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Abstract

We investigate the computational power of continuous�time symmetric Hop�eld nets�
Since the dynamics of such networks are governed by Liapunov 	energy
 functions� they
cannot generate in�nite nondamping oscillations� and hence cannot simulate arbitrary
	potentially divergent
 discrete computations� Nevertheless� we prove that any conver�

gent fully parallel computation by a network of n discrete�time binary neurons� with
in general asymmetric interconnections� can be simulated by a symmetric continuous�
time Hop�eld net containing ��n� units using the saturated�linear sigmoid activation
function� In terms of standard discrete computation models this result implies that
any polynomially space�bounded Turing machine can be simulated by a polynomi�
ally size�increasing sequence of continuous�time Hop�eld nets� Similar techniques as
here yield corresponding results on the convergence time and computational power of
discrete�time Hop�eld nets�
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� Introduction

In his ���� paper ���� John Hop�eld introduced a continuous�time version of the very
in�uential associative memory model whose discrete�time version he had analyzed two
years earlier in ���� Part of the appeal of Hop�eld�s continuous�time model stems from
its e�cient implementations in analog electrical ��� and optical ���� hardware� Besides
associative memory� proposed uses of continuous�time Hop�eld nets include� e�g�� fast
approximate solution of combinatorial optimization problems such as the traveling
salesman problem ����

In this paper� we study the power of continuous�time Hop�eld nets as general com�

putational devices� At �rst sight it would appear that the computational capabilities
of this model must be severely limited� because the dynamics of any continuous�time
Hop�eld net N is governed by a Liapunov� or �energy� function E de�ned on its state
space� The values of E are bounded from below� and they are properly decreasing along
any nonconstant computation path of N � A consequence of the Liapunov property is
that such a networkN always converges from any initial state towards some stable �nal
state� and in particular global nondamping oscillations of the network state are impos�
sible� The existence of a Liapunov function is a fundamental property of networks
whose interconnection weight matrix is symmetric� as required for both continuous�
and discrete�time Hop�eld nets� More general asymmetric networks usually do not
behave in the simple manner guaranteed by this property�

Because of the Liapunov property� not even a single oscillating discrete�time neuron
can faithfully be simulated by a symmetric continuous�time Hop�eld net� However� we
shall show that oscillations are the only feature that cannot be reproduced� in the
sense that any converging fully parallel computation by a network of n discrete�time
binary neurons� with in general asymmetric interconnections� can be simulated by a
symmetric continuous�time Hop�eld net containing ��n � units using the saturated�
linear sigmoid activation function�

Observe� namely� that any converging computation by a discrete�time deterministic
network of n binary neurons must terminate within �n steps� A basic technique used
in our proof is then the construction of an 	n�
�bit symmetric continuous�time clock
network 	a simulated binary counter
 that� using �n  � units� produces a sequence
of �n well�controlled oscillations 	generated by the second least signi�cant counter bit

before it converges� This sequence of clock pulses is used to drive the rest of the network
where each discrete neuron is simulated by a symmetrically interconnected subnetwork
of � continuous�time units�

The clock network is already by itself of some interest from a dynamical systems
perspective� because it provides an explicit example of a Liapunov�type continuous�
time system whose convergence time grows exponentially in the system dimension�
More precisely� we shall show in Section � that the convergence time for an 	n�
�bit
clock network� which consists of r � �n  � units� is �	�n��
 � �	�r����
� where �
is a parameter controlling the convergence rate of the system� In terms of bit repre�
sentations this bounds translates to a convergence time of ���g�M�� for a network with
an encoding size of M bits� where g	M
 is an arbitrary continuous function such that
g	M
 � o	M
� g	M
 � �	M���
� and M�g	M
 is increasing� This can be compared
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to a general convergence time upper bound of �O�
p
N� for discrete Hop�eld networks

with N �bit representations� Thus� the continuous�time implementation actually yields
better bounds than the discrete�time one� assuming that the time interval between two
subsequent discrete updates corresponds to a continuous time unit�

