
Interactive System for Universal Functional Optimization (UFO) - Version 1998

Lukšan, Ladislav
1999

Dostupný z http://www.nusl.cz/ntk/nusl-33851

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 03.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-33851
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Interactive System for Universal Functional
Optimization �UFO� � Version ����

Ladislav Luk�san Jan Vl�cek

Technical report No� ���

January ����

Institute of Computer Science� Academy of Sciences of the Czech Republic
Pod vod�renskou v��� �� �	�
� Prague 	� Czech Republic

phone� ���
�� �		���� fax� ���
�� 	�	��	�
e�mail� uivt�uivt�cas�cz

INSTITUTE OF COMPUTER SCIENCE

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Interactive System for Universal Functional
Optimization �UFO� � Version ���� �

Ladislav Luk�san Jan Vl�cek

Technical report No� ���
January ����

Abstract

This report contains a description of the interactive system for universal functional
optimization UFO� version ����� A demonstration version which works up to �� vari	
ables can easily be obtained either by using the anonymous ftp
address ftp���ftp�
uivt�cas�cz�pub�msdos�ufo� �le UFOPC�ARJ or from the web homepage http���www�
uivt�cas�cz��luksan�software�

Keywords

�This work was supported under grant No� ����������	 given by the Czech Republic Grant Agency

Contents

�� Introduction to the UFO system �

���� Philosophy of the UFO system �

���� Execution of the UFO system �
���� The UFO environment �

�� Problems solved using the UFO system �
���� Speci�cation of variables ��
���� Speci�cation of the model function �dense problems� ��
���� Speci�cation of the model function �sparse problems� ��
��
� Objective functions for discrete approximation �

���� Speci�cation of the approximating functions �dense problems� ��
���� Speci�cation of the approximating functions �sparse problems� �
��� Objective functions for optimization of dynamical systems ��
��	� Speci�cation of the state functions ��
���� Speci�cation of the initial functions ��
�����Speci�cation of the subintegral function �

�����Speci�cation of the terminal function ��
�����Optimization with general constraints ��
�����Speci�cation of the constraint functions �dense problems� �
���
�Speci�cation of the constraint functions �sparse problems� ��
�����Additional speci�cations concerning optimization problems ��

�� Optimization methods in the UFO system �

���� Heuristic methods ��
���� Conjugate direction methods ��
���� Variable metric methods �
��
� Variable metric methods with limited storage ��
���� Modi�ed Newton methods ��
���� Truncated Newton methods �
�
��� Modi�ed Gauss�Newton methods for nonlinear least squares and nonlinear equations � � � � � � � � � �
�
��	� Quasi�Newton methods for nonlinear least squares and nonlinear equations �

���� Quasi�Newton methods with limited storage for nonlinear equations �
�
�����Truncated Newton methods for nonlinear equations �

�����Modi�ed Brent method for nonlinear equations �
	
�����Simplex type methods for linear programming problems �
	
�����Interior point methods for linear programming problems �
	
���
�Simplex type methods for quadratic programming problems �
�
�����Proximal bundle methods for nonsmooth optimization �
�
�����Bundle�Newton methods for nonsmooth optimization �
�
����Variable metric bundle methods for nonsmooth optimization ��
���	�Methods for minimax problems ��
�����Recursive quadratic programming methods for dense general nonlinear programming
problems ��

�����Recursive quadratic programming methods for sparse equality constrained nonlinear
programming problems ��

�����Methods for initial value problems for ordinary di�erential equations ��
�����Methods for direction determination ��
�����Methods for stepsize selection �	
���
�Methods for numerical di�erentiation ��
�����Methods for objective function evaluation in the case of dynamical systems optimization � � � � � � ��

�

�����Global optimization methods ��

� Input possibilities in the UFO system ��

��� The UFO control language ��

��� The batch mode �	

��� The text dialogue mode �

�
� The graphic dialogue mode �

�� Output possibilities in the UFO system �
���� Basic screen output �
���� Extended screen output �
���� Graphical screen output �
��
� Text �le output � 	�
���� User supplied output � 	�
���� Storing �nal results � 	�
��� Other output �les � 	�
��	� Error messages � 	�

�� Special tools of the UFO system � 	�
���� Checking external subroutines � 	�
���� Testing optimization methods � 	�
���� Interface to the CUTE collection � 		

� Applications of the UFO system �examples� ��
��� Optimization with simple bounds ��
��� Minimization of the sum of squares ��
��� Minimax approximation ��
�
� Nonsmooth optimization �

��� Optimization with linear constraints ��
��� Minimax approximation with linear constraints �
�� Optimization with nonlinear constraints �nonlinear programming� �	
�	� Global optimization ���
��� Large�scale optimization �sparse Hessian matrix� ���
����Large�scale optimization �sparse Jacobian matrix� ���
����Large�scale sum of squares optimization �sparse Jacobian matrix� ��

����Large�scale nonlinear equations ���
����Large�scale linear programming ��
��
�Large�scale quadratic programming ��	
����Large�scale optimization with linear constraints ���
����Large�scale optimization with nonlinear equality constraints ��

���Optimization of dynamical systems � general integral criterion ��
��	�Optimization of dynamical systems � special integral criterion ���
����Initial value problem for ordinary di�erential equations ���

	� Model examples for demonstration of graphic output ���
	��� Nonlinear regression ���
	��� Nonlinear minimax optimization ���
	��� Transformer network design ��
	�
� Global optimization ��
	��� Nonsmooth optimization ��	
	��� Nonlinear equations ��	
	�� Ordinary di�erential equations ���

�

	�	� The Lorenz attractor ���

References ���

Index of macrovariables ���

Appendix A� Demonstration of the full dialogue mode �
�

Appendix B� The BEL interpreter ���
B��� General description ���
B��� List of instructions ��

B��� Special characters ���
B�
� Description of instructions ���

Appendix C� Graphical screen output ��
C��� Nonlinear regression ��
C��� Nonlinear minimax optimization ��
C��� Transformer network design ��
C�
� Global optimization �
C��� Nonsmooth optimization �	
C��� Nonlinear equations ��
C�� Ordinary di�erential equations �	�
C�	� The Lorenz attractor �	�

�

�� Introduction to the UFO system

The universal functional optimization �UFO� system is an interactive modular system for solving both
dense medium�size and sparse large�scale optimization problems� The UFO system can be used for the
following applications�

�� Formulation and solution of particular optimization problems that are described in chapter ��

�� Preparation of specialized optimization routines �or subroutines� based on methods described in
chapter ��

�� Designing and testing new optimization methods� The UFO system is a very useful tool for opti�
mization algorithms development�

The special realization of the UFO system described in the subsequent text makes this system portable
and extensible and we continue with its further development�

���� Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems� An
optimization problem solution is processed in four phases� In the �rst phase the optimization problem is
speci�ed and an optimization method is selected� This can be made in three di�erent ways�

�� The full dialogue mode� The problem speci�cation and the method selection are realized by using
a conversation between the user and the UFO system�

�� The batch mode� The problem speci�cation and the method selection are realized by using the
UFO control language� An input �le written in the UFO control language has to be prepared and
stored�

�� The combined mode� Only a part of the speci�cation is written in the input �le� The rest of the
speci�cation is obtained as in the dialogue mode� This possibility is usually the best one since the
problem functions can be de�ned beforehand by using a convenient text editor�

The second phase is realized by using the UFO preprocessor� This preprocessor is written in the Fortran
 language and its output is a Fortran control program� This conception is very advantageous for
the following reasons�

�� The Fortran �full ANSI norm� is a su�ciently high and portable programming language� More�
over� this language is very suitable for numerical computations� and a broad class of subroutines is
available in this �eld�

�� A control program� generated by the UFO preprocessor� calls for necessary modules only and
its speci�cation is very easy� Moreover� control program global declarations are determined by
the problem size� which decreases storage requirements� This way overcomes an impossibility of
dynamical declarations in the Fortran language�

�� The UFO system is open� When a new class of optimization problems or optimization methods
has to be included� one only needs to change the system templates and prepare new modules� The
control program is composed of individual modules by using speci�cations in the �rst phase� This
fact allows us to create a great number of various optimization methods and their modi�cations�

In the third phase� the control program is translated by using a Fortran compiler and a �nal program
is linked by using library modules� In the fourth phase� the �nal program is executed and thus results
which can be viewed by using extensive output means are obtained�

The above conception is enabled by a special form of source modules� These modules usually consist
of two parts� the interface template and the Fortran realization� The interface template is used by
the UFO preprocessor only and it serves for the control program generation �the part of control program
corresponding to a given module is coded in the template�� These templates also contain knowledge
bases for an automatic selection of the optimization method� If the UFO system has to be extended then
usually only templates� which do not need to be compiled� are changed� Besides interface templates�
which are a part of source modules� special templates controlling the UFO preprocessor exist� A batch
input �le written in the UFO control language is one of these special templates�
The UFO macroprocesor works in two stages� In the �rst pass� the �le P�TMP is created� This �le is

a control program ancestor containing some macroinstructions and macrovariables which are replaced in
the second pass� The control program P�FOR is the result of the second pass�

���� Execution of the UFO system

The UFO system contains three basic procedures GENER�BAT� COMPIL�BAT and UFOGO�BAT� The UFO
preprocessor is called if the statement

GENER input name

is typed� Then the control program P�FOR� written in the Fortran language� is obtained� Furthermore�
the compilation of the control program P�FOR� followed by its loading and executing� is started if the
statement

COMPIL output name

is typed� Finally� all the UFO system phases are performed if the statement

UFOGO problem name

is typed� Here input name is the �rst part of the batch �le name input name�UFO that is used as
a batch input for the control program generation� output name is the �rst part of the text �le name
output name�OUT that is used as a text output from the UFO system and problem name is the �rst
part of both the batch �le name problem name�UFO and the text �le name problem name�OUT� If GENER
and UFOGO statements do not contain a �le name speci�cation� then a full dialogue mode is considered
�the batch �le name is STANDARD�UFO in this case� and the standard text �le name is P�OUT� If COMPIL
statement does not contain a �le name speci�cation� then the standard text �le name is P�OUT� The
UFOGO statement has the same meaning as two consecutive statements GENER and COMPIL�
First we show how the batch mode proceeds� We suppose that the model function has the form

fF �x� � ����x�� � x��
� � �x� � ��

�

�the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we prepare the batch
input �le P�UFO of the form

�SET�INPUT�

X�������	D
� X�	�� ��
D

�ENDSET

�SET�FMODELF�

FF���
D	��X�����	�X�	����	�X������
D
���	

�ENDSET

�NF�	

�NOUT��

�BATCH

�STANDARD

and type the statement UFOGO P�UFO� then the following results appear in the output �le P�OUT

�

 NIT� �� NFV� ��� NFG�
 NDC�
 NCG�
 F� �	��D��� G� ����D�
�

FF� �	���
��
�
D���

X � �����������D

 �����������D

TIME�
�

�

���

Batch �les are written in the UFO control language� This language is described in section
��� Here
we note that a certain experience with the UFO control language can be obtained by using the demo��les
PROB
��UFO�� � �� PROB���UFO� These demo��les contain �� test problems described in chapter � We can
solve them by using the statements UFOGO PROB
��� � �� UFOGO PROB���
Besides the batch mode� we can use the full dialogue mode� The full dialogue mode is started if we use

the statement UFOGO �without a batch input �le speci�cation�� Full dialogue modes �text and graphic�
are described in sections
�� and
�
� An example which demonstrates the text dialogue mode applied to
the Rosenbrock function is given in Appendix A�
Besides basic output �les� the UFO system produces additional �les which can contain some useful

information� A list of the most important UFO �les follows�

P�UFO � Batch input �le�
P�TMP � Temporary �le containing a control program ancestor generated in the �rst pass of the

UFO macroprocessor�
P�FOR � Control program generated in the second pass of the UFO macroprocessor�
P�OUT � Text input �le�
P�DAT � Stored values of problem variables�
P�DIM � Dimensions of basic problem vectors and matrices�
P�SIF � Messages of the SIF decoder�
P�I � Template given by the SIF decoder�

���� The UFO environment

The UFO environment can be used on personal computers �PC� with processors �	��
	���	�� with the
operating system MS DOS version ��� or higher and with the Microsoft Fortran Power Station compiler
version ����
The UFO environment is called by using the statement UFO �program UFO�EXE�� It is controlled by

using the �pull�down�menu� The mainmenu is activated by pressing key �F��� � The UFO environment
contains a source program editor whose control is similar to the Word Star editor and� therefore� to the
most commonly used source program editors under the MS DOS system �for example Turbo Pascal�� All
signi�cant statements of the source program editor are available from the UFO environment menu�
Since the UFO environment menu is clearly understood we do not describe it �the description is given

in ����� � We only show the usual way for operating input �les� When the batch mode input �le is
prepared by using the source program editor we press key �F��� and �nd the command Run� in the
UFO environment menu� This command starts the UFO preprocessor and its action corresponds to the
statement UFOGO �with the input �le which is loaded in the source program editor�� An easier possibility
is pressing keys �Alt���� Similarly� pressing keys �Alt��� has the same e�ect as the statement GENER
�with the input �le which is loaded in the source program editor�� Furthermore� if the control program
P�FOR is loaded in the source program editor� pressing keys �Alt��� has the same e�ect as the statement
COMPIL and pressing keys �Alt��� causes an exit from the UFO environment�

�

�� Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an
objective function F � Rn � R over a set X � Rn� The objective function can have several forms
determined using the macrovariable �MODEL�

�MODEL��FF� � General optimization� In this case

F �x� � �fF �x�

where fF � Rn � R is a real valued� so�called model function

�MODEL��FL� � Linear optimization� In this case

F �x� � � �fF �
nX
i��

gFi xi�

where fF � gFi � � � i � n� are real coe�cients�

�MODEL��FQ� � Quadratic optimization� In this case

F �x� � � �fF �
nX
i��

�gFi �
�

�

nX
j��

hFijxj�xi�

where fF � gFi � � � i � n�� hFij� � � i � n� � � j � n� are real coe�cients�

�MODEL��AF� � Sum of function minimization� In this case

F �x� �
nAX
k��

fAk �x�

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AQ� � Sum of square minimization� In this case

F �x� �
nAX
k��

jfAk �x�j
�

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��AP� � Sum of power minimization� In this case

F �x� �
nAX
k��

jfAk �x�j
r

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions

and � � r �� is a real exponent�

�MODEL��AM� � Minimization of maximum �minimax�� In this case

F �x� � max
��k�nA

jfAk �x�j

where fAk � R
n � R� � � k � nA� are real valued� so�called approximating functions�

�MODEL��DF� � Minimization of the general integral criterion with respect to the state equations� In
this case

F �x� �

Z tmax
A

tmin
A

fA�x� yA�x� tA�� tA� dtA � fF �x� yA�x� t
max
A �� tmax

A �

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fA � Rn�nE�� � R is a real valued� smooth� so�called subintegral function� fF �
Rn�nE�� � R is a real valued� smooth� so�called terminal function� fE � Rn�nE�� �
RnE is a real valued� smooth� so�called state function and fY � Rn � RnE is a real
valued� smooth� so�called initial function�

�MODEL��DQ� � Minimization of the sum of square integral criterion with respect to the state equa�
tions� In this case

F �x� �
�
�

Z tmax
A

tmin
A

nEX
i��

wE
i �tA��y

A
i �x� tA�� yEi �tA��

� dtA �
�
�

nEX
i��

wE
i �y

A
i �x� t

max
A �� yEi �

�

and

dyA�x� tA�
dtA

� fE �x� yA�x� tA�� tA�� y
A�x� tmin

A � � fY �x�

where fE � Rn�nE�� � RnE is a real valued� smooth� so�called state function and
fY � Rn � RnE is a real valued� smooth� so�called initial function�

�MODEL��NO� � Solving an initial value problem for a system of ordinary di�erential equations� In
this case

dyA�tA�
dtA

� fE �yA�tA�� tA�� y
A�tmin

A � � ymin
A

where fE � RnE�� � RnE is a real valued� smooth� so�called state function�

The objective function de�ned by the choice �MODEL��AQ� can be used for the solution to a system
of nonlinear equations

fAk �x� � �� � � k � nA

In this case we suppose nA � n� This case is considered separately� since for nA � n special methods can
be used for system of nonlinear equations�

The model function fF � Rn � R can have several types of Hessian matrices speci�ed by the
macrovariable �HESF�

�HESF��D� � Dense Hessian matrix�
�HESF��S� � Sparse Hessian matrix with a general pattern�
�HESF��N� � Hessian matrix is not used�

The default option is �HESF��D�� The approximating functions fAk � R
n � R� � � k � nA� can have

several types of Jacobian matrices speci�ed by the macrovariable �JACA�

�JACA��D� � Dense Jacobian matrix�
�JACA��S� � Sparse Jacobian matrix with a general pattern�

	

�JACA��N� � Jacobian matrix is not used�

If the approximating functions are used then we can choose several types of the Hessian matrix represen�
tation� These types are again speci�ed by the macrovariable �HESF�

�HESF��D� � Dense Hessian matrix�
�HESF��S� � Sparse Hessian matrix with a general pattern�
�HESF��B� � Sparse Hessian matrix with a partitioned pattern
�HESF��N� � Hessian matrix is not used�

If �JACA��D�� then it must be either �HESF��D� or �HESF��N�� If �JACA��S�� we can specify all types
of Hessian matrices ��HESF��D�� �HESF��S�� �HESF��B�� �HESF��N��� The representation �HESF��B�
usually leads to more expensive matrix operations� Therefore� we recommend to prefer the choice
�HESF��S� against the choice �HESF��B��

The subintegral function� the terminal function� the state function and the initial function� which
appeared in the case of dynamical systems optimization� are considered to be dense� Therefore we cannot
use the speci�cations �HESF��S� or �HESF��B� in this case�
The set X � Rn can be the whole Rn �unconstrained case� or de�ned by box constraints

xLi � xi if i � I�

xi � xUi if i � I�

xLi � xi � xUi if i � I�

xLi � xi if i � I�

where I� � I� � I� � I� � fi � N � � � i � ng� or by general linear constraints

cLk �
nX
i��

gCkixi if k � L�

nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi � cUk if k � L�

cLk �
nX
i��

gCkixi if k � L�

where gCki� � � k � nC � � � i � n� are real coe�cients and L� � L� � L� � L� � fk � N � � � k � nCg�
or by general nonlinear constraints

cLk � fCk �x� if k � N�

fCk �x� � cUk if k � N�

cLk � fCk �x� � cUk if k � N�

cLk � fCk �x� if k � N�

�

where fCk � R
n � R� � � k � nC� are real valued� smooth� so�called constraint functions and N� � N� �

N� �N� � fk � N � � � k � nCg� The constraint functions fCk � R
n � R� � � k � nC � can have several

types of Jacobian matrices speci�ed by the macrovariable �JACC�

�JACC��D� � Dense Jacobian matrix�
�JACC��S� � Sparse Jacobian matrix with a general pattern�

If �JACC��D�� then it must be �HESF��D� or �HESF��N�� If �JACC��S�� then it must be �HESF��S�
or �HESF��N��

There are several limitations in the current version of the UFO system�

�� Minimization of maximum �minimax� and nonsmooth optimization are not implemented in the
sparse case�

�� Minimization of dynamical systems is not implemented in the sparse case�

�� Usually the UFO system serves for local optimization� Global optimization can be used only for
relatively small �n � ��� dense problems that are unconstrained or contain box constraints�

These limitations will be consecutively removed in subsequent versions of the UFO system�
In the rest of this report we will use the notation NF� NA� NC instead of n� nA� nC and X� FF�X��

GF�X�� HF�X�� FA�KA�X�� GA�KA�X�� FC�KC�X�� GC�KC�X� instead of x� fF �x�� gF �x�� hF �x�� fAk �x��
gAk �x�� f

C
k �x�� g

C
k �x�� This new notation corresponds to that of the variables and of the �elds in the UFO

system�

���� Speci�cation of variables

First we must specify the number of variables using the statement �NF�number of variables� If there
are no box constraints we set �KBF��� In the opposite case we set �KBF�� or �KBF��� If �KBF��
or �KBF��� then

X�I� � unbounded � if IX�I� � �
XL�I� � X�I� � if IX�I� � �

X�I� � XU�I� � if IX�I� � �
XL�I� � X�I� � XU�I� � if IX�I� � �
X�I� � constant � if IX�I� � �

where �� I� NF� The option �KBF�� must be chosen if IX�I��� for at least one index �� I� NF� Then
two di�erent �elds XL�I� and XU�I�� �� I� NF are declared� In the opposite case we set �KBF�� and
only one common �eld XL�I��XU�I�� � � I� NF is declared�
The initial values of variables X�I�� �� I� NF� types of box constraints IX�I�� �� I� NF� and lower

and upper bounds XL�I� and XU�I�� �� I� NF� can be speci�ed using macrovariable �INPUT� The
default values are IX�I��� and XL�I��XU�I���� �� I� NF� For example�

�KBF��� �NF�

�SET�INPUT�
X����x�
X����x�� IX������ XL����xL�
X����x�� IX������ XL����xL� � XU����x

U
�

X�
��x�� IX�
���
�ENDSET

The UFO system allows us to use a scaling of variables �for instance if the values of variables di�er
very much in their magnitude�� We set�

��

�NORMF�� � Scaling parameters XN�I�� �� I� NF� are determined automatically so that
X�I��XN�I���� ��I�NF� for the initial values of variables�

�NORMF�� � Scaling parameters must be speci�ed by the user by means of the macrovariable
�INPUT�

The scaling of variables is recommended only in exceptional cases since it increases the computational
time and storage requirements� The scaling of variables is suppressed if �NORMF�� �this value is
default�� The scaling of variables is not permitted in the case of general constraints �if KBC����

���� Speci�cation of the model function �dense problems�

If the macrovariable �MODEL is not speci�ed or if �MODEL��FF�� then the objective function is
de�ned by the formula

F�X� � � FF�X� if �IEXT � � �minimization�
or

F�X� � � FF�X� if �IEXT � � �maximization�

Option �IEXT�� is default�
The model function FF�X� must be de�ned by the user either directly in the full dialogue mode� or

by using corresponding macrovariables in the batch �or mixed� mode� The value of the model function
is speci�ed by using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�
�for given values of variables X�I�� �� I� NF�

�ENDSET

The �rst derivatives of the model function are speci�ed by using the macrovariable �GMODELF�

�SET�GMODELF�
GF��� � derivative �FF�X�� �X���
GF��� � derivative �FF�X�� �X���
 !
GF�NF� � derivative �FF�X�� �X�NF�
�for given values of variables X�I�� ��I�NF�

�ENDSET
The second derivatives of the model function are speci�ed by using the macrovariable �HMODELF� If
�HESF��D�� the Hessian matrix is assumed to be dense and we specify only its upper half�

�SET�HMODELF�
HF��� � derivative ��FF�X�� � X����

HF��� � derivative ��FF�X�� �X����X���
HF��� � derivative ��FF�X�� �X����

HF�
� � derivative ��FF�X�� �X��� �X���
HF��� � derivative ��FF�X�� �X��� �X���
HF��� � derivative ��FF�X�� �X����

 !
HF�NF	�NF������ � derivative ��FF�X�� �X�NF��

�for given values of variables X�I�� ��I�NF�
�ENDSET

If the macrovariables �GMODELF or �HMODELF are not de�ned� we suppose that the �rst or the
second derivatives of the model function are not given analytically� In this case� they are computed
numerically by using the UFO system routines whenever it is required� If it is advantageous to compute
the �rst derivatives of the model function FF�X� together with its value� we can replace the set of models

��

�FMODELF� �GMODELF by the common model �FGMODELF� Similarly we can replace the set of
models �FMODELF� �GMODELF� �HMODELF by the common model �FGHMODELF�
To improve the e�ciency of the computation� we can specify additional information about the model

function FF�X�� The �rst piece of information� useful for an automatic choice of the optimizationmethod�
is the computational complexity speci�ed by the macrovariable �KCF�

�KCF�� � Evaluation of the model function FF�X� is very easy �it requires O�NF � simple
operations at most��

�KCF�� � Evaluation of the model function FF�X� is of medium complexity �it at least requires
O�NF � complicated operations and O�NF �� simple operations at most��

�KCF�� � Evaluation of the model function FF�X� is extremely di�cult �it at least requires
O�NF �� complicated or O�NF �� simple operations��

The option �KCF�� is default� An additional useful piece of information is the analytical complexity
�di�erentiability and conditioning�� which is speci�ed by the macrovariable �KSF�

�KSF�� � The model function FF�X� is smooth and well�conditioned�
�KSF�� � The model function FF�X� is smooth but ill�conditioned�
�KSF�� � The model function FF�X� is nonsmooth�

The option �KSF�� is default� Other speci�cations which can improve the computational e�ciency and
robustness of optimizationmethods are a lower bound of the objective function values and an upper bound
of the stepsize� Both these values depend on the de�nition of the objective function and can be speci�ed
by the statements �FMIN�lower bound �for the objective function� and �XMAX�upper bound �for the
stepsize�� We recommend a de�nition of �FMIN whenever it is possible and a de�nition of �XMAX
whenever the objective function contains exponentials�
If �MODEL��FL�� we suppose the model function to be linear of the form

FF�X� � FF �
NFX
I��

GF�I� 	X�I�

In this case we need not specify the value and the �rst derivatives of the model function by the macrovari�
ables �FMODELF and �GMODELF as in the general case� Instead� we must specify the coe�cients FF
�constant value� and GF�I�� �� I� NF� �constant gradient� using the macrovariable �INPUT�

�ADD�INPUT�
FF � constant value
GF��� � constant derivative �FF�X���X���
GF��� � constant derivative �FF�X���X���
 !
GF�NF� � constant derivative �FF�X���X�NF�

�ENDADD

If �MODEL��FL�� we usually assume that either box constraints or general linear constraints are given�
In this case the optimization problem is the linear programming problem�
If �MODEL��FQ�� we suppose the model function to be quadratic of the form

FF�X� � FF �
NFX
I��

GF�I� 	X�I� �
�

�

NFX
I��

NFX
J��

HF�K� 	X�I� 	X�J�

where K�MAX�I�J�	�MAX�I�J�������MIN�I�J�� In this case we need not specify the value� the �rst
derivatives and the second derivatives of the model function by the macrovariables �FMODELF� �GMOD�
ELF and �HMODELF as in the general case� The coe�cients FF �constant value� and GF�I�� �� I�
NF� �constant gradient� are speci�ed in the same way as in the linear case� The coe�cients HF�K�� ��
K� NF	�NF������ �the constant Hessian matrix� must be speci�ed using the macrovariable �INPUT�
If �HESF��D�� the Hessian matrix is assumed to be dense and we specify only its upper half�

��

�ADD�INPUT�
HF��� � constant derivative ��FF�X���X����

HF��� � constant derivative ��FF�X���X���� X���
HF��� � constant derivative ��FF�X���X����

HF�
� � constant derivative ��FF�X���X���� X���
HF��� � constant derivative ��FF�X���X���� X���
HF��� � constant derivative ��FF�X���X����

HF�NF"�NF������ � constant derivative ��FF�X���X�NF��

�ENDADD

If �MODEL��FQ�� we usually assume that either box constraints or general constraints are given� In
this case the optimization problem is the quadratic programming problem�
If the model function is linear or quadratic� then the options �KCF and �KSF need not be de�ned

since they are not used�

���� Speci�cation of the model function �sparse problems�

The UFO system contains optimization methods which take into account the sparsity pattern of the
Hessian matrix HF� This possibility decreases the computational time and storage requirements for large�
scale optimization problems� In this case we use the option �HESF��S� which means that the sparsity
pattern is speci�ed� All other speci�cations remain the same as in the case of dense problems� The sparsity
pattern of the Hessian matrix is speci�ed by using the macrovariable �INPUT� Two integer vectors IH
and JH are used where IH�I�� �� I� NF��� are pointers and JH�K�� �� K� M� are indices of nonzero
elements� Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in
rows� The number of nonzero elements must be speci�ed using the statement �M�number of elements�
The number of nonzero elements could be greater than is required �twice say� since it is used for the
declaration of working �elds� For example� if we have the Hessian matrix

HF �

�
BBB�

hF��� hF��� hF��� �� hF��
hF��� hF��� �� hF��� �
hF��� �� hF��� �� hF���
�� hF��� �� hF��� ��
hF��� �� hF��� �� hF��

�
CCCA

then we have to set�

�NF��
�M��� �the minimum required value is M����
�ADD�INPUT�
IH������ IH������ IH����
IH�
���� IH������� IH������
JH������ JH������ JH������ JH�
���� JH�����
JH����
� JH����� JH�	���� JH����
� JH������

�ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero�
As in the case of the dense problem� the second derivatives of the model function can be speci�ed by

using the macrovariable �HMODELF� If �HESF��S�� only nonzero elements of the upper half �including
the diagonal� of the Hessian matrix are speci�ed� For the above example the speci�cation has the form�

��

�SET�HMODELF�
HF����hF��� HF����h

F
��� HF����h

F
��� HF�
��h

F
��

HF����hF��� HF����h
F
��� HF���h

F
��� HF�	��h

F
��

HF����hF��� HF�����h
F
��

�ENDSET

If the model function is quadratic �i�e� if �MODEL��FQ�� and if �HESF��S�� then the coe�cients
HF�K�� �� K� M� �constant sparse Hessian matrix� must be speci�ed by using the macrovariable �IN�
PUT� If the matrix given in the above example is the constant sparse Hessian matrix� we use the following
speci�cation�

�ADD�INPUT�
HF����hF��� HF����h

F
��� HF����h

F
��� HF�
��h

F
��

HF����hF��� HF����h
F
��� HF���h

F
��� HF�	��h

F
��

HF����hF��� HF�����h
F
��

�ENDADD

���� Objective functions for discrete approximation

If we set �MODEL��AF�� then we suppose that the objective function F�X� has this form�

F�X� �
NAX

KA��

FA�KA�X� if KBA � �

or

F�X� �
NAX

KA��

AW�KA� 	 �FA�KA�X� �AM�KA�� if KBA � �

where FA�KA�X�� �� KA� NA� are approximating functions� This form of the objective function is
very useful in large�scale optimization when the approximating functions FA�KA�X�� �� KA� NA� are
assumed to have sparse gradients�
If we set �MODEL��AP�� then we suppose that the objective function F�X� has this form�

F�X� �
�

R

NAX
KA��

jFA�KA�X�j 	 	R if KBA � �

or

F�X� �
�

R

NAX
KA��

jAW�KA� 	 �FA�KA�X� �AM�KA��j 	 	R if KBA � �

where FA�KA�X�� �� KA� NA� are approximating functions� and R�� is a real exponent� The value
of the exponent is speci�ed by the choice �REXP�R �default value is �REXP���� Since the most used
value of the exponent is R��� and since the computations are the simplest and the most e�cient for such
a choice� we can use the speci�cation �MODEL��AQ� in this case �minimization of the sum of squares��
Moreover� �MODEL��AQ� is formally set whenever we choose �MODEL��AP� and �REXP���
If we set �MODEL��AM�� then we suppose that the objective function F�X� has the form�

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

F�X� � max
��KA�NA

�jFA�KA�X�j� if �IEXT � �

�

F�X� � max
��KA�NA

��FA�KA�X�� if �IEXT � ��

for �KBA��� or

F�X� � max
��KA�NA

��AW�KA� 	 �FA�KA�X� �AM�KA��� if �IEXT � ��

F�X� � max
��KA�NA

�jAW�KA� 	 �FA�KA�X� �AM�KA��j� if �IEXT � �

F�X� � max
��KA�NA

��AW�KA� 	 �FA�KA�X� �AM�KA��� if �IEXT � ��

for �KBA��� where FA�KA�X�� �� KA� NA� are approximating functions� The default value is
�IEXT�� �the minimax or the Chebyshev approximation��
The option �KBA serves as a decision between a simple objective function and a more complicated

one� The simple objective function uses no additional �elds while the more complicated one uses two
additional �elds at most� AM and AW� Vector AM usually contains frequently used observations which
can be included into the functions FA�KA�X�� �� KA� NA� in the case of the simple objective function�
Observations AM�KA�� �� KA� NA� are speci�ed by using the macrovariable �INPUT� Their default
values are AM�KA���� �� KA� NA� Vector AW serves for possible scaling speci�ed by the option
�NORMA�

�NORMA�� � No scaling is performed� In this case AW�KA���� �� KA� NA�
�NORMA�� � Scaling parameters are determined automatically so that AW�KA��jAM�KA�j� ��

KA� NA�
�NORMA�� � Scaling parameters must be speci�ed by the user by means of the macrovariable

�INPUT�

The number of approximating functions NA must be speci�ed� in all the above cases� by using the
statement �NA�number of functions�

��	� Speci�cation of the approximating functions �dense problems�

The approximating functions FA�KA�X�� �� KA� NA� must be de�ned by the user either directly in
the full dialogue mode or by using corresponding macrovariables in the batch �or mixed� mode� The values
of the approximating functions are speci�ed by using the macrovariables �FMODELA or �FMODELAS�

�SET�FMODELA�
FA � value FA�KA�X�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�FMODELAS�
AF��� � value FA���X�
AF��� � value FA���X�
 !
AF�NA� � value FA�NA�X�

�ENDSET

The �rst derivatives of the approximating functions are speci�ed by using the macrovariables �GMOD�
ELA or �GMODELAS�

��

�SET�GMODELA�
GA��� � derivative �FA�KA�X���X���
GA��� � derivative �FA�KA�X���X���
 !
GA�NF� � derivative �FA�KA�X���X�NF�
�for a given index KA and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�GMODELAS�
AG��� � derivative �FA���X���X���
AG��� � derivative �FA���X���X���
 !
AG�NF� � derivative �FA���X���X�NF�
AG�NF��� � derivative �FA���X���X���
AG�NF��� � derivative �FA���X���X���
 !
AG�NA	NF� � derivative �FA�NA�X���X�NF�

�ENDSET

The second derivatives of the approximating functions are speci�ed by using the macrovariables �HMOD�
ELA or �HMODELAS� If �JACA��D�� the Hessian matrices are assumed to be dense and we specify only
their upper half�

�SET�HMODELA�
HA��� � derivative ��FA�KA�X���X����

HA��� � derivative ��FA�KA�X���X����X���
HA��� � derivative ��FA�KA�X���X����

HA�
� � derivative ��FA�KA�X���X����X���
HA��� � derivative ��FA�KA�X���X����X���
HA��� � derivative ��FA�KA�X���X����

 !
HA�NF	�NF������ � derivative ��FA�KA�X���X�NF��

�for a given index KA and given values of variables X�I�� �� I� NF�
�ENDSET

or

�SET�HMODELAS�
AH��� � derivative ��FA���X���X����

AH��� � derivative ��FA���X���X����X���
AH��� � derivative ��FA���X���X����

AH�
� � derivative ��FA���X���X����X���
AH��� � derivative ��FA���X���X����X���
AH��� � derivative ��FA���X���X����

 !
AH�NF	�NF������ � derivative ��FA���X���X�NF��

AH�NF	�NF�������� � derivative ��FA���X���X����

AH�NF	�NF�������� � derivative ��FA���X���X����X���
AH�NF	�NF�������� � derivative ��FA���X���X����

 !
AH�NA	NF	�NF������ � derivative ��FA�NA�X���X�NF��

�ENDSET

��

If the macrovariables �GMODELA and �GMODELAS or �HMODELA and �HMODELAS are not
de�ned� we suppose that the �rst or the second derivatives of the approximating functions are not given
analytically� In this case� they are computed numerically by using the UFO system routines� when�
ever it is required� If it is advantageous to compute the �rst derivatives of the approximating functions
FA�KA�X�� �� KA� NA� together with their values� we can replace the set of models �FMODELA�
�GMODELA by the common model �FGMODELA and the set of models �FMODELAS� �GMODE�
LAS by the common model �FGMODELAS� Similarly we can replace the set of models �FMODELA�
�GMODELA� �HMODELA by the commonmodel �FGHMODELA and the set of models �FMODELAS�
�GMODELAS� �HMODELAS by the common model �FGHMODELAS�
To improve the e�ciency of the computation� we can specify additional information about the approx�

imating functions FA�KA�X�� �� KA� NA� The �rst piece of information� useful for an automatic choice
of the optimization method� is the computational complexity speci�ed by the macrovariable �KCA�

�KCA�� � Evaluations of the approximating functions FA�KA�X�� �� KA� NA� are very easy
�they require O�NF � simple operations at most��

�KCA�� � Evaluations of the approximating functions FA�KA�X�� �� KA� NA� are of medium
complexity �they at least require O�NF � complicated operations and O�NF �� simple
operations at most��

�KCA�� � Evaluations of the approximating functions FA�KA�X�� �� KA� NA� are extremely
di�cult �they at least require O�NF �� complicated or O�NF �� simple operations��

The option �KCA�� is default� An additional useful piece of information is the analytical complexity
�conditioning� which is speci�ed by the macrovariable �KSA�

�KSA�� � The approximating functions FA�KA�X�� �� KA� NA� are smooth and well�
conditioned�

�KSA�� � The approximating functions FA�KA�X�� �� KA� NA� are smooth but ill�
conditioned�

�KSA�� � The approximating functions FA�KA�X�� �� KA� NA� are nonsmooth�

The option �KSA�� is default�
If some of the approximating functions are linear and have the form

FA�KA�X� �
NFX
I��

AG��KA� �� 	NF� I� 	X�I�

we can specify them separately� Then the number of linear approximating functions must be speci�ed by
using the statement �NAL�number of linear functions �default value is �NAL���� We always suppose
that the �rst NAL approximating functions are linear� Then the coe�cients AG��KA���	NF�I�� �� KA�
NAL� �� I� NF� are speci�ed using the macrovariable �INPUT� and the macrovariables �FMODELA
or �FMODELAS� �GMODELA or �GMODELAS� �HMODELA or �HMODELAS are used only for the
speci�cation of the nonlinear approximating functions FA�KA�X�� NAL�KA� NA�

��
� Speci�cation of the approximating functions �sparse problems�

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix AG� This possibility decreases the computational time and storage requirements for large�
scale optimization problems� In this case we use the option �JACA��S� which means that the sparsity
pattern is speci�ed� All other speci�cations remain the same as in the case of dense problems� The
sparsity pattern of the Jacobian matrix is speci�ed by using the macrovariable �INPUT� Two integer
vectors IAG and JAG are used where IAG�KA�� �� KA� NA��� are pointers and JAG�K�� �� K�
IAG�NA������ are indices of nonzero elements� Nonzero elements are ordered by the gradients of the
approximating functions� The number of nonzero elements must be speci�ed by using the statement
�MA�number of elements� For example� if we have the gradients

�

GA���X� � �gA��� � � � � gA����

GA���X� � �� � gA��� � � gA����

GA���X� � �� � � � gA��� � ��

GA�
�X� � �gA��� g
A
��� g

A
��� � ��

GA���X� � �� � � � gA��� g
A
����

and the Jacobian matrix

AG�X� �

�
BBB�

gA�� � � � � � gA��
� � gA�� � � � gA��
� � � � gA�� � �
gA�� � gA�� � gA�� � �
� � � � gA�� � gA��

�
CCCA

then we have to set�

�NA��
�MA���
�ADD�INPUT�

IAG������ IAG������ IAG�����
IAG�
���� IAG������ IAG������
JAG������ JAG����
� JAG������ JAG�
��
� JAG�����
JAG������ JAG����� JAG�	���� JAG������ JAG�����

�ENDADD

As in the case of the dense problem� the �rst derivatives of the approximating functions can be speci�ed
by using the macrovariables �GMODELA or �GMODELAS� If �JACA��S�� only nonzero elements of the
gradients are speci�ed� For the above example the speci�cations have the form

�SET�GMODELA�
IF �KA�EQ��� THEN

GA��� � �FA���X���X���
GA�
� � �FA���X���X�
�

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X���X���
GA�
� � �FA���X���X�
�

ELSE IF �KA�EQ��� THEN
GA��� � �FA���X���X���

ELSE IF �KA�EQ�
� THEN
GA��� � �FA�
�X���X���
GA��� � �FA�
�X���X���
GA��� � �FA�
�X���X���

ELSE
GA��� � �FA���X���X���
GA�
� � �FA���X���X�
�

ENDIF
�ENDSET

�	

or

�SET�GMODELAS�
AG��� � �FA���X���X���
AG��� � �FA���X���X�
�
AG��� � �FA���X���X���
AG�
� � �FA���X���X�
�
AG��� � �FA���X���X���
AG��� � �FA�
�X���X���
AG�� � �FA�
�X���X���
AG�	� � �FA�
�X���X���
AG��� � �FA���X���X���
AG���� � �FA���X���X�
�

�ENDSET

As in the case of the dense problem� the second derivatives of the approximating functions can
be speci�ed by using the macrovariables �HMODELA or �HMODELAS� If �JACA��S�� only nonzero
elements of the Hessian matrices are speci�ed� For the above example the speci�cations have the form

�SET�HMODELA�
IF �KA�EQ��� THEN

HA��� � ��FA���X���X����

HA��� � ��FA���X���X����X�
�
HA��� � ��FA���X���X�
��

ELSE IF �KA�EQ��� THEN
HA��� � ��FA���X���X����

HA��� � ��FA���X���X����X�
�
HA��� � ��FA���X���X�
��

ELSE IF �KA�EQ��� THEN
HA��� � ��FA���X���X����

ELSE IF �KA�EQ�
� THEN
HA��� � ��FA�
�X���X����

HA��� � ��FA�
�X���X����X���
HA��� � ��FA�
�X���X����

HA�
� � ��FA�
�X���X����X���
HA��� � ��FA�
�X���X����X���
HA��� � ��FA�
�X���X����

ELSE
HA��� � ��FA���X���X����

HA��� � ��FA���X���X����X�
�
HA��� � ��FA���X���X�
��

ENDIF
�ENDSET

or

�SET�HMODELAS�
AH��� � ��FA���X���X����

AH��� � ��FA���X���X����X�
�
AH��� � ��FA���X���X�
��

AH�
� � ��FA���X���X����

AH��� � ��FA���X���X����X�
�
AH��� � ��FA���X���X�
��

AH�� � ��FA���X���X����

��

AH�	� � ��FA�
�X���X����

AH��� � ��FA�
�X���X����X���
AH���� � ��FA�
�X���X����

AH���� � ��FA�
�X���X����X���
AH���� � ��FA�
�X���X����X���
AH���� � ��FA�
�X���X����

AH��
� � ��FA���X���X����

AH���� � ��FA���X���X����X�
�
AH���� � ��FA���X���X�
��

�ENDSET

Note that the dimensions of arrays HA or AHmust be speci�ed by the statement �MHA�dimension of HA
or �MAH�dimension of AH�
If some of the approximating functions are linear �i�e� if �NAL��� and if �JACA��S�� then the

coe�cients AG�K�� �� K� IAG�NAL����� �constant part of the sparse Jacobian matrix�� must be
speci�ed by using the macrovariable �INPUT� If the matrix given in the above example is the constant
sparse Jacobian matrix� we use this speci�cation�

�ADD�INPUT�
AG����gA��� AG����g

A
��� AG����g

A
��� AG�
��g

A
��

AG����gA��� AG����g
A
��� AG���g

A
��� AG�	��g

A
��

AG����gA��� AG�����g
A
��

�ENDADD

There is another possibility which can be useful when all approximating functions are linear� It is based
on the usage of special procedure UKMAI� which serves for a direct input of individual Jacobian matrix
elements� The procedure UKMAI� is formally called by using the statement

CALL �UKMAI��K�I�GAKI� or �SETAG�K�I�GAKI�

where K is an index of a given approximating function �a row of the Jacobian matrix�� I is an index of
a given variable �a column of the Jacobian matrix�� and GAKI is the numerical value of the element
�FA�K�X���X�I�� For the example given above we can write�

�ADD�INPUT�
�SETAG�����gA���
�SETAG���
�gA���
�SETAG�����gA���
�SETAG���
�gA���
�SETAG�����gA���
�SETAG�
���gA���
�SETAG�
���gA���
�SETAG�
���gA���
�SETAG�����gA���
�SETAG���
�gA���

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the �elds IAG
and JAG beforehand�
If we use the option �JACA��S�� then we can specify a form of the objective function sparse Hessian

matrix� There are four possibilities�

��

�HESF��D� � Dense Hessian matrix�
�HESF��B� � Partitioned sparse Hessian matrix� This matrix is a sum of simple Hessian matrices

which correspond to the individual approximating functions� Only nonzero blocks are
stored�

�HESF��S� � General sparse Hessian matrix �the same as the model function Hessian matrix
corresponding to the option �HESF��S���

�HESF��N� � Hessian matrix is not used�

This speci�cation only serves for an internal realization of optimization methods and has no in#uence on
the user�s input� The default option is �HESF��D��

���� Objective functions for optimization of dynamical systems

If we set �MODEL��DF�� then we suppose that the objective function F�X� has this form�

F�X� �

Z TAMAX

TAMIN

FA�X�YA�TA��TA�dTA� FF�X�YA�TAMAX��TAMAX�

where FA�X�YA�TA��TA� is a smooth subintegral function and FF�X�YA�TAMAX��TAMAX� is a smooth
terminal function� At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�
If we set �MODEL��DQ�� then we suppose the objective function F�X� has the form�

F�X� �
�
�

Z TAMAX

TAMIN

NEX
KE��

WE�KE�TA� 	 �YA�KE�TA��YE�KE�TA��� dTA

�
�

�

NEX
KE��

EW�KE� 	 �YA�KE�TAMAX�� EY�KE���

At the same time

dYA�KE�TA�
dTA

� FE�KE�X�YA�TA��TA�� YA�KE�TAMIN� � FY�KE�X�

where FE�KE�X�YA�TA��TA�� �� KE� NE� are smooth state functions and FY�KE�X�� �� KE� NE�
are smooth initial functions�
If we set �MODEL��NO�� then we consider that the initial value problem

dYA�KE�TA�

dTA
� FE�KE�YA�TA��TA�� YA�KE�TAMIN�

is given where FE�KE�YA�TA��TA�� �� KE� NE� are smooth state functions�

In all the above cases� the statement �NE�number of di�erential equations must be used for the
speci�cation of number of di�erential equations NE�

��

���� Speci�cation of the state functions

The state functions FE�KE�X�YA�TA��TA�� �� KE� NE� must be de�ned by the user either directly
in the full dialogue mode or by using corresponding macrovariables in the batch �or mixed� mode� The
values of the state functions are speci�ed by using the macrovariables �FMODELE or �FMODELES�

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
�for a given index KE� a given vector of variables X�
a given vector of state variables YA�TA� and a given time TA�

�ENDSET

or

�SET�FMODELES�
EF��� � value FE���X�YA�TA��TA�
EF��� � value FE���X�YA�TA��TA�
 !
EF�NE� � value FE�NE�X�YA�TA��TA�

�ENDSET

The �rst derivatives of the state functions according to the variables are speci�ed by using the macrovari�
ables �GMODELE or �GMODELES�

�SET�GMODELE�
GE��� � derivative �FE�KE�X�YA�TA��TA���X���
GE��� � derivative �FE�KE�X�YA�TA��TA���X���
 !
GE�NF� � derivative �FE�KE�X�YA�TA��TA���X�NF�
�for a given index KE� a given vector of variables X�
a given vector of state variables YA�TA� and a given time TA�

�ENDSET

or

�SET�GMODELES�
EG��� � derivative �FE���X�YA�TA��TA���X���
EG��� � derivative �FE���X�YA�TA��TA���X���
 !
EG�NF� � derivative �FE���X�YA�TA��TA���X�NF�
EG�NF��� � derivative �FE���X�YA�TA��TA���X���
EG�NF��� � derivative �FE���X�YA�TA��TA���X���
 !
EG�NE	NF� � derivative �FE�NE�X�YA�TA��TA���X�NF�

�ENDSET

The �rst derivatives of the state functions according to the state variables are speci�ed by using the
macrovariables �DMODELE or �DMODELES�

�SET�DMODELE�
DE��� � derivative �FE�KE�X�YA�TA��TA���YA���
DE��� � derivative �FE�KE�X�YA�TA��TA���YA���
 !
DE�NE� � derivative �FE�KE�X�YA�TA��TA���YA�NE�
�for a given index KE� a given vector of variables X�

��

a given vector of state variables YA�TA� and a given time TA�
�ENDSET

or

�SET�DMODELES�
ED��� � derivative �FE���X�YA�TA��TA���YA���
ED��� � derivative �FE���X�YA�TA��TA���YA���
 !
ED�NE� � derivative �FE���X�YA�TA��TA���YA�NE�
ED�NE��� � derivative �FE���X�YA�TA��TA���YA���
ED�NE��� � derivative �FE���X�YA�TA��TA���YA���
 !
ED�NE	NE� � derivative �FE�NE�X�YA�TA��TA���YA�NE�

�ENDSET

If it is advantageous to compute the �rst derivatives of the state functions FE�KE�X�YA�TA��TA��
�� KE� NE� together with their values� we can replace the set of models �FMODELE� �GMODELE�
�DMODELE by the commonmodel �FGDMODELE and the set of models �FMODELES� �GMODELES�
�DMODELES by the common model �FGDMODELES� Partially we can replace the models �FMOD�
ELE� �GMODELE or �FMODELE� �DMODELE or �GMODELE� �DMODELE by the common models
�FGMODELE or �FDMODELE or �GDMODELE� respectively� Similarly we can replace the models
�FMODELES� �GMODELES or �FMODELES� �DMODELES or �GMODELES� �DMODELES by the
common models �FGMODELES or �FDMODELES or �GDMODELES� respectively�
If �MODEL��DQ�� we have to de�ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE� for

a given index KE and a given time TA� These functions can be speci�ed by using the macrovariable
�FMODELE together with the state function FE�KE�X�YA�TA��TA��

�SET�FMODELE�
FE � value FE�KE�X�YA�TA��TA�
WE � value WE�KE�TA�
YE � value YE�KE�TA�
�for a given index KE� a given vector of variables X�
a given vector of state variables YA�TA� and a given time TA�

�ENDSET

The default values WE�KE�TA��� and YE�KE�TA��� cannot be speci�ed� they are supposed automat�
ically�

��� Speci�cation of the initial functions

The initial functions FY�KE�X�� �� KE� NE� must be de�ned by the user either directly in the full
dialogue mode or by using corresponding macrovariables in the batch �or mixed� mode� The values of
the initial functions are speci�ed by using the macrovariables �FMODELY or �FMODELYS�

�SET�FMODELY�
FE � value FY�KE�X�
�for a given index KE and a given vector of variables X�

�ENDSET

or

�SET�FMODELYS�
EF��� � value FY���X�
EF��� � value FY���X�

��

 !
EF�NE� � value FY�NE�X�

�ENDSET

The �rst derivatives of the initial functions according to the variables are speci�ed by using the macrovari�
ables �GMODELY or �GMODELYS�

�SET�GMODELY�
GE��� � derivative �FY�KE�X���X���
GE��� � derivative �FY�KE�X���X���
 !
GE�NF� � derivative �FY�KE�X���X�NF�
�for a given index KE and a given vector of variables X�

�ENDSET

or

�SET�GMODELYS�
EG��� � derivative �FY���X���X���
EG��� � derivative �FY���X���X���
 !
EG�NF� � derivative �FY���X���X�NF�
EG�NF��� � derivative �FY���X���X���
EG�NF��� � derivative �FY���X���X���
 !
EG�NE	NF� � derivative �FY�NE�X���X�NF�

�ENDSET

If it is advantageous to compute the �rst derivatives of the initial functions FY�KE�X�� �� KE�
NE� together with their values� we can replace the set of models �FMODELY� �GMODELY by the
commonmodel �FGMODELY and the set of models �FMODELYS� �GMODELYS by the commonmodel
�FGMODELYS�
If the initial values YA�KE�TAMIN�� �� KE� NE� do not depend on the variables X�I�� �� I� NF�

they can be speci�ed by using the macrovariable �INPUT�

�ADD�INPUT�
YA��� � initial value YA���TAMIN�
YA��� � initial value YA���TAMIN�
 !
YA�NE� � initial value YA�NE�TAMIN�

�ENDADD

����� Speci�cation of the subintegral function

If �MODEL��DF�� the subintegral function FA�X�YA�TA��TA� must be de�ned by the user either
directly in the full dialogue mode� or by using corresponding macrovariables in the batch �or mixed�
mode� The value of the subintegral function is speci�ed by using the macrovariable �FMODELA�

�SET�FMODELA�
FA � value FA�X�YA�TA��TA�
�for a given vector of variables X� a given vector of state variables YA�TA�
and a given time TA�

�ENDSET

�

The �rst derivatives of the subintegral function according to the variables are speci�ed by using the
macrovariable �GMODELA�

�SET�GMODELA�
GA��� � derivative �FA�X�YA�TA��TA���X���
GA��� � derivative �FA�X�YA�TA��TA���X���
 !
GA�NF� � derivative �FA�X�YA�TA��TA���X�NF�
�for a given vector of variables X� a given vector of state variables YA�TA�
and a given time TA�

�ENDSET

The �rst derivatives of the subintegral function according to the state variables are speci�ed by using the
macrovariable �DMODELA�

�SET�DMODELA�
DA��� � derivative �FA�X�YA�TA��TA���YA���
DA��� � derivative �FA�X�YA�TA��TA���YA���
 !
DA�NE� � derivative �FA�X�YA�TA��TA���YA�NE�
�for a given vector of variables X� a given vector of state variables YA�TA�
and a given time TA�

�ENDSET

If it is advantageous to compute the �rst derivatives of the subintegral function FA�X�YA�TA��TA�
together with its value� we can replace the set of models �FMODELA� �GMODELA� �DMODELA by
the common model �FGDMODELA� Partially we can replace the models �FMODELA� �GMODELA
or �FMODELA� �DMODELA or �GMODELA� �DMODELA by the common models �FGMODELA or
�FDMODELA or �GDMODELA� respectively�
If �MODEL��DQ� and the objective function contains an integral part� we have to set �MOD�

ELA��YES� and de�ne the functions WE�KE�TA� and YE�KE�TA�� �� KE� NE� by using the macrovari�
able �FMODELE�

����� Speci�cation of the terminal function

If �MODEL��DF�� the terminal function FF�X�YA�TAMAX��TAMAX� must be de�ned by the user
either directly in the full dialogue mode� or by using corresponding macrovariables in the batch �or mixed�
mode� The value of the terminal function is speci�ed by using the macrovariable �FMODELF�

�SET�FMODELF�
FF � value FF�X�YA�TAMAX��TAMAX�
�for a given vector of variables X� a given vector of state variables YA�TAMAX�
and a given time TAMAX�

�ENDSET

The �rst derivatives of the terminal function according to the variables are speci�ed by using the
macrovariable �GMODELF�

�SET�GMODELF�
GF��� � derivative �FF�X�YA�TAMAX��TAMAX���X���
GF��� � derivative �FF�X�YA�TAMAX��TAMAX���X���
 !
GF�NF� � derivative �FF�X�YA�TAMAX��TAMAX���X�NF�

��

�for a given vector of variables X� a given vector of state variables YA�TAMAX�
and a given time TAMAX�

�ENDSET

The �rst derivatives of the terminal function according to the state variables are speci�ed by using the
macrovariable �DMODELF�

�SET�DMODELF�
DF��� � derivative �FF�X�YA�TAMAX��TAMAX���YA���
DF��� � derivative �FF�X�YA�TAMAX��TAMAX���YA���
 !
DF�NE� � derivative �FF�X�YA�TAMAX��TAMAX���YA�NE�
�for a given vector of variables X� a given vector of state variables YA�TAMAX�
and a given time TAMAX�

�ENDSET

If it is advantageous to compute the �rst derivatives of the terminal function FF�X�YA�TAMAX��TAMAX�
together with its value� we can replace the set of models �FMODELF� �GMODELF� �DMODELF by
the common model �FGDMODELF� Partially we can replace the models �FMODELF� �GMODELF
or �FMODELF� �DMODELF or �GMODELF� �DMODELF by the common models �FGMODELF or
�FDMODELF or �GDMODELF� respectively�
If �MODEL��DQ� and the objective function contains a terminal part� we have to set �MOD�

ELF��YES� and de�ne the coe�cients EW�KE� and EY�KE�� �� KE� NE� by using the macrovariable
�INPUT�

�ADD�INPUT�
EW��� � value EW���� EY��� � value EY���
EW��� � value EW���� EY��� � value EY���
 !
EW�NE� � value EW�NE�� EY�NE� � value EY�NE�

�ENDADD

����� Optimization with general constraints

If there are no general constraints we set �KBC��� In the oposite case we set �KBC�� or �KBC���
If �KBC�� or �KBC��� then

FC�KC�X� � unbounded � if IC�KC� � �
CL�KC� � FC�KC�X� � if IC�KC� � �

FC�KC�X� � CU�KC� � if IC�KC� � �
CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� � �
CL�KC� � FC�KC�X� � CU�KC� � if IC�KC� � �

where �� KC� NC� The option �KBC�� must be chosen if IC�KC��� for at least one index �� KC�
NC� Then two di�erent �elds XL�K� and XU�KC�� �� KC� NC are declared� In the opposite case we
set �KBC�� and only one common �eld XL�KC��XU�KC�� �� KC� NC is declared� The number of
constraints NC must be speci�ed by using the statement �NC�number of functions�
The types of general constraints IC�KC�� �� KC� NC� and lower and upper bounds XL�KC� and

XU�KC�� �� KC� NC� can be speci�ed by using the macrovariable �INPUT� The default values are
IC�KC��� and XL�KC��XU�KC���� �� KC� NC� For example�

�KBF��� �NC��

��

�ADD�INPUT�
IC������ CL����cL�
IC������ CL����cL�
IC������ CL����cL� � CU����c

L
�

�ENDADD

����� Speci�cation of the constraint functions �dense problems�

The constraint functions FC�KC�X�� �� KC� NC� must be de�ned by the user either directly in the
full dialogue mode� or by using corresponding macrovariables in the batch �or mixed� mode� The values
of the constraint functions are speci�ed by using the macrovariables �FMODELC or �FMODELCS�

�SET�FMODELC�
FC � value FC�KC�X�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�FMODELCS�
CF��� � value FC���X�
CF��� � value FC���X�
 !
CF�NC� � value FC�NC�X�

�ENDSET

The �rst derivatives of the constraint functions are speci�ed by using the macrovariables �GMODELC
or �GMODELCS�

�SET�GMODELC�
GC��� � derivative �FC�KC�X���X���
GC��� � derivative �FC�KC�X���X���
 !
GC�NF� � derivative �FC�KC�X���X�NF�
�for a given index KC and given values of variables X�I�� �� I� NF�

�ENDSET

or

�SET�GMODELCS�
CG��� � derivative �FC���X���X���
CG��� � derivative �FC���X���X���
 !
CG�NF� � derivative �FC���X���X�NF�
CG�NF��� � derivative �FC���X���X���
CG�NF��� � derivative �FC���X���X���
 !
CG�NC	NF� � derivative �FC�NC�X���X�NF�

�ENDSET

The second derivatives of the constraint functions are speci�ed by using the macrovariables �HMODELC
or �HMODELCS� If �JACC��D�� the Hessian matrices are assumed to be dense and we only specify their
upper half�

�

�SET�HMODELC�
HC��� � derivative ��FC�KC�X���X����

HC��� � derivative ��FC�KC�X���X����X���
HC��� � derivative ��FC�KC�X���X����

HC�
� � derivative ��FC�KC�X���X����X���
HC��� � derivative ��FC�KC�X���X����X���
HC��� � derivative ��FC�KC�X���X����

 !
HC�NF	�NF������ � derivative ��FC�KC�X���X�NF��

�for a given index KC and given values of variables X�I�� �� I� NF�
�ENDSET

or

�SET�HMODELCS�
CH��� � derivative ��FC���X���X����

CH��� � derivative ��FC���X���X����X���
CH��� � derivative ��FC���X���X����

CH�
� � derivative ��FC���X���X����X���
CH��� � derivative ��FC���X���X����X���
CH��� � derivative ��FC���X���X����

 !
CH�NF	�NF������ � derivative ��FC���X���X�NF��

CH�NF	�NF�������� � derivative ��FC���X���X����

CH�NF	�NF�������� � derivative ��FC���X���X����X���
CH�NF	�NF�������� � derivative ��FC���X���X����

 !
CH�NC	NF	�NF������ � derivative ��FC�NC�X���X�NF��

�ENDSET

If the macrovariables �GMODELC and �GMODELCS or �HMODELC and �HMODELCS are not
de�ned� we suppose that the �rst or the second derivatives of the constraint functions are not given
analytically� In this case� they are computed numerically� by using the UFO system routines whenever it
is required� If it is advantageous to compute the �rst derivatives of the constraint functions FC�KC�X�� ��
KC� NC� together with their values� we can replace the set of models �FMODELC� �GMODELC by the
commonmodel �FGMODELC and the set of models �FMODELCS� �GMODELCS by the commonmodel
�FGMODELCS� Similarly we can replace the set of models �FMODELC� �GMODELC� �HMODELC by
the commonmodel �FGHMODELC and the set of models �FMODELCS� �GMODELCS� �HMODELCS
by the common model �FGHMODELCS�
To improve the e�ciency of the computation� we can specify some additional information about

the constraint functions FC�KC�X�� �� KC� NC� The �rst piece of information� useful for an automatic
choice of the optimizationmethod� is the computational complexity speci�ed by the macrovariable �KCC�

�KCC� � � Evaluations of the constraint functions FC�KC�X�� �� KC� NC� are very easy �they
require O�NF � simple operations at most��

�KCC� � � Evaluations of the constraint functions FC�KC�X�� �� KC� NC� are of medium
complexity �they at least require O�NF � complicated operations and O�NF �� simple
operations at most��

�KCC� � � Evaluations of the constraint functions FC�KC�X�� �� KC� NC� are extremely
di�cult �they at least require O�NF �� complicated or O�NF �� simple operations��

The option �KCC�� is default�
If some of the constraint functions are linear and have the form

�	

FC�KC�X� �
NFX
I��

CG��KC� �� 	NF� I� 	X�I�

we can specify them separately� Then the number of linear constraint functions must be speci�ed by
using the statement �NCL�number of linear functions �default value is �NCL���� We always suppose
that the �rst NCL constraint functions are linear� Then the coe�cients CG��KC���	NF�I�� �� KC�
NCL� �� I� NF� are speci�ed by using the macrovariable �INPUT and the macrovariables �FMODELC
or �FMODELCS� �GMODELC or �GMODELCS� �HMODELC or �HMODELCS are used only for the
speci�cation of the nonlinear constraint functions FC�KC�X�� NCL�KC� NC�

����� Speci�cation of the constraint functions �sparse problems�

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix CG� This possibility decreases the computational time and storage requirements for
large�scale optimization problems� In this case� we use option �JACC��S� which means that the sparsity
pattern is speci�ed� All other speci�cations remain the same as in the case of dense problems� The sparsity
pattern of the Jacobian matrix is speci�ed by using the macrovariable �INPUT� Two integer vectors ICG
and JCG are used where ICG�KC�� �� KC� NC��� are pointers and JCG�K�� �� K� ICG�NC������ are
indices of nonzero elements� Nonzero elements are ordered by the gradients of the constraint functions�
The number of nonzero elements must be speci�ed by using the statement �MC�number of elements�
The number of nonzero elements could be greater than is needed �twice say� since it is used for the
declaration of working �elds� For example� if we have the gradients

GC���X� � �gC��� � � � � gC����

GC���X� � �� � gC��� � � gC����

GC���X� � �� � � � gC��� � ��

GC�
�X� � �gC��� g
C
��� g

C
��� � ��

GC���X� � �� � � � gC��� g
C
����

and the Jacobian matrix

CG�X� �

�
BBB�

gC�� � � � � � gC��
� � gC�� � � � gC��
� � � � gC�� � �
gC�� � gC�� � gC�� � �
� � � � gC�� � gC��

�
CCCA

then we have to set�

�NC��
�MC��� �the minimum required value is MC����
�ADD�INPUT�

ICG������ ICG������ ICG�����
ICG�
���� ICG������ ICG������
JCG������ JCG����
� JCG������ JCG�
��
� JCG�����
JCG������ JCG����� JCG�	���� JCG������ JCG�����

�ENDADD

��

As in the case of the dense problem� the �rst derivatives of the constraint functions can be speci�ed
by using the macrovariables �GMODELC or �GMODELCS� If �JACC��S�� only the nonzero elements
of the gradients are speci�ed� For the above example the speci�cation has the form�

�SET�GMODELC�
IF �KC�EQ��� THEN

GC��� � �FC���X���X���
GC�
� � �FC���X���X�
�

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X���X���
GC�
� � �FC���X���X�
�

ELSE IF �KC�EQ��� THEN
GC��� � �FC���X���X���

ELSE IF �KC�EQ�
� THEN
GC��� � �FC�
�X���X���
GC��� � �FC�
�X���X���
GC��� � �FC�
�X���X���

ELSE
GC��� � �FC���X���X���
GC�
� � �FC���X���X�
�

ENDIF
�ENDSET

or

�SET�GMODELCS�
CG��� � �FC���X���X���
CG��� � �FC���X���X�
�
CG��� � �FC���X���X���
CG�
� � �FC���X���X�
�
CG��� � �FC���X���X���
CG��� � �FC�
�X���X���
CG�� � �FC�
�X���X���
CG�	� � �FC�
�X���X���
CG��� � �FC���X���X���
CG���� � �FC���X���X�
�

�ENDSET

As in the case of the dense problem� the second derivatives of the approximating functions can
be speci�ed by using the macrovariableS �HMODELC or �HMODELCS� If �JACC��S�� only nonzero
elements of the Hessian matrices are speci�ed� For the above example the speci�cations have the form

