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Abstract

We investigate the computational power of continuous-time symmetric Hopfield nets.
Since the dynamics of such networks are governed by Liapunov (energy) functions, they
cannot generate infinite nondamping oscillations, and hence cannot simulate arbitrary
(potentially divergent) discrete computations. Nevertheless, we prove that any conver-
gent fully parallel computation by a network of n discrete-time binary neurons, with
in general asymmetric interconnections, can be simulated by a symmetric continuous-
time Hopfield net containing 14n+6 units using the saturated-linear sigmoid activation
function. In terms of standard discrete computation models this result implies that
any polynomially space-bounded Turing machine can be simulated by a polynomi-
ally size-increasing sequence of continuous-time Hopfield nets. Similar techniques as
here yield corresponding results on the convergence time and computational power of
discrete-time Hopfield nets.
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1 Introduction

In his 1984 paper [5], John Hopfield introduced a continuous-time version of the very
influential associative memory model whose discrete-time version he had analyzed two
years earlier in [4]. Part of the appeal of Hopfield’s continuous-time model stems from
its efficient implementations in analog electrical [5] and optical [16] hardware. Besides
associative memory, proposed uses of continuous-time Hopfield nets include, e.g., fast
approximate solution of combinatorial optimization problems such as the traveling
salesman problem [6].

In this paper, we study the power of continuous-time Hopfield nets as general com-
putational devices. At first sight it would appear that the computational capabilities
of this model must be severely limited, because the dynamics of any continuous-time
Hopfield net NV is governed by a Liapunov, or “energy” function £ defined on its state
space. The values of F are bounded from below, and they are properly decreasing along
any nonconstant computation path of A'. A consequence of the Liapunov property is
that such a network A" always converges from any initial state towards some stable final
state, and in particular global nondamping oscillations of the network state are impos-
sible. The existence of a Liapunov function is a fundamental property of networks
whose interconnection weight matrix is symmetric, as required for both continuous-
and discrete-time Hopfield nets. More general asymmetric networks usually do not
behave in the simple manner guaranteed by this property.

Because of the Liapunov property, not even a single oscillating discrete-time neuron
can faithfully be simulated by a symmetric continuous-time Hopfield net. However, we
shall show that oscillations are the only feature that cannot be reproduced, in the
sense that any converging fully parallel computation by a network of n discrete-time
binary neurons, with in general asymmetric interconnections, can be simulated by a
symmetric continuous-time Hopfield net containing 14n 4 6 units using the saturated-
linear sigmoid activation function.

Observe, namely, that any converging computation by a discrete-time deterministic
network of n binary neurons must terminate within 2" steps. A basic technique used
in our proof is then the construction of an (n 4 2)-bit symmetric continuous-time clock
network (a simulated binary counter) that, using 5n + 6 units, produces a sequence
of 2" well-controlled oscillations (generated by the second least significant counter bit)
before it converges. This sequence of clock pulses is used to drive the rest of the network
where each discrete neuron is simulated by a symmetrically interconnected subnetwork
of 9 continuous-time units.

The clock network is already by itself of some interest from a dynamical systems
perspective, because it provides an explicit example of a Liapunov-type continuous-
time system whose convergence time grows exponentially in the system dimension.
More precisely, we shall show in Section 3 that the convergence time for an (n 4 1)-bit
clock network, which consists of r = 5n 4 1 units, is Q(2"/e) = Q(2'/°/¢), where &
is a parameter controlling the convergence rate of the system. In terms of bit repre-
sentations this bounds translates to a convergence time of 20 for a network with
an encoding size of M bits, where g(M) is an arbitrary continuous function such that

g(M) = o(M), g(M) = Q(M?/?), and M/g(M) is increasing. This can be compared



VM) for discrete Hopfield networks
with N-bit representations. Thus, the continuous-time implementation actually yields
better bounds than the discrete-time one, assuming that the time interval between two
subsequent discrete updates corresponds to a continuous time unit.