The predecessors of the present work are� a similar� but considerably simpler� con�
struction used in ���� to prove the computational equivalence of symmetric and asym�
metric discrete�time binary networks�� and the simulation of discrete�time networks
by asymmetric continuous�time networks in ����� The original idea for the discrete�
time clock network used in ����� and on which our current construction is based� stems
from ���� A general survey of topics in continuous�time computation is presented in �����

As pointed out in ����� polynomial�size increasing sequences of discrete networks
are computationally equivalent to 	nonuniform
 polynomially space�bounded Turing
machines 	more precisely� they compute the complexity class PSPACE�poly ��� p�
����
� By the result in the present paper� we now know that continuous�time symmetric
networks are at least as powerful� i�e� given any polynomially space�bounded Turing
machine� we can construct a polynomial�size sequence of continuous�time Hop�eld nets
for simulating it�

A related line of study concerns the computational power of �nite discrete�time

analog�state neural networks� Here it is known that the computational power of asym�
metric networks using the saturated�linear sigmoid activation function increases with
the Kolmogorov complexity of the weight parameters ����� On the other hand� it is
known that any amount of analog noise reduces the computational power of this model
to that of �nite automata ����

In the present abstract we outline our proof construction� and give a simulation
example witnessing its validity� The formal veri�cation of the correctness of the con�
struction requires a lengthy and tedious case analysis 	similar� but more involved than
that in ����
� and will thus be deferred to the full version of the paper�

� Constructing the Continuous�Time Network

First� we will brie�y specify the model of a �nite discrete recurrent neural network� The
network consists of n simple computational units or neurons� indexed as �� � � � � n� that
are connected into a generally cyclic oriented graph or architecture� in which each edge
	i� j
 leading from neuron i to j is labelled with an integer weight w	i� j
 � wji� The
absence of a connection within the architecture corresponds to a zero weight between
the respective neurons� and vice versa�

The synchronous computational dynamics of the network� working in fully parallel

mode� determines the evolution of the network state y�t� � 	y
�t�
� � � � � � y�t�n 
 � f�� �gn

�Our present construction can actually also be used to improve the discrete�time simulation in �����
which requires a symmetric network of ��n�� units to simulate a convergent asymmetric network of
size n� Using the technique presented in Section �� the simulation overhead can be reduced to �n� �
units in the discrete case�

�With integer weights such networks are equivalent to �nite automata ���� while with rational
weights arbitrary Turing machines can be simulated ���� 
�� With arbitrary real weights the networks
can even have �super�Turing� computational capabilities �����
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for all discrete time instants t � �� �� � � � as follows� At the beginning of a compu�
tation the network is placed in an initial state y�	� which may include an external
input� At discrete time t � �� each neuron j � �� � � � � n collects its binary inputs from
the states 	outputs
 y

�t�
i � f�� �g of incident neurons i� Then its integer excitation

�
�t�
j �

Pn
i
	 wjiy

�t�
i 	j � �� � � � � n
 is computed as the respective weighted sum of inputs

including an integer bias wj	 which can be viewed as a weight of the formal constant

unit input y
�t�
	 � �� At the next instant t�� an activation function� which in this case

is the hard limiter or threshold function s� is applied to �
�t�
j for all neurons j � �� � � � � n

in order to determine the new network state y�t��� by the following rule�

y
�t���
j � s

�
�
�t�
j

�
j � �� � � � � n 	���


where

s	�
 �

�
� for � � �
� for � � � �

	���


Similarly� a �nite continuous�time analog neural network is composed of m analog
units which operate 	in our case
 with the saturated�linear sigmoid activation function