�SET�HMODELC�
IF �KC�EQ��� THEN

HC��� � ��FC���X���X����

HC��� � ��FC���X���X����X�
�
HC��� � ��FC���X���X�
��

ELSE IF �KC�EQ��� THEN
HC��� � ��FC���X���X����

HC��� � ��FC���X���X����X�
�
HC��� � ��FC���X���X�
��

ELSE IF �KC�EQ��� THEN
HC��� � ��FC���X���X����

��

ELSE IF �KC�EQ�
� THEN
HC��� � ��FC�
�X���X����

HC��� � ��FC�
�X���X����X���
HC��� � ��FC�
�X���X����

HC�
� � ��FC�
�X���X����X���
HC��� � ��FC�
�X���X����X���
HC��� � ��FC�
�X���X����

ELSE
HC��� � ��FC���X���X����

HC��� � ��FC���X���X����X�
�
HC��� � ��FC���X���X�
��

ENDIF
�ENDSET

or

�SET�HMODELCS�
CH��� � ��FC���X���X����

CH��� � ��FC���X���X����X�
�
CH��� � ��FC���X���X�
��

CH�
� � ��FC���X���X����

CH��� � ��FC���X���X����X�
�
CH��� � ��FC���X���X�
��

CH�� � ��FC���X���X����

CH�	� � ��FC�
�X���X����

CH��� � ��FC�
�X���X����X���
CH���� � ��FC�
�X���X����

CH���� � ��FC�
�X���X����X���
CH���� � ��FC�
�X���X����X���
CH���� � ��FC�
�X���X����

CH��
� � ��FC���X���X����

CH���� � ��FC���X���X����X�
�
CH���� � ��FC���X���X�
��

�ENDSET

Note that the dimensions of arrays HC or CH must be speci�ed by the statement �MHC�dimension of HC
or �MCH�dimension of CH�
If some of the constraint functions are linear �i�e� if �NCL��� and if �JACC��S�� then the coe�cients

CG�K�� �� K� ICG�NCL����� �constant part of the sparse Jacobian matrix�� must be speci�ed by using
the macrovariable �INPUT� If the matrix given in the above example is the constant sparse Jacobian
matrix� we use this speci�cation�

�ADD�INPUT�
CG����gC��� CG����g

C
��� CG����g

C
��� CG�
��g

C
��

CG����gC��� CG����g
C
��� CG���g

C
��� CG�	��g

C
��

CG����gC��� CG�����g
C
��

�ENDADD

There is another possibility which can be useful when all constraint functions are linear� It is based on
the usage of a special procedure UKMCI� which serves for a direct input of individual Jacobian matrix
elements� The procedure UKMCI� is formally called by using the statement

CALL �UKMCI��K�I�GCKI� or �SETCG�K�I�GCKI�

��

where K is an index of a given constraint function �a row of the Jacobian matrix�� I is an index of
a given variable �a column of the Jacobian matrix�� and GCKI is a numerical value of the element
�FC�K�X���X�I�� For the example given above we can write�

�ADD�INPUT�
�SETCG�����gC���
�SETCG���
�gC���
�SETCG�����gC���
�SETCG���
�gC���
�SETCG�����gC���
�SETCG�
���gC���
�SETCG�
���gC���
�SETCG�
���gC���
�SETCG�����gC���
�SETCG���
�gC���

�ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the �elds ICG
and JCG beforehand� If the number of the constraints are very large� then we can use a slightly more
complicated procedure UKMCI� which uses dynamic structures and therefore works more quickly� The
procedure UKMCI� is formally called by using the statement

CALL �UKMCI��K�I�GCKI�

where K is an index of a given constraint function �a row of the Jacobian matrix�� I is an index of a given
variable �a column of the Jacobian matrix�� GCKI is the numerical value of the element �FC�K�X���X�I�
and LCG is an auxiliary working �eld�

���	� Additional speci�cations concerning optimization problems

Useful speci�cations� which can improve the computational e�ciency and robustness of the optimiza�
tion methods� are a lower bound for the objective function value and an upper bound for the stepsize�
Both of these values depend on the de�nition of the objective function and can be speci�ed by the
statements �FMIN�lower bound �for the objective function value� and �XMAX�upper bound �for the
stepsize�� We recommend a de�nition of �FMIN whenever it is possible� and a de�nition of �XMAX
whenever the objective function contains the exponential functions� If the objective function is a sum
of powers �or a sum of squares�� then automatically �FMIN��� The default option for the maximum
stepsize is �XMAX������
If there are no general constraints and if the number of variables is not greater than ��� then we can

use global optimization methods� A decision between local and global optimization is e�ected by means
of macrovariable �EXTREM�

�EXTREM��L� � A local extremum is found� which usually contains the starting point in its region of
attractivity�

�EXTREM��G� � All extrema in the given region are found and a global extremum is determined�

The default option is �EXTREM��L�� If �EXTREM��G�� we cannot use the common models �FG�
MODELF and �FGHMODELF for a common speci�cation of the value � the gradient and the Hessian
matrix of the model function� Similarly we cannot use the models �FGMODELA or �FGMODELAS and
�FGHMODELA or �FGHMODELAS for a common speci�cation of the approximating functions�
The global optimization is performed over a bounded region speci�ed by lower and upper bounds

XL�I� and XU�I�� �� I� NF� If these bounds are not speci�ed �using the macrovariable �INPUT��
they are computed from the initial values of variables and from the given maximum stepsize� so that
XL�I��X�I��XMAX and XU�I��X�I��XMAX� �� I� NF� The maximum stepsize is speci�ed� as in

��

the case given above� using the statement �XMAX�maximum stepsize� The default option is again
�XMAX������
Additional useful speci�cations� concerning the solution precision� are bounds used in termination

criteria� These bounds can be speci�ed by the macrovariables �TOLX� �TOLF� �TOLB� �TOLG� �TOLC
and MIC� MIT� MFV�

�TOLX � lower bound for a relative change of variables
�TOLF � lower bound for a relative change of function values
�TOLB � lower bound for the objective function value
�TOLG � lower bound for the objective function gradient norm
�TOLC � lower bound for the violated constraint functions

�MIC � maximum number of penalty function changes
�MIT � maximum number of iterations
�MFV � maximum number of function evaluations

The default values are �TOLX�����D�	�� �TOLF�����D����� �TOLB������D���� �TOLG�����D����
�TOLC�����D��� and MIC��� MIT����� MFV������

��

�� Optimization methods in the UFO system

The UFO system has a modular structure� All optimization methods can be set up using the indi�
vidual simple modules� For example� the sequential quadratic programming variable metric methods for
nonlinearly constrained optimization problems are set up by using the modules for an objective func�
tion evaluation� penalty function de�nition� direction determination� quadratic programming solution�
stepsize selection� and variable metric update� The optimization methods contained in the UFO system
can be roughly divided into two groups� The �rst group contains methods for unconstrained and lin�
early constrained optimization problems� while the second group contains methods for general nonlinear
programming problems� Methods for general nonlinear programming problems� i�e� for problems with
nonlinear constraints� are classi�ed by their realization form which is determined by using the macrovari�
able �FORM�

�FORM��SQ� � Sequential �or recursive� quadratic programming methods for general dense prob�
lems�

�FORM��SE� � Inexact sequential �or recursive� quadratic programmingmethods for sparse equality
constrained problems�

Sections ��� � ���	 concern methods for unconstrained and linearly constrained problems� These methods
do not use the macrovariable �FORM for a classi�cation� Methods for general nonlinear programming
problems are described in Sections ���� � ����� The basic parts of optimization methods are described in
Sections ���� � ����� Section ���� is devoted to global optimization methods�
Methods for unconstrained and linearly constrained problems contained in the UFO system can be

partitioned into several classes which are speci�ed by using the macrovariable �CLASS�

�CLASS��HM� � Heuristic methods for small�size problems� This class contains the pattern search
method and the simplex method�

�CLASS��CD� � Conjugate direction methods which use no matrices� This class contains conjugate
direction methods and variable metric methods with limited storage based on the
Strang recursions�

�CLASS��VM� � Variable metric methods which use an approximation of the Hessian matrix which
is updated in each iteration�

�CLASS��VL� � Variable metric methods with limited storage based on compact representations of
variable metric updates�

�CLASS��MN� � Modi�ed Newton methods which use the Hessian matrix computed either analyti�
cally or numerically�

�CLASS��TN� � Truncated Newton methods based on the di�erence approximation of directional
derivatives�

�CLASS��GN� � Modi�ed Gauss�Newton methods for nonlinear least squares problems which use the
normal equation matrix as an approximation of the Hessian matrix� These methods
are also realized by using the Jacobian matrix representation�

�CLASS��QN� � Quasi�Newton methods for nonlinear least squares problems and nonlinear equations�
�CLASS��QL� � Quasi�Newton methods with limited storage for sparse nonlinear least squares prob�

lems and sparse nonlinear equations�
�CLASS��BR� � Modi�ed Brent method for nonlinear equations�
�CLASS��LP� � Simplex type methods for linear programming problems�
�CLASS��LI� � Interior point methods for linear programming problems�
�CLASS��QP� � Simplex type methods for quadratic programming problems�
�CLASS��BM� � Proximal bundle methods for nonsmooth optimization�
�CLASS��BN� � Bundle�Newton methods for nonsmooth optimization�
�CLASS��BV� � Variable metric bundle methods for nonsmooth optimization�

The individual methods from the above classes can be chosen by using additional speci�cations�
The most important ones� concerning direction determination and stepsize selection� are the type of the

�

method� the kind of the matrix decomposition and the number of the method� The type of the method
is speci�ed by the macrovariable �TYPE�

�TYPE��L� � Line search methods�
�TYPE��G� � General trust region methods�
�TYPE��T� � Special trust region methods for nonlinear least squares problems�
�TYPE��M� � Modi�ed Marquardt methods for nonlinear least squares problems�
�TYPE��F� � SQP �lter methods for nonlinear programing problems�
�TYPE��P� � Pattern search method of Hooke and Jeeves�
�TYPE��S� � Simplex method of Nelder and Mead�

The kind of the matrix decomposition is speci�ed by the macrovariable �DECOMP�

�DECOMP��M� � The symmetric matrix is used as an input for the direction determination�
�DECOMP��G� � The LDLT decomposition without permutations is used as an input for the direction

determination� This decomposition is usually obtained by the Gill�Murray algorithm
�����

�DECOMP��S� � The LDLT decomposition with permutations is used as an input for the direc�
tion determination� This decomposition is usually obtained by the Schnabel�Eskow
algorithm ������

�DECOMP��B� � The block LDLT decomposition with permutations is used as an input for the
direction determination� This decomposition is usually obtained by the Bunch�Parlett
algorithm �����

�DECOMP��I� � The inverse of a symmetric matrix is used as an input for the direction determination�
�DECOMP��R� � the RTR decomposition without permutations is used as an input for the direction

determination� This decomposition is usually obtained by the recursive QR factor�
ization ����

�DECOMP��C� � The RTR decomposition with permutations is used as an input for the direction
determination� This decomposition is usually obtained by an application of the rank
revealing algoritm ��	��

�DECOMP��A� � The rectangular matrix is used as an input for the direction determination�
�DECOMP��Q� � The QR decomposition of a rectangular matrix without permutations is used as

an input for the direction determination� This decomposition is usually obtained by
using the Householder re#ection with the explicitly stored orthogonal matrix Q�

�DECOMP��E� � The general square matrix is used as an input for the direction determination in the
case NA�NF �system of nonlinear equations��

If �FORM��SE�� we have additional possibilities for a representation of matrices in the direction deter�
mination�

�DECOMP��K� � The inde�nite Karush�Kuhn�Tucker matrix is used as an input for the direction
determination�

�DECOMP��Z� � The null space representation based on orthogonal projection is used as an input for
the direction determination�

�DECOMP��G� � The range space representation based on the Schur complement is used as an input
for the direction determination�

The macrovariable �DECOMP is also used for the selection of conjugate direction methods� In this case
it does not concern the kind of matrix decomposition�
The serial number of the method is speci�ed by the macrovariable �NUMBER� It determines an

individual realization of the direction determination�
Additional information about speci�cations �TYPE� �DECOMP� �NUMBER is given in Section �����

��

All options used for the method selection have default values� which follows from the knowledge bases
coded in the individual templates� Therefore they need not be speci�ed by the user� The possibilities we
describe can be of service to users who are familiar with optimization methods�
Almost all optimization methods have di�erent realizations for three di�erent representations of the

objective function� If �HESF��D�� dense variants can be used for either unconstrained problems or
box constrained problems or linearly constrained problems �with dense linear constraints speci�ed by
�JACC��D��� If �HESF��S�� sparse variants can be used for either unconstrained problems or box con�
strained problems or linearly constrained problems �with sparse linear constraints speci�ed by �JACC��S���
If �JACA��S� and �HESF��B�� partitioned variants can be used for either unconstrained problems or box
constrained problems� Partitioned variants of optimization methods are usually less e�cient due to the
more expensive matrix operations� Therefore we recommend preferring sparse variants to the partitioned
ones�

���� Heuristic methods

Heuristic �or comparative� methods are speci�ed by the statement �CLASS��HM�� These methods
can only be used for small�size problems �with �� variables at most�� The main advantage of the heuristic
methods is that they do not require continuity of the objective function�
The individual heuristic methods are speci�ed by the macrovariable �TYPE�

�TYPE��P� � Pattern search method of Hooke and Jeeves �����
�TYPE��S� � Simplex method of Nelder and Mead ������

The default value is �TYPE��P��

���� Conjugate direction methods

Conjugate direction methods are speci�ed by the statement �CLASS��CD�� These methods are very
e�cient for large problems with computationally simple objective functions ��KCF�� or �KCA���� The
main advantage of conjugate direction methods is that no matrices are used �implicitly �HESF��N���
This fact highly decreases storage requirements�
The individual conjugate direction methods are speci�ed by the macrovariable �DECOMP�

�DECOMP��C� � Conjugate gradient methods� These methods are the simplest ones of all conju�
gate direction methods and they require the fewest storage requirements� However�
they usually consume a greater number of function evaluations then other conjugate
direction methods�

�DECOMP��V� � Variable metric methods with limited storage based on the Strang recursions� These
methods allow us to prescribe storage requirements using the number of VM steps
�the number of necessary used vectors is approximately twice as great a number of
VM steps�� The number of VM steps is speci�ed by the macrovariable �MF� Variable
metric methods with limited storage usually consume fewer function evaluations then
conjugate gradient methods�

There are two families of conjugate gradient methods implemented in the UFO system�

�NUMBER�� � Basic conjugate gradient methods described in �	��� The individual methods are
speci�ed by using the macrovariables �MET� �MET� and �MET��

�NUMBER�� � Generalized conjugate gradient methods introduced in ����� The individual methods
are speci�ed by using the macrovariable �MET��

If �MET��� then the steepest descent method is used� If �MET��� the Fletcher�Reeves method �
�� is
used� If �MET��� the Polak�Ribiere method ����� is used� If �MET��� the Hestenes�Stiefel method ����
is used� The macrovariable �MET� speci�es the restart procedure as it is described in �	��� If �MET����
a restarted CG method with a positive parameter is used� If �MET���� a bounded CG method with a
positive parameter is used� If �MET���� a bounded CG method with a positive lower bound is used� If

��

�MET��
� a CG method with the Powell restart is used� If �MET���� a CG method with the test on
conjugacy is used� If �MET���� a CG method with the test on orthogonality is used� The macrovariable
�MET� speci�es the scaling parameter as is described in �	�� ��MET��� for suppressed scaling and
�MET��� for scaling in each iteration��
Similarly� the UFO system contains two variable metric methods with limited storage�

�NUMBER�� � The BFGS method with limited storage described in ������ The default number of
VM steps is �MF���

�NUMBER�� � The extended BFGS method with limited storage described in ���� The default
number of VM steps is �MF���

Both these methods are realized by using various scaling techniques ��� speci�ed by the macrovariable
�MET�� If �MET���� the scaling is suppressed� If �MET���� the scalar scaling is used� If �MET����
the diagonal scaling is used� If �MET��
� the scalar and diagonal scalings are used simultaneously�
Possible speci�cations �type�decomp�number� for the conjugate direction methods in the uncon�

strained case are these�

L�C��� L�V���
L�C��� L�V���

The default choice is L�C��� Conjugate direction methods can also be used for sparse linear constraints
when �JACC��S��

���� Variable metric methods

Variable metric methods are speci�ed by the statement �CLASS��VM�� These methods are most
commonly used for either unconstrained or linearly constrained optimizations� Variable metric methods
use a symmetric �usually positive de�nite� matrix which is updated in every iteration in such a way
that it approximates the Hessian matrix of the objective function as precisely as possible� In the UFO
system� the variable metric methods are realized in three di�erent forms �for �HESF��D�� �HESF��S�
and �HESF��B�� depending on the Hessian matrix speci�cation�
There are two families of variable metric methods for dense problems ��HESF��D�� which are distin�

guished using the macrovariable �UPDATE�

�UPDATE��B� � The Broyden family ����� Variable metric methods from this family are the most
commonly used ones since they are very robust and e�cient�

�UPDATE��D� � The Davidon family ����� Variable metric methods from this family are similar to
the previous ones� The only di�erence is that projections into the new subspace are
computed� This guarantees the quadratic termination property even in the case of an
imperfect line search�

The default value is �UPDATE��B��
Individual variable metric methods are speci�ed by using the macrovariables �MET� �MET�� and

�MET�� The macrovariable �MET determines the variable metric update� If �MET��� the BFGS
method ����� ����� ����� ���� is used� If �MET��� the DFP method ����� �
�� is used� If �MET��� the
Hoshino method ��
� is used� If �MET�
� the safeguarded rank�one method ��� is used� If �MET���
the optimally conditioned method ���� is used� If �MET��� the rank�one based method ��� from the
preconvex part of the Broyden family is used� If �MET�� the variationally derived method �	�� from the
preconvex part of the Broyden family is used� If �MET�	� the heuristic method �	�� is used� If �MET���
the method ��
	� derived from the matrix decomposition is used� If �MET���� the method ��
�� which
minimizes the angle between the direction vector and the negative gradient is used� If �MET���� the
method �	�� which minimizes the norm of the direction vector is used� If �MET���� the least prior

�

deviation method ����� is used� The default value is �MET��� If we specify �DECOMP��M�� we can
only use the values �MET�������
�
The macrovariable �MET� determines the Oren �scaling� parameter ������ If �MET���� no scaling

is used� If �MET���� the initial scaling ���	� is used� If �MET���� the controlled scaling �	�� is used� If
�MET��
� the simple controlled scaling ���� is used� If �MET���� the scaling in each iteration is used�
The default value is �MET���� The scaling parameter is determined by using heuristic rules given in
�	���
The macrovariable �MET� determines the value of the Biggs �nonquadratic model� parameter �
�� If

�MET���� the unit value is used� If �MET���� the Spedicato value ����� is used� If �MET���� the
modi�ed Spedicato value �	�� is used� If �MET��
� the value determined from the homogeneous model
�	�� is used� If �MET���� the value determined from the cubic model ��� is used� The default value is
�MET����
The macrovariable �MET� determines the Powell correction ������ If �MET���� the Powell correction

is suppressed� If �MET���� the Powell correction is applied�
Possible speci�cations �type�decomposition�number� for dense variable metric methods in the uncon�

strained case are these�

L�G��� L�S��� L�B��� L�I��� L�M���
L�M���

G�G��� G�S��� G�B��� G�M���
G�G��� G�S��� G�B��� G�M���

G�M���
G�M�
�
G�M���
G�M��

The default choice is L�I��� In both the box constrained and the linearly constrained cases we cannot use
speci�cations with �DECOMP��B��
If the Hessian matrix is sparse with a general pattern ��HESF��S��� the sparse variable metric meth�

ods� which preserve this pattern� are used� If �DECOMP��M�� the individual variable metric updates
�or families� are speci�ed by using the macrovariable �UPDATE�

�UPDATE��M� � The simple Marwill projection update ����� This update can only be used if �DE�
COMP��M��

�UPDATE��G� � The fractioned Marwill projection update ��
��� This update can only be used if
�DECOMP��M� and �NUMBER���

�UPDATE��T� � The fractioned Toint projection update �the best method given in ��
���� This
update can only be used if �DECOMP��M� and �NUMBER���

�UPDATE��B� � The partitioned variable metric updates from the Broyden family ���� These up�
dates can only be used if �MODEL��AF� or �MODEL��AQ� or �MODEL��AP��

The default value is �UPDATE��M��
Fractioned updates with speci�cations �UPDATE��G� or �UPDATE��T� can only be used in the

unconstrained case� If �UPDATE��B�� the particular update is speci�ed by using the macrovariable
�MET� If �MET��� the BFGS method is used� If �MET��� the DFP method is used� If �MET��� the
Hoshino method is used� If �MET�
� the safeguarded rank�one method is used� The default value is
�MET���
If �DECOMP��G�� less e�cient sparse product form updates from the Broyden family are used� In

this case� the particular update is speci�ed by using the macrovariable �MET� If �MET��� the BFGS
method is used� If �MET��� the DFP method is used� If �MET��� the Hoshino method is used� The
default value is �MET���
Possible speci�cations �type�decomposition�number� for sparse variable metric methods in the uncon�

strained case are these�

�	

L�G��� L�M���
L�M���

G�G��� G�M���
G�M���
G�M���
G�M�
�
G�M���
G�M��

The default choice is L�M��� In the box constrained case� only the choice �DECOMP��M� is permitted�
The fractioned updates ��UPDATE��T� and �UPDATE��G�� can only be used if �DECOMP��M� and
�NUMBER���
If the Hessian matrix is sparse with a partitioned pattern ��HESF��B��� only the partitioned variable

metric updates� speci�ed by the choice �UPDATE��B�� can be used� These updates are the same as
in the case when the Hessian matrix is sparse with a general pattern� but the partitioned realization is
usually less e�cient than the general one due to the more expensive matrix operations�
Possible speci�cations �type�decomposition�number� for partitioned variable metric methods in the

unconstrained case are these�

L�M���
G�M���

The default choice is L�M���

���� Variable metric methods with limited storage

Variable metric methods with limited storage are speci�ed by the statement �CLASS��VL�� The
number of VM steps is speci�ed by the macrovariable �MF �the default value is �MF���� Variable
metric methods with limited storage use several small�size matrices which are updated in every iteration
in such a way that their product aproximates the Hessian matrix as precisely as possible ����
Individual variable metric methods with limited storage are speci�ed by using the macrovariables

�MET and �MET�� The macrovariable �MET determines the variable metric update� If �MET��� the
BFGS method ����� ����� ����� ���� is used� If �MET�
� the safeguarded rank�one method ��� is used�
The macrovariable �MET� determines the scaling technique� If �MET���� scaling is suppressed� If
�MET���� the scalar scaling is used�
Possible speci�cations �type�decomposition�number� for variable metric methods with limited storage

are these�

L�I���
L�M���
G�M���
G�M�
�
G�M���

The default choice is L�I���

��	� Modi�ed Newton methods

Modi�ed Newton methods are speci�ed by the statement �CLASS��MN�� These methods use the
Hessian matrix of the objective function which is computed either analytically or numerically� The UFO
system performs a numerical computation of the Hessian matrix automatically whenever the macrovari�
able �HMODELF �or �FGHMODELF� is not de�ned� Modi�ed Newton methods are realized in three

��

di�erent forms �for �HESF��D�� �HESF��S� and �HESF��B�� depending on the Hessian matrix speci��
cation� Even if the modi�ed Newton methods can be realized as line search methods ��TYPE��L��� it is
more advantageous to realize them as trust region methods ��TYPE��G���
If the Hessian matrix is dense ��HESF��D��� all second derivatives have to be given analytically or they

are computed numerically by using di�erences of gradients� Possible speci�cations �type�decomposition�
number� for dense modi�ed Newton methods in the unconstrained case are these�

L�G��� L�S��� L�B��� L�M���
L�G��� L�S��� L�B��� L�M���

L�M���
G�G��� G�S��� G�B��� G�M���
G�G��� G�S��� G�B��� G�M���

G�M���
G�M�
�
G�M���
G�M��

The default choice is G�M�� In both the box constrained and the linearly constrained cases we cannot
use speci�cations with �DECOMP��S� and �DECOMP��B�� The choice L�G�� di�ers from the choice
L�G��� The last one corresponds to the combination of both the Newton and the conjugate gradient
methods�
If the Hessian matrix is sparse with a general pattern ��HESF��S��� we have two possibilities� If

�MODEL��FF�� only the structurally nonzero second order derivatives have to be given analytically by
using the prescribed pattern� The numerical computation of the second derivatives is based on the fact
that a substantially lower number of di�erences has to be used in comparison with the dense case� The
determination of suitable di�erences is a combinatorial problem equivalent to a graph coloring problem
����� ����� If �MODEL��AF� or �MODEL��AQ� or �MODEL��AP�� only the nonzero second derivatives
of the approximating functions have to be given analytically by using the prescribed pattern� The numer�
ical computation of the second derivatives is based on the fact that the approximating functions depend
on a minor number of variables so that the number of di�erences is substantially lower in comparison to
the dense case�
If �MODEL��AQ� �sum of squares�� the combination �		� of both the modi�ed Newton and the

modi�ed Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET�
If �MET��� the modi�ed Newton method is used� If �MET��� then the combined method is used� The
default value is �MET���
Possible speci�cations �type�decomposition�number� for sparse modi�ed Newton methods in the un�

constrained case are these�

L�G��� L�M���
L�M���

G�G��� G�M���
G�M���
G�M���
G�M�
�
G�M���
G�M��

The default choice is G�M��� In the box constrained case� only the choice �DECOMP��M� is permitted�
If the Hessian matrix is sparse with a partitioned pattern ��HESF��B��� a computation of the second

order derivatives is the same as in the case when the Hessian matrix is sparse with a general pattern� but
the partitioned realization is usually less e�cient than the general one due to the more expensive matrix
operations�
If �MODEL��AQ� �sum of squares�� the combination of both the modi�ed Newton and the modi�ed

Gauss�Newton methods can be used� This choice is possible by using the macrovariable �MET like

�

the dense case� Possible speci�cations �type�decomposition�number� for partitioned modi�ed Newton
methods in the unconstrained case are these�

L�M���
G�M���

The default choice is G�M���

��
� Truncated Newton methods

Truncated Newton methods are speci�ed by the statement �CLASS��TN�� These methods di�er
from modi�ed Newton methods in that the directional derivatives are determined by the numerical
di�erentiation instead of the sparse Hessian matrix multiplication� Truncated Newton methods are very
e�cient for large problems with computationally simple objective functions ��KCF�� or �KCA���� The
main advantage of truncated Newton methods is that no matrices are used �implicitly �HESF��N��� This
fact highly decreases storage requirements�
Truncated Newton methods are implemented either as line search methods or as trust region methods

and are based on the conjugate gradient subalgorithm� Possible speci�cations �type�decomposition�
number� for truncated Newton methods are these�

L�M���
G�M���
G�M�
�
G�M���

The default choice is G�M���

���� Modi�ed Gauss�Newton methods for nonlinear least squares and nonlinear equations

Modi�ed Gauss�Newton methods are speci�ed by the statement �CLASS��GN�� These methods are
special optimization methods for either nonlinear least squares ��MODEL��AQ�� or nonlinear least pow�
ers ��MODEL��AP�� problems� Modi�ed Gauss�Newton methods are based on the fact that the �rst
term in the Hessian matrix expression� the so�called normal equation matrix� depending on the �rst
derivatives of the approximating functions only is a good approximation of the whole Hessian matrix�
The second term in the Hessian matrix expression can be approximated by using the variable metric
updates�
Modi�ed Gauss�Newton methods are realized in four di�erent forms �for �HESF��D�� �HESF��S��

�HESF��B�� �HESF��N�� depending on the Hessian matrix speci�cation� Although the modi�ed Gauss�
Newton methods can be realized as the line search methods ��TYPE��L��� it is more advantageous to
realize them as the trust region methods ��TYPE��G���
If the Hessian matrix is speci�ed to be dense ��HESF��D��� then the normal equation matrix is also

dense� In this case� we can use hybrid methods with dense updates�

�UPDATE��N� � No update is used� The method utilizes the normal equation matrix �the �rst part
of the Hessian matrix expression��

�UPDATE��S� � The Dennis structured approach ���� is used� The second part of the Hessian matrix
is approximated by using modi�ed variable metric updates� This part is added to
the normal equation matrix if the conditions for leaving the modi�ed Gauss�Newton
method are satis�ed�

�UPDATE��F� � The Fletcher hybrid approach ���� �
�� is used� The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained by using the variable
metric updates� The decision between the two cases is based on the rate of the
function value decrease and on the normal equation matrix conditioning�

�UPDATE��B� � A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi�ed Gauss�Newton method are satis�ed �		��

�

The default value is �UPDATE��N��
Individual variable metric updates from the above families are speci�ed by using the macrovariable

�MET� If �MET��� the BFGS method is used� If �MET��� the DFP method is used� If �MET��� the
Hoshino method is used� If �MET�
� the original �unsafeguarded� rank�one method is used� The value
�MET�
 is only allowed if �UPDATE��S� and is the default in this case� The value �MET�� is the
default in the other cases�
Variable metric updates ��UPDATE�F or �UPDATE��B�� can be realized either as simple updates

�normal equation matrix is updated� or as cumulative updates �previous approximation of the Hessian
matrix is updated�� as is described in �		�� A decision between these possibilities is mediated by the
macrovariable �MOT�� If �MOT���� the cumulative update is used� If �MOT���� the simple update
is used�
In the dense case� the modi�ed Gauss�Newton methods can be realized with additional special matrix

decompositions which cannot be used in other cases� If �DECOMP��R�� the recursive QR decomposi�
tion ����� is used with an additional correction of the upper triangular matrix R� If �DECOMP��C��
this matrix R can moreover be changed by using the rank revealing algorithm ��	� which can improve
its conditioning� Possible speci�cations �type�decomposition�number� for dense modi�ed Gauss�Newton
methods in the unconstrained case are these�

L�G�� � L�S��� L�B��� L�R��� L�C��� L�M���
L�M���

G�G��� G�S��� G�B��� G�R��� G�C��� G�M���
G�G��� G�S��� G�B��� G�R��� G�C��� G�M���

G�M���
G�M�
�
G�M���
G�M��

T�G��� T�S��� T�R��� T�C��� T�M���
T�G���

T�S�� T�C�� T�M��
M�M���

The default choice is G�M�� In both the box constrained and the linearly constrained cases we cannot use
speci�cations �DECOMP��S�� �DECOMP��R�� �DECOMP��C�� If �DECOMP��S� or �DECOMP��C��
then variable metric updates cannot be used ��UPDATE��N��� The speci�cation �UPDATE��S� can only
be used if �DECOMP��M��
If the Hessian matrix is speci�ed to be sparse with a general pattern ��HESF��S��� the normal equation

matrix has the same structure� In this case� we can use hybrid methods with sparse updates�

�UPDATE��N� � No update is used� The method utilizes the normal equation matrix �the �rst part
of the Hessian matrix expression��

�UPDATE��S� � The Dennis structured approach ���� is used� The second part of the Hessian matrix
is approximated by using modi�ed variable metric updates� This part is added to the
normal equation matrix if conditions for leaving the modi�ed Gauss�Newton method
are satis�ed�

�UPDATE��D� � The Brown�Dennis structured approach ��
� is used� The Hessian matrices of approx�
imating functions are approximated by using variable metric updates� These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modi�ed Gauss�Newton method
are satis�ed�

�UPDATE��B� � A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi�ed Gauss�Newton method are satis�ed �		��

�

�UPDATE��M� � A sparse update based on the Marwill projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modi�ed Gauss�Newton method are satis�ed �		��

The default value is �UPDATE��N��
Individual variable metric updates from the above families are speci�ed by using the macrovari�

able �MET as in the dense case� The value �MET�
 is only allowed if either �UPDATE��S� or �UP�
DATE��D�� and is the default in this case� The value �MET�� is the default in the other cases excepting
the case �UPDATE��M� in which the macrovariable �MET is not utilized�
Variable metric updates ��UPDATE�M or �UPDATE��B�� can be realized either as simple updates

�normal equation matrix is updated� or as cumulative updates �previous approximation of the Hessian
matrix is updated�� A decision between these possibilities is mediated by the macrovariable �MOT�
similarly as in the dense case�
If �UPDATE��D�� we can use several switches for utilizing variable metric updates speci�ed by the

macrovariable �MOT�� If �MOT���� the Fletcher and Xu switch �
�� is used� If �MOT���� a modi��
cation of the Fletcher and Xu switch is used� If �MOT���� the Denis and Welsch switch ���� is used� If
�MOT���� the Ramsin and Wedin switch ����� is used� The default value is �MOT����
Possible speci�cations �type�decomposition�number� for sparse Gauss�Newton methods in the uncon�

strained case are these�

L�G��� L�M���
L�M���

G�G��� G�M���
G�G��� G�M���

G�M���
G�M�
�
G�M���
G�M��

T�G��� T�M���
T�M��
M�M���

The default choice is G�M��� In the box constrained case� only the choice �DECOMP��M� is permitted�
If the Hessian matrix is speci�ed to be sparse with a partitioned pattern ��HESF��B��� the normal

equation matrix has the same structure� If that is the case� then we can use hybrid methods with
partitioned updates �UPDATE��N�� �UPDATE��S�� �UPDATE��D�� �UPDATE��F�� �UPDATE��B��
whose details have already been explained above� Note that the partitioned realization is usually less
e�cient than the general one due to the more expensive matrix operations�
Possible speci�cations �type�decomposition�number� for partitioned Gauss�Newton methods are these�

L�M���
G�M���

The default choice is G�M���
If the Hessian matrix is not speci�ed ��HESF��N��� the normal equation matrix is not used� The

