discover’ that in sentences the respective words
usually follow the same pattern. This will give rise to syntactic operant contexts and
habits that keep track of using the words in the proper order.

Both semantic and syntactic operant contexts take care of understanding and gener-
ating the language. Their proper coupling and ordering is maintained by the respective
speaking habits, along with corresponding semantic and syntactic attentional mecha-
nisms realized by the self-organizing cluster mechanisms. The speaking habits trigger
the respective speech understanding or production frames. A kind of an acoustic at-
tentional mechanism also seems to play an important role in this process.

Eventually, a picture of a complex internal network seems to emerge which is liter-
ally embodied in a cogitoid and permeates almost all of its structures. It is not ‘innate’,
it automatically evolves in the course of the cogitoid’s training and is tailored to its
need. It supports both understanding and generating of a language. Its emergence
and utilization by cogitoids also explains the often discussed problem of the poverty
of the stimuli. This is a phenomenon that refers to the fact that, during the linguistic
formative years, the child is not exposed to enough language to explain its linguistic
abilities. Making use of this network one is able to generate and understand words
and sentences never heard before. This idea of a network is to be compared to theories
based upon assumption of some innate ‘parameterized’ universal grammar that fixes
its parameters in the process of learning. The former idea seems to be more plausible
since it is conformed with the general picture of mind development.

As the next phase of the mental development the emergence of abstract thinking
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can follow.

2.9 Development of Abstract Thinking.

Abstract thinking is different from the one mostly concerning the observed world: it
is a thinking about things that are non—existent and which have been invented in the
process of thinking. A typical example of abstract thinking is mathematical thinking.
In order that it could arise a lot more mechanisms must develop in a cogitoid than in
the case of everyday thinking.

In addition to the respective abstract entities or concepts that have to be invented,
defined (i.e. understand) and named in order to be able to think about them, one has
to develop specific aesthetic criteria. These are defined in terms of positive or negative
operant concepts whose activation motivates further abstract thinking by bringing
pleasurable or uncomfortable satisfaction from it.

New rules of handling these new concepts must be invented. By their frequent
‘mental’ application new habits must be acquired. A specific attentional mechanism
emerges corresponding to the concentration on selected issues. As a result, a cor-
responding ‘computational’ theory, with habits to think within its framework, will
develop in the cogitoid’s memory.

In fact, the whole process of building such a theory is not unlike the process of
language invention, language understanding and language mastering: in order to think
about abstract things, one has to know their meaning, to know how to deal with them,
and last but not least, one has to be able to speak about them.

In this way a cogitoid can develop many different abstract internal worlds. These
worlds are governed by their own rules that may or may not correspond to the ob-
served world. Examples of such worlds span from fairy tales, fantasy, religion up to
mathematical theories. As far as the latter are concerned, for instance there can be an
internal world of mathematical logic, obeying the Godel’s Theorem, maintained within
a cogitoid. It is clear that the limitation of this imaginary world does not concern the
cogitoid’s internal structure as a whole.

3 Passing the Turing test

Let us perform the following thought experiment: imagine a cogitoid being exchanged
with one’s brain, residing within the corresponding body. In such a case, we will assume
that the cogitoid receives the same signals as the brain does. The opposite process also
works: by sending appropriate signals the cogitoid can service the same peripherals as
a brain does.

Then we imagine that the resulting cogitoid ‘lives’in a standard human environment
during a standard human life span, interacts with that environment and with other
human beings.

In making this experiment, from its very beginning there is one clear advantage of
human beings over our cogitoids: there seems to be a certain amount of knowledge that
is somehow present in human, or in general, in animal mind without being acquired

16



by learning. This concerns various inherited, built—in, as it appears, instincts and
reflexes, such as sucking or breathing. The corresponding activities are triggered in the
appropriate situation without being ever ‘trained’ by the respective animal. To make
the proposed thought experiment possible we will assume that cogitoids also have these
innate abilities acquired by a suitable preprocessing that occurred prior the starting of
this experiment.

Under such circumstances the conditions mentioned in the opening of the previous
paragraph are met and therefore one can expect a gradual development of human-like
mind in the respective cogitoid in the way described earlier.

Then the mind evolution can be described as a never—ending, slowly proceeding
interactive learning process consisting of several phases that coincide with those de-
scribed by Piaget (cf. [3]). In order to proceed to the next one, the previous one should
be passed. A slight overlap in phases is possible. For space reasons we abstain from
describing these phases in greater detail.

It should be clear that in this way an educated cogitoid eventually could pass the
Turing’s test without any principal difficulties.

4 Afterthoughts

The cogitoid, being quite a concrete algorithmic model, offers a concrete paradigm for
studying, discussing, and explaining problems related to mind research. Below we shall
briefly address a few of such issues.