The predecessors of the present work are: a similar, but considerably simpler, con-

to a general convergence time upper bound of 2°

struction used in [10] to prove the computational equivalence of symmetric and asym-
metric discrete-time binary networks®, and the simulation of discrete-time networks
by asymmetric continuous-time networks in [12]. The original idea for the discrete-
time clock network used in [10], and on which our current construction is based, stems
from [3]. A general survey of topics in continuous-time computation is presented in [11].

As pointed out in [10], polynomial-size increasing sequences of discrete networks
are computationally equivalent to (nonuniform) polynomially space-bounded Turing
machines (more precisely, they compute the complexity class PSPACE/poly [1, p.
100]). By the result in the present paper, we now know that continuous-time symmetric
networks are at least as powerful, i.e. given any polynomially space-bounded Turing
machine, we can construct a polynomial-size sequence of continuous-time Hopfield nets
for simulating it.

A related line of study concerns the computational power of finite discrete-time
analog-state neural networks. Here it is known that the computational power of asym-
metric networks using the saturated-linear sigmoid activation function increases with
the Kolmogorov complexity of the weight parameters [2].* On the other hand, it is
known that any amount of analog noise reduces the computational power of this model
to that of finite automata [9].

In the present abstract we outline our proof construction, and give a simulation
example witnessing its validity. The formal verification of the correctness of the con-
struction requires a lengthy and tedious case analysis (similar, but more involved than
that in [12]), and will thus be deferred to the full version of the paper.

2 Constructing the Continuous-Time Network

First, we will briefly specify the model of a finite discrete recurrent neural network. The
network consists of n simple computational units or neurons, indexed as 1,...,n, that
are connected into a generally cyclic oriented graph or architecture, in which each edge
(,7) leading from neuron ¢ to j is labelled with an integer weight w(i,j) = w;;. The
absence of a connection within the architecture corresponds to a zero weight between
the respective neurons, and vice versa.

The synchronous computational dynamics of the network, working in fully parallel

mode, determines the evolution of the network state y® = (yy), . ,yff)) e {0,1}"

30ur present construction can actually also be used to improve the discrete-time simulation in [10],
which requires a symmetric network of Q(n?) units to simulate a convergent asymmetric network of
size n. Using the technique presented in Section 2, the simulation overhead can be reduced to 6n + 2
units in the discrete case.

With integer weights such networks are equivalent to finite automata [15], while with rational
weights arbitrary Turing machines can be simulated [14, 7]. With arbitrary real weights the networks
can even have “super-Turing” computational capabilities [13].



for all discrete time instants ¢ = 0,1,... as follows. At the beginning of a compu-
tation the network is placed in an initial state y'® which may include an external
input. At discrete time ¢ > 0, each neuron j = 1,...,n collects its binary inputs from
the states (outputs) y(t) € {0,1} of incident neurons ¢. Then its integer excitation

f;t) =", wjiyit (j =1,...,n) is computed as the respective weighted sum of inputs
including an integer bias w;o which can be viewed as a weight of the formal constant

(t)

unit input yy’ = 1. At the next instant ¢ + 1, an activation function, which in this case
(1)
J

by the following rule:

is the hard limiter or threshold function s, is applied to ¢
t+1)

for all neurons 5 =1,...,n
in order to determine the new network state y!

y](H_l) =5 (fj(t)) j=1,....n (2.1)

where

O=10 fnéz 22

Similarly, a finite continuous-time analog neural network is composed of m analog
units which operate (in our case) with the saturated-linear sigmoid activation function

1 for £>1
o()=<¢ & for 0<¢<1 (2.3)
0 for £<0.