�	�
 �

���
��

� for � 	 �
� for � � � � �
� for � � � �

	���


Hence� the states of analog units are real numbers within the interval ��� ��� and the
weights 	including biases
� denoted by v	p� q
 	for units p� q
 are reals as well� In
particular� we shall consider Hop�eld 	symmetric
 networks� whose architecture is an
undirected graph with symmetric weights v	p� q
 � v	q� p
 for every p� q� The compu�
tational dynamics of a continuous�time network is de�ned for every real t 	 � by the
following system of di�erential equations� with the initial network state y	�
 providing
the initial conditions�

dyp
dt

	t
 � �yp	t
  �	�p	t

 � �yp	t
  �

	

 nX
q
	

v	p� q
yq	t


�
A p � �� � � � �m � 	���


By a Liapunov function argument ���� it can be shown that a Hop�eld network converges
from any initial state y	�
 to some stable state satisfying dyp�dt � � for all p �
�� � � � �m� The set of stable states of the continuous�time system 	���
 coincides with
that of the discrete system 	���
�

Now� given a convergent discrete asymmetric neural network with n neurons� we
shall construct a computationally equivalent analog Hop�eld network withm � ��n�
continuous�time units� The analog network will be composed of an 	n �
�bit binary
counter 	clock
 subnetwork consisting of �n � units� each starting at the zero initial
state� and n other subnetworks� each containing � analog units for the purpose of
simulating one discrete neuron�

The initial construction for a ��bit counter is presented in Figure ���� where the
symmetric connections between units are labelled with the respective weights� and the
biases are indicated by the edges drawn without an originating unit�
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Figure ���� A continuous�time ��bit counter network

The counter bit c	 of order � starts its excitation with a bias v	�� c	
 � � 	 � which
is a small 	e�g� � � ���
 optional parameter that also determines the time overhead of
the simulation� Because of its feedback weight v	c	� c	
 � �� the state of c	 gradually
grows towards saturation at value �� at which time 	more precisely� when the state of c	
is �su�ciently close� to �
 we say that the unit is active or �res� This trick of gradual
transition from � to � is used repeatedly throughout the analog network construction�
The operation of the remaining units in Figure ���� which are of order �� is the same as
that of the units of a higher order k 	 � whose inductive description and explanation
follows 	although the de�nition of weights is slightly di�erent
�

Thus� suppose that the counter has been constructed up to the �rst k � n  �
counter bits c	� � � � � ck��� and denote by Pk the set of all its mk � �k � � units� includ�
ing the auxiliary ones labelled a�� x�� b�� z�� for 
 � �� � � � � k� �� Then� the counter unit
ck with a feedback weight v	ck� ck
 � �  �� is connected to all mk units p � Pk via
weights v	p� ck
 � � which� together with its bias v	�� ck
 � �mk  �� make ck to �re
shortly after all these units are active 	including the �rst k counter bits c	� � � � � ck��
which means that counting from � to �k � � has been accomplished
� Further� the unit
ck is connected to a sequence of � auxiliary units ak� xk� bk� zk 	all having feedbacks
�  �
 which are being� one by one� activated after ck �res� This is implemented by
the following weights v	ck� ak
 � mk� v	ak� xk
 � Vk 	speci�ed below
� v	xk� bk
 � ��
v	bk� zk
 � Vk � mk� and biases v	�� ak
 � �mk  �� v	�� xk
 � v	�� bk
 � ��  ��
v	�� zk
 � mk � Vk  �� The units ak� bk only slow down the continuous�time state �ow
in order to synchronize the computation� The unit xk resets all the units in Pk to their
initial zero states� For this purpose� xk is further connected to each p � Pk via a su��
ciently large negative weight v	xk� p
 � � such that �v	xk� p
 	 �

P
q�Pk�v�q�p��	 v	q� p


exceeds their mutual positive in�uence 	including the weight v	ck� p
 � �
� This also de�
termines the above�mentioned large positive weight parameter Vk � ��

P
p�Pk v	xk� p


that makes the state of xk 	similarly for zk
 independent of the outputs from p � Pk�
Finally� the unit zk balances the in�uence of xk on Pk so that the �rst k counter bits
can again count from � to �k � � but now with ck being active� This is achieved by the
weight v	zk� p
 � �v	xk� p
� � for each p � Pk in which �� compensates v	ck� p
 � ��
This completes the induction step�
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Figure ���� A continuous�time simulation of a discrete neuron