The first note concerns the abstraction level at which cogitoids model the mind.
The relation of the (human) mind to cogitoids is about the same as the relation of
today’s computers to Turing machines. Although any cogitoid should be able, at
least in principle, to ‘simulate’ the mind, the respective simulation would be very
cumbersome, comparable to that of real computers by the Turing machine. In any
case, this possibility means that in principle both devices — the mind and the cogitoid
— have the same cognitive power. This, of course, cannot be proved formally since on
the left side of this equality there is a biological mechanism working on different rather
than purely digital principles.

What can be done is to compare cogitoids with other standard computational mod-
els. As far as the computational power of cogitoids is concerned, it is clear that the
so-called interactive Turing machine can simulate any cogitoid. The interactive Turing
machine looks like a standard Turing machine with the following exception: in place of
an extra input/output tape it has a finite number of input/output ports. At each time
at most one input symbol will appear at any input port, and at most one output sym-
bol will be sent to any of the output ports. The whole machine works as a transducer
of infinite input streams into infinite output streams.

For the reverse simulation of an interactive Turing machine by a cogitoid it is
necessary to equip the cogitoid with the same ‘environment’ and sensors and effectors
as the interactive machine has. It is not difficult to show that when a cogitoid is
equipped with Turing machine tapes and read /write heads it can be taught, by simple
conditioning, to realize the same transition function that governs the behavior of the
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Turing machine to be simulated. The question whether a cogitoid can simulate any
interactive Turing machine without making use of external memories is open.

Note that by equipping a cogitoid with tapes we provide it with an ‘environment’ in
which it can ‘live’ and mark places of some special-to-it interest. It reminds the Den-
nett’s theory that humans (‘Gregorian creatures’) ‘off-load” their memory by storing
symbols and hints to think and recall things in their living environment [10].

However, one should not infer from the previous remarks that a ‘really working’
cogitoid (mind?) can be implemented on an arbitrary universal computing device. This
is because in our considerations of the mind development we have tacitly assumed that
the cogitoid works in real time, i.e. that its senses, delivering its input, its computation,
and its output, instructing its effectors, are all ‘quick enough’ to keep the pace with
the changes in the environment. This is a vital condition for the proper functioning
of the consciousness when seen as a self—checking system. Thus although in principle
an irrigation system can perform the necessary computation, in practice it could only
implement a really weird (because incredibly slow) mind. Unfortunately, almost the
same holds true for today’s computer systems. This is where the complexity matters
are entering the game (cf. [17]).

In general, it appears that the main obstacle in realizing (simulating) the (human)
mind on computers lies not in their insufficient computational power but in their in-
sufficient computational efficiency. The just presented example of the computational
mind theory shows that traditional recursive computations as realized e.g. by Turing
machines are in principle sufficient. There is no need of biologically infeasible com-
putational mechanisms, such as analog neural [19] or neuroidal [29] nets working with
real numbers, or oracle Turing machines [6] possessing super-Turing computing power.
The same holds true for quantum Turing machines whose computational power does
not exceed that of the standard ones. Nevertheless, there is some evidence that interac-
tive computing is in a sense indeed more powerful than the non—interactive computing
[23]. Nowadays, we are probably able to computationally realize minds, but only of
some simple creatures. The promising way to understand, and hopefully, in the future
also to realize artificial minds of interesting size has been shown by de Bruijn in his
molecular model of associative memory [8].

The efficiency barrier of cognitive computations can be overcome by their proper
organization. In that respect Parberry [17] suggests an interesting idea that under-
standing is a method by which cognitive computations are carried out with limited
resources. Cogitoids seem to be conformed with this line of reasoning.

For an overview of the computer science research agenda related to cognitive com-
puting, see [27].

An interesting thought experiment would be to imagine a fully learned cogitoid that
would be somehow ‘frozen’. Such a cogitoid could perform its computations as required,
but will not be able to modify its weights. It will thus remind a zombie. According
to our definition of consciousness, it would not be fully conscious since it would not
be able to solve creatively the ‘unseen’ situations. This is because to find a solution
in an so far unprecedented (by a zombie) situation, the (image of this) situation must
be recorded in the cogitoid’s mind, in order to creatively find the proper reaction to
it. Thus such a zombie cogitoid will react in a way that might not be appropriate. It
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is amusing to observe that this circumstance matches well the famous Searle’s Chinese
room example — in this room there are no means for its operator to record some new
knowledge.