Jacobian matrix� de�ning a linear least squares problem� is utilized in each iteration instead� Such so�
called normal equation free Gauss�Newton methods are realized in two di�erent forms �for �JACA��D�
and �JACA��S�� depending on the Jacobian matrix speci�cation�
If the Jacobian matrix is speci�ed to be dense ��JACA��D��� then we cannot use hybrid methods

with variable metric updates �only the speci�cation �UPDATE��NO is permitted�� Moreover� dense�
normal equation free Gauss�Newton methods can only be used in the unconstrained case�
Possible speci�cations �type�decomposition�number� for dense� normal equation free� Gauss�Newton

methods are these�

�

L�Q��� L�A��� L�E���
L�A��� L�E���
L�A�
� L�E�
�

L�E���
G�Q��� G�A��� G�E���
G�Q��� G�E���

G�A��� G�E���
G�A�
� G�E�
�

G�E���
G�A��

The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci�cation �DECOMP��E� can only be used if NA�NF �system of nonlinear equations��
If the Jacobian matrix is speci�ed to be sparse ��JACA��S��� we can use hybrid methods with simple

variable metric updates�

�UPDATE��N� � No update is used� The method utilizes the original Jacobian matrix�
�UPDATE��V� � The simple factorized BFGS update �		� is used� The second order information is

approximated by the unsymmetric rank�one update of the Jacobian matrix�
�UPDATE��R� � The simple factorized rank�one update �		� is used� The second order information

is approximated by the addition of a dense row to the Jacobian matrix�

If �UPDATE��V� or �UPDATE��R�� we can use several switches for utilizing variable metric updates�
speci�ed by the macrovariable �MOT� as in the case of the speci�cation �HESF��S� described above�
The default value is �MOT����
The main advantage of sparse� normal equation free� Gauss�Newton methods consists in the fact that

the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row� If this
is the case� then the classical Gauss�Newton methods cannot be used� On the other hand� the normal
equation matrix often has a lower number of nonzero elements than the Jacobian one� Consequently� the
classical Gauss�Newton methods are more e�cient in this case�
Possible speci�cations �type�decomposition�number� for sparse� normal equation free� Gauss�Newton

methods are these�

L�A��� L�E���
L�A��� L�E���
L�A�
� L�E�
�

L�E���
G�A��� G�E���

G�E���
G�A��� G�E���
G�A�
� G�E�
�

G�E���
G�A��

The default choice is G�A�� for least squares problems and G�E�� for systems of nonlinear equations� The
speci�cation �DECOMP��E� can only be used if NA�NF �system of nonlinear equations�� The choice
L�E�� di�ers from the choice L�E��� The last one corresponds to the incomplete LU decomposition�

���� Quasi�Newton methods for nonlinear least squares and nonlinear equations

Quasi�Newton methods are speci�ed by the statement �CLASS��QN�� These methods are special
optimization methods for nonlinear least squares ��MODEL��AQ�� problems including systems of non�
linear equations when the �rst derivatives are not speci�ed analytically �the macrovariable �GMODELA
is not de�ned�� Quasi�Newtod methods use a rectangular matrix which is updated in every iteration in

such a way that it aproximates the Jacobian matrix as precisely as possible� In the UFO system� the
quasi�Newton methods are realized in two di�erent forms �for �JACA��D� and �JACA��S�� depending
on the Jacobian matrix speci�cation�
There are two possibilities for dense problems ��JACA��D�� which are distinguished by using the

macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � The Broyden family ���� of rank�one updates is used in almost all iterations� Only
after the restart is the Jacobian matrix approximated numerically by using di�erences�

When �UPDATE��B�� the individual quasi�Newton methods are speci�ed by using the macrovariable
�MET� If �MET��� the �rst �good� Broyden update ���� is used� If �MET��� the second Broyden
update ���� is used� If �MET��� the second Greenstadt update ����� is used� If �MET�
� the �rst
Greenstadt update ����� is used� If �MET��� the �rst Todd OC update ��	� is used� If �MET��� the
�rst Todd OCX update ��	� is used� If �MET�� the second Todd OC update ��	� is used� If �MET�	�
the second Todd OCX update ��	� is used� The default value is �MET��� Dense quasi�Newton methods
can only be used in the unconstrained case�
Possible speci�cations �type�decomposition�number� for dense quasi�Newton methods are these�

L�Q��� L�A��� L�E���
L�A��� L�E���
L�A�
� L�E�
�

L�E���
G�Q��� G�A��� G�E���
G�Q��� G�E���

G�A��� G�E���
G�A�
� G�E�
�

G�E���
G�A��

The default choice is G�Q��� The speci�cation �DECOMP��E� can only be used if NA�NF �system of
nonlinear equations��
If the Jacobian matrix is sparse with a general pattern ��JACA��S��� there are two possibilities for

computing an approximation of the Jacobian matrix by the di�erences� These possibilities are distin�
guished by using the macrovariable �NUMDER�

�NUMDER�� � Derivatives of individual approximating functions are computed�
�NUMDER�� � The Coleman�More ���� graph coloring algorithm is used�

Moreover� various sparse quasi�Newton updates which preserve the pattern of the Jacobian matrix can
be used�
If �NUMDER��� there are three choices of the quasi�Newton updates which are speci�ed by the

macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � Sparse quasi�Newton updates are used in almost all iterations� Only after the restart
is the Jacobian matrix approximated numerically by using di�erences�

�UPDATE��S� � Modi�ed Newton methods such as the row scaling update are used in almost all
iterations� Only after the restart is the Jacobian matrix approximated numerically
by using di�erences�

�

If �NUMDER��� there are four choices of the quasi�Newton updates which are speci�ed by the
macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � Sparse quasi�Newton updates ����� are used in almost all iterations� Only after the
restart is the Jacobian matrix approximated numerically by using di�erences�

�UPDATE��S� � Modi�ed Newton methods such as the row scaling update are used in almost all
iterations� Only after the restart is the Jacobian matrix approximated numerically
by using di�erences�

�UPDATE��C� � Cyclic column determination methods are used in almost all iterations� Only after
the restart is the Jacobian matrix approximated numerically by using di�erences�

When �UPDATE��B�� the individual quasi�Newton methods are speci�ed by using the macrovariable
�MET� If �MET��� the Schubert update ����� is used� If �MET��� the Bogle�Perkins update ���� is
used� If �MET��� the column update ����� is used� When �UPDATE��S� and �MET��� the modi�ed
Newton method is used� When �UPDATE��S� and �MET��� the row scaling update ����� is used�
When �UPDATE��C� and �MET��� the cyclic column determination method ��� is used� When �UP�
DATE��S� and �MET��� the cyclic column determination method ��� is used followed by the Schubert
update ������
Possible speci�cations �type�decomposition�number� for sparse quasi�Newton methods are these�

L�A��� L�E���
L�A��� L�E���
L�A�
� L�E�
�

L�E���
G�A��� G�E���

G�E���
G�A��� G�E���
G�A�
� G�E�
�

G�E���
G�A��

The default choice is G�A�� for the least squares problems and G�E�� for systems of nonlinear equations�
The speci�cation �DECOMP��E� can only be used if NA�NF �system of nonlinear equations�� The
choice L�E�� di�ers from the choice L�E��� The latter corresponds to the incomplete LU decomposition�

��� Quasi�Newton methods with limited storage for nonlinear equations

Quasi�Newton methods with limited storage are speci�ed by the statement �CLASS��QL�� The num�
ber of QN steps is speci�ed by the macrovariable �MF �the default value is �MF���� These methods
are special methods for solving sparse systems of nonlinear equations ��MODEL��AQ�� when the �rst
derivatives are not speci�ed analytically �the macrovariable �GMODELA is not de�ned�� Therefore only
the case NA�NF is permitted� Quasi�Newton methods with limited storage use an initial approxima�
tion of the sparse Jacobian matrix together with several small�size matrices which are updated in every
iteration in such a way that their product aproximates the Jacobian matrix as precisely as possible ����
There are two possibilities which are distinguished by using the macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � The Broyden good update of rank�one with limited storage ��� is used in almost all
iterations� Only after the restart is the Jacobian matrix approximated numerically
by using di�erences�

�

Possible speci�cations �type�decomposition�number� for quasi�Newton methods with limited storage
are these�

L�A��� L�E���
L�A�
� L�E�
�

L�E���
G�A��� G�E���
G�A�
� G�E�
�

G�E���

The default choice is G�E���
Besides the quasi�Newtod methods with limited storage� this class contains inverse column scaling

methods which are chosen by using the speci�cation �DECOMP��I�� There are two possibilities which
are distinguished by using the macrovariable �UPDATE�

�UPDATE��N� � No update is used� Every approximation of the Jacobian matrix is computed nu�
merically by using di�erences�

�UPDATE��B� � The inverse column scaling update ����� is used in almost all iterations� Only after
the restart is the Jacobian matrix approximated numerically by using di�erences�

Possible speci�cations �type�decomposition�number� for inverse column scaling methods are these�

L�I���
L�I���

If �NUMBER��� then a complete LU decomposition is used� If �NUMBER��� then a combination of
direct and iterative methods is used� The default choice is L�I���

����� Truncated Newton methods for nonlinear equations

Truncated Newton methods are speci�ed by the statement �CLASS��TN�� These methods are special
methods for solving systems of nonlinear equations ��MODEL��AQ�� when the �rst derivatives are not
speci�ed analytically �the macrovariable �GMODELA is not de�ned�� Therefore only the case NA�NF
is permitted� Truncated Newton methods di�er from quasi�Newton methods in that the sparse Jacobian
matrix multiplication is replaced by the numerical di�erentiation� These methods are very e�cient for
large problems with computationally simple functions in nonlinear equations ��KCA���� The main
advantage of the truncated Newton methods is that matrices are not used �implicitly �JACA��N��� This
fact highly decreases storage requirements�
Truncated Newton methods are implemented either as the line search methods or as the trust region

methods and are based on the smoothed CGS subalgorithm� This subalgorithm can be preconditioned
by using the tridiagonal decomposition� This possibility is determined by the macrovariable �MOS�� If
�MOS���� the tridiagonal decomposition is not used� If �MOS���� the tridiagonal decomposition is
used before the iterative process� If �MOS���� the tridiagonal decomposition is used as a preconditioner�
If �MOS���� both previous cases are assumed� The default value is �MOS����
Possible speci�cations �type�decomposition�number� for truncated Newton methods are these�

L�E���
L�E�
�
L�E���
G�E���
G�E�
�
G�E���

The default choice is G�E���

����� Modi�ed Brent method for nonlinear equations

The Brent method is speci�ed by the statement �CLASS��BR�� This method is a special method
for solving dense systems of nonlinear equations ��MODEL��AQ�� when the �rst derivatives are not
speci�ed analytically �the macrovariable �GMODELA is not de�ned�� Therefore� only the case NA�NF
is permitted� The Brent method does not need any additional speci�cations �macrovariables �TYPE�
�DECOMP� �NUMBER are not used��

����� Simplex type methods for linear programming problems

Simplex type methods for linear programming problems are speci�ed by the statement �CLASS��LP��
These methods are realized in two di�erent forms �for �JACC��D� and �JACC��S�� depending on the
constraint Jacobian matrix speci�cation�
If the constraint Jacobian matrix is dense ��JACC��D��� we can use two di�erent linear programming

methods based on the active set strategy�

�NUMBER�� � Primal reduced gradient �null�space� method �like the method proposed in �
����
which is a special implementation of the steepest descent reduced gradient method�

�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation
of the steepest descent projected gradient method�

Possible speci�cations �type�number� for dense linear programming methods are L�� and L��� The
default choice is L���
If the constraint Jacobian matrix is sparse ��JACC��S��� then we can use one linear programming

method based on the simplex algorithm�

�NUMBER�� � Primal reduced gradient �null�space� method which is described in ��
���

A possible speci�cation �type�number� for sparse linear programming methods is L���

����� Interior point methods for linear programming problems

Interior pointmethods for linear programming problems are speci�ed by using the statement �CLASS��LI��
These methods� based on an infeasible primal�dual predictor�corrector strategy� can be used only in the
sparse case when �JACC��S�� Individual methods are chosen by using the macrovariable �MLP�

�MLP�� � The �rst algorithm of Miao ������
�MLP�� � The second algorithm of Miao ������
�MLP�� � The Mizuno algorithm ���
��

All these methods can be realized in three forms depending on the way of solving the linear generalized
Karush�Kuhn�Tucker system�
�NUMBER�� � Direct solution based on the Gill�Murray decomposition applied to the Schur com�

plement�
�NUMBER�� � Direct solution based on the Bunch�Parlett decomposition applied to the original

Karush�Kuhn�Tucker system�
�NUMBER�� � Iterative solution based on the conjugate gradient method applied to the Schur

complement�

Possible speci�cations �type�number� for interior point methods are L��� L�� and L��� The default
choice is L���

	

����� Simplex type methods for quadratic programming problems

Simplex type methods for quadratic programming problems are speci�ed by using the statement
�CLASS��QP�� These methods are realized in two di�erent forms �for �JACC��D� and �JACC��S��
depending on the constraint Jacobian matrix speci�cation�
If the constraint Jacobian matrix is dense ��JACC��D��� we can use three di�erent quadratic pro�

gramming methods based on the active set strategy�

�NUMBER�� � Primal reduced gradient �null�space� method �like the method proposed in �����
which is a special implementation of the Newton reduced gradient method�

�NUMBER�� � Primal projected gradient �range�space� method �like the method proposed in ��	��
which is a special implementation of the Newton projected gradient method�

�NUMBER�� � Dual projected gradient �range�space� method �like the method proposed in ��
���

Possible speci�cations �type�number� for dense quadratic programming methods are L��� L��� and L���
The default choice is L���
If the constraint Jacobian matrix is sparse ��JACC��S��� we can use one quadratic programming

method based on the simplex algorithm�

�NUMBER�� � Primal reduced gradient �null�space� method which is described in ��
���

A possible speci�cation �type�number� for sparse linear programming methods is L���

���	� Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimizationproblems are speci�ed by the statement �CLASS
��BM�� These methods use a solution of the special quadratic programming subproblem derived from the
cutting plane approach� This subproblem is in fact the same as in the recursive quadratic programming
methods for minimax problems� Proximal bundle methods are realized only for unconstrained or linearly
constrained dense problems ��JACA��D��� The special quadratic programming subproblem can be solved
by using the following methods�

�NUMBER�� � Dual projected gradient �range�space� method proposed in ����
�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation

of the Newton projected gradient method�

Proximal bundle methods are only realized as line search methods in two modi�cations which are speci�ed
by the macrovariable �MEX� If �MEX��� a convex version is assumed� If �MEX��� a nonconvex version
is assumed and we can de�ne a measure of nonconvexity using the macrovariable �ETA�� The default
value is �ETA������� Possible speci�cations �type�number� for bundle methods are L�� and L��� The
default choice is L��� There are various methods implemented for computing the weight parameter which
are chosen by using the macrovariables �MOS and �MES�� If �MOS�� and �MES���� the weights
are updated using curvature of the one�dimensional quadratic function� If �MOS�� and �MES���� the
weights are updated using the minimumposition estimate �suitable for polyhedral and nearly polyhedral
functions�� If �MOS��� the weights are updated using the quasi�Newton condition� Proximal bundle
methods can be used when �KSF�� or �KSA��� They can also be used for minimax problems as is
shown in Section ���
�

���
� Bundle�Newton methods for nonsmooth optimization

Bundle�Newton methods for nonsmooth optimization problems are speci�ed by the statement �CLASS
��BN�� These methods use a solution of the special quadratic programming subproblem derived from the
cutting plane approach which contains second order information� This subproblem is in fact the same as
in recursive quadratic programming methods for minimax problems� Bundle�Newton methods are only

�

realized for unconstrained or linearly constrained dense problems ��JACA��D��� The special quadratic
programming subproblem can be solved by using the following methods�

�NUMBER�� � Dual projected gradient �range�space� method proposed in ����
�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation

of the Newton projected gradient method�

A nonconvex version is assumed and we can de�ne the measure of nonconvexity using the macrovariable
�ETA�� The default value is �ETA������� Possible speci�cations �type�number� for bundle methods are
L�� and L��� The default choice is L��� Bundle�Newton methods can be used when �KSF�� or �KSA���
They can also be used for minimax problems as is shown in Section ���
�

����� Variable metric bundle methods for nonsmooth optimization

Variable metric bundle methods for nonsmooth optimization problems are speci�ed by the statement
�CLASS ��BV�� These methods are based on a special realization of the BFGS variable metric method�
This realization uses special null steps and restarts� Stepsize selection is based on the polyhedral approx�
imation obtained using bundles of points and subgradients� Variable metric bundle methods are realized
only for unconstrained dense problems ��JACA��D��� Variable metric bundle methods can be used when
�KSF�� or �KSA��� They can also be used for minimax problems as is shown in Section �����

����� Methods for minimax problems�

Minimax problems are speci�ed by the choice �MODEL��AM�� These problems can be solved using
four classes of methods�

�CLASS��BM� � Proximal bundle methods�
�CLASS��BN� � Bundle�Newton methods�
�CLASS��LP� � Recursive linear programming methods�
�CLASS��VM� � Recursive quadratic programming variable metric methods� An approximation of

the Lagrangian function Hessian matrix is updated in each iteration using the variable
metric updates belonging to the Broyden family�

�CLASS��MN� � Recursive quadratic programmingmodi�ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

The default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� �values �MET�� � �MET��� can be used�� Similarly� mod�
i�ed Newton methods are the same as in Section ��
 with the choice �DECOMP��G� �the Gill�Murray
decomposition is used��
Even if the minimax problems can be solved by using bundle methods described in Sections ���� �

����� it is more e�cient to use the recursive linear programming or recursive quadratic programming
methods that utilize a special structure of minimax problems�
Recursive linear programming methods are realized as trust region methods with box constrained

subproblems� The special linear programming subproblem� which is derived from the minimax problem�
is solved by a primal projected gradient �range�space� method which is a special implementation of the
steepest descent method�
Recursive quadratic programming methods are realized in three di�erent forms�

�TYPE��L� � Line search methods�
�TYPE��G� � General trust region methods �
�TYPE��C� � General trust region methods with second order corrections �
���

If �TYPE��L�� the special line search method ��MES���� described in ��� can be used successfully�

��

The special quadratic programming subproblem� which is derived from the minimax problem� can be
solved by using two di�erent methods�

�NUMBER�� � Dual projected gradient �range�space� method proposed in ����
�NUMBER�� � Primal projected gradient �range�space� method which is a special implementation

of the Newton projected gradient method�

All of the above methods are only realized for dense unconstrained or linearly constrained problems�
A possible speci�cation �type�number� for recursive linear programming methods is G��� A possible
speci�cations �type�number� for recursive quadratic programming methods are these�

L���
L���
G���
G���
C���
C���

The default choice is L���

���� Recursive quadratic programming methods for dense general nonlinear programming
problems

Recursive quadratic programming methods for dense general nonlinear programming problems are
speci�ed by the statement �FORM��SQ�� These methods belong to the two following classes�

�CLASS��VM� � Recursive quadratic programming variable metric methods� An approximation of
the Lagrangian function Hessian matrix is updated in each iteration using variable
metric updates�

�CLASS��MN� � Recursive quadratic programmingmodi�ed Newton methods� The Lagrangian func�
tion Hessian matrix is computed in each iteration either analytically or numerically�

The default value is �CLASS��VM�� Variable metric methods are the same as in Section ��� with the
choice �DECOMP��G� and �UPDATE��B� �values �MET�� � �MET��� can be used�� Similarly� mod�
i�ed Newton methods are the same as in Section ��
 with the choice �DECOMP��G� �the Gill�Murray
decomposition is used��
Recursive quadratic programming methods for dense general nonlinear programming problems are

realized as line search methods ��TYPE��L�� with the l��exact penalty function� They are like the
methods proposed in ������ The special line search method ��MES��� for l��exact penalty function
can be used successfully� The quadratic programming subproblem can be solved by using two di�erent
methods�

�NUMBER�� � Dual projected gradient �range�space� method �like the method proposed in ��
���
�NUMBER�� � Primal projected gradient �range�space� method �like the method proposed in ��	��

which is a special implementation of the Newton projected gradient method�

Possible speci�cations �type�number� for these methods are L�� and L��� The default choice is L���

����� Recursive quadratic programming methods for sparse equality constrained nonlinear
programming problems

Recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems are speci�ed by the statement �FORM��SE�� These methods� which are intended for large
problems� belong to the following classes�

��

�CLASS��VM� � Recursive quadratic programming variable metric methods� An approximation of
the Lagrangian function Hessian matrix is updated in each iteration using variable
metric updates�

�CLASS��VL� � Recursive quadratic programming variable metric methods with limited storage
based on compact representations of variable metric updates� The number of VM
steps is speci�ed by the macrovariable �MF �the default value is �MF���� Variable
metric methods with limited storage use several small�size matrices which are up�
dated in every iteration in such a way that their product aproximates the Lagrangian
function Hessian matrix as precisely as possible ����

�CLASS��MN� � Inexact recursive quadratic programming modi�ed Newton methods� The La�
grangian function Hessian matrix is computed in each iteration either analytically
or numerically�

The default value is �CLASS��MN��
If �CLASS��VM�� the individual variable metric updates �or families� are speci�ed by using the

macrovariable �UPDATE�

�UPDATE��M� � The simple Marwill projection update �����
�UPDATE��B� � The partitioned variable metric updates from the Broyden family ���� These up�

dates can only be used if �MODEL��AF� or �MODEL��AQ� or �MODEL��AP��

The default value is �UPDATE��M�� If �UPDATE��B�� the particular update is speci�ed by using the
macrovariable �MET� If �MET��� the BFGS method is used� If �MET��� the DFP method is used�
If �MET��� the Hoshino method is used� If �MET�
� the safeguarded rank�one method is used� The
default value is �MET���
If �CLASS��VL�� two variable metric updates with limited storage� belonging to the Broyden family�

can be used� These updates are speci�ed by using the macrovariable �MET� If �MET��� then the
BFGS method is used� If �MET�
� then the safeguarded rank�one method is used� The default value is
�MET���
Recursive quadratic programming methods for sparse equality constrained nonlinear programming

problems are realized in three di�erent ways which are speci�ed by using the macrovariable �TYPE�

�TYPE��L� � Line search methods� These methods can use three di�erent penalty functions
for the stepsize selection� Individual penalty functions are determined by using the
macrovariable �MEP� If �MEP��� the l� exact penalty function is used� If �MEP���
the augmented Lagrangian function is used� If �MEP��� the combined l� and aug�
mented Lagrangian function is used� The default value is �MEP���

�TYPE��F� � SQP �lter methods �

�� These methods are based on a special multicriterial decision
and do not use any penalty function�

�TYPE��G� � Trust region methods� These methods use two direction determination subproblems
���� ��
�� The vertical subproblem� solved by using the dog�leg method� serves for
a su�cient decrease of constraint violations� The horizontal subproblem� solved by
a special realization of the conjugate gradient method� serves for minimization of a
quadratic approximation of a particular penalty function� Individual penalty func�
tions are determined by using the macrovariable �MEP� If �MEP��� the l� exact
penalty function ��� is used� If �MEP��� the augmented Lagrangian function ��
� is
used� The default value is �MEP���

The default value is �TYPE��L��
If �TYPE��L� or �TYPE��F�� the direction vector can be computed in three di�erent ways� which

are speci�ed by using the macrovariable �DECOMP�

��

�DECOMP��K� � The direction vector is determined as a solution of the inde�nite Karush�Kuhn�
Tucker system �����

�DECOMP��Z� � The direction vector is decomposed into two parts� The vertical part is computed
directly from the constraint violation� The horizontal part� lying in the null�space� is
computed iteratively by using a special realization of the conjugate gradient method�
Instead of projecting into the null�space� either the augmented system or an orthog�
onal projection matrix� both determined from a range�space basis� are used �����

�DECOMP��G� � The direction vector is determined directly from the Lagrangian multipliers� which
are determined iteratively by using the conjugate gradient method in the range space
using the Schur complement�

The default value is �DECOMP��K��
If �DECOMP��K�� two realizations are possible� which are speci�ed by the macrovariable �NUMBER�

�NUMBER�� � An exact sparse Bunch�Parlett decomposition ���� of the inde�nite Karush�Kuhn�
Tucker system is used�

�NUMBER�� � An inexact smoothed conjugate gradient method for the inde�nite Karush�Kuhn�
Tucker system is applied which uses a special determination of the required preci�
sion� The particular realization of the inexact smoothed conjugate gradient method
depends on speci�cations given by the macrovariables �MOS�� �MOS� and �MOS��
The macrovariable �MOS� speci�es the precision control and the choice of the penalty
parameter� If �MOS���� the precision control is suppressed� If �MOS���� a precision
guaranteeing descent direction is used together with the basic choice of the penalty
parameter� If �MOS���� a presision guaranteeing descent direction together with an
extended choice of the penalty parameter� based on condition of positive de�nitness� is
used� The default value is �MOS���� The macrovariable �MOS� speci�es a precon�
ditioning technique� If �MOS���� preconditioning is suppressed� If ABS��MOS�����
the inde�nite preconditioner ���� based on a diagonal approximation of the Hessian
matrix is used� If ABS��MOS����� the inde�nite preconditioner ���� based on a diag�
onal perturbation of the Schur complement is used� If �MOS� is negative� a complete
Gill�Murray decomposition is used� If �MOS� is positive� an incomplete Gill�Murray
decomposition is used� The default value is �MOS���� The macrovariable �MOS�
speci�es residual smoothing of the conjugate gradient method� If �MOS���� the
residual smoothing is suppressed� If �MOS���� a simple one�dimensional residual
smoothing is used� The default value is �MOS����

The default value is �NUMBER�����
If �DECOMP��Z�� two realizations are possible� which are speci�ed by the macrovariable �NUMBER�

�NUMBER�� � An inexact null�space preconditioned conjugate gradient method for determination
of the horizontal direction is applied which uses a special determination of the re�
quired precision� The preconditioner is computed by using an augmented system
determined from a range�space basis� A particular realization of the null�space pre�
conditioned conjugate gradient method depends on the speci�cations given by the
macrovariables �MOS� and �MOS�� The macrovariable �MOS� speci�es the preci�
sion control and the choice of the penalty parameter� If �MOS���� the precision
control is suppressed� If �MOS���� a presision guaranteeing descent direction is
used together with the basic choice of the penalty parameter� If �MOS���� a pre�
sision guaranteeing descent direction is used together with an extended choice of

��

the penalty parameter� based on the condition of positive de�nitness� The default
value is �MOS���� The macrovariable �MOS� speci�es a diagonal matrix which is
used for the preconditioner construction� If �MOS���� the unit matrix is used� If
�MOS���� the main diagonal of the Hessian matrix is used� The default value is
�MOS����

�NUMBER�� � An inexact null�space preconditioned conjugate gradient method for the determina�
tion of the horizontal direction is applied which uses a special determination of the
required precision� The preconditioner is computed by using an orthogonal projection
matrix determined from a range�space basis� The particular realization of the null�
space preconditioned conjugate gradient method depends on the speci�cations given
by the macrovariables �MOS� and �MOS� as in the previous case�

The default value is �NUMBER�����
If �DECOMP��G�� two realizations are possible� which are speci�ed by the macrovariable �NUMBER�

�NUMBER�� � The sparse Gill�Murray decomposition of the Lagrangian function Hessian matrix
followed by an inexact smoothed conjugate gradient method for a positive de�nite
range space system is applied which uses a special determination of the required pre�
cision� The particular realization of the inexact smoothed conjugate gradient method
depends on speci�cations given by the macrovariables �MOS�� �MOS� and �MOS��
The macrovariable �MOS� speci�es the precision control and the choice of the penalty
parameter� If �MOS���� the precision control is suppressed� If �MOS���� a presision
guaranteeing a descent direction is used together with the basic choice of the penalty
parameter� The default value is �MOS���� If �MOS���� a presision guaranteeing
descent direction is used together with an extended choice of the penalty parame�
ter� based on condition of positive de�nitness� The macrovariable �MOS� speci�es
a preconditioning technique� If �MOS���� the preconditioning is suppressed� If
ABS��MOS����� the positive preconditioner ���� based on a diagonal approximation
of the Hessian matrix is used� If ABS��MOS����� the polynomial preconditioner ���	�
based on a decomposition of the normal equations is used� If �MOS� is negative� a
complete Gill�Murray decomposition is used� If �MOS� is positive� an incomplete Gill�
Murray decomposition is used� The default value is �MOS���� The macrovariable
�MOS� speci�es residual smoothing of the conjugate gradient method� If �MOS����
the residual smoothing is suppressed� If �MOS���� then a simple one�dimensional
residual smoothing is used� The default value is �MOS����

�NUMBER�
 � The sparse Bunch�Parlett decomposition of the Lagrangian function Hessian matrix
followed by an inexact MINRESmethod for an inde�nite range space system is applied
which uses a special determination of the precision required� The particular realization
of the MINRES method depends on speci�cations given by the macrovariable �MOS��
The macrovariable �MOS� speci�es the precision control and the choice of the penalty
parameter� If �MOS���� the precision control is suppressed� If �MOS���� a presision
guaranteeing descent direction is used together with the basic choice of the penalty
parameter�

The default value is �NUMBER�����
If �TYPE��G�� only the speci�cation �DECOMP��Z� is possible� Again two realizations with �NUM�

BER���� and �NUMBER���� are possible which have the same meaning as above�
If �TYPE��L�� the UFO system allows us to choose a second order correction for overcoming the

Maratos e�ect� various Lagrange multipliers updates and various forms of the augmented Lagrangian
function� This is a�ected by the macrovariables �MEP�� �MEP�� �MEP�� The macrovariable �MEP�
speci�es a second order correction� If �MEP���� the second order correction is suppressed� If �MEP����
the second order correction is determined as being a least squares solution of the shifted constraint system�
The default value is �MEP���� The macrovariable �MEP� speci�es estimates of Lagrange multipliers

�

at the beginning of each iteration� If �MEP���� the initial estimate is taken from the previous iteration�
If �MEP���� the initial estimate is determined as being a least squares solution of the �rst part of the
Karush�Kuhn�Tucker system� The default value is �MEP���� The macrovariable �MEP� speci�es the
penalty term of the augmented Lagrangian function� If �MEP���� the basic penalty term is used� If
�MEP���� then the extended Boggs�Tolle ��� penalty term is used� The default value is �MEP����
Possible speci�cations �type�decomposition�number� for inexact recursive quadratic programming

methods for equality constrained nonlinear programming problems are these�

L�K���
L�Z���

L�K��� L�Z��� L�G���
L�G�
�

F�K���
F�Z���

F�K��� F�Z��� F�G���
F�G�
�

G�Z���
G�Z���

The default choice is L�K��� The choice �DECOMP��G� cannot be used for variable metric methods
with limited storage ��CLASS��VL���

����� Methods for initial value problems for ordinary di�erential equations

Methods for initial value problems for ordinary di�erential equations are speci�ed by using the
macrovariable �SOLVER� The UFO system contains �ve types of integration methods�

�SOLVER��DP�� � The Dormand and Prince method of the �fth order with a stepsize control for nonsti�
problems�

�SOLVER��DP	� � The Dormand and Prince method of the eighth order with a stepsize control for
nonsti� problems�

�SOLVER��EX�� � The extrapolation method with a stepsize control� based on the midpoint rule� for
nonsti� problems�

�SOLVER��RD�� � The Radau method of the �fth order with a stepsize control for sti� problems�
�SOLVER��RS
� � The Rosenbrock method of the fourth order with a stepsize control for sti� problems�

The default value is �SOLVER��DP	�� These methods� described in ����� use a stepsize control based on
a local truncation error�
A solution to the initial value problem for ordinary di�erential equations can be stored for subsequent

processing� The extent of the data stored is determined by using the macrovariable �MED� If �MED���
then no data are stored� If �MED��� the data in all solution steps are stored� If �MED��� the data
in equidistant mesh points are stored� The number of mesh points is speci�ed by using the statement
�NA�number of mesh points in the last case�

����� Methods for direction determination

Optimization methods� contained in the UFO system� are usually implemented in such a way that
they use the same modules for direction determination� These modules� realized with di�erent kinds
of matrix decomposition� are distinguished by using the macrovariables �TYPE and �NUMBER� The
meaning of the speci�cation �TYPE has been explained above� Now we will explain the speci�cation
�NUMBER�
If �TYPE��L�� then line search methods are supposed� In this case� relatively simple procedures are

used for direction determination� There are �ve possibilities�

��

�NUMBER�� � Direct methods for solving linear systems based on various matrix decompositions�
These decompositions are interesting� especially in the sparse case� The Gill�Murray
decomposition ���� of the Hessian matrix is applied if �DECOMP��M� and �MOS���
or if �DECOMP��G�� The Schnabel�Eskow decomposition ����� of the Hessian matrix
is used if �DECOMP��M� and �MOS��� or if �DECOMP��S�� The Choleski decom�
position of the Hessian matrix is utilized if �DECOMP��R� or �DECOMP��C�� The
Bunch�Parlett decomposition ���� of the Hessian matrix is applied if �DECOMP��B��
The inverse matrix is used if �DECOMP��I�� The orthogonal QR decomposition ��

�
of the Jacobian matrix is utilized if �DECOMP��A� or �DECOMP��Q�� The com�
plete LU decomposition ��� of the Jacobian matrix is applied if �DECOMP��E��
Moreover� symbolic decomposition is always determined before the iterative process
in the sparse case� so that only numerical computations with known factors are carried
out in the subsequent iterations�

�NUMBER�� � An alternative possibility to the previous case� The direct solution is combined with
a conjugate gradient direction if the Hessian matrix is inde�nite� This possibility can
be advantageously used in connection with the modi�ed Newton method�

�NUMBER�� � Inexact iterative methods� The conjugate gradient method ���� for solving linear
systems with the Hessian matrix is applied if �DECOMP��M�� The CGLS method
���
� for solving linear least squares problems with the Jacobian matrix is used if
�DECOMP��A�� The smoothed CGS method ��
�� for solving linear systems with
the Jacobian matrix is utilized if �DECOMP��E�� The precision is speci�ed by the
macrovariable �MOS� If �MOS��� simple strategy is used� If �MOS��� the geo�
metric decreasing strategy is used� If �MOS��� the harmonic decreasing strategy
is used� If �DECOMP��M� and �HESF��S�� the conjugate gradient method can
be preconditioned by using the incomplete Gill�Murray �IGM� decomposition� This
possibility is speci�ed by the macrovariable �MOS�� If �MOS���� preconditioning
is suppressed� If �MOS���� the IGM decomposition is used� Similarly� if �DE�
COMP��E� and �JACA��S�� the smoothed CGS method can be preconditioned by
using either the incomplete LU �ILU� decomposition or the SSOR iteration� This
possibility is speci�ed by the macrovariable �MOS�� If �MOS���� preconditioning is
suppressed� If �MOS���� the ILU decomposition is used� If �MOS���� the SSOR
iteration is used�

�NUMBER�
 � Inexact iterative methods� The LSQR method ���
� for solving linear least squares
problems with the Jacobian matrix is applied if �DECOMP��A�� The GMRES
method ���
� for solving linear systems with the Jacobian matrix is used if �DE�
COMP��E�� The precision is speci�ed by the macrovariable �MOS as in the previous
case�

�NUMBER�� � Inexact iterative methods� The smoothed BICGSTAB method ��
�� for solving linear
systems with the sparse Jacobian matrix is used if �DECOMP��E�� The precision is
speci�ed by the macrovariable �MOS as in the previous case�

If the line search method is used then a descent property of the determined direction is tested� If

�sT g
 �� k s kk g k

where sTg is the directional derivative� s is the direction� and g is the objective function gradient� then
the direction is accepted� In the opposite case the optimization method is restarted� The value �� is
speci�ed using the macrovariable �EPS��
If �TYPE��G�� then trust region methods are supposed� The initial trust region radius can be

speci�ed by the statement �XDEL�trust region radius� but the default automatically derived value is
recommended� The trust region methods can be internally scaled� This way is very advantageous
for nonlinear regression problems containing exponentials� The trust region scaling is speci�ed by the
macrovariable �MOS�� If �MOS���� no scaling is performed� If �MOS���� the scaling coe�cients are
derived from the normal equation matrix diagonal elements �	
�� There are six possibilities�

��

�NUMBER�� � So�called single dog�leg methods based on various matrix decompositions� These
decompositions are interesting especially in the sparse case� The Gill�Murray decom�
position ���� of the Hessian matrix is applied if �DECOMP��M� and �MOS��� or if
�DECOMP��G�� The Schnabel�Eskow decomposition ����� is used if �DECOMP��M�
and �MOS��� or if �DECOMP��S�� The Choleski decomposition of the Hessian ma�
trix is utilized if �DECOMP��R� or �DECOMP��C�� The Bunch�Parlett decompo�
sition ���� of the Hessian matrix is applied if �DECOMP��B�� The orthogonal QR
decomposition ��

� of the Jacobian matrix is utilized if �DECOMP��A� or �DE�
COMP��Q�� The complete LU decomposition ��� of the Jacobian matrix is applied
if �DECOMP��E�� Moreover� symbolic decomposition is always determined before the
iterative process in the sparse case� so that only numerical computations with known
factors are carried out in the subsequent iterations� The individual dog�leg methods
are speci�ed by the macrovariable �MOS� If �MOS��� the single dog�leg method �����
is used� If �MOS��� the double dog�leg method ���� is used� If �MOS��� the triple
dog�leg method is used� If �MOS�
� the optimum dog�leg method ���� is used�

�NUMBER�� � An alternative possibility to the previous case� The so�called multiple dog�leg
methods �combinations of single dog�leg methods and conjugate gradient meth�
ods� �	� are supposed� The number of dog�leg steps is speci�ed by the statement
�MOS�number of steps�

�NUMBER�� � Iterative trust region methods� The conjugate gradient trust region method �����
with the Hessian matrix is applied if �DECOMP��M�� The CGLS trust region method
�	�� with the Jacobian matrix is used if �DECOMP��A�� The smoothed CGS trust
region method ���� with the Jacobian matrix is utilized if �DECOMP��E�� The preci�
sion is speci�ed by the macrovariable �MOS� If �MOS��� the simple strategy is used�
If �MOS��� the geometric decreasing strategy is used� If �MOS��� the harmonic de�
creasing strategy is used� If �DECOMP��M� and �HESF��S�� the conjugate gradient
method can be preconditioned by using the incomplete Gill�Murray �IGM� decompo�
sition� This possibility is speci�ed by the macrovariable �MOS�� If �MOS���� pre�
conditioning is suppressed� If �MOS���� the IGM decomposition is used� Similarly� if
�DECOMP��E� and �JACA��S�� the smoothed CGS method can be preconditioned
by using either the incomplete LU �ILU� decomposition or the SSOR iteration� This
possibility is speci�ed by the macrovariable �MOS�� If �MOS���� preconditioning is
suppressed� If �MOS���� the ILU decomposition is used� If �MOS���� the SSOR
iteration is used�

�NUMBER�
 � Iterative trust region methods� The combined Lanczos and CG trust region method
�	� with the Hessian matrix is applied if �DECOMP��M�� The LSQR trust region
method �	�� with the Jacobian matrix is used if �DECOMP��A�� The GMRES trust
region method ���� with the Jacobian matrix is utilized if �DECOMP��E�� The preci�
sion is speci�ed by the macrovariable �MOS as in the previous case� Iterative methods
can be again preconditioned� This possibility is speci�ed by the macrovariable �MOS�
as in the previous case�

�NUMBER�� � Iterative trust region methods� The combined CG and Lanczos trust region method
�	� with the Hessian matrix is applied if �DECOMP��M�� The smoothed BICGSTAB
trust region method ���� with the Jacobian matrix is utilized if �DECOMP��E�� The
precision is speci�ed by the macrovariable �MOS as in the previous case� Iterative
methods can be again preconditioned� This possibility is speci�ed by the macrovari�
able �MOS� as in the previous case�

�NUMBER� � An optimum locally constrained trust region method ����� The Gill�Murray decom�
position ���� of the Hessian matrix is applied if �DECOMP��M� and �MOS���� The
Schnabel�Eskow decomposition ����� of the Hessian matrix is used if �DECOMP��M�
and �MOS��� or if �DECOMP��S�� The special augmented Jacobian matrix is used
if �DECOMP��A��

�

If �TYPE��T�� only the speci�cations �NUMBER��� �NUMBER�� and �NUMBER� can be used�
These speci�cations have the same meaning as in the case �TYPE��G�� but the implementation is simpler�
If �NUMBER�� the simpli�ed optimum locally constrained trust region method �	
� is used�
If �TYPE��M�� only the speci�cation �NUMBER�� can be used� In this case a modi�ed Marquardt

method proposed by Fletcher ��� is applied�

����� Methods for stepsize selection

Stepsize selection is a very important part of optimization methods� The UFO system contains two
types of stepsize selection procedures� line search methods and trust region methods� Line search methods
are realized in two modi�cations speci�ed by the macrovariable �SEARCH�

�SEARCH��B� � Basic line search methods based on various interpolation and extrapolation formulas�
�SEARCH��M� � Mixed line search methods which control the maximum stepsize like the trust region

methods�

The choice of individual line search procedures is in#uenced by the order of directional derivatives
being used� This order can be speci�ed by the macrovariable �KDS� The value of the macrovariable �KDS
is usually derived internally from the order of analytically supplied partial derivatives� If this order is
zero� then always �KDS��� In the opposite case� the value of the macrovariable �KDS can be speci�ed by
the user� If �KDS��� only the function values are used during the line search� If �KDS��� the function
values and the �rst directional derivatives are used� If �KDS�� then� in addition� the Hessian matrices
or their approximations are computed during the line search �this case is very useful for a line search
implementation of modi�ed Gauss�Newton methods��
The particular interpolation and extrapolation rule is speci�ed by the macrovariable �MES� If �KDS���

we have the following possibilities�

�MES�� � The uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � Two point quadratic extrapolation or interpolation is used�
�MES�� � Three point quadratic extrapolation or interpolation is used�
�MES�
 � Three point cubic extrapolation or interpolation is used�
�MES�� � Special extrapolation or interpolation is used based on the special form of the ob�

jective function�

If �KDS�� or �KDS��� the following possibilities� based on the �rst directional derivatives� can be used�

�MES�� � The uniformly increasing extrapolation or bisection interpolation is used�
�MES�� � Quadratic extrapolation or interpolation �with one directional derivative� is used�
�MES�� � Quadratic extrapolation or interpolation �with two directional derivatives� is used�
�MES�
 � Cubic extrapolation or interpolation ���� is used�
�MES�� � Conic extrapolation or interpolation ��� is used�

More detailed speci�cations concerning the line search selection can be chosen using macrovariables
�MES�� �MES�� �MES��

�MES��� � Constant extrapolation is used�
�MES��� � Extrapolation speci�ed by the macrovariable �MES is used�
�MES��� � Extrapolation is suppressed�
�MES��� � Standard line search termination criterion is used�
�MES��� � Special termination criterion for nonconvex functions is used�
�MES��� � Line search is terminated after at least two function evaluations�
�MES��� � Safeguard against rounding errors is suppressed�
�MES��� � The �rst level of safeguard is used�

�	

�MES��� � The second level of safeguard is used�

Another useful speci�cation for the line search selection is a termination criterion which is determined
by using the macrovariable �KTERS�

�KTERS�� � The nonmonotone line search procedure proposed in ��	� is used� The absolute value
of the macrovariable �KTERS� which cannot be greater then ��� gives the number of
nonmonotone steps�

�KTERS�� � Perfect stepsize� The relative precision of the stepsize parameter is given by the
value �EPS��

�KTERS�� � The Goldstein stepsize ����� The termination precision is given by the value �EPS��
�KTERS�� � The Curry�Altman stepsize ��
� �Wolfe conditions�� The termination precision is

given by the values �EPS� and �EPS��
�KTRES�
 � The extended Curry�Altman stepsize ���� �strict Wolfe conditions�� The termination

precision is given by the values �EPS� and �EPS��
�KTERS�� � The Armijo stepsize ���� The termination is given by the value �EPS��
�KTERS�� � The �rst stepsize� The stepsize selection is terminated after the �rst function eval�

uation�

The last useful speci�cation for the line search methods is the initial stepsize choice which is determined
by the macrovariable �INITS� The initial stepsize is usually computed by the rule

� � min�c���c��$F�s
Tg��

where sT g is the initial directional derivative and $F � F � Fmin or $F � Fold � F if the value of
the macrovariable �INITS is positive or negative respectively� The absolute value of the macrovariable
�INITS determines coe�cients c� and c� If jINITSj��� then c� � � and c� � �� If jINITSj��� then c� � �
and c� �
� If jINITSj��� then c� � � and c� � �� If jINITSj�
� then c� � � and c� � ��
Trust region methods are also realized in two modi�cations speci�ed by the macrovariable �SEARCH�

�SEARCH��B� � The basic trust region methods with stepsize control based on the comparison of
both the actual and the predicted function decreases�

�SEARCH��M� � Mixed trust region methods which use interpolation formulas for stepsize reduction
like the line search methods ������

Trust region methods are also in#uenced by using the macrovariable �KTERS� If �KTERS��� then
nonmonotone trust region procedure proposed in ��	� is used� The absolute value of the macrovariable
�KTERS� which cannot be greater then ��� gives the number of nonmonotone steps�

����� Methods for numerical di�erentiation

The UFO system computes derivatives of the model function �of the approximating functions� of the
constraint funcions� numerically whenever they are not given analytically� This is made possible by the
macroprocessor which generates a corresponding part of the control program� The main problem of a
numerical di�erentiation is a di�erence determination which has to be chosen in such a way that the
total in#uence of both the cancellation and the roundo� error is as small as possible� There are three
possibilities in the UFO system which are distinguished by using the macrovatiable �MCG�

�MCG�� � The simple di�erence determination described in ���� is used�
�MCG�� � The optimum di�erence determination proposed in ���� is used�
�MCG�� � The optimum di�erence determination proposed in ����� is used�

The default option is �MCG��� The above possibilities are used for a computation of the model function
�rst order derivatives� The others �second order derivatives or derivatives of the approximating functions
and constraint functions� are always computed with the simple di�erence determination�

��

���	� Methods for objective function evaluation in the case of dynamical systems optimiza�
tion

If either �MODEL��DF� or �MODEL��DQ�� the objective function is computed from the solution of
an initial value problem for ordinary di�erential equations� The initial value problem is solved and the
integral criterion is evaluated by using integration methods speci�ed by the macrovariable �SOLVER as
is described above� If the partial derivatives of all the functions used are given analytically� the gradient
of the objective function is computed by integration methods� There are two possibilities speci�ed by
the macrovariable �SYSTEM�

�SYSTEM��F� � Forward integration using an augmented systen of ordinary di�erential equations�
�SYSTEM��B� � Backward integration using the adjoint system of ordinary di�erential equations�

The default value is �SYSTEM��F�� In the case of modi�ed Gauss�Newton methods ��CLASS��GN���
an approximation of the Hessian matrix is also computed by using forward integration of an augmented
system�

���
� Global optimization methods

Global optimization methods are used if �EXTREM��G� is speci�ed� The global optimization meth�
ods use local optimization methods for �nding local minima� Therefore the particular local optimization
method has to be chosen by using the macrovariables �CLASS and �TYPE and others� Individual global
optimization methods are speci�ed by using the macrovariables �GCLASS and �GTYPE� The UFO
system contains four classes of global optimization methods�

�GCLASS�� � Random search methods� These methods are simple and robust� but less e�cient�
�GCLASS�� � Continuation methods� These methods use some penalty functions which are ad�

justed after reaching an arbitrary local minimum so that another local minimum is
found�

�GCLASS�� � Clustering methods� These methods are based on randomly generated sample points
which are processed using clustering algorithms to determine attractivity regions
�clusters� of the individual minima� The attractivity regions �clusters� obtained are
not searched repeatedly�

�GCLASS�
 � Multi�level methods� Modern stochastic methods which involve a combination of
sampling and local search techniques� These methods combine strong theoretical
properties with an attractive computational behaviour� These methods are simpler
but more e�cient than the clustering methods�

If �GCLASS��� we can choose four types of global optimization methods�

�GTYPE�� � Single�start methods� Random points� uniformly distributed in a given region� are
generated and a local minimization method is started from the point with the lowest
function value�

�GTYPE�� � Multi�start methods� Random points� uniformly distributed in a given region� are
generated and local minimization is started from every point� The local minima
obtained are compared and selected�

�GTYPE�� � Modi�ed multi�start methods� Random points� distributed in a given region uni�
formly� are generated and local minimization is started whenever a point is found
which has a lower function value than that reached up to date�

�GTYPE�
 � Bayesian reduced multi�start methods ��� Random samples of points are repeatedly
generated� Every random sample is reduced and local minimization is started from
all points belonging to the reduced sample� Obtained local minima are compared and
selected� This process is repeated while the Bayessian termination criterion is not
satis�ed�

��

If �GCLASS��� then we can choose three types of global optimization methods�

�GTYPE�� � Tunneling function methods ���� These methods consist of two phases� a local
minimization phase and a tunneling phase� The starting point for the second phase
is the local minimum� At the end of the tunneling phase a new point is found which
has a function value equal or lower than the starting point�

�GTYPE�� � Combined tunneling function and random search methods� In this case a random
search is used in the tunneling phase if the minimization of a tunneling function has
failed to �nd a new starting point�

�GTYPE�� � Filled function methods �
��� �
�� The idea of �lled function methods is based on
a �lled function� This function has a maximum in the point of a known minimum of
the objective function� On the other hand� this function does not have minimizers or
saddle points in any basin of a higher minimizer of the objective function� but it does
have a minimizer or a saddle point in a basin of a lower minimizer of the objective
function�

If �GCLASS��� we can choose two types of global optimization methods�

�GTYPE�� � Density clustering method �	�� Density clustering refers to a class of clustering
techniques by using nonparametric probability density estimates to form clusters� All
unclustered points from a reduced sample� which are within the threshold distance
from the seed point� are added to the cluster�

�GTYPE�� � Single linkage clustering method �	�� In this case� the next two clusters to be merged
are those for which the distance between the nearest points is the smallest� When
this distance becomes larger than the threshold distance� the procedure is stopped�
Starting with each point in a separate cluster� the points at distances smaller than
the threshold distance are linked� A cluster is recognised as a set of points linked
together�

If �GCLASS�
� we can choose three types of global optimization methods�

�GTYPE�� � multi�level single linkage method ������ In this case� the function values of the
sample points are used in a very simple manner to obtain a very powerful method�
The local search procedure is applied to every sample point� except if there is another
sample point within the critical distance which has a smaller function value� Clusters
can be constructed by associating a point with a local minimum� if there exists a
chain of points linking it to that minimum� This is done so that the distance between
each successive pair is� at most� equal to the critical distance and the function value
is decreasing along the chain� A point in this way could be assigned to more than one
minimum�

�GTYPE�� � Multi�level mode analysis method ������ This method is a generalization of the mode
analysis method� The region is partitioned into cells� After the sample reduction� it
is determined which cells contain enough points to be �full�� For each full cell the
function value of the cell is de�ned to be equal to the smallest function value of any of
the sample points in the cell� Finally� for every full cell� local minimization is applied
except if a cell has a neighbouring cell which is full and has a smaller function value�

�GTYPE�� � Modi�ed multi�level single linkage method� This is a multi level single linkage
method with some modi�cations which are described in ������

The number of points randomly generated in the given region can be speci�ed by using the macrovari�
able �MNRND� The default value is usually ������"NF� Since it depends on the number of variables
and for NF��� it is too large� we recommend to use global optimization methods up to �� variables only�
If we use clustering or multi level single linkage methods ��GCLASS�� or �GCLASS�
�� we can specify
additional parameters�

��

�MNLMIN � Maximum considered number of local minima� The default value is �����"NF�
�GAMA � Reduction of random sample �typically ���D� � ���D��� A greater value of GAMA

usually leads to a greater number of local minima� but it requires a greater amount
of work�

�SIGMA � Parameter of cluster or single linkage termination �typically � � 	��

��

�� Input possibilities in the UFO system

The UFO system has many input possibilities including interactive dialogues� These input possibilities
can be divided into three basic groups which are batch mode� text dialogue mode and graphic dialogue
mode� Batch and dialogue modes can be combined� The basic means for the batch and combined modes
is the UFO control language�

���� The UFO control language

The form of the control program can be determined by using the statements of the UFO control
language� The UFO control language is based on the batch editing language �BEL� ����� that described
in Appendix B� The UFO control language contains four types of instructions�

�� Standard Fortran instructions which can be written in the free format�

�� Fortran instructions containing macrovariables� These instructions get a �nal form after the �rst
pass of the UFO preprocessor�

�� Substitutions and directives� These macroinstructions control the UFO preprocessor execution�

� Special substitutions� These macroinstructions are special tools of the UFO control language that
realize the most useful sets of single instructions�

Standard Fortran instructions used in the UFO control language have some extensions and limita�
tions� The main extension is the free format� The instructions may not have a limited length� they can
be written everywhere in the input �le and if they are written in the same line� the character ��� is used
to separate the instructions� The continuation of an instruction is speci�ed by character �% �� The main
limitation concerns the application of instructions in the control program� Therefore� statement numbers
greater than ���� cannot be used� comments can be introduced by character �	� only and the only con�
tinuation character can be �% �� Also� it is recommended to use identi�ers beginning with character �W�
which are not used in the UFO system
Macrovariables used in the UFO system begin with character ��� and are supposed to be of the

type character� Their values are always in the form of a string of characters which can be sometimes
interpreted as an integer or a real or a logical constant� The chief signi�cance of the macrovariables is
their use in substituting their values for their names in the Fortran statements� In this case we place
the macrovariable �beginning with ���� in the text� but if it is followed by a letter or digit we have to use
brackets� For example if we write

�FLOAT W�����
or

CALL UD�HESF�TYPE�DECOMP�NUMBER
or

X���������P��

and if the values of �FLOAT� �HESF� �TYPE� �DECOMP� �NUMBER and �P are �REAL		� �this
is default�� �D�� �L�� �G� ��� and �D� �this is default�� we get REAL		 W����� or CALL UDDLG�� or
X�������D� respectively� after the UFO preprocessor application� The values of macrovariables can be
de�ned and changed by assignments or by special directives as will be shown later�
Substitutions and directives are very important for the UFO control language since they make the

substitutions of texts� de�nitions and changes of macrovariables� branching� loops� etc�� possible� We
brie#y describe the most useful of them� A more detailed description is given in Appendix B�

�� Assignment� The assignment of a string of characters for a macrovariable is speci�ed by the
macroinstruction �MACRO��value�� For example� we have to set �HESF��D�� �TYPE��L�� �DE�
COMP��G�� �NUMBER�� �the integers do not need to be substituted as strings� to obtain the
result given above�

��

�� Insertion of a text� If we write

�SET�MACRO� or �ADD�MACRO�

text text

�ENDSET �ENDADD

then a given text �that can contain a large number of Fortran statements� is inserted into the
macrovariable �MACRO� The macroinstruction �SET is used for the de�nition of a new macrovari�
able� The macroinstruction �ADD appends a new text into the old macrovariable so that it can be
used repeatedly�

�� Logical substitutions� The macrovariables �INT� �REAL� �LOG and �DEF have logical values�
If we write �INT�MACRO� �or �REAL�MACRO� or �LOG�MACRO��� the resulting value is ei�
ther �TRUE�� if the value of the macrovariable �MACRO is an integer constant �or real constant
or logical constant�� or �FALSE� in the oposite case� If we write �DEF�MACRO�� the value of
�DEF is either �TRUE�� if the macrovariable �MACRO was previously de�ned �by the substitution
�MACRO��value� or by using macroinstructions �SET and �ADD�� or �FALSE� in the oposite case�
This possibility can be used for branching� If we use the directive �ERASE�MACRO�� the previously
de�ned macrovariable �MACRO becomes unde�ned �so that �DEF�MACRO���FALSE���

� List of items macrovariables� Values of macrovariables can be lists of items� i�e� they can have
a more complicated form �MACRO��item � nitem �n� � �nitem n� where every item corresponds to
one value� The list of items macrovariables use pointers which point out the current items� The
current item can be obtained by the substitution �DATA�MACRO� which also moves the pointer
to the next item� The directive �RESTORE�MACRO� returns the pointer to the �rst item�

�� Branching� This possibility is very similar to the branching in the Fortran language�

�IF�condition�

statements

�ELSEIF�condition�

statements

�ELSE

statements

�ENDIF

Conditions can be logical constants �TRUE�� �FALSE�� or logical macrovariables �INT�MACRO��
�REAL�MACRO�� �LOG�MACRO��� �DEF�MACRO�� or they can have a form of comparisons
MACRO�MACRO�� MACRO��value� etc� �besides the relation �� we can also use other relations
� or � or �� or �� or ���� Branching is used in the UFO preprocessor stage and has an in#uence
on the form of the control program�

�� Loops� The basic looping directives have the following form �similarly as in the Fortran or Pascal
languages��

�DO�MACRO�INDEX��INDEX��INDEX��

statements

�ENDDO

or

�

�REPEAT

statements

�UNTIL�condition�

For example if we set �NF��� �NC�� and write

�DO�I���NF���

�DO�J���NC���

CALL �SETCG��I��J��I��D���J��D��

�ENDDO

�ENDDO

then the UFO preprocessor generates the sequence

�SETCG��������D�����D��

�SETCG��������D�����D��

�SETCG��������D�����D��

�SETCG��������D�����D��

�SETCG��������D�����D��

�SETCG��������D�����D��

Similarly� if we set �FLOAT��REAL"	� �N���� �MACRO��X��N�nG��N�nH��N��N�n�END��� and
write

�REPEAT

�I��DATA�MACRO��

�FLOAT �I

�UNTIL�I���END���

then the UFO preprocessor generates the sequence

REAL"	 X����

REAL"	 G����

REAL"	 H�������

� File substitutions� Suppose we have a �le with a name �le name�extension� Then we can include
it into the control program by using the macroinstructions

�INCLUDE���le name�extension��

or

�SUBST���le name�extension��

The main di�erence between these possibilities is that the directive �INCLUDE includes a text
without change �it has to be a regular Fortran text with a �xed format� while the directive
�SUBST substitutes a text executed consecutively by the UFO preprocessor �so that it can con�
tain the macrovariables and macroinstructions and be written in the free format�� Moreover� the
directives �SUBST can be nested� This possibility is widely used for control program generation
by using nested templates� If the included �le has the name �le name�I� we can use a simpler form
without extension� For example� the �le UZLINS�I can be substituted by using the macroinstruction
�SUBST��UZLINS���

��

	� Special substitutions� Besides macroinstructions of the batch editing language BEL� the UFO
control language contains special substitutions which realize sets of instructions and are useful for
controlling the UFO preprocessor�

�BATCH � Switch to the batch mode�

�DIALOGUE � Switch to the default dialogue mode �text or graphic��

�TDIALOGUE � Switch to the text dialogue mode�

�GDIALOGUE � Switch to the graphic dialogue mode�

�GLOBAL � Global declarations�

�INITIATION � Initiation of the global variables�

�INPUT � User supplied input�

�OUTPUT � User supplied output�

�METHOD � Generation of the optimization method�

�MODERASE � Cancelation of the current model�

�METERASE � Cancelation of the current method�

�VARERASE � Clearing the comon variables�

�TSTART � Start of the time measurement�

�TSTOP � Termination of the time measurement and print of the measured time�

�END � End of the optimization block�

�STANDARD � Standard optimization block� The macroinstruction �STANDARD substi�
tutes the sequence of macroinstructions �GLOBAL� �INITIATION� �MOD�
ERASE� �INPUT� �METHOD� �OUTPUT� �TSTOP�

Moreover �UYTES�� �UYTES�� �UYTES�� �UOTES
� �UKMAI� �UKMCI� �UKMCI� are simpli�ed
substitutions of subroutines UYTES�� UYTES�� UYTES�� UOTES
� UKMAI�� UKMCI�� UKMCI�
respectively and �SETAG� �SETCG are simpli�ed calling statements �sections ��� and ���
��
We have described the basic possibilities of the UFO control language that are su�cient for preparing

the batch input �le� More details are given in subsequent chapters and especially in Appendix B� The
following example demonstrates the use of the UFO control language for the solution to three collections
of optimization problems by two selected methods�

�REM ��������������� basic parameters ���������������

�TOLX����
�P��
�� �TOLF����
�P����� �TOLG����
�P���� �MIT��

� �MFV��	

�KOUT�
� �LOUT��� �MOUT��

�BATCH

�GLOBAL

�ADD�INTEGER���IAG��NA���JAG��MA���

�REM ��������������� the first method ���������������

�CLASS��VM�� �TYPE��L�� �DECOMP��M�� �NUMBER��� �UPDATE��B�

�REM ��������������� the first model ���������������

�MODEL��AF�� �JACA��S�� �HESF��S�� �NF��

� �NA��

� �MA�	

� �M��

�SET�INPUT�

��

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT�IEXT�IERR�

IF�IERR�NE�
� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT�

�ENDSET

�REM ��������������� the first solver ���������������

�INITIATION

�MODERASE

CALL �UYTES�

DO ���� NEXT�����

CALL �UYTES	

�INPUT

�METHOD

CALL �UYTES�

���� CONTINUE

�REM ��������������� the second method ���������������

�METERASE

�CLASS��GN�� �TYPE��L�� �DECOMP��M�� �NUMBER��� �UPDATE��D�

�REM ��������������� the second model ���������������

�MODEL��AQ�� �JACA��S�� �HESF��S�� �NF��

� �NA��

� �MA�	

� �M��

�SET�INPUT�

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT����IEXT�IERR�

IF�IERR�NE�
� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT����

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT����

�ENDSET

�REM ��������������� the second solver ���������������

�INITIATION

�MODERASE

DO ���� NEXT������

CALL �UYTES	

�INPUT

�METHOD

CALL �UYTES�

���� CONTINUE

�

�REM ��������������� the third model ���������������

�SET�INPUT�

CALL EIUB���NF�NA�MA�X�IAG�JAG�FMIN�XMAX�NEXT����IEXT�IERR�

IF�IERR�NE�
� GO TO ����

�ENDSET

�SET�FMODELA�

CALL EAFU���NF�KA�X�FA�NEXT����

�ENDSET

�SET�GMODELA�

CALL EAGU���NF�KA�X�GA�NEXT����

�ENDSET

�REM ��������������� the third solver ���������������

�INITIATION

�MODERASE

DO ���� NEXT������

CALL �UYTES	

�INPUT

�METHOD

CALL �UYTES�

���� CONTINUE

�REM ��������������� the final action ���������������

CALL �UOTES�

�END

���� The batch mode

A switch to the batch mode is realized by using the special substution �BATCH� If we want to process
either the batch mode or the mixed mode we have to prepare a batch input �le written in the UFO control
language� This input �le prescribes the structure of the control program� If a macrovariable is used� it
has to be one de�ned previously� Therefore de�nitions of macrovariables usually lie at the beginning of
the input �le� Many macrovariables serve for de�ning a given optimization problem� The most impor�
tant among them are the macrovariable �INPUT which determines initial input values �user supplied
input� and macrovariables which de�ne problem functions� speci�cally the model �or objective� function�
approximating functions for nonlinear approximation� constrain functions for nonlinear programming�
state functions� initial functions and the terminal function for optimization of dynamical systems� These
functions are speci�ed by using special macrovariables whose names consist of three parts� The �rst part
can contain letters F� G� D� H or their combinations�

F � Function value�
G � Gradient with respect to basic variables�
D � Gradient with respect to state variables�
H � Hessian matrix with respect to basic variables�
FG � Function value and gradient with respect to basic variables�
FD � Function value and gradient with respect to state variables�
GD � Gradient with respect to basic variables and gradient with respect to state variables�
FGD � Function value� gradient with respect to basic variables and gradient with respect to state

variables�

�	

FGH � Function value� gradient with respect to basic variables and Hessian matrix with respect to
basic variables�

The second part always has the form MODEL� The third part can contain letters F� A� C� E� Y and also
an additional letter S�

F � The model function or the terminal function�
A � The selected approximating function�
AS � All approximating functions�
C � The selected constraint function�
CS � All constraint functions�
E � The selected state function�
ES � All state functions�
Y � The selected initial function�
YS � All initial functions�

The following combinations are possible�

�FMODELF �FMODELA �FMODELC �FMODELE �FMODELY
�FMODELAS �FMODELCS �FMODELES �FMODELYS

�GMODELF �GMODELA �GMODELC �GMODELE �GMODELY
�GMODELAS �GMODELCS �GMODELES �GMODELYS

�DMODELF �DMODELA �DMODELE
�DMODELES

�HMODELF �HMODELA �HMODELC
�HMODELAS �HMODELCS

�FGMODELF �FGMODELA �FGMODELC �FGMODELE �FGMODELY
�FGMODELAS �FGMODELCS �FGMODELES �FGMODELYS

�FDMODELF �FDMODELA �FDMODELE
�FDMODELES

�GDMODELF �GDMODELA �GDMODELE
�GDMODELES

�FGDMODELF �FGDMODELA �FGDMODELE
�FGDMODELES

�FGHMODELF �FGHMODELA �FGHMODELC
�FGHMODELAS �FGHMODELCS

The choice of a suitable way for problem function de�nitions is ambiguous and problem dependent�
We can only give several remarks�

�� The basic and most general way is the use of di�erent macrovariables for di�erent quantities �val�
ues� gradients� Hessian matrices� together with an independent evaluation of individual functions
�the last letter is di�erent from S�� This way saves the computer storage and frequently also the
computational time�

�� Sometimes� evaluations of gradients require function values� In this case� it can be advantageous
to compute values and gradients simultaneously� A similar consideration also holds for Hessian
matrices�

�� Even if simultaneous evaluations of all aproximating �constraint� state� initial� functions increase
storage requirements� it can be advantageous if there are complicated computations common for
all such functions� and also if a problem has a low dimension or a sparse structure� It is frequently
advantageous for the evaluation of state and initial functions when the dynamical systems are
optimized�

��

� If the gradients of aproximating �constraint� state� initial� functions are computed simultaneously
�the last letter is equal to S�� then also function values have to be computed simultaneously� Simi�
larly if the Hessian matrices are computed simultaneously� then also function values and gradients
have to be computed simultaneously�

A simple example of a batch input �le was shown in section ���� We repeat it here with some explanations�

�SET�INPUT�

X�������	D
� X�	�� ��
D

�ENDSET

�SET�FMODELF�

FF���
D	��X�����	�X�	����	�X������
D
���	

�ENDSET

�NF�	

�NOUT��

�BATCH

�STANDARD

By using the macrovariable �INPUT� we specify the initial values of variables x� � ���� and x� � ���� By
using the macrovariable �FMODELF� we specify the model function value �the model function gradient
is not speci�ed� it will be computed numerically�� The macrovariable �NF de�nes the number of variables
and �NOUT is a print speci�cation� The macroinstruction �BATCH switches the mode to the batch mode�
The macroinstruction �STANDARD de�nes the standard form of the control program� Descriptions of
more complicated problems are shown in chapter ��
In the above example� a direct de�nition of a model function value is used� We can also use indirect

speci�cations by means of the Fortran subroutines or the �les prepared beforehand� Suppose that the
model function value is de�ned by using the subroutine EFFU
� or is speci�ed in the �le FVAL�FOR� Then
we can write�

�SET�FMODELF�
CALL EFFU���NF�X�FF�NEXT�
�ENDSET

or
�SET�FMODELF�
�INCLUDE��FVAL�FOR��
�ENDSET

or
�SET�FMODELF�
�SUBST��FVAL�FOR��
�ENDSET

The last possibility is useful if the model function value speci�cation is written in a free format or it
contains the BEL macroinstructions�
If we need to utilize user supplied subroutines� we can include them into the control program using

the macrovariable �SUBROUTINES�

�SET�SUBROUTINES�
user supplied subroutines
�ENDSET

In this case� some exceptions laid on the text of user supplied subroutines forced by the UFO preprocessor
have to be satis�ed� All comments have to begin with character �"�� the continuation line has to begin
with character �%�� character ��� has to be replaced by ���� and character ��� does not have to be present�
The batch input �le should also contain optimization method selection� Fortunately� this selection

is not critical since the optimization method can be chosen automatically by using knowledge bases

�

contained in the UFO system templates� Here we will only demonstrate some possibilities� The greatest
in#uence on the optimization method selection have the following macrovariables�

�CLASS � Class of optimization methods �heuristic� conjugate gradient� variable metric� vari�
able metric with limited storage� modi�ed Newton� truncated Newton� Gauss�Newton�
quasi�Newton� quasi�Newton with limited storage� proximal bundle� bundle�Newton��

�TYPE � Type of optimization methods �line search� trust region� SQP �lter��
�DECOMP � Type of matrix decomposition �original matrix� Choleski decomposition� inversion��
�NUMBER � Individual methods for direction determination �various direct� various iterative��
�UPDATE � Type of variable metric or quasi�Newton update�

A more detailed description of these choices together with other choices ��MET� �MET�� �MET�� �MET��
�MES� �MES�� �MES�� �MES�� �MOS� �MOS�� �MOS�� �MOS�� is given in section ��

���� The text dialogue mode

A switch to the text dialogue mode is realized by using the special substution �TDIALOGUE� This is
equivalent to the substitution �DIALOGUE in the UNIX version of the UFO system� If this is the case�
a sequence of questions appear on the screen in the text form� Each question� which is placed in its own
frame� consists of the macrovariable description usually followed by the list of its possible values� The
name of a macrovariable together with its default value is written on the top of the frame� We have two
possibilities for an answer� First� the required value can be entered from the keyboard� Secondly� we can
press ENTER to choose the default value� After the assignment of a value to the macrovariable� a new
question immediately appears on the screen until the last one is exhausted� The dialogue mode can be
terminated by entering character � �� from the keyboard� We demonstrate four questions as an example�

AND OTHER INPUT DATA HAVE TO BE SPECIFIED�

TYPES OF CONSTRAINTS� THE STRUCTURE OF SPARSE PROBLEM�

HERE THE STARTING POINT� BOUNDS FOR VARIABLES�

USER SUPPLIED INPUT�

& INPUT � � &

Here a user supplied input is expected� This is a text which should be entered from the keyboard�

& MODEL �FF� &

TYPE OF OBJECTIVE FUNCTION

FF � GENERAL FUNCTION

FL � LINEAR FUNCTION

FQ � QUADRATIC FUNCTION

AF � SUM OF FUNCTIONS

AQ � SUM OF SQUARES

AP � SUM OF POWERS

AM � MINIMAX

DF � DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION

DQ � DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO � MODEL IS NOT SPECIFIED

�

Here an optimization model� i�e� a type of the objective function� is chosen� We have �� possibilities� FF�
FL� FQ� AF� AQ� AP� AM� DF� DQ� NO� The default value of the macrovariable �MODEL corresponding
to the general objective function is FF� By pressing ENTER� the default value FF is accepted�

& NF ��� &

NUMBER OF VARIABLES

Here the number of variables is expected� This is a positive integer� No default value is o�ered� i�e� we
have to set a value� If this value is not a positive integer� the answer is ignored and the same question
appears on the screen�

& FMIN �����D ��� &

LOWER BOUND FOR FUNCTION VALUE

Here a real constant is expected� By pressing ENTER the default value ����D �� is accepted�
More details concerning a text dialogue mode are given in Appendix A� where a complete text dialogue

concerning unconstrained minimization of the Rosenbrock function is shown�

���� The graphic dialogue mode

The graphic dialogue mode can only be used on PC computers under the MS DOS system� This
possibility is not allowed on the UNIX workstations� A switch to the graphic dialogue mode is realized
by using the special substution �GDIALOGUE� This is an equivalent to the substitution �DIALOGUE
in the PC version of the UFO system� If this is the case� a sequence of screens follows� Each screen
realizes one question which is in fact the same as that in the text dialogue mode� Nevertheles� the graph
dialogue mode has several anvantages over the text one�

�� Information is better arranged on the screen�

�� The window for typing answers is in fact a simple editor� Therefore the text can be easily corrected
and a movement controlled by arrows is possible�

�� Application of the special UFO editor is possible for realizing more complicated answers� The UFO
editor works with multiple windows so that an answer can be set up from several sources� Therefore
a convenient utility of the batch mode can also be used in the dialogue mode�

To compare text and graphic dialogue modes� we again demonstrate the above four questions�

�

Here a user supplied input is expected� This is a text which should be written into the window displayed
on the screen �followed by pressing ENTER�� If this text is more complicated� we can use the UFO editor
by typing character �E� and pressing ENTER� The return from the UFO editor to the graphic dialogue
is realized by pressing �alt��� �section ����� The dialogue mode can be terminated by typing character
� �� and pressing ENTER�

Here an optimization model� i�e� a type of the objective function� is chosen� We have �� possibilities� FF�
FL� FQ� AF� AQ� AP� AM� DF� DQ� NO� The default value of the macrovariable �MODEL� corresponding

�

to the general objective function� is FF� By pressing ENTER� the default value FF is accepted� If we
want to choose a di�erent possibility� it has to be written into the two�character window� followed by
pressing ENTER� The dialogue mode can be terminated by typing character � �� and pressing ENTER�

Here the number of variables is expected� This is a positive integer� No default value is o�ered� i�e� we
have to enter any value� If this value is not a positive integer� the answer is ignored and another answer
is expected� The dialogue mode can be terminated by typing character � �� and pressing ENTER�

Here a real constant is expected� By pressing ENTER the default value ����D �� is accepted� If we want
to choose a di�erent value� it has to be written into the twenty�character window� followed by pressing
ENTER� The dialogue mode can be terminated by typing character � �� and pressing ENTER�

	� Output possibilities in the UFO system

The UFO system has many output possibilities including graphical pictures� These output possibilities
can be divided into �ve basic groups�

	��� Basic screen output

The basic screen output can be used only if �GRAPH��N� and �DISPLAY��N�� In this case� individual
rows corresponding to the iterations and the �nal results are printed on the screen consequently� A
print level of the screen output is determined by using the macrovariables �MOUT and �NOUT� The
macrovariable �MOUT can have the following values�

�MOUT� � � Screen output is suppressed�
�MOUT�� � � Standard output� The �nal results appear on the screen�
�MOUT�� � � Extended output� Additional information from every iteration appears on the screen�
�MOUT�� � � Extended output� Additional �nal results of linear or quadratic programming sub�

problems appear on the screen�
�MOUT��
 � Extended output� Additional information from every iteration of linear or quadratic

programming subproblems appears on the screen�

If �MOUT��� a standard line of the �nal results is printed� while if �MOUT�� then a modi�ed line of
the �nal results� containing the termination criterion� is printed�
The macrovariable �NOUT can have the following values�

�NOUT� � � Short �nal results �scalar variables� appear on the screen�
�NOUT� � � Extended �nal results �vectors� appear on the screen�

	��� Extended screen output

If we want to use an extended screen output� we have to set �DISPLAY��Y� �the default value
is �DISPLAY��N��� This type of screen output consists of text pages which correspond to individual
iterations and the �nal results� The �nal results are divided into several groups which can be displayed
successively� We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of the �nal results�

F � �function� � Value of the objective function and statistics�
V � �variables� � Values of variables if NF�� �with their bounds if KBF����
A � �approximation� � Values of approximating functions if NA�� �with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � �constraints� � Values of constraint functions if NC�� �with their bounds if KBC����
D � �data� � Data which specify the problem solved �sizes of problem and additional speci�ca�

tions��
O � �options� � Options which specify the method used�

Exit�

Q � �quit� � Exit from the extended screen output�

After typing each character we must use ENTER�
Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci�ed

if we set �SCAN��Y� �the default value is �SCAN��N��� If �SCAN��N�� the output of iterations is
suppressed� Scanning of the iterative process can be terminated by using character � �� from the keyboard�

�

	��� Graphical screen output

The graphical screen output can be used only on PC computers under the MS DOS system� This
possibility is not allowed on the UNIX workstations� If we want to use a graphical screen output� we
have to set �GRAPH��Y� �the default value is �GRAPH��N��� In this case� both iterations and the �nal
results appear in the graphical mode� In general� the graphical screen output is a sequence of screens
which can be examined successively in a required order� A change of the screen is carried out by using
the menu given on the top of this screen� We have three possibilities� First� the character displayed as a
capital at the menu item can immediatelly be typed from the keyboard� Secondly� we can use characters
� and � which realize movement in the top menu� The underlined menu item is then selected by
pressing ENTER� Finally� we can apply a mouse click to the menu item� In the subsequent graphical
screen output description� we focus our attention to the �rst possibility without a loss of generality�
The graphical form of the �nal results can be speci�ed in detail by using macrovariables �PATH ��N��

no� �Y�� yes� �E�� extended�� �MAP ��N�� no� �Y�� yes� �E�� extended�� �HIL ��N�� no� �Y�� yes� and �ISO
��N�� no� �Y�� yes�� The �nal results are divided into several groups which can be displayed successively�
We can change the displayed group by typing particular characters from the keyboard�

Change of the displayed group of the �nal results�

F � �function� � Value of the objective function and statistics�
V � �variables� � Values of variables if NF�� �with their bounds if KBF����
A � �approximation� � Values of approximating functions if NA�� �with their prescribed values if

KBA���� Values of selected components of a solution of the set of ordinary dif�
ferential equations at the prescribed mesh points if NE���

C � �constraints� � Values of constraint functions if NC�� �with their bounds if KBC����
D � �data� � Data which specify the problem solved �sizes of problem and additional speci�ca�

tions��
O � �options� � Options which specify the method used�
T � �path� � Values of the objective function and selected variables �we can change these vari�

ables during the graphical output� if we have speci�ed �PATH��E�� in the last
NPA iterations �only if �PATH��Y� or �PATH��E���

Exit�

Q � �quit� � Exit from the graphical output�
X � �exit� � Exit from the UFO system�

Besides these possibilities we can stop every iteration for scanning the iterative process� It is speci�ed
if we set �SCAN��Y� �the default value is �SCAN��N��� In every iteration� we can choose one of the
possibilities F� V� A� C� D� O as in the case above� If we have chosen either V �variables� or A �approx�
imation� or C �constraints�� the intermediate results can be displayed graphically by typing G �graph�
from the keyboard� In all these cases we can execute a single iteration by typing SPACE merely� We can
also execute all iterations until the k�th one by typing J �jump� and entering the number k� Finally� by
typing U �automatic�� all remaining iterations are executed without scanning�
Besides text representations in the graphical mode� which are essentially like the ones in the ex�

tended screen output �with the choice �DISPLAY��Y��� we can chose several types of graphical data
representation�

a� Graphical picture�

If we have chosen either V �variables� or A �approximation� or C �constraints�� the results can be
displayed graphically by typing G �graph� from the keyboard� A graphical picture appears on the screen
in this case� It contains either values of variables with indices I� �� I � NF� or values of the approximating
functions with indices KA� � � KA � NA� or values of the constraint functions with indices KC� � �
KC � NC� If we have chosen A �approximation� in the case of NE��� the graphical picture contains a
component �with the index VAR� of a solution of the set of ordinary di�erential equations at the mesh

�

points AT�KA�� � � KA � NA� We have to de�ne the index VAR from the keyboard in this case� The
graphical picture can be changed by typing the particular characters from the keyboard�

Change of representation�

V � �values� � Values are drawn�
O � �ordinates� � Values and ordinates from zero axis are drawn�
C � �curve� � Values are connected by a curve�
M � �mixed� � Curve and ordinates are drawn�

Change of graph �if either KBF�� or KBA�� or KBC����

F � �functions� � Either values of variables X�I�� � � I � NF� or values of the approximating func�
tions AF�KA�� � � KA � NA� or values of the constraint functions CF�KC�� � �
KC � NC� are demonstrated�

A � �approximation� � Either values of variables X�I� together with their bounds XL�I� and XU�I�� �
� I � NF� or values of the approximating functions AF�KA� together with their
prescribed values AM�KA� � � � KA � NA� or values of the constraint functions
CF�KC� together with their bounds CL�KC� and CU�KC�� � � KC � NC� are
demonstrated�

D � �di�erences� � Either the di�erences between variables and their bounds or the di�erences be�
tween the approximating functions and their prescribed values or the di�erences
between the constraint functions and their bounds are demonstrated�

Continuation �if either NF � ��� or NA � ��� or NC � �����

P � �previous� � Previous set of at most ��� values is drawn�
N � �next� � Next set of at most ��� values is drawn�

Choice of the next displayed iteration �only if �SCAN��Y���

J � �jump� � The iterative process is stopped at the k�th iteration� Number k is read from the
keyboard�

U � �automatic� � All remaining iterations are executed without scanning�

New graph or return�

W � �new� � This possibility can be used only if NE��� Then a new component �with a new
index VAR� of a solution of the set of ordinary di�erential equations is drawn� We
have to de�ne a new index VAR from the keyboard in this case�

Q � �quit� � Return to the displayed group of �nal results�

If we have chosen F �function� as a group of �nal results� we can use additional graphical representa�
tions�

b� Two�dimensional orbit�

If NE��� we can draw an orbit of two components of a solution of the set of ordinary di�erential
equations by typing G �graph� from the keyboard� We have to de�ne an index VAR for every selected
component of a solution �according to the text appeared on the screen�� The two�dimensional orbit can
be changed by typing particular characters from the keyboard�

Change of the orbit�

V � �values� � Values are drawn�
C � �curves� � Values are connected by a curve�

New orbit or return�

W � �new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de�ne new two indices from the keyboard in this case�

Q � �quit� � Return to the displayed group of �nal results�

c� Three�dimensional orbit�

If NE��� then we can draw an orbit of three components of a solution of the set of ordinary di�erential
equations by typing I �picture� from the keyboard� We have to de�ne an index VAR for every selected
component of a solution �according to the text appeared on the screen�� The three�dimensional orbit can
be changed by typing particular characters from the keyboard�

Change of the orbit�

V � �values� � Values are drawn�
C � �curves� � Values are connected by a curve�
O � �rotate� � Rotation of values or curves about a vertical axis by a subsequently entered angle

D��
T � �tilt� � Tilting rotated values or curves by a subsequently entered angle Dtheta�
A � �axes� � Drawing a picture with rotated and tilted axes�
S � �scale� � Scaling of rotated and tilted values or curves to make full use of the screen�

New orbit or return�

W � �new� � New components of a solution of the set of ordinary di�erential equations are
drawn� We have to de�ne new three indices from the keyboard in this case�

Q � �quit� � Return to the displayed group of �nal results�

d� Coloured map of the objective function�

If we have speci�ed either �MAP��Y� or �MAP��E� �default value is �MAP��N��� we can draw a
coloured map of the objective function by typing M �map� from the keyboard� This picture can be
changed by typing particular characters from the keyboard�

Change of the map�

L � �linear� � Linear scale of the coloured map�
G � �logarithmic� � Logarithmic scale of the coloured map�
R � �re�nement� � Re�nement of the coloured map�
B � �back� � Back re�nement of the coloured map�
N � �inverse� � Coloured map of the objective function negation�

Another type of picture� new map or return�

H � �hills� � Drawing an objective function surface with respect to visibility �only if �HIL��Y�
is speci�ed��

S � �isolines� � Drawing contours of the objective function �only if �ISO��Y� is speci�ed��
W � �new� � Selection of new variables and drawing a new coloured map�
Q � �quit� � Return to the displayed group of �nal results�

If we set �MAP��Y�� one picture for two variables is drawn� If we set �MAP��E�� three pictures
for all combinations of two from three variables are drawn� In both cases we have to de�ne� from the
keyboard� an index VAR and bounds XL�VAR�� XU�VAR� for every variable used �according to the text
appeared on the screen�� Note that the choice �MAP��E� excludes the choices �HIL��Y� and �ISO��Y�
so that the other pictures cannot be used�

e� Objective function surface�

If we have speci�ed �HIL��Y� �default value is �HIL��N��� we can draw an objective function surface
with respect to visibility by typing H �hills� from the keyboard� This picture can be changed by typing
particular characters from the keyboard�

Change of the surface�

L � �linear� � Linear scale of the surface�
G � �logarithmic� � Logarithmic scale of the surface�

	

R � �re�nement� � Re�nement of the surface�
B � �back� � Back re�nement of the surface�
O � �rotate� � Rotation of the surface about a vertical axis by a subsequently entered angle D��
T � �tilt� � Tilting the rotated surface by a subsequently entered angle Dtheta�
F � �face� � Facing the rotated surface �drawing the rotated surface without tilting��
N � �inverse� � Surface of the objective function negation�

Another type of picture� new surface or return�

M � �map� � Drawing a coloured map of the objective function �only if �MAP��Y� is speci�ed��
S � �isolines� � Drawing contours of the objective function �only if �ISO��Y� is speci�ed��
W � �new� � Selection of new variables and drawing new surface�
Q � �quit� � Return to the displayed group of �nal results�

Before drawing the objective function surface we have to de�ne� from the keyboard� an index VAR
and bounds XL�VAR�� XU�VAR� for every variable used �according to the text appeared on the screen��

f� Objective function contours�

If we have speci�ed �ISO��Y� �default value is �ISO��N��� we can draw an objective function contours
by typing S �isolines� from the keyboard� This picture can be changed by typing particular characters
from the keyboard�

Change of contours�

L � �linear� � Linear scale of contours�
G � �logarithmic� � Logarithmic scale of contours�
R � �re�nement� � Re�nement of contours�
B � �back� � Back re�nement of contours�
O � �colour� � Colouring of contours and used levels�
N � �inverse� � Inverse colouring of contours and used levels�

Another type of picture� new contours or return�

M � �map� � Drawing a coloured map of the objective function �only if �MAP��Y� is speci�ed��
H � �hills� � Drawing an objective function surface with respect to visibility �only if �HIL��Y�

is speci�ed��
W � �new� � Selection of new variables and drawing a new surface�
Q � �quit� � Return to the displayed group of �nal results�

g� Graphical path of the objective function and selected variables�

If we have chosen T �path�� we can display the values of the objective function as a function graph
by typing G �graph� or draw the objective function contours with the path in the last NPA iterations by
typing S �isolines�� The graph can be changed in the same way as in a��

Change of contours�

L � �linear� � Linear scale of contours�
G � �logarithmic� � Logarithmic scale of contours�
R � �re�nement� � Re�nement of contours�
B � �back� � Back re�nement of contours�
Z � �zoom� � Zoom of the path for the number of last iterations entered�

Another type of picture� new contours or return�

W � �new� � Selection of new variables and drawing new contours �only if we have speci�ed
�PATH��E���

Q � �quit� � Return to the displayed group of �nal results�

�

Before drawing the objective function contours we have to de�ne� from the keyboard� an index VAR
and bounds XL�VAR�� XU�VAR� for every variable used �according to the text appeared on the screen��

	��� Text �le output

The UFO system contains a great number of text �le output procedures which are controlled by
using the macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT�� and �LOUT� These text �le output
procedures are useful especially for debugging new optimization methods� The UFO system works with
the output �le P�OUT� The Fortran number of this output �le de�nes the common variable IWR� The
macrovariables �KOUT� �KOUT�� �KOUT�� �KOUT� determines what is printed and the macrovariable
�LOUT has an in#uence on the extent of the print�
The macrovariable �KOUT can have the following values�

�KOUT� � � Text �le output is suppressed �the �le P�OUT is empty� �
�KOUT� � � � Standard output� The heading and the �nal results are printed together with selected

information in each accepted iteration�
�KOUT� � � � Extended output� Additional information� obtained from stepsize selection� is printed�
�KOUT� � � � Extended output� Additional information� obtained from direction determination and

variable metric update� is printed�
�KOUT� �
 � Extended output� Additional information� obtained from linear constraint addition

and deletion� is printed�
�KOUT� � � � Extended output� Additional information� obtained from numerical di�erentiation� is

printed�

If �KOUT��� a standard heading is printed while if �KOUT��� an extended heading� containing problem
speci�cations and optimization options� is printed�
The selection of iterations accepted for print is controlled by the contents of the macrovariables

�KOUT�� �KOUT�� �KOUT�� If KOUT�� KOUT�� only the iterations whose numbers are between
KOUT� and KOUT� are assumed� but the KOUT��� ones are always omitted �KOUT� is a lower bound�
KOUT� is an upper bound and KOUT� is a step�� Similarly� if KOUT��KOUT�� only the iterations
whose numbers are smaller than KOUT� or greater than KOUT� are assumed� but the KOUT��� ones
are always omitted� If �KOUT���� no iterations are assumed�
While the macrovariable �KOUT speci�es which information is printed� the macrovariable �LOUT

speci�es how much information is printed�

�LOUT� � � Basic output� The basic information �� row if �KOUT��� is printed in each accepted
iteration�

�LOUT�� � � Extended output� Additional scalars� together with the vector of variables� are
printed�

�LOUT�� � � Extended output� Additional vectors �usually gradients� are printed�
�LOUT�� � � Extended output� Aditional matrices �usually Hessian matrices� are printed�
�LOUT��
 � The most extended output� All useful data are printed�

If �LOUT��� the basic part of the information is printed� If �LOUT��� a more extensive part of the
information is printed�
The macrovariable �LOUT has an additional signi�cance� If �KOUT�� and �LOUT��� a copy of

the basic screen output is provided� If �KOUT�� and �LOUT��� paper saving print is assumed� In the
last case� only several rows are printed for every solution� This type of output is useful for simultaneous
tests of optimization methods�

To show a typical basic output which corresponds to the choices �KOUT��� �KOUT��� and �LOUT��
we propose the following results from unconstrained optimization�

	�

UNCONSTRAINED MINIMIZATION USING UFO SYSTEM

���

OPTIMIZATION SUBROUTINE � U�FDU�

DIRECTION DETERMINATION � UDDLI�

STEP SIZE DETERMINATION � US
L
�

FUNCTION DETERMINATION � UF�F
�

GRADIENT DETERMINATION � UF
GS	

H MATRIX DETERMINATION �

VARIABLE METRIC UPDATE � UUDBI�

PROBLEM

�������

NF � 	 KDF�
 KSF� � KCF� 	 KBF�
 ISNF� � NORMF�

NA �
 NAL�
 MAL�
 KDA��� KSA�
 KCA�
 KBA�
 ISNA�
 NORMA�

NC �
 NCL�
 MCL�
 KDC��� KSC�
 KCC�
 KBC�
 ISNC�
 NORMC�

FINAL RESULTS

�������������

FF� ���
�		�����D
�

X � ���		��	���
D
� ����������	D
�

TERMINATION� ITERM�� GRAD TOL F����
�D
� G� ���
D�
� D� ����D�
�

STATISTICS

����������

NIT � �� NDEC �

NFV � �� NAV �
 NCV �
 NRES � �

NFG �
 NAG �
 NCG �
 NREM �

NFH �
 NAH �
 NCH �
 NADD �

Here the optimization subroutines used are listed on the top followed by problem speci�cations� After brief
results� the termination causes are written� The termination cause ITERM�
 �GRAD TOL� corresponds
to the attainment of the required gradient norm� F is the objective function value� G is the maximum
absolute value of gradient elements and D is the maximum relative change of variables� The statistics
contains the number of iterations NIT� the number of decompositions NDEC� the number of restarts
NRES� the number of constraint deletions or additions NREM or NADD respectively� and a set of data
concerns numbers �N� of model function �F� or approximating functions �A� or constraint functions �C�
values �V� or gradients �G� or Hessian matrices �H� evaluations respectively�

	�	� User supplied output

The UFO system allows utilizing both the user supplied output subroutines and the post�processing
subroutines� These subroutines can be inserted in the control program by using the macrovariable
�OUTPUT�

�SET�OUTPUT�
Calling the user supplied output subroutines�
Calling the post�processing subroutines�

�ENDSET

The parameters of the user supplied output subroutines and the post�processing subroutines must satisfy
the UFO conventions� For example� the vector of variables� the model function value and the model
function gradient must be denoted X� FF and GF� respectively �see chapter ���

	�

	�
� Storing �nal results

If we set �OUTPUTDATA��Y�� the �nal values of variables X�I�� �� I� NF� are stored in �le P�DAT�
Similarly� if we set �INPUTDATA��Y�� the values of variables X�I�� �� I� NF� from �le P�DAT are used
as input data for a new optimization process�

	��� Other output �les

The UFO system uses two other output �les P�DIM and P�SIF which contain additional information
about the problem solved� File P�DIM shows us the problem dimension� It contains the numbers of
variables� approximating functions� constraints and also numbers of nonzero elements in sparse structures�
For example� if we apply the UFO system to the input �le PROB	
�UFO� then the �le P�DIM contains the
following text�

PROBLEM� NEXT �

NUMBER OF VARIABLES� NF � ����

NUMBER OF FUNCTIONS� NA � ���

NUMBER OF NONZERO ELEMENTS� MA � ����

NUMBER OF CONSTRAINTS� NC � ���

NUMBER OF NONZERO ELEMENTS� MC � ����

File P�SIF contains information concerning SIF �les of the CUTE collection �section ����� This �le is
generated by the SIF decoder� For example� if we apply the UFO system to the input �le PROB	
�UFO�
the �le P�SIF contains the following text�

Problem name� DTOC�

The objective function uses ��� nonlinear groups

There are ��� linear equality constraints

There are ���� free variables

There are 	 fixed variables

	��� Error messages

If we use the speci�cation �MOUT�� �basic screen output�� then nonstandard terminations are
indicated� The message consists of three parts� the name of a critical subroutine� the number of a
message� and an explanation text� For example� if the number of iterations is exceeded� we obtain the
following message�

 NIT� �

 NFV�	��� NFG�
 NDC����� NCG�
 F� ��		D
� G� ���	D
�

UYFUT�� ��	� MAXIMUM NUMBER OF ITERATIONS

Error messages are very useful especially in case the problem dimension is invalid� For example� if the
number of nonzero elements in the Jacobian matrix is speci�ed incorrectly� then we obtain the message�

 NIT�
 NFV�
 NFG�
 NDC�
 NCG�
 F� �

D

 G� �

D

UZLMIN� ���� LACK OF SPACE � MA TOO SMALL

ACTUAL VALUE� 	�� � DECLARED VALUE� 	�

Here UZLMIN is a subroutine where an error was detected� 	 is the error number and MA TOO SMALL
is the explanation� In this case� additional information �ACTUAL VALUE and DECLARED VALUE� is
given�
The following table presents all UFO error messages �error numbers and explanations��

	�

�� � MAXIMUM NUMBER OF FUNCTION EVALUATIONS

�	 � MAXIMUM NUMBER OF ITERATIONS

�� � MAXIMUM NUMBER OF CYCLES

� � BAD DECOMPOSITION

	 � BAD INTERVAL IN THE OLC DIRECTION DETERMINATION

� � MAXIMUM NUMBER OF STEPS IN THE OLC DIRECTION DETERMINATION

� � BREAKDOWN IN THE ITERATIVE METHOD

� � BREAKDOWN IN THE ITERATIVE METHOD

� � MAXIMUM NUMBER OF REDUCTIONS

� � NEGATIVE DIRECTIONAL DERIVATIVE

� � BAD INTERVAL FOR INTERPOLATION

� � BAD PREDICTION IN THE TRUST REGION METHOD

�
 � RESTART

�� � FEASIBLE SOLUTION DOES NOT EXIST

�	 � BOUNDED SOLUTION DOES NOT EXIST

�� � FEASIBLE SOLUTION DOES NOT EXIST

�� � FEASIBLE TRUST REGION DOES NOT EXIST

�� � INVALID SITUATION IN CONSTRAINT HANDLING

�� � INVALID SITUATION IN CONSTRAINT HANDLING

�� � LACK OF SPACE IN CONSTRAINT HANDLING

�� � LACK OF SPACE IN CONSTRAINT HANDLING

�� � BAD INPUT DATA

	
 � BAD INPUT DATA

	� � UXSGFM� NAU IS DECLARED TOO SMALL

		 � UXSGFM� NZ IS DECLARED TOO SMALL

	� � UXSGFM� JACOBIAN MATRIX IS TOO UNSTABLE

	� � UXSGFM� JACOBIAN MATRIX IS SINGULAR

	� � UXSGFM� NZ IS TOO SMALL FOR THE FACTOR

	� � UXSGFM� NAU IS TOO SMALL FOR THE FACTOR

	� � UXSGFM� NZ IS TOO SMALL FOR DATA MANIPULATIONS AFTER FACTORIZATION

	� � UXSGFM� COLUMN SCHEME FOR THE FACTOR IS NOT CREATED� LACK OF SPACE

	� � BAD INPUT DATA

�
 � BAD INPUT DATA

�� � UXSGUM� NAU IS DECLARED TOO SMALL

�	 � UXSGUM� JACOBIAN MATRIX IS SINGULAR

�� � UXSGUM� FACTOR IS BADLY CONDITIONED

�� � UXSGUM� LITTLE SPACE FOR L�UPDATES

�� � UXSGUM� JACOBIAN MATRIX SINGULARITY IS FACED

�� � UNBOUNDENESS IS FACED

�� � UKLTS�� ROWS ARE NOT SPECIFIED

�� � UKLTS�� COLUMNS ARE NOT SPECIFIED

�� � UKLTS�� TYPE IS NOT SPECIFIED

�
 � UKLTS�� TYPC IS NOT DEFINED

�� � LACK OF SPACE FOR THE CHOLESKI FACTOR

�	 � LACK OF SPACE FOR A SYMBOLIC FACTORIZATION

�� � LACK OF SPACE FOR THE FILL�IN

�� � LACK OF SPACE FOR NUMERICAL DIFFERENTIATION

�� � STRUCTURAL SINGULARITY DURING INCOMPLETE LU FACTORIZATION

�� � INVALID STRUCTURE FOR INCOMPLETE LU FACTORIZATION

�� � LACK OF SPACE IN NUMERICAL DIFFERENTIATION �NVAR TOO SMALL�

�� � LACK OF SPACE IN THE INCOMPLETE DECOMPOSITION � MMAX TOO SMALL

�� � LACK OF SPACE IN THE SCHUR COMPLEMENT � MMAX TOO SMALL

	�

�
 � LACK OF SPACE FOR THE FACTOR

�� � INSUFFICIENT STORAGE FOR NONZERO SUBSCRIPTS

�	 � LACK OF SPACE IN THE FRONTAL SCHEME

�� � ERROR IN THE FRONTAL SCHEME

�� � LACK OF SPACE IN THE FRONTAL SCHEME

�� � ERROR IN THE FRONTAL SCHEME

�� � LACK OF SPACE IN THE INTEGER FIELD

�� � LACK OF SPACE IN THE REAL FIELD

�� � ZERO INDEX

�� � DIMENSION ERROR

�
 � LACK OF SPACE IN THE WORKING FIELD

�� � INVALID MATRIX ORDER

�	 � NUMBER OF NONZEROS SMALLER THAN ZERO

�� � INVALID ENTRIES IN THE INPUT MATRIX

�� � INCONSISTENT MEMORY

�� � LACK OF SPACE IN THE INTEGER FIELD

�� � LACK OF SPACE IN THE REAL FIELD

�� � INVALID LU FACTORS

�� � MAXIMUM INTEGER TOO SMALL

�� � INVALID INPUTS

�
 � ZERO PIVOT WHEN DEFINITENESS IS DECLARED

�� � CHANGE IN SIGN OF PIVOT ENCOUNTERED

�	 � SINGULARITY DETECTED

�� � NONZERO ELEMENT IGNORED

�� � PIVOT HAS DIFFERENT SIGN FROM THE PREVIOUS ONE

�� � LACK OF SPACE � M TOO SMALL

�� � LACK OF SPACE � MAH TOO SMALL

�� � LACK OF SPACE � MCH TOO SMALL

�� � LACK OF SPACE � MA TOO SMALL

�� � LACK OF SPACE � MC TOO SMALL

�
 � LACK OF SPACE � NF TOO SMALL

�� � LACK OF SPACE � NA TOO SMALL

�	 � LACK OF SPACE � NC TOO SMALL

�� � SIMPLE BOUNDS ARE NOT PERMITTED

�� � INEQUALITY CONSTRASINTS ARE NOT PERMITTED

�� � TOO MANY DENSE ROWS � ND TOO SMALL

�� � LACK OF SPACE � MHA TOO SMALL

�� � LACK OF SPACE � MHC TOO SMALL

�� � DIFFERENTIAL EQUATION IS UNSTABLE

�	 � MAXIMUM NUMBER OF INTEGRATION STEPS EXCEEDED

�� � TOO SMALL INTEGRATION STEP

�� � DIFFERENTIAL EQUATION IS STIFF

�� � SINGULAR JACOBIAN IN IMPLICIT INTEGRATION METHOD

�� � LACK OF SPACE IN DIFFERENTIAL EQUATION SOLVER

	