Furthermore� in Figure ��� a ��unit symmetric analog subnetwork is depicted for
simulating one neuron j from the discrete network� The output y

�t�
j of the binary�state

neuron at discrete time instant t � � is represented by the state of analog unit �j�
whose state is momentarily stabilized by the support from unit �j that doubles this
state�

The new output y
�t���
j of j at discrete time t  � is computed in a unit j that is

connected to the appropriate units �i from the other subnetworks� as required by the
original discrete network� via slightly adjusted weights v	�i� j
 � �w	i� j
 	including
the bias v	�� j
 � �w	�� j
  �
�

The parameter u is chosen as the maximum value of
Pn

i
�v��j��i��	
v	�j� i
 and

�
Pn

i
�v��j��i��	 v	�j� i
 for all j � �� � � � � n� in order to keep the unit �j from being

a�ected by the units i� Further� the unit �j receives the state y�t���j from j while the
unit �j computes its negation� In reverse� �j� �j cannot in�uence j since the respective
weights ���� are too small in comparison with bias v	�� j
 � �wj	  � 	recall that
the original asymmetric weights wji are integers
� In the meantime� the remaining
units �j� �j� �j� �j are passive 	have states close to �
� and the underlying subnetwork
is temporarily stable�

The update of the simulated discrete state in the continuous�time network� i�e�
replacing the old state y

�t�
j in �j 	and �j
 by the new state y

�t���
j from j� is controlled

by pulses from the clock� This process is initiated by the activity of counter bit c��
and concluded by the subsequent activity of b� which compensates the in�uence of
c� on �j� �j� The size of the parameter W � 	�u  �
n in Figure ��� ensures that
the states of the counter units c�� b� are not a�ected by the weights originating in
the �j or �j units active in the n subnetworks� Note that the units c� and b� in the
above�described 	n  �
�bit counter �re �n times� which is su�cient to simulate any
convergent computation on a discrete neural network of size n�

�



Thus� for y
�t���
j � � the unit �j gets activated and this� together with the support

from c�� induces the unit �j to �re� The signal from �j is further propagated following
the non�increasing sequence of weights and biases via the synchronizing unit �j up to
�j� �j making them active as required�

In the opposite case when y
�t���
j � �� unit �j gets activated and this� together with

the support from c�� induces the unit �j to �re� Further� the unit �j sends the signal
to �j� and this inhibits �j� �j by means of su�ciently negative weights so that they are
passive� as required�

In the meantime� b� locks the channels via �j � �j� Finally� the new discrete state

y
�t���
j is computed by j and the subnetwork is stable until b� �res again�

� Convergence Time Analysis

The 	n  �
�bit continuous�time clock network from Section �� which consists of r �
�n  � units� can be exploited to achieve a lower bound on the convergence time of
continuous�time networks� For this purpose� the duration of a gradual state transition
from � to � of the unit c	 will be estimated� During its state growth the in�uence of
the remaining units on c	 is balanced� and may be neglected in order to simplify our
analysis� Thus� the state evolution of c	 in continuous time� denoted by y	t
� can be
described by the following di�erential equation with the initial condition y	�
 � ��

dy

dt
	t
 � �y	t
  �	� 	�  �
y	t

 	���


whose solution can explicitly be expressed as follows�

y	t
 �

�
e	t � � for � � t � t�
�� �e���	�t��t for t � t�

	���


where t� � 	���
 ln	��	�  �

 and y	t�
 � 	� � �
�	�  �
� Hence� for a small � � �
the respective state transition takes time at least t� � �	���
 which� together with the
fact that the unit c	 �res �n times before the 	n �
�bit clock converges� provides the
desired lower bounds �	�n��
 � �	�r����
 on the convergence time�

Now� we will express this bound in terms of the size M in bits of the network
representation� First� consider the integer part of the weight parameter representation
excluding fractions �� By induction� the maximum integer weight parameter in the
clock is of order �O�r�� This corresponds to O	r
 bits per weight that is repeated O	r�

times� and thus yields at most O	r�
 bits in the representation� In addition� the biases
and feedbacks of the r units include the fraction �� and taking this into account requires
�	r log	���

 additional bits� say at least �r log	���
 bits for some constant � 	 ��

By choosing � � ��f�r���
r� in which f is a continuous increasing function whose
inverse is de�ned as f��	�
 � ��g	�
� where g is an arbitrary function such that g	�
 �
�	����
 	implying f	r
 � �	r�

 and g	�
 � o	�
� we getM � �	f	r

� especiallyM �
f	r
 from M � �r log	���
� Finally� the convergence time �	�r����
 can be translated
to �	�f�r���
r��r��
 � ���f�r��r� which can be rewritten as ���M�f���M�� � ���g�M�� since
f	r
 � �	M
 from M � �	f	r

 and f��	M
 � r from M � f	r
�
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On the other hand� by the Liapunov property the discrete�time binary Hop�eld
network with n neurons and an N � �	n�
�bit representation converges after at most

O	�n
 update steps� which gives a convergence time upper bound of �O�
p
N�� The

continuous�time implementation actually yields better bounds ���g�M�� for any g	M
 �
�	M���
 up to g	M
 � o	M
 than the discrete�time one� assuming that a time interval
between two subsequent discrete updates corresponds to a continuous time unit�

� A Simulation Example

A computer program HNGEN has been created to automate the construction from
Section �� The input for HNGEN is a text �le containing the asymmetric weights
and biases of the discrete neural network� as well as its initial state� The program
generates the corresponding system 	���
 of di�erential equations� together with the
respective initial conditions in the form of a FORTRAN subroutine which describes the
continuous�time dynamics of the analog Hop�eld net that simulates the given discrete
network� This FORTRAN procedure is then presented to a powerful numerical solver
UFO ��� that provides the user with a numerical solution for the respective system
	���
� i�e� it draws the graphs of the state evolution in time for selected analog units�

By using the program HNGEN� the construction from Section � has been success�
fully tested on several examples� Consider e�g� a simple discrete asymmetric neural
network which is an oriented cycle of � neurons with all the weights � and biases ���
Now� for the initial state including exactly one active neuron� the signal is propagated
through the cycle in a circle� Eight 	��
 steps of this computation were simulated by
the respective continuous�time Hop�eld network with �� units and � � ���� The state
evolution of the corresponding � analog units ��� ��� �� together with the counter bit c�
is shown in Figure ����

� Conclusions and Open Problems

We have proved that an arbitrary discrete�time binary network can be simulated by a
symmetric continuous�time network with only a linear increase in the network size� The
existence of a Liapunov function for symmetric networks precludes the existence of un�
damping oscillations in the continuous�time system� but nevertheless our construction
relies heavily on the �nite sequence of clock pulses generated by the continuous�time
counter subnetwork�

From the point of view of understanding analog computation in general this tech�
nique is somewhat unsatisfying� since we are still basically discretizing the continuous�
time computation� It would be most interesting to develop some theoretical tools 	e�g�
complexity measures� reductions� universal computation
 for �naturally� continuous�
time computations that exclude the use of discretizing oscillations�

Another challenge for further research is to prove upper bounds on the power of
continuous�time networks� Note that in the case of discrete�time analog�state networks
a single �xed�size network with rational�number parameters can be computationally
universal� i�e� able to simulate a universal Turing machine on arbitrary inputs �����
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Figure ���� Simulation of a discrete ��neuron cycle network

For example� can this strong universality result be generalized for continuous�time
networks Also� we have established an exponential lower bound on the convergence
time of symmetric continuous�time networks� can a matching upper bound be proved�
or the lower bound be increased 
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