There is another problem related to the Chinese room example: is it possible at
all that one day the ‘programers’ will write a smart program, a kind of a Nuremberg
funnel, which would be able to govern the behaviour of the Chinese room? Despite the
complexity arguments (cf. [17]), merely in view of the previous story about the mind
development in cogitoids, this does not seem to be plausible. What the programmers
could do is to write some learning program, to educate it in much the same way as
we did with our cogitoid, and then only ‘implement’ the resulting program plus data
in the Chinese room manner. In order not to act as a zombie, Searle within the room
will have a hard time in updating the respective data to reflect the new knowledge
inferred in the course of conversation. Will Searle in this case understand what is going
on in such a Chinese room? No, not unless the programers took care about Searle’s
understanding and prepared ‘labels’, English comments to the appropriate instructions
and data manipulated by Searle. Is there ever a chance for Searle operating whatever
kind of the Chinese room, to understand its behaviour? Yes, there is. The solution is
simple: jointly with the Chinese room (implementing e.g. a cogitoid for that matter)
Searle must undergo all the tedious process of teaching both of them in parallel, from
the scratch to understand and speak Chinese. As we have seen from our cogitoid’s
example, this cannot be done without passing through all the phases of mind evolution.
There is one additional constraint: all the sensory inputs and motoric outputs must
go through Searle’s body, and his brain must also participate in the experiment. Of
course, in such a case, Searle himself will learn Chinese. Moreover, and this is the goal
of the game, he will also understand not only what is going on in the Chinese room,
but also why and how the Chinese room understands what is going on in it. By the
way, he will also learn how it is like to be a Chinese.

The previous example reveals the further bottleneck of the Chinese room also ob-
served by other authors (cf.[13]): in the mind, there is no extra ‘language’ module that
could work independently of other parts. The mechanism of the cogitoid points to the
fact that it is exactly the requirement of understanding that brings the whole cognitive
mechanism into the game. That is why the Chinese room must simulate all the mind
in order to be able to behave like a native Chinese speaker.

The mechanism of language understanding, acquisition and generation as presented
in this paper is basically the same as that for acquiring the whole cogitoid’s behaviour.
There is no need for some extra, behind-the—scene ‘pre—processed’ structures (such
as the universal grammar) as proposed by Chomsky. On the other hand, the self-
structuring process occurring in the mind during the linguistic formative period of
one’s life can also be seen as a kind of pre—processing for (eventual) mastering of
linguistic skills. But this process is of a more general nature and it also (or mainly)
serves other than linguistic purposes.

In general, it is clear that modular—functional decomposition of a cogitoid is impossi-
ble: in cogitoids, everything relates to everything. The development of cogitoid’s mind
can also be seen as a process obeying post-modular principles of cognitive robotics [20].
In cogitoids, all these principles (called imagination, shared grounding, and incremental
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adaptation in [20]) are realized by a single uniform mechanism — universal interactive
learning algorithm. The ‘architecture’ of cogitoids thus achieves a real extreme of non—
modularity — all their functionality is provided by a single ‘homogeneous’ component.
This seems to be in accord with the ‘architecture’ of real brains. The presented the-
ory of mind could thus find its use in cognitive robotics. It is of interest to compare
the guiding principles of this theory with the currently evolving ‘new’ methodology of
cognitive robotics (cf. [2], [20]). It comes as almost no surprise that both methodolo-
gies go hand in hand. Nonetheless, the presented theory goes a bit further: it offers
a ‘free’ development of the consciousness at a level that is proportional to the overall
functionality of the robot at hand and to the sophistication of its training. Therefore,
what Brooks et al. call ‘alternative essences of intelligence’ [2] are in reality the true
essences of intelligence.

The quality and quantity of the before-mentioned self—structuring process of mind
leads to a wide spectrum of various minds. It starts at the level of unicellular organisms
and spans over the whole animal realm, culminating with the human race. In a sense,
more powerful and more efficient minds than human ones are thinkable. They will work
on the same principles as the human mind, but will possess more different sensors, more
communication channels, more peripherals, could have direct access to encyclopedic
knowledge, could live (also) in the Internet, etc.

The last remark concerns phenomenology which claims that knowing, understand-
ing, perceiving and the like involve more than just following the rules (cf. [3]). The
example of a cogitoid points to the fact that the truth of this claim depends on the
nature of these rules. If one has an old fashionable idea about once—for—all-times fixed
rules that are ‘ready’ to handle any situation (such as the rules driving the Searle’s
Chinese room [18]), then the claim is correct (see the previous discussion concerning
the Chinese room). However, if one speaks about the general learning rules which
produce flexible, on the situation dependent dynamically changing ‘second order’ rules
(such as the ones formed within a cogitoid), the matters look quite differently. Since
the phenomenologists do not seem to explicitly exclude learning algorithms, they are
on a wrong track.

