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Abstract

In this paper� we compare rates of approximation achievable using any linear approx�
imation method with rates of approximation by neural networks� We compare such
rates in terms of the worst�case errors in approximation by n�dimensional linear sub�
spaces and neural networks with n hidden units in the last hidden layer� We develop
a general framework for such comparisons for sets of multivariate functions either
computable by various types of network computational units or approximable with
dimension�independent rates by networks with such units� Applying this approach to
perceptron networks� we derive lower bounds on the worst�case errors in linear approx�
imation of sets of functions computable by perceptrons with periodic and sigmoidal
activation functions�
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� Introduction

Since the work of Weierstrass and Chebyshev in the ��th century� approximation by
polynomials and rational functions has developed into a unifying framework� and the
di	erence between linear and rational approximation became apparent� Later� in ad�
dition to rational approximation� other types of nonlinear approximating families� like
splines and exponential sums� were investigated� Renewal of interest in arti
cial neural
networks in the early ����s lead to many successful applications� equalling or exceeding
other approaches� Since feedforward neural networks compute parametrized nonlinear
families of functions of a di	erent type than all previously studied families� they form
a new branch in the 
eld of nonlinear approximation�
The theoretical investigation of neural networks as nonlinear approximators has

been mostly focused on questions of existence of an arbitrarily close approximation
and estimates of its rates in dependence on network complexity� while the di	erence
between linear and neural network approximation has remained less understood� The

rst result in this direction is Barron�s �� comparison of rates achievable using linear
and neural network approximation� He described sets of multivariable functions� for
which approximation by one�hidden layer sigmoidal perceptron networks is �dimension�
independent� �is bounded from above by O� �p

n
�� where n is the number of hidden

units�� while the accuracy of approximation achievable using any linear method de�
pends on the dimension �is bounded from below by O� �

d d
p
n
�� where d is the number

of variables of the function to be approximated�� Kainen� K�urkov�a and Vogt �����
���� ���� have initiated comparison of properties of projections �best approximation
operators� in linear and neural network approximation� They have shown that many
useful properties of linear approximators like uniqueness� homogeneity and continu�
ity are not satis
ed by neural network approximators� suggesting that this loss might
allow improved rates of approximation �since arguments proving slow rates of linear
approximators are based on these properties��
In this paper� we extend the work of Barron �� on comparisons of rates of approx�

imations� We develop a general framework for such comparisons for two kinds of sets
of multivariable functions� sets of functions computable by various kinds of computa�
tional units and sets approximable with dimension�independent rates by networks with
such units� We compare the worst�case approximation errors� formalized in terms of the
Kolmogorov n�width �in
mum of deviations from n�dimensional linear subspaces� and
the deviation from the union of n�dimensional subspaces spanned by computational
units �corresponding to n�hidden�layer neural networks��
Applying this general approach to perceptron networks� we derive lower bounds

on the worst�case error in linear approximation of sets of functions computable by
perceptrons with various types of activations� We show that for some periodic acti�
vation functions such sets cannot be e�ciently approximated using linear methods�
since no increase of the dimension of the linear approximating sets can decrease the
worst�case error under certain constant bound� For sigmoidal perceptrons� such error
is bounded from below by O� �

d
d
p
�n
�� where n corresponds to the dimension of the linear

approximating space and d is the number of variables�
The paper is organized as follows� Section � contains basic concepts and notations
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concerning approximation in normed linear spaces and feedforward neural networks�
Section � describes dimension�independent rates of approximation by such networks in
terms of balls in certain norms tailored to computational units� To compare such rates
with those achievable using linear approximation schemes� in Section � we investigate
methods of estimation of Kolmogorov width of balls in norms of this type� In Section
�� the tools developed in previous sections are applied to perceptron networks� Section
� contains a brief discussion�

� Preliminaries

��� Approximation in normed linear spaces

Let R denote the set of real numbers� R� the set of nonnegative real numbers� N the
set of natural numbers and N� the set of positive integers�
In this paper� we assume that approximating functions as well as functions to

be approximated are from some real normed linear space �X� k�k�� for brevity� in the
following the term �real� will be omitted� Whenever there is no ambiguity on the norm
k�k� we will write X instead of �X� k�k�� When X is 
nite�dimensional� we denote by
dimX its dimension� By Br�k�k� is denoted the ball in X of radius r with respect to
the norm k�k� i�e� Br�k�k� � ff � X� kfk � rg�
Standard choices of a normed linear space are the space �C�K�� k�kC� of all contin�

uous functions on some compact subset K of Rd �often the d�dimensional cube �� ��d�
with the supremum norm denoted by k�kC and de
ned by kfkC � supx�K jf�x�j� and
�Lp�K�� k�kp�� where Lp�K� � ff � K � R� �R fpd�� �p � �g for p � ���� � � denotes
the Lebesgue measure� but other measures may be used� too� with Lp�norm de
ned by

kfkp � �R fpd�� �p �
Some properties of approximation can be formulated for normed linear spaces satis�

fying certain conditions� e�g� for Banach or Hilbert spaces� Recall that a Banach space
is a normed linear space that is complete and that a Hilbert space is a Banach space
with a norm generated by an inner product� i�e� kfk � p

f � f �see e�g� Friedman ����
If G is a subset of a normed linear space �X� k�k�� then G� denotes the set of its

normalized elements� i�e� G� � fg� � g

kgk� g � Gg� The closure of G is denoted by cl G

and de
ned by clG � ff � X� ��� � ����g � G��kf 	 gk � ��g� The interior of G is
denoted by intG and de
ned by intG � fg � G� ��� � �� ��f � X� �kf 	 gk � �� 

f � Gg� and the boundary as 	G � cl G 	 intG� A normed linear space �X� k�k� is
called separable if it contains a countable dense subset�
For c � R we denote cG � fc g� g � Gg and G�c� � fwg� g � G�w � R� jwj � cg�

G is called homogeneous if cG � G for all c � R� If G � G���� then G is called
balanced� G��� is called the balanced hull of G�
The Minkowski functional 
G � X � R� � f�g of a subset G of a normed linear

space �X� k�k� is de
ned as 
G�f� � inffc � R��
f

c
� Gg� Recall that when G is

balanced and convex� then 
G is a norm on ff � X� 
G�f� � �g� When� in addition
to these two properties� G is also closed� then the unit ball in 
G is closed in the
topology induced on X by k�k�
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The linear span of G� denoted by spanG� is the set of all linear combinations of
elements of G� i�e� spanG � fPn

i�� wigi�wi � R� gi � G�n � N�g� spannG denotes the
set of all linear combinations of at most n elements of G� i�e� spannG � fPn

i��wigi�wi �
R� gi � Gg� Convex hull of G� denoted by conv G� is the set of all convex combinations
of its elements� i�e� conv G � fPn

i�� aigi� ai � �� ���
Pn

i�� ai � �� n � N�g� convnG
denotes the set of all convex combinations of at most n elements of G� i�e� convnG �
fPn

i�� aigi� ai � �� ���
Pn

i�� ai � �� gi � Gg� A set G is called convex if G � conv G�
The theory of approximation investigates properties of error functionals measuring

the accuracy of approximation as a distance from a set of approximating functions�
An error functional eM � X � R� of a subset M of �X� k�k� is de
ned as eM�f� �
kf 	Mk � infg�M kf 	 gk� Recall that� for each normed linear space �X� k�k� and
each of its subsets M � eM is continuous but it does not need to be linear �even for M

nite�dimensional subspace of X� see e�g� Singer �����
Suitability of an approximating set for approximation of functions from a given set

�often de
ned in terms of a bound on some norm di	erent from the one used to measure
the accuracy of approximation� can be characterized by the worst�case error� which is
mathematically formalized by the concept of deviation of a set Y of functions to be
approximated from the approximating set M � The deviation of Y from M is de
ned
as

��Y�M� � ��Y�M� �X� k�k�� � sup
f�Y

eM�f� � sup
f�Y

kf 	Mk � sup
f�Y

inf
g�M kf 	 gk�

whenever there is no ambiguity about the normed linear space under consideration�
we will write ��Y�M� instead of ��Y�M� �X� k�k��� Note that deviation describes the
size of the smallest neighbourhood of M containing Y �if ��Y�M� � �� then � is the
in
mum of all the real numbers� for which Y � U��M� � ff � X� kf 	Mk � �g��
The following properties of deviation follow directly from its de
nition and from

continuity of eM �

Proposition ��� Let �X� k�k� be a normed linear space� Y and M be its subsets� Then
�i� ��Y�M� � ��cl Y�M��
�ii� when M is homogeneous� then for every c � R ��cY�M� � jcj��Y�M��
�iii� when M is convex� then ��Y�M� � ��conv Y�M��

To describe a theoretical lower bound on linear approximation� Kolmogorov ���
investigated in
mum of deviations over all n�dimensional subspaces of X� He intro�
duced the concept of n�width �which became later called Kolmogorov n�width� of a set
Y � de
ned by

dn�Y � � dn�Y� �X� k�k�� � inf
Xn

��Y�Xn� �X� k�k�� � inf
Xn

sup
f�Y

kf 	Xnk�

where the in
mum is taken over all n�dimensional subspaces Xn of X� The following
proposition summarizes basic properties of Kolmogorov n�width that can be easily
veri
ed �see also Lorentz ���� Pinkus ��� p� �����
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Proposition ��� Let �X� k�k� be a normed linear space and Y be its subset� Then for
all positive integers n
�i� dn�Y �  dn���Y ��
�ii� dn�cl Y � � dn�Y ��
�iii� for every c � R dn�c Y � � jcj dn�Y ��
�iv� dn�conv Y � � dn�Y ��
�iv� dn�Y �� inff�Y kfk � dn�Y � � dn�Y �� supf�Y kfk�
�v� if Y� � Y� � X� then dn�Y��	 ��Y�� Y�� � dn�Y�� � dn�Y���

Thus the Kolmogorov width of a set is equal to the Kolmogorov width of its closed�
convex� balanced hull� Since each convex balanced set determines a norm on X� in
which it forms the unit ball �via the Minkowski functional�� Kolmogorov width is
essentially a property of balls in various norms on X� It represents the best possible
accuracy that can be achieved� when such balls are approximated linearly�

��� Rates of approximation

Rates of approximation characterize the trade�o	 between the accuracy of approxima�
tion and the complexity of the approximating function� When approximating functions
are from a parametrized family� then their complexity can be measured by the length
of a parameter vector �corresponding� for example� to the degree of a polynomial or
a rational function� the number of knots in a spline� the number of hidden units in a
neural network�� Such a parametrized family can be represented as a sequence of sets
of functions �often nested�� with parameter vectors of increasing length� In traditional
approximation schemes �like polynomials and 
xed series expansions�� these sets are

nite�dimensional subspaces of increasing dimensionality�
Let fMn�n � N�g be a sequence of nested subsets of a normed linear space �X� k�k��

then the rate of approximation of f � X by fMn�n � N�g is measured by the speed
of decrease of eMn�f�� The rate of approximation of a subset Y of X is characterized
by the decrease of the worst�case error� corresponding to the deviation ��Y�Mn� �
supf�Y eMn�f� � supf�Y kf 	 Mnk� When Sn�N�

Mn is dense in X� then for each
f � X the sequence feMn�f��n � N�g converges to �� but for practical applications this
convergence has to be su�ciently fast to guarantee a desired accuracy of approximation
for n small enough so that all functions from Mn are implementable�
In the case of functions of d variables� it might happen that the deviation is of order

O
�

�
d
p
n

�
� It means that to achieve an accuracy within �� there are required approxi�

mating functions of the complexity of order
�
�
�

�d
� Such an exponentional dependence

of complexity on the number of variables is called the curse of dimensionality� When
the complexity of approximating functions does not depend on the number of variables
d� then the approximation scheme is called dimension�independent� For example� in
�Lp��� ��d�� k�kp� the Kolmogorov widths of balls in Sobolev norms of 
xed order ex�
hibit the curse of dimensionality� while when the order is appropriately increasing with
d� the Kolmogorov width of such balls is dimension�independent �see e�g� Pinkus ���
pp� ����������
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��� One�hidden�layer neural networks