Hence, the states of analog units are real numbers within the interval [0, 1], and the
weights (including biases), denoted by v(p,¢) (for units p, ¢) are reals as well. In
particular, we shall consider Hopfield (symmetric) networks, whose architecture is an
undirected graph with symmetric weights v(p, q¢) = v(q, p) for every p, g. The compu-
tational dynamics of a continuous-time network is defined for every real ¢ > 0 by the
following system of differential equations, with the initial network state y(0) providing
the initial conditions:

n

%(t) = —y,(t)+ (&) = —y(t) + o (Z v(p, q)yq(t)) p=1,....m. (24)

g=0

By a Liapunov function argument [5], it can be shown that a Hopfield network converges
from any initial state y(0) to some stable state satisfying dy,/dt = 0 for all p =
L,...,m. The set of stable states of the continuous-time system (2.4) coincides with
that of the discrete system (2.1).

Now, given a convergent discrete asymmetric neural network with n neurons, we
shall construct a computationally equivalent analog Hopfield network with m = 14n+6
continuous-time units. The analog network will be composed of an (n + 2)-bit binary
counter (clock) subnetwork consisting of 5n + 6 units, each starting at the zero initial
state, and n other subnetworks, each containing 9 analog units for the purpose of
simulating one discrete neuron.

The initial construction for a 2-bit counter is presented in Figure 2.1, where the
symmetric connections between units are labelled with the respective weights, and the
biases are indicated by the edges drawn without an originating unit.
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Figure 2.1: A continuous-time 2-bit counter network

The counter bit ¢y of order 0 starts its excitation with a bias v(0,¢g) = ¢ > 0 which
is a small (e.g. € < 0.1) optional parameter that also determines the time overhead of
the simulation. Because of its feedback weight v(cg, ¢o) = 14 ¢ the state of ¢y gradually
grows towards saturation at value 1, at which time (more precisely, when the state of ¢
is “sufficiently close” to 1) we say that the unit is active or fires. This trick of gradual
transition from 0 to 1 is used repeatedly throughout the analog network construction.
The operation of the remaining units in Figure 2.1, which are of order 1, is the same as
that of the units of a higher order k£ > 1 whose inductive description and explanation
follows (although the definition of weights is slightly different).

Thus, suppose that the counter has been constructed up to the first & < n + 2
counter bits ¢y, ..., cr_1, and denote by Py the set of all its mj = 5k — 4 units, includ-
ing the auxiliary ones labelled ay, x4, by, z¢, for { = 1,... k — 1. Then, the counter unit
¢r with a feedback weight v(ck,cx) = 1+ ¢, is connected to all my units p € Py via
weights v(p,c;) = 1 which, together with its bias v(0,¢;) = —my + &, make ¢; to fire
shortly after all these units are active (including the first & counter bits ¢g, ..., cr_1
which means that counting from 0 to 2¥ — 1 has been accomplished). Further, the unit
¢ is connected to a sequence of 4 auxiliary units ag, 2y, by, z; (all having feedbacks
1 4 ¢) which are being, one by one, activated after ¢; fires. This is implemented by
the following weights v(ck, ar) = my, v(ag, xx) = Vi (specified below), v(xy, by) = 1,
v(bg, zx) = Vi — my, and biases v(0,ar) = —myg + ¢, v(0,25) = v(0,b;) = —1 + ¢,
v(0, z;) = my — Vi +&. The units ag, by only slow down the continuous-time state flow
in order to synchronize the computation. The unit xj resets all the units in P to their
initial zero states. For this purpose, xj is further connected to each p € Py via a suffi-
ciently large negative weight v(zy,p) < 0 such that —v(wy, p) > 14+ cpv(gp)>0 V(4 P)
exceeds their mutual positive influence (including the weight v(¢g, p) = 1). This also de-
termines the above-mentioned large positive weight parameter Vi, = 1 =3 cp, v(s, p)
that makes the state of xj (similarly for zj) independent of the outputs from p € Pj.
Finally, the unit z; balances the influence of a3 on Pi. so that the first & counter bits
can again count from 0 to 2% — 1 but now with ¢; being active. This is achieved by the
weight v(zg, p) = —v(ag, p) — 1 for each p € Py in which —1 compensates v(cg, p) = 1.
This completes the induction step.
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Figure 2.2: A continuous-time simulation of a discrete neuron