The proposed computational theory of mind suggests clearly that questions ask-
ing about intelligence, and in particular, about consciousness of animals or artificial
machines have no simple yes or no answers. It is rather a matter of the degree to
which such entities posses the intelligence. It is to a greater extent the matter of the
functionality of the brain and of its training than that of its ‘architecture’ or size. The
above mentioned theory illustrates that rudimentary consciousness development is to
be expected at quite early stages of mental development. In particular, this could be
the case with animals like octopuses, chickens, dogs and the like, as increasingly often
supported by the experimental evidence of animal psychologists.

5 The future of the Turing test

It has been remarked quite often that the Turing test is a test oriented exclusively
towards genuine human intelligence. In principle, it will reveal the slightest deviation
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towards the lower end of intelligence, from the ‘standard’ human behaviour.

Consider the following modification of the Turing test, aiming at the discovery of
‘higher—level’ learning abilities of the tested subject.

Imagine first that the person to be interrogated in the test is not a native English
speaker but a foreigner speaking poor English. Now, during the conversation, such
a person will ask questions such as ‘would you please repeat it once more, in other
words?’, or © what is the exact meaning of this word?’, and the like. Depending on
the language skills, the performance of a foreigner in such a test can be quite inferior.
Such a subject could be easily mistakenly recognized as a computer.

Imagine now that the same person is put to the test whose goal is to discover
whether he or she is able of abstract mathematical thinking. To this end the inter-
rogator will first teach (like university students) the subject a mathematical theory
unknown to it — Lobachevsky geometry, say. This might take quite a long time, but
assume that both sides are patient and willing to cooperate. After some time, it will
be clear to the interrogator whether the subject taught can, or cannot work within the
mathematical world of Lobachevsky geometry. This conclusion can be reached despite
the fact that the interrogated subject is not good at English.

The moral of this story is that a test can be constructed so as to discover the
principal abilities to learn and to identify the upper bound of the subject’s intelligence.

Thus any more general test aiming at discovery of intelligence in general terms
should be focused towards discovering the level of intelligence on a scale to be defined.
In other words such a test should discover and measure the ability of learning. Based on
the algorithmic approach to the mind, tests can be designed which check the learning
and creativity abilities of the subject tested. The lower end of the intelligence scale
will be occupied by entities that can be subjects of a simple, Pavlovian or operant
conditioning (Skinnerian creatures). It is fairly clear how to test the respective abilities.
For more involved abilities (such as those of Popperian or Gregorian creatures [10]),
new tests must be developed primarily by animal psychologists, taking into account the
respective algorithmic mechanism and a possible algorithmic explanation. Examples of
such tests include tests for the ‘self” concept, conscious and unconscious self—checking
abilities tests, free will, language skills, etc. These tests will not only help to reveal
the mental abilities of the subject tested, but can also help in tuning the respective
algorithmic model. It is beyond the scope of this paper to devise such tests, but some
proposals along these lines can be found e.g. in [15].

The recent results reflecting to the unexpected linguistic abilities of apes sufficiently
armed by communicating devices and properly educated suggest that in our quest for
discovering the true nature of intelligence we may be quite often taken by surprise by
the mental abilities of animals.

6 Conclusion

The paper reports upon work in progress. The first results and intellectual experience
with cogitoids point to the fact that cogitoids or similar devices could provide an in-
teresting framework for studying cognition. This is because they are based on general
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principles consistent with the theory of animal or human psychology. Building on two
basic pillars, viz. classical and operant conditioning, complemented by the mechanism
of automatic abstract concept formation and reinforced creation of associations among
concepts, cogitoids represent a specific form of universal learning machines. So far
the results concerning higher brain function — such as mind development — are of a
speculative character since we are not yet able to specify satisfactorily corresponding
cognitive tasks. Nevertheless, even at this level of modeling the respective tools and
results offer much more concrete framework for studying, discussing, and explaining
such problems than it has been possible until now. This especially concerns the notori-
ously hard-to-understand problems, such as understanding of understanding, language
acquisition and generation, consciousness evolution, etc. The emerging algorithmic
theory of mind has been presented in this paper. A respective insight could help in
devising experiments that can help in further tuning of the respective theory.

Of course, there are still a lot of open ends both in the respective computational
models and the computational theory of mind. Despite of this, already at the present
time does the available theory suggest that the cognition is a relatively robust phe-
nomenon which can be explained in computational terms and is not dependent on the
underlying computational model. A generalized Turing thesis seems to emerge. It
states that interactive Turing machines present a computational equivalent of an intu-
itive notion of cognition. Thus it appears that the slogan from the very beginning of
this paper should be improved to ‘cognition is interactive computing’.
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