Feedforward neural networks compute parametrized sets of functions depending on
both the type of computational units and the type of their interconnections� Computa�
tional units compute functions of two vector variables� an input vector and a parameter
vector� Generally� they compute functions of the form � � Rp �Rd � R� where � cor�
responds to the type of the unit� p and d to the dimension of the parameter and the
input space� respectively�
We call one�hidden�layer networks with hidden units computing a function � and a

single linear output unit ��networks� Thus ��networks compute functions of the form

nX
i��

wi��ai� ���

where ai � Rp�
Denote byG� � f��a� ���a � Rpg a parametrized set of functions corresponding to a

type of computational unit �� Then a ��network with n hidden units can generate as its
input�output functions all elements of spannG�� which is the union of all n�dimensional
subspaces spanned by n�tuples of elements of G�� Thus in the case of neural networks�
the approximating functions are members of unions of �nite dimensional subspaces
generated by hidden unit functions�
Standard types of hidden units are perceptrons� A perceptron with an activation

function  � R � R computes functions of the form ���v� b��x� � �v � x  b� �
Rd�� �Rd �R� where v � Rd is an input weight vector and b � R is a bias�
Let J be a compact �i�e� closed and bounded� subset of R �the standard choice

is J � �� ���� By Pd�� J� � ff � Jd � R� f�x� � �v � x  b��v � Rd� b � Rg is
denoted the set of functions on Jd computable by �perceptrons �when it is clear from
the context which J is considered� we will write only Pd�� instead of Pd�� J���
So spannPd�� J� denotes the set of functions on Jd computable by �perceptron

networks with n hidden units� and spanPd�� J� represents the set of functions com�
putable by such networks with any number of hidden units�

� Dimension�independent approximation

��� Approximation from unions of �nite dimensional sub�

spaces

To derive tools for the estimation of rates of approximation by one�hidden�layer neural
networks� we investigate approximation properties of sets of functions of the form
spannG� where G is any subset of a normed linear space �X� k�k�� This approximation
scheme includes approximation by multilayer feedforward networks with a single linear
output and n hidden units in the last hidden layer� In particular� it includes ��networks�
Rates of approximation from spannG are measured by the deviation from spannG

that we denote by �G�n� i�e�

�G�n�Y � � �G�n�Y� �X� k�k�� � ��Y� spannG� �X� k�k���
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The following proposition states the basic properties of �G�n that follow directly
from Proposition ��� �notice that spannG is homogeneous��

Proposition ��� Let �X� k�k� be a normed linear space� Y and G be its subsets� Then
for any positive integer n
�i� �G�n�Y �  �G�n���Y ��
�ii� �G�n�Y � � �G�n�cl Y ��
�iii� for every c � R �G�n�c Y � � jcj�G�n�Y ��

Since spannG is not a linear subspace� many of the convenient properties �like
uniqueness� continuity� homogeneity etc�� of best approximation operators used as
tools in linear approximation theory are no longer valid �see Kainen� K�urkov�a and Vogt
���� ���� ����� On the other hand� since the union of all linear subspaces spanned by
n�tuples of elements of a given set G is often much bigger than any single n�dimensional
subspace of X� for some sets of functions� rates of nonlinear approximation by spannG
might be considerably better than rates achievable using any linear approximating fam�
ily� Since we look for sets Y for which dn�Y is bigger than �G�n�Y �� we will investigate
upper bounds on �G�n and lower bounds on dn�Y ��

��� Variation with respect to a set of functions

Sets of multivariable functions with dimension independent upper bounds on the de�
viations from sets of the form spannG can be described in terms of norms tailored to
sets G�
Let G be a subset of a normed linear space �X� k�k�� Then G�variation �variation

with respect to the set G� denoted by k�kG is de
ned as the Minkowski functional of
the closed convex balanced set cl conv G���� i�e�

kfkG � inf
�
c � R��

f

c
� cl conv G���

�
� inffc � R�� f � cl conv G�c�g�

Thus G�variation is a norm on the subspace ff � X� kfkG ��g � X� G�variation
was de
ned by K�urkov�a ��� as an extension of Barron�s �� concept of variation with
respect to half�spaces� The following proposition states the basic properties of G�
variation�

Proposition ��� Let �X� k�k� be a normed linear space� G and F be its subsets� Then
�i� for all f � X kfk � kfkG supg�G kgk�
�ii� if f � spanG� then kfkG � minfPm

i�� jwij� f � Pm
i��wigi�m � N�� gi � G�wi �

Rg�
�iii� k�kG � ck�kF if and only if for all h � F khkG � c�

Proof� �i� and �ii� follow immediately from the de
nition of G�variation� To verify �iii��
set b � kfkF � Let f � limm�� fm in k�k� where for all m � N� fm � conv F �b�� Then
fm �

Pnm
i��wm�ihm�i� where

Pnm
i�� jwm�ij � b and hm�i � F � Since all hm�i � cl conv G�c��

we have fm�i � cl conv G�b c� and so kfkG � c b � ckfkF �
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When X is 
nite�dimensional� all norms on X are equivalent� i�e� they determine
the same topology� and thus the concept of G�variation does not depend on the norm
on X� In an in
nite�dimensional case� when G�variation depends on the choice of a
norm k�k on X� we will assume that it is clear from the context with respect to which
norm G�variation is considered�
Note that G�variation is a generalization of the concepts of total variation and l��

norm� For d � � variation with respect to half�spaces coincides up to a constant with
total variation �see Barron ��� K�urkov�a� Kainen and Kreinovich �����
Let A be an orthogonal basis of a separable Hilbert space �X� k�k�� then l��norm

with respect to A is de
ned as kfk��A � P
��A jf ��j� The following proposition describes

the relationship between A�variation and the l��norm with respect to A�

Proposition ��� Let �X� k�k� be a separable Hilbert space and A be its orthogonal
basis� then k�kA � k�k��A� when k�k and k�kA are equivalent� then k�kA � k�k��A�
Proof� First� check that k�kA � k�k��A� Let A � f�i� i � N�g� Then every f � X can
be represented as

P�
i���f � �i��i� For m � N� set fm �

Pm
i���f � �i��i� If b � kfk��A�

then for all m � N� fm � conv A�b�� f � limm�� fm in k�k� and so f is in the closure
of conv A�b� with respect to k�k� Hence kfkA � b � kfk��A�
To verify that k�kA  k�k��A for k�k and k�kA equivalent� let fm � Pm

i���f � �i�� and
b � limm�infty kfmk��A� Since kfmk��A � kfmk �see K�urkov�a� Savick�y and Hlav�a!ckov�a
��� p������� limm�� fm � f in k�k and limm�infty kfmkA � b� When k�k and k�kA are
equivalent� the set U � fh � X� khkA � bg is open in k�k� and so kfkA  b � kfk��A�

Thus when A is an orthogonal basis of X� then the unit ball in A�variation contains
the unit ball in the l��norm with respect to A� For example� the unit ball in variation
with respect to the Fourier basis contains the unit ball in the l��norm with respect to
this basis�
Some insight into properties of sets of multivariable functions that can be approx�

imated by neural networks with dimension�independent rates were obtained by Jones
�� and Barron ��� Using the concept of G�variation� K�urkov�a ����� ���� reformulated
Barron�s �� improvement of Jones� result �� in the following way�

Theorem ��� Let �X� k�k� be a Hilbert space and G be its subset� Then for every
f � X and for every positive integer n

kf 	 spannGk� � �sGkfkG�� 	 kfk�
n

�

where sG � supg�G kgk�
Since spannG � spannG

�� Theorem ��� implies

kf 	 spannGk� � kfk�G� 	 kfk�
n

�

As an immediate corollary we get a description of sets of multivariable functions
that can be approximated by spannG with dimension�independent rates�
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Corollary ��� Let �X� k�k� be a Hilbert space and G be its subset� Then for every
positive integer n

�G�n�B��k�kG�� � sGp
n
�

where sG � supg�G kgk� In particular�

�G�n�B��k�kG��� � �p
n
�

Thus balls in G��variation can be approximated by elements of spannG with a rate
of approximation that does not depend on the number of variables of functions in
X� However� with increasing number of variables the condition of being in the unit
ball in G��variation becomes more and more constraining �see K�urkov�a� Savick�y and
Hlav�a!ckov�a ��� for examples of functions with variation depending exponentially on
the number of variables��
Note that estimates of �G�n in terms of G�variation are not restricted to Hilbert

spaces� Darken et al� �� extended Jones�Barron�s theorem to Lp�spaces for p � �����
with a slightly worse rate of approximation �of order O�n� �

q �� where q � max
�
p� p

p��
�
��

there also exist extensions for supremum norm �see e�g� Barron ��� Girosi ��� Gurvits
and Koiran ��� K�urkov�a� Savick�y and Hlav�a!ckov�a �����

� Kolmogorov width of balls in G�variation

��� Basic properties of the Kolmogorov width of balls in G�

variation

When for some family of subsets fGd� d � N�g of a family of normed linear spaces
f�Xd� k�k�� d � N�g� where each Xd consists of functions of d variables� Kolmogorov n�
width of balls in Gd�variation is considerably larger than their deviation from spannGd�
then approximation by spannGd outperforms any linear approximation scheme� Such
better performance is especially remarkable when dn�B��k�kG�

d
�� is of order O

�
�
d
p
n

�
�

since by Corollary ��� �Gd�n�B��k�kG�

d
�� � �p

n
�

To describe sets Gd with �Gd�n�B��k�kGd� smaller than dn�B��k�kGd��� we will in�
vestigate lower bounds on Kolmogorov n�width of balls in variation with respect to
a general set of functions� The following proposition summarizes basic properties of
Kolmogorov width of such balls that follow from Proposition ���� Proposition ��� and
from the fact that B��k�kG� � cl conv G����

Proposition ��� Let �X� k�k� be a normed linear space� G and F be its subsets� Then
for any positive integer n
�i� dn�B��k�kG�� � dn�G��
�ii� if G � F then dn�B��k�kG��  dn�B��k�kF ���
�iii� if a � suph�F khkG � �� then dn�B��k�kG�� � dn�G�  �

a
dn�F � �

�
a
dn�B��k�kF ���

�



The 
rst one of these elementary properties has important consequences� In par�
ticular� it implies that any estimate of the worst�case error in the linear approximation
of the unit ball in G�variation applies also to G itself� Thus a speed of the decrease of
dn�G� can be evaluated using dn�B��k�kG�� �to derive a lower bound on the Kolmogorov
width of a larger set might be easier��

��� Lower bounds in terms of the Bernstein width

As pointed out in Proposition ��� �i�� it follows directly from the de
nition of G�
variation that� for any subset G of a normed linear space �X� k�k�� k�k � sGk�kG�
where sG � supg�G kgk� Thus the unit ball in k�k contains the ball of radius �

sG
in

G�variation� When also the unit ball in G�variation contains a ball of some nonzero
radius in k�k �i�e�� it has nonempty interior in the topology induced on X by k�k�� then
the norms k�kG and k�k are equivalent� In such a case� we can estimate the Kolmogorov
width of the unit ball in G�variation from below using the Bernstein width�
Recall that the Bernstein n�width of a subset Y of a normed linear space �X� k�k�

is de
ned as
bn�Y � � sup

Xn��

supfr � R�� Br�k�kXn��� � Y g�

where the leftmost supremum is taken over all �n ���dimensional subspaces of X and
k�kXn�� denotes the restriction of k�k to Xn�� �see e�g� Pinkus ����� Notice that when
Y is closed� convex and balanced� then for all n bn�Y � is the diameter of the maximal
ball in k�kXn�� contained in Y � Thus we can extend the concept of the Bernstein width
by de
ning

b�Y � � inf
f��Y kfk�

The following proposition is an easy modi
cation of a lower bound on Kolmogorov
width from Lorentz ��� p� �����

Proposition ��� Let �X� k�k� be a Banach space� G be its subset such that ff �
X� kfkG � �g � X� Then for any positive integer n such that n � dimX dn�G� �
dn�B��k�k�  b�B��k�kG�� � inffkfk� kfkG � �g�

Proof� Let Xn be an n�dimensional subspace of X and let h � X 	Xn� Let g � Xn

be the closest element to h� i�e� kh	Xnk � kh	 gk and set f � h�g
kh�gkG � Then � � Xn

is the closest element to f � indeed� for all g� � Xn we have kfk � kf 	 g�k because
kh	 gk � kh	 g 	 ag� k� where a � kh	 gkG� Since kfkG � �� we have eXn�f� � kfk
and by Proposition ��� �i� dn�G� � dn�B��k�kG��  kfk  inffkfk� f � B��k�kG�g �
b�B��k�kG���
Since all norms on a 
nite�dimensional space are equivalent� we can apply Propo�

sition ��� to Rm with the l��norm and A any of its orthonormal bases� Then we get
dn�A� � dn�B��k�kA��  �p

m
for any n � m�

However� when k�k and k�kG are not equivalent� this method of estimation of the
Kolmogorov width of balls in G�variation gives a trivial lower bound �equal to zero�� A
more sophisticated method based on the Borsuk antipodality theorem �see e�g� Pinkus

�



���� shows that the Kolmogorov n�width is bounded from below by the Bernstein n�
width� More precisely� for every closed� convex� balanced subset Y of a Banach space
�X� k�k� and for all positive integers n dn�Y �  bn�Y ��
To obtain from this estimate a lower bound on dn�G� � dn�B��k�kG�� larger than

the upper bound on �G�n guaranteed by Corollary ���� bn�G� must be larger than
sGp
n
�

For example for A countable orthonormal� it is easy to check that bn�B��k�kA�� � �p
n��

when n � cardA �sinceB��k�k��A��Xn�� � B��k�kA��Xn���� Thus using the Bernstein
width as a lower bound on the Kolmogorov width of balls inA�variation for A countable
orthonormal� we get the same lower bound� �p

n
� on dn�B��k�kA�� as the upper bound�

�p
n
� on �A�n�B��k�kA�� following from Corollary ����
However in the next section� we will show that orthogonality of A enables to derive

lower bounds on dn�B��k�kA�� larger than the Bernstein n�width�

��� Lower bounds on the Kolmogorov width of orthogonal

sets

Even when the unit ball in G�variation does not contain a ball of any radius in the norm
k�k� in which the approximation error is measured� it might happen that it contains a
ball of a non�zero radius in A�variation for some set A� the Kolmogorov width of which
can be estimated from below�
In particular for A orthonormal� we can use the following lower bound� which is an

improvement of Barron�s estimate �� Lemma �� p� �����

Proposition ��� Let �X� k�k� be a Hilbert space� A be its orthonormal subset� When
A is in�nite� then for all positive integers n dn�A�  �� When A is �nite of cardinality

m� then for all positive integers n � m dn�A� 
q
�	 n

m
�

Proof� Let Xn � spanfh�� � � � � hng� where fh�� � � � � hng is an orthonormal subset and
let pXn � X � Xn be the best approximation mapping �projection� from X to Xn

�see e�g� Singer ����� Then for every f � X we have eXn�f�
� � kf 	 pXn�f�k� �

�	 kpXn�f�k� and kpXn�f�k� �
Pn

j���f � hj���
For eachm � N� choose some subsetAm � A of cardinalitym� Then

P
��Am kpXn���k� �Pn

j��

P
��Am�� � hj�� �

Pn
j�� khjk� � n� Hence there exists some �m � Am such that

kpXn��m�k� � n

m
and thus eXn��m� 

q
�	 n

m
� So if A is 
nite of cardinality m� we

have dn�A� 
q
�	 n

m
� If A is in
nite� then for all m � N� we have dn�A� 

q
� 	 n

m

and so dn�A�  ��
Notice that for a countable orthonormal set A this proposition gives a better lower

bound on the Kolmogorov width than the lower bound derived using the Bernstein
width�
For A�G subsets of a normed linear space �X� k�k� let aG denotes the Bernstein

radius of the set A with respect to teh norm k�kG� i�e� aG � sup��A k�kG�
Proposition ��� implies a lower bound on the Kolmogorov width for any set G for

which there exists an ortonormal set A with bounded supremum of G�variation of all
its elements�

��



Corollary ��� Let �X� k�k� be a Hilbert space� G�A be its subsets� A be orthonormal
with that aG �nite� If A is in�nite� then for all positive integers n dn�G�  �

aG
� When

A is �nite of cardinality m� then for all positive integers n � m dn�G�  �
aG

q
� 	 n

m
�

Proof� By Proposition ��� �iii� k�kG � ck�kA� So B �

aG

�k�kA� � �
aG
B��k�kA� � B��k�kG��

Hence by Propositions ��� �iii� and ��� �iii� dn�G� � dn�B��k�kG��  �
aG

dn�B��k�kA�� �
�
aG

dn�A�� and hence the lower bound follows from Proposition ����

Corollary ��� implies that whenever the unit ball in G�variation contains a ball of
a non�zero radius r in variation with respect to some in
nite orthonormal set� then G
cannot be approximated within an accuracy smaller than r using any linear approxi�
mation scheme� No increase at all of the dimension n of the linear approximating set
can decrease the n�width of G below r�
Even when B��k�kG� is not �large enough� to contain a ball of some non�zero

radius in variation with respect to an in
nite orthonormal set� it might contain a ball
in variation with respect to some orthogonal set� the elements of which have norms
that are going to zero rather slowly with respect to the dimension d� The following
de
nition formalizes the concept of such a slow decrease�
Let �X� k�k� be a normed linear space and A � X� We say that A is slowly decaying

with respect to d if A can be linearly ordered as A � f�j� j � N�g so that the norms of
its elements are non�increasing� and for all r � N� k�rdk  �

r
� The following lemma

gives an equivalent formulation of the concept of a slowly decaying set�

Lemma ��� Let �X� k�k� be a normed linear space and A be a subset of X� Then A is
slowly decaying with respect to d if and only if A can be represented as A � �r�N�

Ar�
where for all r � N� cardAr  rd and for all � � Ar k�k  �

r
and for all r� � r and

�� � Ar� k�k  k��k�

The following proposition shows that the Kolmogorov width of any orthogonal
slowly decaying set exhibits the curse of dimensionality�

Proposition ��� Let �X� k�k� be a Hilbert space and A be its orthogonal subset that is
slowly decaying with respect to some positive integer d� Then for any positive integer
n dn�A�  �p

� d
p
mn

� where mn � minfm � N�� ��n � m�� ��r � N���m � rd�g� In

particular� for n � rd

� for some integer r dn�A�  �p
� d
p
�n
�

Proof� Let Ar � f��� � � � � �rdg� Then cardAr � rd and� by Proposition ���� for all

r � N� and all n � rd dn�A�
r� 

q
�	 n

rd
� By Proposition ��� �iv� then dn�Ar� 

�
r

q
� 	 n

rd
�

For each n � N� take r � N� for which mn � rd� Since n � �n � mn � rd� we
have dn�A�  dn�Ar�  �

r

q
�	 n

rd
� Setting r � d

p
mn we get dn�A�  �p

�
�

d
p
mn
�

The curse of dimensionality also applies to the Kolmogorov width of any family of
sets fGd� d � N�g� for which there exists a family of orthogonal sets fAd� d � N�g�

��



where each Ad is slowly decaying with respect to d and there exists an upper bound
on Gd�variation of all elements of Ad and all d� Even when sup��Ad k�kG depend on d�
but do not grow too quickly� we get useful lower bounds on the Kolmogorov width of
the family fGd� d � N�g

Corollary ��� Let �X� k�k� be a Hilbert space� G�A be its subsets� A be orthogonal
slowly decaying with respect to some positive integer d and c � sup��A k�kG be �nite�
Then for any n � N� dn�G�  �

c
p
� d
p
mn

� where mn � minfm � N�� ��n � m�� ��r �
N���m � rd�g� In particular� when n � rd for some integer r� then dn�G�  �

c
p
� d
p
�n
�

Corollary ��� gives a method of deriving lower bounds on Kolmogorov width that we
will apply in the next section to sets of functions computable by standard computational
units of neural networks� Heaviside and sigmoidal perceptrons� and perceptrons with
periodic activation function�

� Kolmogorov width of sets of functions computable

by perceptrons

	�� Variation with respect to perceptrons

To apply to perceptron networks the tools developed in the previous sections� we 
rst
derive some basic properties of variation with respect to sets of functions computable
by perceptrons with various types of activation functions�
A one�hidden�layer perceptron network with an activation function  and n hid�

den units computes functions from the parametrized set spannPd��� where Pd�� �
Pd�� J� � ff � Jd � R� f�x� � �v �x b��v � Rd� b � Rg for some compact J � R�
corresponding to the domain of network inputs�
The most common activation functions are sigmoidals� i�e� functions � � R � �� ��

such that limt��� ��t� � � and limt��� ��t� � �� There are used both continuous
sigmoidals like the logistic sigmoid �

��e�t or the hyperbolic tangent� as well as the
discontinuous Heaviside function �� de
ned by ��t� � � for t � � and ��t� � � for
t  ��
Notice that the set Pd��� J� of functions computable by Heaviside perceptrons is

equal to the set of characteristic functions of half�spaces of J � indeed� ��v � �  b�
restricted to J is equal to the characteristic function of the positive half�space H�

v�b �
fx � Jd�v �x b �g� We will write Hd�J�� Hd� resp�� instead of Pd��� J�� Pd���resp��
and call variation with respect to Hd variation with respect to half�spaces� denoted by
k�kHd

�
Sometimes it is more convenient to use signum� de
ned by sgn�t� � 	� for t � �

and sgn�t� � � for t  �� Since signum function can be obtained from Heaviside
function by the linear transformation sgn�t� � ���t�	 �� any function computable by
a network with n Heaviside perceptrons can be computed by a network consisting of
n  � signum perceptrons� For the sake of notational convenience� we will write k�kSd
to denote variation with respect to signum perceptrons�

��



There have been considered also other types of activation functions like cosine
�Jones� ��� and the ramp function � � R � R �Breiman� ���� de
ned as ��t� � t ��t��
i�e� ��t� � � for t � � and ��t� � t for t  �� We will write Rd instead of Pd����
The following proposition describes some relationships among variations with re�

spect to perceptrons with various kinds of activation functions�

Proposition ��� Let d be a positive integer and p � ����� then in �Lp��� ��d�� k�kp�
the following holds	
�i� for every sigmoidal function � � R � R k�kPd��� � k�kHd

�
�ii� k�kSd � k�kHd

� �k�kSd �
�iii� k�kRd � �k�kHd

�

Proof� For �i� and �ii� see ���� ���� ���� To verify �iii� consider � � R � R de
ned
as ��t� � � for t � �� ��t� � t for � � t � �� and ��t� � � for t  �� Since
��t� � ��t�	 ��t	 ��� we have k�kRd � �k�kPd���� Since � is sigmoidal� it follows from
�i� that k�kPd��� � k�kHd

�

So variation with respect to half�spaces is equal to variation with respect to per�
ceptrons with any sigmoidal activation function or� up to a multiplicative constant� to
variation with respect to signum or ramp perceptrons� Thus applying to perceptron
networks Corollary ��� �or its various extensions to Lp spaces with p � ����� that
can also be formulated in terms of variation�� we can restrict ourselves to the variation
with respect to half�spaces�
To construct a lower bound on Kolmogorov width of the unit ball in variation

with respect to half�spaces� we will use orthogonal slowly decaying families containing
plane waves� A function f � Rd �R is called a plane wave� if it can be represented as
f�x� � �v �x�� where  � R �R is any function and v � Rd� Notice that plane waves
are constant along hyperplanes parallel to the cozero hyperplane fx � Rd�v � x � �g
of the linear function v � x�
We will use square waves and cosine plane waves� Square waves are plane waves

obtained from the Haar function� denoted by � � R � R and de
ned by ��t� � �
for t � i� i  �

�
� and ��t� � 	� for t � i 	 �

�
� i� for all integers i� When the Haar

function on an interval J � R is appropriately scaled� than it can be represented as
a convex combination of characteristic functions of half�intervals �half�spaces� of J �
More precisely� cJ� � conv H��J�� where cJ �

�
�dle� l denotes the length of the interval

J and dxe the smallest integer that is greater or equal to a real number x�
Variation with respect to half�spaces of a general plane wave f�x� � �v �x� can be

computed from the total variation of � Notice that for d � � variation with respect
to half�spaces coincides up to a constant with total variation �see Barron ��� K�urkov�a�
Kainen and Kreinovich ����� Recall �see e�g� Kolmogorov and Fomin ���� that total
variation of a function  � J �R� where J � R is a closed interval� is de
ned as

V �� J� � sup
nX
i��

j�ti� 	 �ti���j�

where the supremum is taken over all 
nite partitions t� � � � � � tn of J � t�� tn��

��



It follows directly from the de
nition of total variation that for a periodic function
 � R � R with a period � � V �� J� � d l

	
eV �� �� � ��� where l denotes the length of

the interval J � We will use this property together with the following two lemmas to
estimate variation with respect to half�spaces of cosine plane waves�

Lemma ��� Let d be a positive integer and �v � x� � �Lp� ��� ��d�� k�kp�� p � �����
be a plane wave� Then k�v �x�kHd�����	d� � kkH��J�� where J � ��

Pd
i�� vi� and H��J�

is considered with respect to �Lp�J�� k�kp��
Proof� To check that k�v � x�kHd�����	d� � kkH��J�� let b � kkH��J�� It follows from
the de
nition of Hd�variation that  � limm��

Pnm
j�� wm�j ��t 	 bm�j� in �Lp�J�� k�kp��

where for allm � N�
Pnm

j�� jwm�jj � b� Then �v�x� � limm��
Pnm

j�� wm�j ��v�x	bm�j�
in �Lp� ��� ��

d�� k�kp�� since for all x � �� ��d we have v�x � J � So k�v�x�kHd�����	d� � b�

It is easy to see that k�t�kH��J� � k�kvkt�kH��J�� where J
� � ��

Pd
i�� vi�kvk��

Thus to prove that k�v � x�kHd�����	d�  kkH��J�� it is su�cient to show that k�v �
x�kHd�����	d�  k�kvkt�kH��J���

Let u � �� ��d be such that kuk � maxfx � �� ��d�x� � v�g� Then Pd
i�� vi�kvk �

kuk� Let "J � ftu� t � �� ��g � �� ��d� Set k�v � x�kHd�����	d� � b� then �v � x� �
limm�� fm in �Lp��� ��d�� k�kp�� where for all m � N� fm � conv Hd�b�� Setting
"fm � fm� "J we get "fm � conv H�� "J��b� and limm�� "fm � �kvkt� in �Lp�J��� k�kp��
Thus k�kvkt�kH��J�� � b�

If J � R is a closed interval� we say that  � J � R is piecewise uniformly
continuous if there exist real numbers s� � � � � � sk such that J � s�� sk� and for all
i � �� � � � � k 	 � ��si� si��� is uniformly continuous�

Lemma ��� Let J � R be a closed interval� and  � J � R be piecewise uniformly
continuous� Then

kkH��J� � V �� J�

Proof� Let s� � � � � � sk be a partition of J such that ��si� si��� is uniformly
continuous for all i � �� � � � � k 	 �� Hence for every m � N� there exists a partition
tm�� � � � � � tm�nm of J re
ning s� � � � � � sk� such that setting wm�i � �tm�i� 	
�tm�i��� and m�t� �

Pnm
i�� wm�i��t	 tm�i�� we have limm�� m �  in �Lp�J�� k�kp��

Setting m�t� �
Pnm

i�� ��t	 tm�i�� we get  � limm�� m in �Lp�J�� k�kp�� Since for
all m � N� kmkH��J� �

Pnm
i�� jwm�ij � Pnm

i�� j�tm�i� 	 �tm�i���j � V �� J�� we have
kkH��J� � V �� J��

From Lemma ��� and Lemma ��� we get the following upper bound on variation
with respect to half�spaces of plane waves�

Proposition ��� Let d be a positive integer and �v�x� � �Lp��� ��d�� k�kp� be a plane
wave such that  � J � R� where J � ��

Pd
i�� vi�

d and v � �v�� � � � � vd�� is piecewise
uniformly continuous� Then k�v � x�kHd�����	d� � V �� J��

It follows immediately from Proposition ��� that for any v � Rd k��v�x�kHd�����	d� �
�dPd

i�� vie and k cos���v � x�kHd�����	d� � �d
Pd

i�� vie� Moreover� it is easy to check that
any square wave ��v � x� is in the convex hull of Hd��� ��d���dPd

i�� vie��

��



	�� Lower bounds for perceptrons with periodic activation

functions

To derive lower bounds on the Kolmogorov width of the set of functions computable
by a single perceptron with d inputs using the methods developed in the previous
sections� we need to 
nd suitable orthogonal sets of functions� for which variation
with respect to such perceptrons does not grow too quickly with d� For some periodic
activation functions � there even exist orthogonal sets with Pd���variation bounded
by a constant independent on d�
It is well�known that the following two families of plane waves are for all positive

integers d orthonormal in �L���� ��d�� k�k���

Ad�cos� �

�
�p
�
cos���v � x��v � N d

�

�
�����

Ad��� �
n
��v � x��v � f�j � j � N�gd

o
� �����

Since the 
rst one is a subset of �p
�
Pd�cos� and the second one of Pd���� the following

lower bounds follow immediately from Proposition ����

Proposition ��� For all positive integers d� n in �L���� ��d�� k�k��

dn�Pd�cos�� � dn�B��k�kPd�cos��� 
p
�

dn�Pd���� � dn�B��k�kPd�
���  ��

Thus there is no possibility of decreasing the worst�case error in linear approxima�
tion of Pd�cos�� Pd���� resp�� under

p
�� �� resp�� by increasing the dimension of the

linear approximating subspace� So perceptrons with either cosine or Haar function as
activations cannot be e�ciently approximated linearly� On the other hand� it follows
from Corollary ��� that

�Pd�cos��n�B��k�kPd�cos�� �
p
�p
n
�

�Pd�
��n�B��k�kPd�
�� �
�p
n
�

	�� Lower bounds for sigmoidal perceptrons

It was shown above� that for any sigmoidal activation function � Pd����variation
is equal to variation with respect to half�spaces� Estimating the total variation of
elements of an orthogonal family of plane waves� we can 
nd proper scalars that allow
to decrease the norms of such a family so that it can be embeded into the unit ball in
variation with respect to half�spaces�
Barron �� Theorem �� p� ���� used the above de
ned orthonormal familyAd�cos� to

estimate the Kolmogorov width of sets #c de
ned as #c � ff � �L���� ��d�� k�k��� cf �
cg� where cf � R

Rd k�k� j $f���j d�� $f is the Fourier transform of f and k�k� � p
� � �

��



denotes the l��norm of the frequency �� He proved that dn�#c�  � c

d d
p
n
� where � 

�

�e��� � while �Pd����n�#c� � cp

n
�

His result shows that neural networks outperform linear approximation only for
n large enough with respect to d� Indeed� consider approximation of #c and assume
that n is the maximal number of hidden units that is feasible using a given type of
implementation� Since limd�� c

d d
p
n
� �� for large input dimension d dn�#c� might be

quite small� Only for n su�ciently larger than d� the upper bound� cp
n
� on �Pd����n�#c� is

smaller than the lower bound� �

d d
p
n
� on dn�#�� �for example� for c � � and d � � n must

be greater than ��

�
�� Only for such large n� Barron�s result implies that approximation

by perceptron networks with n hidden units outperforms approximation by elements
of any n�dimensional linear subspace�
In the following� we improve this Barron�s result in two directions� We improve

the lower bound on the Kolmogorov width and show that it even applies to the set of
characteristic functions of half�spaces and that the worst�case error is achieved�
The following theorem shows that even the set of characteristic functions of half�

spaces Hd has a lower bound on its Kolmogorov n�width of orderO
�

�
d d
p
n

�
� Since all the

elements of the set Hd� Pd���� resp�� have in approximation by spannHd� spannPd���
error equal to zero� Hd� Pd���� resp�� is an example of a set of functions� for which
neural network approximation outperforms any linear approximation method for all n
�representing� respectively� the number of computational units and the dimension of
the linear subspace��

Theorem ��� For all positive integers d� n in �L���� ��d�� k�k��

dn�Hd�  dmn�Hd�  �

�d d
p
mn

�

where mn � minfm � N�� ��n � m�� ��r � N���m � rd�g� In particular� for n � rd

�

for some integer r

dn�Hd�  �

�d d
p
�n

�

Proof� Taking advantage of Proposition ��� we will derive a lower bound on dn�Hd�
using an orthogonal slowly decaying set Ad obtained fromD	d�cos� by proper scaling�
For all d� r � N� set Ad�r � f�v�v � f�� � � � � rgdg � �L���� ��d�� k�k��� where �v�x� �
cv cos���v � x� � �� ��d � R and cv �

�p
�

d

dPd

k��
vke
� where v � �v�� � � � � vd�� Let

Ad � �r�N�
Ad�r� We will show that Ad � Bd

p

�k�kHd

� and that Ad is slowly decaying
with respect to d�
It follows from Proposition ��� that k cos���v � x�kHd

� V �cos���t�� ��
Pd

k�� vk�� �
�dPd

k�� vke� Thus for every �v � Ad k�vkHd
� d

p
� and hence by Proposition ��� �iii�

k�kHd
� d

p
�k�kAd� So by Proposition ��� �i� and �iii� dn�B��k�kHd

��  �
d
p


dn�Ad��

For all d Ad is orthogonal and it can be ordered in such a way that it is slowly
decaying with respect to d� Reindex Ad as f�i� i � N�g using any linear ordering of
N�

d such that fk�ik�� i � N�g are nondecreasing and for all r � N� �rd corresponds

��



to ��r��r�� Since k�rdk � �
r
� in such a linear ordering Ad is slowly decaying with respect

to d�
By Proposition ��� for all positive integers n dn�Hd� � dn�B��k�kHd

��  �
d
p


dn�Ad� 

�
�d d

p
mn
� where mn � minfm � N�� ��n � m����r � N���m � rd�g�

The following corollary shows that for each n � rd

�
for some integer r and for each

Xn n�dimensional subspace of �L���� ��d�� k�k��� there exists a half�space of �� ��d such
that its characteristic function �n has distance from Xn at least

�
�d d
p
�n
�

Corollary ��� For all positive integers d� n and every n�dimensional subspace Xn of
�L���� ��d�� k�k�� there exists a characteristic function �n of a half�space of �� ��d such
that

k�n 	Xnk�  �

�d d
p
mn

�

where mn � minfm � N�� ��n � m�� ��r � N���m � rd�g� In particular� for n � rd�
for some integer r

k�n 	Xnk�  �

�d d
p
�n

�

Proof� By Theorem ��� for every n�dimensional subspace Xn of �L���� ��d�� k�k�� we
have sup��Hd

k�	Xnk  �
�d d

p
mn
� Since Hd is compact �see Chui� Li and Mhaskar ���

Gurvits and Koiran ��� and the error functional eXn is continuous� the supremum of
eXn on Hd is achieved at some �n�

Thus to approximate all characteristic functions of half�spaces of �� ��d within a
given accuracy �� the dimension of any linear approximating space has to be larger

than
�

�
�d�

�d
� When the desired accuracy of approximation �d is smaller than

�
�d
� then

the required dimension of a linear approximating space might be too large to be feasible�
For example� when � � �


d
� the dimension of linear space must be at least �d� In such

a case� the set of characteristic functions of half�spaces of d�dimensional unit cube
�which is equal to the set of functions computable by Heaviside perceptrons� cannot be
e�ciently approximated using any linear approximating family� Note� however� that
the value of � which implies such an exponential growth of the dimension of the linear
approximating space goes to zero with d�
Since variation with respect to half�spaces is equal to variation with respect to

perceptrons with any sigmoidal activation function� Theorem ��� can be generalized to
include all sigmoidal perceptrons�

Corollary ��	 Let d� n be positive integers and � � R �R be any sigmoidal function�
Then in �L���� ��d�� k�k��

dn�Pd����  dmn�Pd���� 
�

�d d
p
mn

�

where mn � minfm � N�� ��n � m�� ��r � N���m � rd�g� In particular� for n � rd�
for some r � N�

dn�Pd����  �

�d d
p
�n

�

��



Proof� By Proposition ��� �i� k�kPd��� � k�kHd
� and� by Proposition ��� �i�� dn�Hd� �

dn�B��k�kHd
�� � dn�B��k�kPd����� � dn�Pd�����

So to approximate within � by an n�dimensional subspace the set of all functions

computable by a sigmoidal perceptron with d inputs� n has to be at least O
��

�
�d�

�d�
�

� Discussion

We have studied the worst�case errors in approximation by a linear approximating
set and by certain class of nonlinear sets that includes sets of functions computable
by feedforward neural networks� Our aim was to describe sets of multivariable func�
tions for which the worst�case errors in linear approximation are larger than those in
approximation by neural networks�
Taking advantage of relatively small upper bounds on approximation errors of balls

in certain norms tailored to a type of computational unit by such networks with units
of such a type� we have explored possibilities of 
nding large lower bounds on the worst�
case errors of such norms in linear approximation� We have considered various methods
of estimation of the Kolmogorov width describing best accuracy achiavable using linear
methods for such balls� Applying these methods to perceptron with various types of
activation functions� we have obtained two types of sets on which neural networks
outperform linear approximation� The 
rst one includes the above mentioned balls for
perceptrons with some periodic activation functions� they can be approximated by such
networks with n hidden units within �p

n
� while no increase of the dimension of a linear

approximating set can decrease the worst case error under a certain constant� The
second one includes sets of functions computable by sigmoidal perceptrons� the worst�
case error in approximation by such networks is zero� while in linear approximation it
is bounded from below by �

d d
p
n
�

Note that an analogous argument as in the proof of Theorem ��� for scaled cosine
plane waves� can be done for scaled square waves� The unit ball in variation with respect
to half�spaces also contains scaled waves obtained from the Haar function� Moreover�
appropriately scaled square waves are equal to convex combinations of characteristic
functions of half�spaces� However� using scaled orthogonal square waves instead of
cosine plane waves to derive a lower bound on the Kolmogorov width of the set of
characteristic functions of half�spaces� we obtain a much smaller value for such a lower
bound� The reason is that to guarantee orthogonality for a family of square waves�
dyadic scalars have to be used� Such scaling� however� has to be compensated by
much faster decrease of the norms of such waves� so that they remain in the unit
ball in variation with respect to half�spaces� Using the same proof technique as for
Theorem ���� by means of square waves we obtain for all positive integers d� n the
following estimate of Kolmogorov n�width in �L���� ��d�� k�k���

dn�Hd�  dmn�Hd�  �

�d
p
�

�

� d
p
mn

�

where mn � minfm � N�� ��n � m����r � N���m � rd�g�

��



In particular� when �n � rd for some integer r� we have

dn�Hd�  �

�d
p
�

�
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d
p
�n
�
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