Furthermore, in Figure 2.2 a 9-unit symmetric analog subnetwork is depicted for

simulating one neuron j from the discrete network. The output y](t) of the binary-state
neuron at discrete time instant ¢ > 0 is represented by the state of analog unit p;,
whose state is momentarily stabilized by the support from unit 7; that doubles this
state.
](H_l) of j at discrete time ¢ + 1 is computed in a unit 7; that is
connected to the appropriate units p; from the other subnetworks, as required by the
original discrete network, via slightly adjusted weights v(o;,7;) = 8w(i,j) (including
the bias v(0,7;) = 8w(0,7) +4).

The parameter u is chosen as the maximum value of Z?:l.v(gj Ti)>0v(gj,Ti) and

The new output y

_Z?Zl;v(gj,Ti)<0v(Qj7Ti) for all j = 1,...,n, in order to keep the unit p; from being

](H_l) from 7; while the

unit w; computes its negation. In reverse, x;,w; cannot influence 7; since the respective

affected by the units 7;. Further, the unit y; receives the state y

weights 2, —3 are too small in comparison with bias v(0,7;) = 8w;o + 4 (recall that
the original asymmetric weights wj; are integers). In the meantime, the remaining
units «;, 3;,7;,0; are passive (have states close to 0), and the underlying subnetwork
is temporarily stable.

The update of the simulated discrete state in the continuous-time network, i.e.

(
J

by pulses from the clock. This process is initiated by the activity of counter bit ¢y,

replacing the old state y](t) in p; (and 7;) by the new state y Y from 7;, 1s controlled
and concluded by the subsequent activity of b; which compensates the influence of
¢1 on aj,3;. The size of the parameter W = (3u 4 6)n in Figure 2.1 ensures that
the states of the counter units ¢y, b; are not affected by the weights originating in
the «; or f3; units active in the n subnetworks. Note that the units ¢; and by in the
above-described (n + 2)-bit counter fire 2" times, which is sufficient to simulate any
convergent computation on a discrete neural network of size n.



Thus, for y](tﬂ) = 1 the unit y; gets activated and this, together with the support
from ¢y, induces the unit «; to fire. The signal from «; is further propagated following
the non-increasing sequence of weights and biases via the synchronizing unit ~; up to

0j, m; making them active as required.

](,H'l) = 0, unit w; gets activated and this, together with

the support from ¢;, induces the unit 3; to fire. Further, the unit 3; sends the signal

In the opposite case when y

to ¢;, and this inhibits p;, 7; by means of sufficiently negative weights so that they are
passive, as required.
In the meantime, b; locks the channels via «;, 3;. Finally, the new discrete state

(t+2)

y; is computed by 7; and the subnetwork is stable until b; fires again.

3 Convergence Time Analysis

The (n + 1)-bit continuous-time clock network from Section 2, which consists of r =
5n + 1 units, can be exploited to achieve a lower bound on the convergence time of
continuous-time networks. For this purpose, the duration of a gradual state transition
from 0 to 1 of the unit ¢y will be estimated. During its state growth the influence of
the remaining units on ¢y is balanced, and may be neglected in order to simplify our
analysis. Thus, the state evolution of ¢ in continuous time, denoted by y(t), can be
described by the following differential equation with the initial condition y(0) = 0:

y

(1) = (1) +ole + (1+2)y(0) (3.1)

whose solution can explicitly be expressed as follows:

y(t) =

et < <
{ e 1 for 0<t<t; (3.2)

1 — ettt for ¢ > ¢,

where t; = (1/e)In(2/(1 + ¢)) and y(t1) = (1 —¢)/(1 4+ ). Hence, for a small ¢ < 1
the respective state transition takes time at least ¢; = Q(1/e) which, together with the
fact that the unit ¢ fires 2" times before the (n + 1)-bit clock converges, provides the
desired lower bounds Q(2"/c) = Q(2"/5 /) on the convergence time.

Now, we will express this bound in terms of the size M in bits of the network
representation. First, consider the integer part of the weight parameter representation
excluding fractions . By induction, the maximum integer weight parameter in the
clock is of order 2°("), This corresponds to O(r) bits per weight that is repeated O(r?)
times, and thus yields at most O(r?) bits in the representation. In addition, the biases
and feedbacks of the r units include the fraction ¢, and taking this into account requires
O(rlog(1l/e)) additional bits, say at least xrlog(1/e) bits for some constant £ > 0.

By choosing ¢ = 277/(0/(*") in which f is a continuous increasing function whose
inverse is defined as f~'(u) = p/g(p), where g is an arbitrary function such that g(u) =
Q(p?1%) (implying f(r) = Q%)) and g(s) = o(u), we get M = O(f(r)), especially M >
f(r) from M > krlog(1/¢). Finally, the convergence time Q(27/° /&) can be translated
to Q(2/0)/ () tr/5y = 99U/ ()/7) which can be rewritten as 2%M/77 (M) = 92s(M)) gince
f(r) = QM) from M = O(f(r)) and f~H(M) > r from M > f(r).

6



On the other hand, by the Liapunov property the discrete-time binary Hopfield
network with n neurons and an N = Q(n?)-bit representation converges after at most
O(2") update steps, which gives a convergence time upper bound of 20VN) " The
continuous-time implementation actually yields better bounds 2% for any ¢(M) =
Q(M?3) up to g(M) = o(M) than the discrete-time one, assuming that a time interval
between two subsequent discrete updates corresponds to a continuous time unit.

4 A Simulation Example

A computer program HNGEN has been created to automate the construction from
Section 2. The input for HNGEN is a text file containing the asymmetric weights
and biases of the discrete neural network, as well as its initial state. The program
generates the corresponding system (2.4) of differential equations, together with the
respective initial conditions in the form of a FORTRAN subroutine which describes the
continuous-time dynamics of the analog Hopfield net that simulates the given discrete
network. This FORTRAN procedure is then presented to a powerful numerical solver
UFO [8] that provides the user with a numerical solution for the respective system
(2.4), i.e. it draws the graphs of the state evolution in time for selected analog units.

By using the program HNGEN, the construction from Section 2 has been success-
fully tested on several examples. Consider e.g. a simple discrete asymmetric neural
network which is an oriented cycle of 3 neurons with all the weights 1 and biases —1.
Now, for the initial state including exactly one active neuron, the signal is propagated
through the cycle in a circle. Eight (2°) steps of this computation were simulated by
the respective continuous-time Hopfield network with 48 units and ¢ = 0.1. The state
evolution of the corresponding 3 analog units g1, g2, g3 together with the counter bit ¢
is shown in Figure 4.1.

5 Conclusions and Open Problems

We have proved that an arbitrary discrete-time binary network can be simulated by a
symmetric continuous-time network with only a linear increase in the network size. The
existence of a Liapunov function for symmetric networks precludes the existence of un-
damping oscillations in the continuous-time system, but nevertheless our construction
relies heavily on the finite sequence of clock pulses generated by the continuous-time
counter subnetwork.

From the point of view of understanding analog computation in general this tech-
nique is somewhat unsatisfying, since we are still basically discretizing the continuous-
time computation. It would be most interesting to develop some theoretical tools (e.g.
complexity measures, reductions, universal computation) for “naturally” continuous-
time computations that exclude the use of discretizing oscillations.

Another challenge for further research is to prove upper bounds on the power of
continuous-time networks. Note that in the case of discrete-time analog-state networks
a single fixed-size network with rational-number parameters can be computationally
universal, i.e. able to simulate a universal Turing machine on arbitrary inputs [14].
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Figure 4.1: Simulation of a discrete 3-neuron cycle network

For example, can this strong universality result be generalized for continuous-time
networks? Also, we have established an exponential lower bound on the convergence
time of symmetric continuous-time networks: can a matching upper bound be proved,
or the lower bound be increased?
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