� Special tools of the UFO system

The UFO system contains special tools that facilitate the user�s activity� There are tools for checking
the correctness of optimization problems and for testing optimization methods�

��� Checking external subroutines

The values� gradients� Hessian matrices of the model function or the approximating functions or the
constraint functions are speci�ed by using the macrovariables �FMODELF� �GMODELF� �HMODELF
or �FMODELA� �GMODELA� �HMODELA or �FMODELC� �GMODELC� �HMODELC� respectively�
Sometimes the correctness of these models needs to be checked up� If this is the case� then both the
analytical and the numerical di�erentiation can be compared� The checking of optimization problems can
be speci�ed by using the macrovariable �TEST� If �TEST��N�� no checking is performed� If �TEST��Y��
both the analytical and the numerical di�erentiation are executed before optimization is started �at the
initial starting point� and the derivatives obtained are printed� Only the derivatives that are analytically
speci�ed �the �rst� the second� are checked� If �TEST��A�� the checking is performed after the opti�
mization is �nished �at the �nal optimum point�� Finally� if �TEST��O�� only checking is performed and
optimization is not started� The output of checking an optimization problem has the following form�

STANDARD TEST OF EXTERNAL SUBROUTINES

�������������������������������������

PROBLEM NO �

PROBLEM

�������

NF � 	 KDF � 	 KSF � � KCF � 	 NORMF �

NA �
 NAL �
 MAL �
 KDA � �� KSA �
 KCA �
 NORMA �

NC � � NCL �
 MCL �
 KDC � � KSC �
 KCC � 	 NORMC �

PARAMETERS

����������

X � ��	

D
� ��

D
�

DERIVATIVES

�����������

FF A � ��
�

D
�

GF N � ��	�
�����		D
� ���

�	��D
�

GF A � ��	�
�

D
� ���

D
�

HF N � ���
	

���D
� ��

�
D
� �	

	D
�

HF A � ���
	

D
� ��

D
� �	

D
�

FC A � ���

D
�

GC N � ��

D
� �	

�	D
�

GC A � ��

D
� �	

D
�

FC A � ��

D
�

GC N � ���

�
D
� ����������
D

GC A � ���

D
� ��

D
�

FC A � ��

D
�

GC N � ���

�
D
� �	

�	D
�

GC A � ���

D
� �	

D
�

	�

Here the letter �N� indicates a numerical di�erentiation and the letter �A� indicates an analytical
di�erentiation�

��� Testing optimization methods

The UFO system contains a great number of subroutines �collections of test problems� which serve
for testing optimization methods� All of these subroutines begin with letter �E� �external�� The input
subroutines have the second letter �I� and the third letter �U� or �L� or �N� for unconstrained or linearly
constrained or nonlinearly constrained problems� respectively� The model speci�cation subroutines have
the second letter �F� or �A� or �C� or �E� or �Y� for a model function or approximating functions or
constraint functions or state functions or initial functions� respectively� and the third letter �F� or �G�
or �H� for values or gradients or Hessian matrices� The fourth letter is always �U� or �D� or �S� or
�B� for universal or dense or sparse or partitioned problems� respectively� The last two digits specify
individual test problems collections� When we want to carry out a test of the method selected� we use
the speci�cations �COLLECTION��Y� and �NEXT�number of test problems in the input batch �le�
Tests corresponding to individual test problems collections are realized by using the following test

input �les�

TEST
�	�UFO � tests for unconstrained optimization ��� dense problems from ����� ����� External
subroutines EIUD
�� EFFU
�� EFGU
�� EFHD
� are used�

TEST
		�UFO � tests for the sum of squares minimization ��� dense problems from ������� External
subroutines EIUD
	� EAFU
	� EAGU
	� EAHD
	 are used�

TEST
�	�UFO � tests for linearly constrained optimization ��� dense problems from ������ External
subroutines EILD
�� EFFU
�� EFGU
� are used�

TEST
�	�UFO � tests for medium�size linear programming �� dense problems�� External subroutine
EILD
� is used�

TEST
�	�UFO � tests for medium�size quadratic programming �� dense problems�� External subrou�
tine EILD
� is used�

TEST
�	�UFO � tests for minimax ��� dense problems from ���� External subroutines EIUD
��
EAFU
�� EAGU
�� EAHD
� are used�

TEST
�	�UFO � tests for inequality constrained nonlinear programming ��
 dense problems from
������ External subroutines EIND
�� EFFU
�� EFGU
�� ECFU
�� ECGU
� are used�

TEST
�	�UFO � tests for equality constrained nonlinear programming ��� dense problems from ������
External subroutines EIND
�� EFFU
�� EFGU
�� ECFU
�� ECGU
� are used�

TEST
�	�UFO � tests for unconstrained global optimization ��� problems from ������� External
subroutines EIUD
�� EFFU
�� EFGU
� are used�

TEST�
	�UFO � tests for unconstrained optimization ��� sparse problems from ���� ��
���� External
subroutines EIUS�
� EFFU�
� EFGU�
� EFHS�
 are used�

TEST��	�UFO � tests for large�scale linear programming ��	 sparse problems�� External subroutine
EILS�� is used�

TEST�		�UFO � tests for large�scale quadratic programming ��� sparse problems�� External subrou�
tine EILS�	 is used�

TEST��	�UFO � tests for linearly constrained optimization �	 sparse problems�� External subroutines
EILS��� EFFU��� EFGU�� are used�

TEST��	�UFO � tests for the sum of functions minimization ��� sparse problems from ���� ��
����
External subroutines EIUB��� EAFU��� EAGU�� are used�

TEST��	�UFO � tests for sum of squares minimization ��
 sparse problems from �	���� External
subroutines EIUB��� EAFU��� EAGU�� are used�

TEST��	�UFO Extended tests for unconstrained optimization �	� dense problems from ����� ����
������� External subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST��	�UFO � tests for nonlinear equations solutions ��� dense problems�� External subroutines
EIUD��� EAFU��� EUGU�� are used�

	�

TEST��	�UFO � tests for nonlinear equations ��� sparse problems from �	���� External subroutines
EIUS��� EAFU��� EAGU�� are used�

TEST��	�UFO � tests for nonsmooth unconstrained optimization ��
 dense problems from ��	�� ������
External subroutines EIUD��� EFFU��� EFGU��� EFHD�� are used�

TEST	
	�UFO � tests for equality constrained sparse nonlinear programming ��	 sparse problems
from ������ External subroutines EIUB	
� EIUS	
� EIND	
� EINS	
� EFFU	
� EFGU	
�
EAFU	
� EAGU	
� ECFU	
� ECGU	
 are used�

TEST	�	�UFO � tests for optimization of dynamical systems �
 dense problems�� External subrou�
tines EIUD	�� EEFU	�� EEGU	�� EYFU	�� EYGU	� are used�

TEST			�UFO � tests for linearly constrained minimax optimization �� dense problems from ����
External subroutines EIUD		� EAFU		� EAGU		� EAHD		 are used�

TEST	�	�UFO � tests for the sum of squares minimization ���� dense problems from ����� ���� �	���
�	��� ������� External subroutines EIUD	�� EAFU	�� EAGU	� are used�

TEST	�	�UFO � tests for the sum of functions minimization ��� sparse problems from ���� �	���
�	��� ��
���� External subroutines EIUB��� EAFU��� EAGU��� EIUB��� EAFU��� EAGU���
EIUB��� EAFU��� EAGU�� are used�

TEST�		�UFO � tests for the sum of squares minimization �� dense problems from �	���� External
subroutines EIUD�	� EAFU�	� EAGU�	 are used�

TEST��	�UFO � tests for the sum of squares minimization �� dense problems from �	���� External
subroutines EIUD��� EAFU��� EAGU�� are used�

In these input �les� all necessary macrovariables are de�ned and the external subroutines are called�
The external subroutines with the last two digits ��� � � � � �� are brie#y described in the text �les E
��TXT�
� � � � E	��TXT�
To demonstrate the use of the test input �le we perform a test of the sum of squares minimization

by using a hybrid method realized as a trust region method� The test input �le TEST
	�UFO has the
following form�

�SET�INPUT�

CALL EIUD
	�NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

IF�IERR�NE�
� GO TO ��ENDTEST

�ENDSET

�SET�FMODELA�

CALL EAFU
	�NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU
	�NF�KA�X�GA�NEXT�

�ENDSET

�NF��	

�NA��

�KOUT�

�LOUT��

�MOUT��

�MIT��

�MFV��

�MODEL��AQ�

�CLASS��GN�

�TYPE��G�

�DECOMP��M�

�NUMBER��

�UPDATE��F�

�TOLX����
�P����

	

�TOLF����
�P����

�TOLB����
�P����

�TOLG����
�P���

�COLLECTION��Y�

�NEXT��

�BATCH

�STANDARD

The result �screen output� obtained has the following form �each row corresponds to one test problem
and the last row is the summary��

� NIT� �	 NFV� �� NFG� �� NDC� 	� NCG�
 F� �	��D�	� G� ���
D���

	 NIT� 	� NFV� 	� NFG� 		 NDC� �� NCG�
 F� �	��D
	 G� ����D�
�

� NIT� �� NFV� �� NFG� �� NDC� �� NCG�
 F� �	
�D�		 G� ����D�
�

� NIT� �� NFV� �� NFG� �� NDC� 	� NCG�
 F� ���
D��� G� �	��D�
�

� NIT� � NFV� � NFG� � NDC� � NCG�
 F� ���	D��� G� ��
�D�
�

� NIT� �� NFV� �� NFG� �	 NDC� 	� NCG�
 F� ��		D
	 G� ���
D�
�

� NIT� � NFV� � NFG� � NDC� �� NCG�
 F� �	
�D�	� G� ��		D��	

� NIT� � NFV� � NFG� � NDC� � NCG�
 F� ����D�
	 G� �	��D�
�

� NIT� � NFV� 	 NFG� 	 NDC� � NCG�
 F� ����D�
� G� ����D�
�

�
 NIT� �	� NFV� ��� NFG� �	� NDC� 	�� NCG�
 F� ���
D
	 G� ��
�D�
�

�� NIT� �� NFV� �� NFG� �
 NDC� ��� NCG�
 F� ���	D�	
 G� �	��D�
�

�	 NIT� �	 NFV� �� NFG� �� NDC� 	� NCG�
 F� ����D�	
 G� ��
�D��

�� NIT� �
 NFV� �� NFG� �� NDC� �� NCG�
 F� ����D�
� G� �	��D�
�

�� NIT� �� NFV� �
 NFG� �	 NDC� �	 NCG�
 F� ���	D�	� G� �	�
D��

�� NIT� �� NFV� �� NFG� �	 NDC� 	� NCG�
 F� ����D�
� G� ����D�
�

�� NIT� 	� NFV� �� NFG� 	� NDC� �
� NCG�
 F� ��	�D
� G� ����D�
�

US
G
�� � �� MAXIMUM NUMBER OF REDUCTIONS

�� NIT� 		 NFV� 	� NFG� 	� NDC� �� NCG�
 F� �	��D�
� G� ����D�
�

�� NIT� �� NFV� �� NFG� �	 NDC� ��� NCG�
 F� �	��D�
	 G� ��
�D�
�

�� NIT� �� NFV� �� NFG� �� NDC� 	� NCG�
 F� �	��D�
� G� ����D�
�

	
 NIT� � NFV� � NFG� � NDC� 	� NCG�
 F� ��	�D�
� G� �	��D��

	� NIT� �	 NFV� �� NFG� �� NDC� 	� NCG�
 F� ����D�	� G� ����D���

		 NIT� �
 NFV� �� NFG� �� NDC� �� NCG�
 F� ��
�D�
� G� �	��D�
�

	� NIT� 	
 NFV� 	� NFG� 	� NDC� �� NCG�
 F� ����D�
� G� ����D�
�

	� NIT� 	� NFV� �� NFG� 	� NDC� �
� NCG�
 F� ��
�D�
� G� ����D�
�

	� NIT� �
 NFV� �� NFG� �� NDC� �
 NCG�
 F� ��	�D�	� G� ���
D���

	� NIT� � NFV� �� NFG� �
 NDC� 	� NCG�
 F� ����D�
� G� ����D�
�

	� NIT� � NFV� � NFG� � NDC� � NCG�
 F� ����D��� G� ���
D�
�

	� NIT� � NFV� � NFG� � NDC� �� NCG�
 F� �	��D��
 G� ����D�
�

	� NIT� 	 NFV� � NFG� � NDC� 	 NCG�
 F� ����D��� G� �	
�D�
�

�
 NIT� � NFV� � NFG� � NDC� � NCG�
 F� ����D�	� G� ����D��	

TOTAL NIT� ��� NFV� �
� NFG� ��
 NDC� ���� � 	�

NCG�
 NRS� � NAD�
 NRM�

��� Interface to the CUTE collection

The CUTE collection ���� is the most famous set of problems for testig optimization methods� These
problems are writen in the special so�called SIF format� Therefore a SIF decoder is necessary� Such a

		

decoder is part of the CUTE collection� but this version can only be used for a relatively small set of
optimization codes �e�g� for the LANCELOT ���� code�� Since the UFO system has a special nature� the
original SIF decoder has to be modi�ed� This modi�cation consists in replacing the subroutine SDLANC
by the subroutine SDUFO and in preparing new interface subroutines EIUD� EIUS� EIND� EINS� EFFU�
EFGU� EFFGU� ECFU� ECGU� ECFGU� EAFU� EAGU� EAFGU �instead of USETUP� UFN� UGR� CSETUP� CFN� CGR etc���
The CUTE collection is not distributed with the UFO system� The SIF �les together with SIF

decoder subroutines have to be obtained from their authors �they are also available on the INTERNET
addres http���www�dci�clrc�ac�uk�Activity�CUTE�� The special interface subroutines listed above are
exceptions� They are contained in the library CUTELIB�LIB�
If we want to use a SIF �le for testing the UFO system methods� it su�ces to write the macroinstruc�

tion �SIF��SIF �le name� in the input batch �le� For example� if we want to use problem DTOC� for
testing recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems� then the problem speci�cation �input batch �le� has the following form�

�SIF��DTOC��

�FORM��SE�

�MOUT�	

�BATCH

�STANDARD

Here DTOC� is a name of the SIF �le and SE is the form of recursive quadratic programming methods
�section ������ The problem solution �basic screen output� has this form�

NIC�
 NIT�
 NFV� � NFG� � F� �

D

 C� ���
D
	 G� �

D

NIC�
 NIT� � NFV� 	 NFG� �� F� �	��D
� C� �	��D��� G� ����D���

 NIC�
 NIT� 	 NFV� 	 NFG� �� F� �	��D
� C� �	��D��� G� ����D���

The form of additional output �les P�DIM and P�SIF is shown in section ���
If the sparsity pattern contains a relatively great number of nonzero elements� then default dimensions

�e�g� �M� �MA� �MAH� �MHA� �MC� �MCH� �MHC� might be too small and therefore they must be
speci�ed in the input batch �le�

	�

�� Application of the UFO system examples�

Before the solution of a given problem� the input �le containing the problem description and other
speci�cations for the macroprocessor must usually be prepared� This input �le can contain only the
macroinstruction �STANDARD �input �le STANDARD�UFO�� Then a full dialogue is processed� However�
a more advantageous possibility is to prepare an input �le containing the problem description while a
method selection is left to the dialogue� Moreover� since a method selection can be made automatically
by using knowledge bases coded in UFO templates� the batch mode is recommended�
When writing input �le instructions� we have to observe some conventions� Since a control program

contains a great number of common variables� we recommend using variables beginning with the letter
�W� for the problem description to avoid their double use� Real variables of this type should be declared
at the beginning of the control program by the statement �FLOAT �for example �FLOAT W�W��W���
Simple integers I�J�K�L need not be declared� We recommend using statement numbers smaller than
����� for the problem description to avoid their double use�
The basic implementation of the UFO system is in a double precision arithmetic� Therefore usually

�FLOAT��REAL"	� and �P��D�� We recommend writing real constants always in the form of �P or D
speci�cation �for example ����P ��
���P�� or ���D ��
��D��� since the conversions from a single precision�
which depend on a compiler� can be incorrect� Instead of constants ���D�� ���D�� ���D�� ���D��
��D��
���D�� ���D�� we can use the common variables ZERO� HALF� ONE� TWO� THREE� FOUR� FIVE�
TEN which contain corresponding values�
In the following text� we demonstrate the application of the UFO system to �� typical problems�

Every example consists of the problem description� the problem speci�cation �input �le�� comments to
the problem speci�cation and the problem solution �basic screen output�� All input �les contain the
necessary data and can be used in the batch mode� These input �les are included into the UFO system
as the demo��les PROB
��UFO�� � � �PROB���UFO�

���� Optimization with simple bounds

a� Problem description�
Suppose we have to �nd a local maximum of the objective function

F �x� �
�
n�

� nY
i��

xi
�
� �

with simple bounds � � xi � i for � � i � n� where n � �� The starting point is xi � � for � � i � n� The
solution point is xi � i for � � i � n and the corresponding maximum value of the objective function is
F � �����

b� Problem speci�cation �input �le��

�FLOAT W

�SET�INPUT�

DO � I���NF

X�I��	�D
 � XL�I��
�D
 � XU�I��DBLE�I� � IX�I���

� CONTINUE

�ENDSET

�SET�FGMODELF�

W���D

DO 	 I���NF

W�W�X�I��DBLE�I�

	 CONTINUE

FF�W�	�D

DO � I���NF

��

GF�I��W�X�I�

� CONTINUE

�ENDSET

�IEXT��

�NF��

�KBF�	

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values and the simple bounds for variables�
By using the macrovariable �FGMODELF we specify analytically the value and the gradient of the model
function� Because we look for a maximum� we set �IEXT���

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG� � F� ����D
� G� ����D�
�

NIT� � NFV� � NFG� � F� ����D
� G� ���
D

NIT� 	 NFV� � NFG� � F� ��	
D
� G� �	

D

NIT� � NFV� � NFG� � F� ��

D
� G� �

D

 NIT� � NFV� � NFG� � NDC�
 NCG�
 F� ��

D
� G� �

D

FF� ���

D
�

X � ��

D
� �	

D
� ��

D
� ��

D
�

��

D
�

���� Minimization of the sum of squares

a� problem description�
Suppose we have to �nd a local minimum of the objective function

F �x� �
�

�

mX
i��

�
x�e

�x�ti � x�e
�x�ti � x	e

�x�ti � yi
��

where m � ��� ti � i��� and yi � e�ti��e���ti��e��ti for � � i � m� The starting point is x� � �� x� �
�� x� � �� x� � �� x� � �� x	 � �� The solution point is x� � �� x� � ��� x� �
� x� � �� x� � �� x	 � � and
the corresponding minimum value of the objective function is F � ���

b� Problem speci�cation �input �le��

�FLOAT W�WA�WB�WC

�SET�INPUT�

X������D
 � X�	��	�D
 � X������D

X������D
 � X������D
 � X������D

DO � KA���NA

W�
��D
�DBLE�KA�

AM�KA��EXP��W����D
�EXP����
D��W���D
�EXP����D
�W�

� CONTINUE

XMAX���D�

FMIN�
�D

��

�ENDSET

�SET�FMODELA�

W�
��D
�FLOAT�KA�

WA�EXP��W�X����

WB�EXP��W�X�	��

WC�EXP��W�X����

FA�X����WA�X����WBX����WC

�ENDSET

�NF��

�NA�	

�NAL�

�KBA��

�MOS���

�MOUT�	

�NOUT��

�MODEL��AQ�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the vector AM
containing values yi� � � i � m� Since the approximating functions contain exponentials� we de�ne
the maximum stepsize �XMAX���� By using the macrovariable �FGMODELA we specify analytically
the values of the approximating function� The gradients of the approximating functions are computed
numerically� For the sum of squares minimization we set �MODEL��AQ�� The speci�cation �KBA��
indicates that the vector AM is used�

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG�
 F� ����D

 G� ����D

NIT� � NFV� �� NFG�
 F� ����D

 G� �	��D

NIT� 	 NFV� 	� NFG�
 F� ���	D

 G� ����D

NIT� � NFV� 	� NFG�
 F� ����D�
� G� �	
�D

NIT� � NFV� �� NFG�
 F� ���	D�
� G� �	
	D

NIT� � NFV� �� NFG�
 F� ��	�D�
� G� ����D

NIT� � NFV� �
 NFG�
 F� ����D�
	 G� ����D

NIT� � NFV� �� NFG�
 F� ����D�
	 G� ���	D�
�

NIT� � NFV� �� NFG�
 F� ����D�
� G� ���	D�
	

NIT� � NFV� �� NFG�
 F� ����D�
� G� ����D�
�

NIT� �
 NFV� �
 NFG�
 F� �	��D�
� G� ���	D�
�

NIT� �� NFV� �� NFG�
 F� ����D�
� G� ���
D�
	

NIT� �	 NFV� �� NFG�
 F� ���	D�
� G� ����D�
	

NIT� �� NFV� �
� NFG�
 F� �	��D�
� G� ����D�
	

NIT� �� NFV� �
� NFG�
 F� ���
D��� G� ����D�
�

NIT� �� NFV� ��� NFG�
 F� ��
	D�	� G� ���
D���

 NIT� �� NFV� ��� NFG�
 NDC� �
 NCG�
 F� ��
	D�	� G� ���
D���

F � ��
	�������D�	�

X � ��

D
� ��

D
	 ��

D
� ��

D
�

��

D
� ��

D
�

��

���� Minimax approximation

a� Problem description�

Suppose we have to �nd a local minimum of the objective function

F �x� � max
��i�m

j
x� � tix�

� � tix� � t�ix� � t�ix�
� yij

where m � ��� ti � �i�������� and yi � e�ti for � � i � m�The starting point is x� � ���� x� � �� x� �
�� x� � �� x� � �� The solution point is x� � �����	� x� � ������� x� � ���
��� x� � ���
��� x� �
����
� and the corresponding minimum value of the objective function is F � �����������

b� Problem speci�cation �input �le��

�FLOAT W

�SET�INPUT�

X����
��D
 � X�	��
�
D
 � X����
�
D

X����
�
D
 � X����
�
D

�ENDSET

�SET�FMODELA�

W�
��D
�DBLE�KA������
D

FA��X���W�X�	������
D
W��X���W��X���W�X�������EXP�W�

�ENDSET

�MODEL��AM�

�NF��

�NA�	�

�NAL�

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of the approximating functions� The gradients of the
approximating functions are computed numerically� For minimax approximation we set �MODEL��AM��

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG�
 F� �			D
� G� ��

D��

NIT� � NFV� �� NFG�
 F� ��	�D

 G� ����D

NIT� 	 NFV� �� NFG�
 F� ��	�D�
� G� �		�D

NIT� � NFV� 	� NFG�
 F� ��	�D�
� G� ����D

NIT� � NFV� �� NFG�
 F� ����D�
	 G� �	�
D�
�

NIT� � NFV� �� NFG�
 F� ����D�
	 G� �	��D�
�

NIT� � NFV� �� NFG�
 F� ��	�D�
	 G� ����D�
�

NIT� � NFV� �� NFG�
 F� ����D�
� G� ���	D�
	

NIT� � NFV� �� NFG�
 F� ����D�
� G� ����D�
	

NIT� � NFV� �� NFG�
 F� ��		D�
� G� ���	D�
�

NIT� �
 NFV� �� NFG�
 F� ��		D�
� G� ����D�
�

 NIT� �
 NFV� �� NFG�
 NDC�
 NCG�
 F� ��		D�
� G� ����D�
�

��

F � ��		���	���D�
�

X � ��������	��D

 �	�������
�D

 ������
�����D

 �	��	
��
��D

������
	��
�D�
�

���� Nonsmooth optimization

a� Problem description�

Suppose we have to �nd a local minimum of the objective function

F �x� � �x� � � 	 �x
�
� � x�� � �� �

jx�� � x�� � �j

The starting point is x� � ��� x� � ���� The solution point is x� � �� x� � �� and the corresponding
minimum value of the objective function is F � �����

b� Problem speci�cation �input �le��

�FLOAT W

�SET�INPUT�

X�������D

X�	�����D

�ENDSET

�SET�FGMODELF�

W�X�����	X�	���	���D

FF��X���	�D
�W����D
�ABS�W�

W�SIGN�����P
�W���D

GF����W�X������D

GF�	��W�X�	�

�ENDSET

�NF�	

�KSF��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FGMODELF we specify analytically the value and the gradient of the objective function� For
nonsmooth optimization we set �KSF���

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG� � F� ����D
� G� ��

D��

NIT� � NFV� � NFG� � F� �����D

 G� ���
D
�

NIT� 	 NFV� � NFG� � F� ���
�D

 G� ����D

NIT� � NFV� � NFG� � F� ��	�D
� G� ��
	D

NIT� � NFV� � NFG� � F� ���	�D

 G� ��
	D

NIT� � NFV� � NFG� � F� ����D

 G� ����D

NIT� � NFV� � NFG� � F� ���	�D

 G� ��		D

�

NIT� � NFV� � NFG� � F� �����D

 G� ���	D

NIT� � NFV� �
 NFG� �
 F� �����D

 G� ����D�
�

NIT� � NFV� �� NFG� �� F� �����D

 G� ����D

NIT� �
 NFV� �	 NFG� �	 F� �����D

 G� ��
�D

NIT� �� NFV� �� NFG� �� F� ���

D
� G� ���
D�
�

NIT� �	 NFV� �� NFG� �� F� ���

D
� G� ����D�
�

NIT� �� NFV� �� NFG� �� F� ���

D
� G� ����D�
�

 NIT� �� NFV� �� NFG� �� NDC�
 NCG�
 F����

D
� G� ����D�
�

FF� ���

D
�

X � ��

D
� �

D

��	� Optimization with linear constraints

a� problem speci�cation�

Suppose we have to �nd a local minimum of the objective function

F �x� � �x� � x��
� � �x� � ��

� � �x� � ��
� � �x� � ��

	

over the set given by the linear constraints

x� � x� � x� �
x� �

x� � �x� � �

The starting point is x� � ��� x� � � x� � �� x� � �� x� � ��	� The solution point is x� � �� x� �
�� x� � �� x� � �� x� � � and the corresponding minimum value of the objective function is F � ���

b� Problem speci�cation �input �le��

�SET�INPUT�

X���� ��D� � X�	�� ��D
 � X���� 	�D

X�������D
 � X����
��D

IC����� � CL������D

CG������D
 � CG�	����D
 � CG������D

CG������D
 � CG����
�D

IC�	��� � CL�	����D

CG����
�D
 � CG����
�D
 � CG������D

CG����
�D
 � CG��
����D

FMIN �
�D

�ENDSET

�SET�FMODELF�

FF��X����X�	����	�X������D
���	 �

�X������D
�����X������D
����

�ENDSET

�SET�GMODELF�

GF���� 	�D
��X����X�	��

GF�	���	�D
��X����X�	��

GF���� 	�D
��X������D
�

GF���� ��D
��X������D
����

GF���� ��D
��X������D
����

�ENDSET

�NF��

��

�NC�	

�NCL�	

�KBC��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the types and
values of the general linear constraints� Since there are only equality constraints� we can specify only
the left sides �CL��� and CL���� and we can set �KBC��� The speci�cation �FMIN�� is used� since
the objective function value cannot be smaller then zero� By using the macrovariable �FMODELF we
specify analytically the value of the model function� By using the macrovariable �GMODELF we specify
analytically the gradient of the model function�

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG� � F� �	��D
� G� ����D
	

NIT� � NFV� 	 NFG� 	 F� �	��D
	 G� ����D
�

NIT� 	 NFV� � NFG� � F� ��
�D
� G� ����D
�

NIT� � NFV� � NFG� � F� ����D
� G� �	��D
�

NIT� � NFV� � NFG� � F� ��	�D

 G� ����D

NIT� � NFV� � NFG� � F� ����D

 G� ����D

NIT� � NFV� � NFG� � F� ����D�
� G� ����D

NIT� � NFV� � NFG� � F� ����D�
� G� ����D

NIT� � NFV� � NFG� � F� ����D�
	 G� ����D�
�

NIT� � NFV� �
 NFG� �
 F� �	��D�
	 G� ����D�
�

NIT� �
 NFV� �� NFG� �� F� ����D�
� G� ����D�
	

NIT� �� NFV� �	 NFG� �	 F� ����D�
� G� ��
�D�
�

NIT� �	 NFV� �� NFG� �� F� ���
D�
� G� ����D�
	

NIT� �� NFV� �� NFG� �� F� ����D�
� G� ����D�
	

NIT� �� NFV� �� NFG� �� F� ����D�
� G� �		
D�
	

NIT� �� NFV� �� NFG� �� F� ��	
D�
� G� ����D�
	

NIT� �� NFV� �� NFG� �� F� ����D�
� G� ��
�D�
	

NIT� �� NFV� �� NFG� �� F� ����D�
� G� ��
�D�
�

NIT� �� NFV� �� NFG� �� F� ����D�
� G� ����D�
�

NIT� �� NFV� 	
 NFG� 	
 F� �	��D�
� G� ����D�
�

NIT� 	
 NFV� 	� NFG� 	� F� ���	D�
� G� ��

D�
�

NIT� 	� NFV� 		 NFG� 		 F� ����D�
� G� ���
D�
�

NIT� 		 NFV� 	� NFG� 	� F� ���	D�
� G� �	��D�
�

NIT� 	� NFV� 	� NFG� 	� F� ��
�D�
� G� ���	D�
�

NIT� 	� NFV� 	� NFG� 	� F� �	��D�
� G� �	
�D�
�

NIT� 	� NFV� 	� NFG� 	� F� ��	�D��
 G� ��		D�
�

NIT� 	� NFV� 	� NFG� 	� F� ����D��
 G� �	��D�
�

NIT� 	� NFV� 	� NFG� 	� F� ��
�D��� G� ��
�D�
�

 NIT� 	� NFV� 	� NFG� 	� NDC�
 NCG�
 F� ��
�D��� G� ��
�D�
�

FF� ��
��������D���

X � ��

�������D
� ��

������	D
� ���������	�D

 �����������D

��

�	D
�

��

��
� Minimax approximation with linear constraints

a� Problem description�

Suppose we have to �nd a local minimum of the objective function

F �x� � max�f��x�� f��x�� f��x��

with

f��x� � � exp�x� � x��

f��x� � sinh�x� � ��� �

f��x� � � log�x��� �

over the set given by the box constraint x�
 ����� and the linear constraint

�
���

x� � x� �
�
�

 ��

The starting point is x� � ��� x� � ������ The solution point is x� � �����
� x� � ����� and the
corresponding minimum value of the objective function is F � ���

	����

b� Problem speci�cation �input �le��

�SET�INPUT�

X�������D
 � IX����

X�	�� ��D�	 � XL�	�� ��D�	 � IX�	���

CL�������D�� � IC�����

CG������D�	 � CG�	�����D

�ENDSET

�SET�FMODELA�

IF �KA�EQ��� FA��EXP�X����X�	��

IF �KA�EQ�	� FA� SINH�X������D
����D

IF �KA�EQ��� FA��LOG�X�	�����D

�ENDSET

�MODEL��AM�

�IEXT���

�NF�	

�NA��

�NC��

�NCL��

�KBF��

�KBC��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the types and values
of both the box constraints and the general linear constraints� Since there are only one�sided constraints�
we specify only the left sides �XL��� and CL���� and we can set �KBF�� and �KBC��� By using

�

the macrovariable �FMODELA we specify analytically the values of the approximating functions� The
gradients of the approximating functions are computed numerically� For minimax approximation we set
�MODEL��AM� and �IEXT����

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG�
 F� ����D
� G� ��

D��

NIT� � NFV� � NFG�
 F� ����D
� G� ����D

NIT� 	 NFV� � NFG�
 F� ���	D

 G� ����D

NIT� � NFV� �	 NFG�
 F� ��	��D

 G� ����D

NIT� � NFV� �� NFG�
 F� �����D

 G� ��	�D

NIT� � NFV� �� NFG�
 F� ���	�D

 G� ����D�
�

NIT� � NFV� 	� NFG�
 F� �����D

 G� �	��D�
	

NIT� � NFV� 	� NFG�
 F� �����D

 G� ��	�D�
�

 NIT� � NFV� 	� NFG�
 NDC�
 NCG�
 F������D

 G� �	��D�
�

F � �������
���
D

X � ���	�������D
� �����	���
�D

���� Optimization with nonlinear constraints �nonlinear programming�

a� Problem description�

Suppose we have to �nd a local maximum of the objective function

F �x� � x�x�

over the set given by the simple bounds x�
 �� x�
 �� x�
 �� x

 � and by the nonlinear constraints

�x� � x	�
� � �x� � x
�

�

x�x� � x�x�p
x�� � x��

 �

x�x	 � x�x
p
x�� � x��

 �

x�x� � �x� � x��x� � x�x�p
�x� � x��� � x��

 �

x�x� � �x� � x��x
 � x�x	p
�x� � x�� � x��

 �

The starting point is x� � ���� x� � ���� x� � ���� x� � ����� x� � ���� x	 � ���� x
 � ���� The
solution point is x� �
�	�	� x� � ������ x� �
�	�	� x� � ������ x� � ��
�
� x	 � ��
�
� x
 � �����
and the corresponding minimum value of the objective function is F � �������

b� Problem speci�cation �input �le��

�FLOAT W

�SET�INPUT�

X���� ��
D
 � XL����
�
D
 � IX���� �

X�	��
�
D

X���� 	�
D
 � XL����
�
D
 � IX���� �

X��������D

�	

X���� ���D
 � XL���� ��
D
 � IX���� �

X���� ��
D

X����
�
D
 � XL���� ��
D
 � IX���� �

CL������
D
 � IC���� �

CL�	����
D
 � IC�	�� �

CL������
D
 � IC���� �

CL������
D
 � IC���� �

CL������
D
 � IC���� �

�ENDSET

�SET�FMODELF�

FF�X����X���

�ENDSET

�SET�FMODELC�

IF �KC�LE�
� THEN

ELSE IF �KC�EQ��� THEN

FC��X����X������	�X����X������	

ELSE IF �KC�EQ�	� THEN

W�SQRT�X�	���	X�����	�

FC��X����X����X�	��X�����W

ELSE IF �KC�EQ��� THEN

W�SQRT�X�	���	X�����	�

FC��X����X����X�	��X�����W

ELSE IF �KC�EQ��� THEN

W�SQRT��X�	��X������	X�����	�

FC��X����X����X�	��X�����X����X����X�����W

ELSE IF �KC�EQ��� THEN

W�SQRT��X�	��X������	X�����	�

FC��X����X����X�	��X�����X����X����X�����W

ENDIF

�ENDSET

�NF��

�NC��

�NCL�

�KBF��

�KBC��

�MOUT�	

�NOUT��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values and simple bounds for variables
and the types and values of the general constraints� Since there are only one�sided simple bounds and
one�sided general constraints� we set �KBF�� and �KBC��� By using the macrovariable �FMODELF
we specify analytically the value of the model function� The gradient of the model function is computed
numerically�

d� Problem solution �basic screen output��

NIC�
 NIT�
 NFV� � NFG�
 F� ��

D
� C� �	��D
� G� �

D

NIC�
 NIT� � NFV� �� NFG�
 F� ���
D
	 C� ����D

 G� �	��D
�

��

NIC�
 NIT� 	 NFV� �� NFG�
 F� �	��D
	 C� ��
�D�
� G� ��
�D
�

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D
	 C� ����D�
� G� ��
�D
�

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D
	 C� ����D�
� G� ��
�D

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D
	 C� ���	D�
� G� ����D

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D
	 C� ��
�D�
	 G� �	�
D

NIC�
 NIT� � NFV� �� NFG�
 F� �	��D
	 C� �	��D�
� G� ����D�
�

NIC�
 NIT� � NFV� �
� NFG�
 F� �	��D
	 C� ����D�
� G� �	��D�
�

NIC�
 NIT� � NFV� �	
 NFG�
 F� �	��D
	 C� ��	�D�
� G� ����D�
�

NIC�
 NIT� �
 NFV� ��� NFG�
 F� �	��D
	 C� ���	D�
� G� ����D�
�

NIC�
 NIT� �� NFV� ��� NFG�
 F� �	��D
	 C� ����D�
� G� �		�D�
�

NIC�
 NIT� �	 NFV� ��� NFG�
 F� �	��D
	 C� ��
	D��	 G� �	��D�
�

 NIC�
 NIT� �� NFV� ��� NFG�
 F� �	��D
	 C� ��
	D��	 G� �	�	D�
�

FF� �	�����
��
D
	

X � ���	��	��		D
� �	�
����
��D�
� ���	��	��	�D
� ��

���D
�

�	���	���
�D
� �	���	�����D
� ��

D
�

���� Global optimization

a� Problem description�

Suppose we have to �nd the global minimum of the objective function

F �x� � �x� � ��
��x� � ��

� � �x� � ��
��x� � ��

� � x��x
�
�

over the set given by the inequalities ��� � x� � �� and ��� � x� � ��� The starting point is x� � ��
x� � �� The solution point is x� � ������� x� � ���

� and the global minimumvalue of the objective
function is F � �	�����

b� Problem speci�cation �input �le��

�SET�INPUT�

XL������	�D
 � XU�����
�D

XL�	����	�D
 � XU�	���
�D

�ENDSET

�SET�FMODELF�

FF���X������D
���X�����D
����	 �

��X�	��	�D
���X�	���D
����	��X����X�	����	

�ENDSET

�NF�	

�MOUT��

�EXTREM��G�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the bounds de�ning the investigated region� By using
the macrovariable �FMODELF we specify analytically the value of the model function� The gradient
of the model function is computed numerically� Since we require to �nd the global minimum we set
�EXTREM��G��

d� Problem solution �basic screen output��

���

 NIT� �� NFV� ��� NEX� � F� ���
�D
�

��EXTREM � F � ���
�
��	�	�D
�

X � ����	�������D
� �������
����D
�

	�EXTREM � F � ���
�		�����D
�

X � ���		��	����D
� ���������	�D
�

��EXTREM � F � ����
����
��D
�

X � �������
���D
� ��������
���D
�

��EXTREM � F � ������
�����D
	

X � �����	��	��D
� �	�	������	D
�

��� Large scale optimization �sparse Hessian matrix�

a� Problem description�

Suppose we have to �nd a local minimum of the objective function

F �x� �
nX
i��

�
��� �xi�xi � xi�� � xi�� � �

��
� xn�� � x� � �

where n � ���� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ���

b� Problem speci�cation �input �le��

�FLOAT A

�SET�INPUT�

DO � I���NF

X�I�����
D

J�	��I����

IH�I��J

JH�J��I

JH�J���I�

� CONTINUE

IH�NF���	�NF

�ENDSET

�SET�FMODELF�

FF�
�
D

DO 	 J���NF

A����
D
�	�
D
�X�J���X�J���
D

IF �J�GT��� A�A�X�J���

IF �J�LT�NF� A�A�X�J��

FF�FFA�A

	 CONTINUE

�ENDSET

�SET�GMODELF�

GF����
�
D

DO � J���NF

A����
D
�	�
D
�X�J���X�J���
D

IF �J�GT��� A�A�X�J���

���

IF �J�LT�NF� A�A�X�J��

A�AA

GF�J��GF�J�A����
D
���
D
�X�J��

IF �J�GT��� GF�J����GF�J����A

IF �J�LT�NF� GF�J����A

� CONTINUE

�ENDSET

�NF��

�M��

�MOUT�	

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Hessian matrix� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is �	NF������� We set �M����� since a greater space
is needed for sparse matrix processing� By using the macrovariable �FMODELF we specify analytically
the value of the model function� By using the macrovariable �GMODELF we specify analytically the
gradient of the model function�

d� problem solution �basic screen output��

NIT�
 NFV� � NFG� � F� ���
D
� G� ���
D
	

NIT� � NFV� 	 NFG� � F� ����D
	 G� ��	�D
	

NIT� 	 NFV� � NFG� �	 F� ����D
� G� ����D
�

NIT� � NFV� � NFG� �� F� �	��D

 G� ����D
�

NIT� � NFV� � NFG� 	
 F� ���
D�
� G� ��		D

NIT� � NFV� � NFG� 	� F� �	��D�
� G� ����D�
	

NIT� � NFV� � NFG� 	� F� ���
D�
� G� ��		D�
�

NIT� � NFV� � NFG� �	 F� ��
�D�
� G� ����D�
�

NIT� � NFV� � NFG� �� F� ����D��	 G� ��
�D�
�

NIT� � NFV� �
 NFG� �
 F� ����D��� G� �	��D�
�

 NIT� � NFV� �
 NFG� �
 NDC�
 NCG� 	 F� ����D��� G� �	��D�
�

����� Large�scale optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to �nd a local minimum of the objective function

F �x� �
nX
i��

fAi �x�

where n���� and

fAi �x� �
�
��� �xi�xi � xi�� � �

��
� i � �

fAi �x� �
�
��� �xi�xi � xi�� � xi�� � �

��
� � � i � n� �

fAi �x� �
�
��� �xi�xi � xi�� � �

��
� i � n

���

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���
�This problem is equivalent to the previous problem��

b� Problem speci�cation �input �le��

�FLOAT WA

�SET�INPUT�

DO � I���NF

X�I�����
D

� CONTINUE

L��

DO 	 I���NF

IAG�I��L

IF �I�GT��� THEN

JAG�L��I��

L�L�

ENDIF

JAG�L��I

L�L�

IF �I�LT�NF� THEN

JAG�L��I�

L�L�

ENDIF

	 CONTINUE

IAG�NF���L

�ENDSET

�SET�FMODELA�

WA����
D
�	�
D
�X�KA���X�KA���
D

IF �KA�GT� �� WA�WA�X�KA���

IF �KA�LT�NF� WA�WA�X�KA��

FA�WA�WA

�ENDSET

�SET�GMODELA�

WA����
D
�	�
D
�X�KA���X�KA���
D

IF �KA�GT� �� WA�WA�X�KA���

IF �KA�LT�NF� WA�WA�X�KA��

WA�WAWA

GA�KA��WA����
D
���
D
�X�KA��

IF �KA�GT� �� GA�KA�����WA

IF �KA�LT�NF� GA�KA����WA

�ENDSET

�NF��

�NA��

�MA��

�M��

�MOUT�	

�MODEL��AF�

�JACA��S�

�HESF��B�

�FMIN��
�
�P
�

�BATCH

�STANDARD

���

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiag�
onal and the number of its nonzero elements is �	NF�����	� Therefore we set �MA����� Since we use
the partitioned Hessian matrix indicated by the statement �HESF��B�� we must specify the number of its
nonzero elements �it is �	NF���� Therefore we set �M����� By using the macrovariable �FMODELA we
specify analytically the values of the approximating functions� By using the macrovariable �GMODELA
we specify analytically the gradients of the approximating functions� For the sum of values minimization
we set �MODEL��AF��

d� problem solution �basic screen output��

NIT�
 NFV� � NFG� � F� ���
D
� G� ���
D
	

NIT� � NFV� 	 NFG� 	 F� ���	D
	 G� ����D
�

NIT� 	 NFV� � NFG� � F� ����D
	 G� ����D
�

NIT� � NFV� � NFG� � F� ��	�D
� G� ��
�D
�

NIT� � NFV� � NFG� � F� ����D
� G� ����D
�

NIT� � NFV� � NFG� � F� ����D

 G� ����D
�

NIT� � NFV� � NFG� � F� ����D�
	 G� �	��D

NIT� � NFV� �
 NFG� �
 F� ����D�
� G� ����D

NIT� � NFV� �� NFG� �� F� ����D�
� G� ����D�
�

NIT� � NFV� �	 NFG� �	 F� ��
�D�
� G� ��	�D�
	

NIT� �
 NFV� �� NFG� �� F� ���	D�
� G� ��
�D�
	

NIT� �� NFV� �� NFG� �� F� ����D�
� G� �	��D�
�

NIT� �	 NFV� �� NFG� �� F� ��
�D��
 G� ��	�D�
�

NIT� �� NFV� �� NFG� �� F� ����D��	 G� ����D�
�

NIT� �� NFV� �� NFG� �� F� ����D��� G� ����D�
�

 NIT� �� NFV� �� NFG� �� NDC�
 NCG� � F� ����D��� G� ����D�
�

����� Large�scale sum of squares optimization �sparse Jacobian matrix�

a� Problem description�

Suppose we have to �nd a local minimum of the objective function

F �x� �
nX
i��

�
fAi �x�

��

where n � ��� and

fAi �x� � ��� �xi�xi � xi�� � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � i � n

The starting point is xi � �� for � � i � n� The minimum value of the objective function is F � ���
�This problem is equivalent to the previous problem��

��

b� Problem speci�cation �input �le��

�SET�INPUT�

DO � I���NF

X�I�����
D

� CONTINUE

L��

DO 	 I���NA

IAG�I��L

IF �I�GT��� THEN

JAG�L��I��

L�L�

ENDIF

JAG�L��I

L�L�

IF �I�LT�NA� THEN

JAG�L��I�

L�L�

ENDIF

	 CONTINUE

IAG�NA���L

�ENDSET

�SET�FMODELA�

I�KA

FA����
D
�	�
D
�X�I���X�I���
D

IF �I�GT��� FA�FA�X�I���

IF �I�LT�NA� FA�FA�X�I��

�ENDSET

�SET�GMODELA�

I�KA

GA�I����
D
���
D
�X�I�

IF �I�GT��� GA�I�������
D

IF �I�LT�NA� GA�I������
D

�ENDSET

�NF��

�NA��

�MA��

�M��

�MOUT�	

�MODEL��AQ�

�JACA��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables and the sparsity pattern
of the Jacobian matrix� The sparse Jacobian matrix� indicated by the statement �JACA��S�� is tridiag�
onal and the number of its nonzero elements is �	NF�����	� Therefore we set �MA����� Since we do
not use the sparse Hessian matrix� we do not specify the number of its nonzero elements� By using the
macrovariable �FMODELA we specify analytically the values of the approximating functions� By using

���

the macrovariable �GMODELA we specify analytically the gradients of the approximating functions� For
the sum�of�squares minimization we set �MODEL��AQ��

d� problem solution �basic screen output��

NIT�
 NFV� � NFG� � F� �	
�D
� G� ���
D
	

NIT� � NFV� 	 NFG� 	 F� ����D
� G� �	�
D
�

NIT� 	 NFV� � NFG� � F� �		�D�
� G� ����D

NIT� � NFV� � NFG� � F� ����D�
� G� ���	D�
�

NIT� � NFV� � NFG� � F� �	��D��� G� ��	�D�
�

 NIT� � NFV� � NFG� � NDC� � NCG�
 F� �	��D��� G� ��	�D�
�

����� Large�scale nonlinear equations

a� Problem description�

Suppose we have to solve the system of the nonlinear equations

fAi �x� � ��� �xi�xi � xi�� � � � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � � � i � n

where n����� The starting point is xi � �� for � � i � n� The minimum value of the objective function
is F � ��� �This problem is equivalent to the previous problem��

b� Problem speci�cation �input �le��

�SET�INPUT�

DO � I���NF

X�I�����
D

� CONTINUE

�ENDSET

�SET�FMODELA�

I�KA

FA����
D
�	�
D
�X�I���X�I���
D

IF �I�GT��� FA�FA�X�I���

IF �I�LT�NA� FA�FA�X�I��

�ENDSET

�NF��

�NA��

�MOUT�	

�MODEL��AQ�

�JACA��N�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� By using the macrovari�
able �FMODELA we specify analytically the values of functions in the nonlinear equations� For solving
nonlinear equations we set �MODEL��AQ��

���

d� problem solution �basic screen output��

NIT�
 NFV� � F� �	
�D
�

NIT� � NFV� � F� ��	�D
�

NIT� 	 NFV� �� F� ����D�
�

NIT� � NFV� 	� F� �	�
D�
�

NIT� � NFV� 	� F� ��	
D���

 NIT� � NFV� 	� NDC� � NCG� � F� ��	
D���

����� Large�scale linear programming

a� Problem description�

Suppose we have to �nd the global maximum of the linear function

F �x� �
nX
i��

����ixi

with simple bounds ��� � xi � ��� � � xi � n� and linear constraints

�xi � xi�� � xi�� � i� � � i � nC

where n � �� and nC � �	� The starting point is not given� The maximum value of the linear objective
function is F � ��

b� Problem speci�cation �input �le��

�SET�INPUT�

DO � I���NF

IX�I���

XL�I���	�
D�

XU�I��	�
D�

GF�I��FLOAT�������I�

� CONTINUE

DO 	 KC���NC

IC�KC���

CL�KC��FLOAT�KC�

�SETCG�KC�KC����
D
�

�SETCG�KC�KC�� ��
D
�

�SETCG�KC�KC	����
D
�

	 CONTINUE

�ENDSET

�IEXT��

�NF�	

�NC���

�NCL���

�MC�	

�KBF�	

�KBC��

�MOUT�	

�NOUT��

�MODEL��FL�

�JACC��S�

��

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the bounds for variables and the sparsity pattern
with numerical values of the constraint Jacobian matrix� We use the procedure UKMCI�� The sparse
Jacobian matrix� indicated by the statement �JACC��S�� is tridiagonal and the number of its nonzero
elements is �	�NF�����
� We set �MC���� as a su�ciently large dimension for the auxiliary �elds�
The option �MODEL��FL� indicates the linear programming problem�

d� Problem solution �basic screen output��

NUMITR� � IJNEW� 	
 IJOLD� �� KINP�
 IU� �� F� ���
D
�

NUMITR� 	 IJNEW� �� IJOLD� 	
 KINP�
 IU� �� F� �	
�D
�

NUMITR� � IJNEW�
 IJOLD� 	
 KINP�
 IU� �� F� �

D

 NUMITR� � NEL� � NREF� � KINP�
 IU� �� F� �

D

 ITERL� �

NUMITR� � IJNEW� �� IJOLD� �� KINP�
 IU� �� F����

D
�

NUMITR� 	 IJNEW� 	
 IJOLD� �� KINP�
 IU� �� F����

D
�

NUMITR� � IJNEW�
 IJOLD� �� KINP�
 IU� �� F����

D
�

 NUMITR� � NEL� � NREF� � KINP�
 IU� �� F����

D
� ITERL� 	

 NIC�
 NIT� � NFV� 	 NFG�
 F� ��

D
� C� �

D

 G� �

D

FF� ���

D
�

X � ��	

D
� �

D

 ��

D
� ���

D
�

���

D
� ���

D
� ���

D
� ���

D
�

���

D
� ���

D
� ����

D
	 ����

D
	

����

D
	 ���	

D
	 ����

D
	 ����

D
	

����

D
	 ��	

D
	 ��	

D
	 ����

D
	

����� Large�scale quadratic programming

a� Problem description�

Suppose we have to �nd the global minimum of the quadratic function

F �x� �
k��X
i��

�xk�i�� � xk�i�
�

with simple bounds �i � xi � �i��� ��
��i�� � �i� � xk�i � �����i�� � �i�� � � i � k � �� �k � xk �
�k��� and linear constraints

xk�i � xi�� � xi � �� � � i � k � �

where �i � � � ���������i� � � i � k � �� and where n � �k � � �
�� nC � k � � � ��� The starting
point is not given� The minimum value of the quadratic objective function is F � ��������

b� Problem speci�cation �input �le��

�FLOAT WA�WB�WC

�SET�INPUT�

WA���

D
� WB�	�
�D

DO � I���NC

J�INC�

��	

WC���
D
���
�D
����I��

IX�I���� XL�I��WA� XU�I��WB

IX�J���� XL�J��
��D
��WC�WA�� XU�J��
��D
��WC�WA�

GF�I��
�
D

GF�J��
�
D

WA�WB� WB�WC

IC�I���� CL�I��
�
D

�SETCG�I�J���
D
�

�SETCG�I�I���
D
�

�SETCG�I�I�����
D
�

IH�I���

� CONTINUE

IX�NC����� XL�NC���WA� XU�NC���WB

GF�NC����

IH�NC����� IH�NC	���

K�NC	

DO 	 I�K�NF��

IH�I���IH�I�	

	 CONTINUE

IH�NF���IH�NF��

J��

DO � I�K�NF

JH�J��I� JH�J���I�

HF�J��	�
D
� HF�J����	�
D

IF �I�EQ�K�OR�I�EQ�NF� HF�J����
D

J�J	

� CONTINUE

�ENDSET

�NF���

�NC�	

�NCL�	

�MC��

�M��

�MCOLS�	

�MROWS��

�KBF�	

�KBC��

�MOUT�	

�NOUT��

�MODEL��FQ�

�JACC��S�

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the bounds for variables� the sparsity pattern with
numerical values of the model Hessian matrix� and the sparsity pattern with numerical values of the
constraint Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix� indicated
by the statement �HESF��S�� is very simple and the number of its upper half nonzero elements is
�	�N�NC������� We set M����� as a su�ciently large dimension for the working �elds� The sparse

���

Jacobian matrix� indicated by the statement �JACC��S�� is tridiagonal and the number of its nonzero
elements is �	NC���� We set �MC���� as a su�ciently large dimension for the working �elds� The
option �MODEL��FQ� indicates the linear programming problem�

d� Problem solution �basic screen output��

NUMITR� � IJNEW� �� IJOLD� �� KINP�
 IU� �� F� ����D

NUMITR� 	 IJNEW� �� IJOLD� �� KINP�
 IU� �� F� ����D

NUMITR� � IJNEW� �� IJOLD� �� KINP�
 IU� �� F� �	��D

NUMITR� � IJNEW� �� IJOLD� �� KINP�
 IU� �� F� ����D

NUMITR� � IJNEW� �� IJOLD� �� KINP�
 IU� �� F� ��
�D�
�

NUMITR� � IJNEW� 	� IJOLD� 	� KINP�
 IU� �� F� ����D�
�

NUMITR� � IJNEW� �� IJOLD� �
 KINP�
 IU� �� F� ��	�D�
�

NUMITR� � IJNEW� 	� IJOLD� 	� KINP�
 IU� �� F� ����D�
	

NUMITR� � IJNEW�
 IJOLD� 	� KINP�
 IU� �� F� �

D

 NUMITR� � NEL� � NREF� � KINP�
 IU� �� F� �

D

 ITERL� �

NAQ� � NIQ�
 NSBSP� �� NCGR�
 IU� �� F� �		�����D
� G� ����D�
�

NAQ� � NIQ� � NSBSP� �� NCGR� � IU� �� F� �		�����D
� G� ����D�
�

NAQ� � NIQ� 	 NSBSP� �	 NCGR� � IU� �� F� �		�����D
� G� ����D�
�

NAQ� � NIQ� � NSBSP� �� NCGR� �
 IU� �� F� �		�����D
� G� ����D�
�

NAQ� � NIQ� � NSBSP� �
 NCGR� �� IU� �� F� �		����	D
� G� ����D�
�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		���
�D
� G� �	��D�
�

NAQ� 	 NIQ�
 NSBSP� �� NCGR� �� IU� �� F� �		�����D
� G� ����D�
�

NAQ� 	 NIQ� � NSBSP� �� NCGR� 	� IU� �� F� �		�����D
� G� ����D�
�

NAQ� 	 NIQ� 	 NSBSP� �	 NCGR� �
 IU� �� F� �		�����D
� G� ���	D�
�

NAQ� 	 NIQ� � NSBSP� �� NCGR� �� IU� �� F� �		�����D
� G� ��	�D�
�

NAQ� 	 NIQ� � NSBSP� �
 NCGR� �� IU� �� F� �		����	D
� G� ����D�
�

NAQ� 	 NIQ� � NSBSP� � NCGR� �� IU� �� F� �		����
D
� G� ��	�D�
�

NAQ� � NIQ�
 NSBSP� �
 NCGR� �� IU� �� F� �		�����D
� G� ����D�
�

NAQ� � NIQ� � NSBSP� � NCGR� �
 IU� �� F� �		�����D
� G� ��
�D�
�

NAQ� � NIQ� 	 NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� ��	�D�
	

NAQ� � NIQ�
 NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� ��	�D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �
 F� �		�����D
� G� ����D�
	

NAQ� � NIQ�
 NSBSP� �
 NCGR� �� IU� �
 F� �		�����D
� G� ����D�
	

NAQ� � NIQ�
 NSBSP� �� NCGR� �� IU� �
 F� �		�����D
� G� ����D�
	

NAQ� � NIQ� � NSBSP� �� NCGR� �� IU� �
 F� �		�����D
� G� ����D�
	

NAQ� � NIQ� 	 NSBSP� �
 NCGR� �� IU� �
 F� �		�����D
� G� ����D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �
 F� �		����	D
� G� �	��D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		����	D
� G� �	��D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� �	��D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� ����D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �	 IU� �
 F� �		�����D
� G� ����D�
�

NAQ� � NIQ�
 NSBSP� � NCGR� �	 IU� �
 F� �		�����D
� G� ����D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� ���
D�
	

NAQ� � NIQ� 	 NSBSP� � NCGR� �	 IU� �� F� �		�����D
� G� ����D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� ����D�
	

NAQ� � NIQ�
 NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� ����D�
	

NAQ� � NIQ� � NSBSP� � NCGR� �
 IU� �� F� �		�����D
� G� ����D�
	

NAQ� � NIQ� 	 NSBSP� � NCGR� �� IU� �� F� �		�����D
� G� ����D�
�

NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		����
D
� G� �

D

 NAQ� � NIQ� � NSBSP� � NCGR� �� IU� �� F� �		����
D
� G� �

D

 NIC�
 NIT� �� NFV� 	 NFG�
 F� �		�D
� C� �

D

 G� �

D

���

FF� �		����
���D
�

X � ���
���

D
� �	
�

D
� �	
		��
�

D
� �	
�����

�D
�

�	
�����
��D
� �	
�����
��D
� �	
��������D
� �	
�������
D
�

�	
�	����
�D
� �	
�����	��D
� �	�
�	�����D
� �	�����
���D
�

�	���
�����D
� �	����	��	�D
� �	��
��
��	D
� �	��		
�
��D
�

�	�����
���D
� �	������
��D
� �		

������D
� �		�
������D
�

�			
��

�
D
� ��
�
�

D

 ��	��
�

D�
� ��	�
	�
�

D�
�

��	���
����D�
� ��
	�����	�D�
� ����
�	
�
�D�
	 ������		
��D�
	

������	����D�
	 ��
�	����
�D�
� ��	������	�D�
� ����	���	��D�
�

��������
	�D�
� �������
���D�
� ����	��
���D�
� �����������D�
�

���
��
�
��D�
	 ���	���	�
�D�
	 ���	��
��	�D�
	 �����
	��
�D�
	

����������	D�
	

���	� Large�scale optimization with linear constraints

a� Problem description�

The problem we have solved is in fact the Hock and Schittkowski problem number ��� �see �

�� which
has �� variables and 	 linear constraints� The minimum value of the objective function is F � �

�	���

b� Problem speci�cation �input �eld��

�FLOAT WI�WJ

�SET�INPUT�

DO � I���NF

X�I���
�
D
� XL�I��
�
D
� XU�I����
D
� IX�I���

� CONTINUE

IH� ��� �� IH� 	�� �� IH� ����
� IH� ������ IH� �����

IH� ���	�� IH� ���	�� IH� ����
� IH� ������ IH��
����

IH�������� IH��	���
� IH������	� IH�������� IH�������

IH�������� IH��������

JH� ��� �� JH� 	�� �� JH� ��� �� JH� ��� �� JH� �����

JH� ��� 	� JH� ��� �� JH� ��� �� JH� ����
�

JH��
�� �� JH����� �� JH��	�� �� JH������
� JH�������

JH����� �� JH����� �� JH�������� JH��������

JH����� �� JH�	
�� �� JH�	����
� JH�		���	� JH�	�����

JH�	��� �� JH�	��� �� JH�	������

JH�	��� �� JH�	������ JH�	������

JH��
�� �� JH������
� JH��	�����

JH����� �� JH������	� JH��������

JH������
� JH��������

JH�������� JH��������

JH��
���	� JH��������

JH��	����� JH��������

JH��������

JH��������

JH��������

DO 	 I���NC

IC�I���

	 CONTINUE

CL���� 	��D

CL�	�� ���D

���

CL��������D

CL��������D

CL���� ���D

CL���� 	��D

CL���� 	��D

CL��������D

�SETCG��� ��
�		D
�

�SETCG��� 	�
�	
D
�

�SETCG��� ��
���D
�

�SETCG��� ��
�	�D
�

�SETCG��� ��
���D
�

�SETCG��� ��
���D
�

�SETCG��� ��
��	D
�

�SETCG��� ��
���D
�

�SETCG��� �� ��

D
�

�SETCG�	� �������D
�

�SETCG�	� ������
D
�

�SETCG�	� �� ���	D
�

�SETCG�	� �������D
�

�SETCG�	� ��
��
D
�

�SETCG�	��
� ��

D
�

�SETCG��� �� ��	�D
�

�SETCG��� 	��
���D
�

�SETCG��� �������D
�

�SETCG��� ���
���D
�

�SETCG��� ���
���D
�

�SETCG������ ��

D
�

�SETCG��� ������
D
�

�SETCG��� 	����
�D
�

�SETCG��� ��
���D
�

�SETCG��� ���
���D
�

�SETCG��� �������D
�

�SETCG��� ���
���D
�

�SETCG����	� ��

D
�

�SETCG��� �������D
�

�SETCG��� �� ����D
�

�SETCG��� ��
���D
�

�SETCG��� ���
���D
�

�SETCG��� ���
���D
�

�SETCG������ ��

D
�

�SETCG��� 	�����	D
�

�SETCG��� ���
���D
�

�SETCG��� �� ���	D
�

�SETCG��� �� ��	�D
�

�SETCG��� ��
�	�D
�

�SETCG��� ���
�	�D
�

�SETCG������ ��

D
�

�SETCG��� �� ���	D
�

�SETCG��� ��
���D
�

�SETCG��� �� ���	D
�

�SETCG��� ���
���D
�

�SETCG������ ��

D
�

���

�SETCG��� 	�
���D
�

�SETCG��� ��
�	�D
�

�SETCG��� ������
D
�

�SETCG��� ��
���D
�

�SETCG��� �����
�D
�

�SETCG��� ��
��
D
�

�SETCG������ ��

D
�

�ENDSET

�SET�FGMODELF�

FF�
�
D

DO � I���NF

GF�I��
�
D

� CONTINUE

DO � I���NF

WI�X�I���X�I���
D
���
D

K��IH�I�

K	�IH�I����

DO � K�K��K	

J�JH�K�

WJ�X�J���X�J���
D
���
D

FF�FFWI�WJ

GF�I��GF�I��	�
D
�X�I���
D
��WJ

GF�J��GF�J�WI��	�
D
�X�J���
D
�

� CONTINUE

� CONTINUE

�ENDSET

�NF���

�M�	

�NC��

�NCL��

�MC��

�KBF�	

�KBC��

�MOUT�	

�NOUT��

�JACC��S�

�HESF��S�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the bounds for variables� the sparsity pattern with
numerical values of the model Hessian matrix� and the sparsity pattern with numerical values of the
constraint Jacobian matrix� We use the procedure UKMCI�� The sparse Hessian matrix is indicated by
the statement �HESF��S�� The sparse Jacobian matrix is indicated by the statement �JACC��S�� The
option �MODEL��FF� indicates a general objective function� By using the macrovariable �FGMODELF
we specify analytically the value and the gradient of the model function�

d� Problem solution �basic screen output��

NIT�
 NFV� 	 NFG� 	 F� ��	�D
� G� ��

D
�

���

NIT� � NFV� � NFG� � F� ��	�D
� G� �

D

NIT� 	 NFV� � NFG� � F� �	�	D
� G� �

D

NIT� � NFV� � NFG� � F� �	��D
� G� ���	D
	

NIT� � NFV� � NFG� � F� �	��D
� G� ����D
�

NIT� � NFV� � NFG� � F� �	��D
� G� ���	D
�

NIT� � NFV� � NFG� � F� �	��D
� G� ��
	D�
�

NIT� � NFV� � NFG� � F� �	��D
� G� ���
D�
�

NIT� � NFV� �
 NFG� �
 F� �	��D
� G� ���	D�
�

NIT� � NFV� �� NFG� �� F� �	��D
� G� �

D

 NIT� � NFV� �� NFG� �� NDC�
 NCG�
 F� �	��D
� G� �

D

FF� �	���������D
�

X � ������		���D�
� �������	
��D

 �	
	��
�	��D

 ������
��	�D

��	���
����D
� �������
��	D

 �������
���D
� �����
��	��D

�����������D
� ����������	�D��� �

D

 �

D

���
	
�		��D

 �

D

 ����	������D

 �

D

���
� Large�scale optimization with nonlinear equality constraints

a� Problem description�

Suppose we have to �nd a local minimum of the objective function

F �x� �
nX
i��

�
fAi �x�

��

where n � ��� and

fAi �x� � ��� �xi�xi � xi�� � � � i � �

fAi �x� � ��� �xi�xi � xi�� � xi�� � � � � � i � n� �

fAi �x� � ��� �xi�xi � xi�� � � � i � n

over the set given by the nonlinear equality constraints

	xi�x
�
i � xi���� ���� xi� �
�xi � x�i��� � x�i�� � xi�� � xi�� � x�i�� � �� � � i � n� �

The starting point is xi � ��� � � i � n� The minimum value of the objective function is F � ��������

b� Problem speci�cation �input �le��

�FLOAT WA�WB

�SET�INPUT�

DO � I���NF

X�I�����D

� CONTINUE

M�

IH�����

DO 	 I���NF

M�M�

JH�M��I

IF �I�LE�NF��� THEN

��

M�M�

JH�M��I�

ENDIF

IF �I�LE�NF�	� THEN

M�M�

JH�M��I	

ENDIF

IH�I���M�

	 CONTINUE

MC�

ICG�����

DO � I���NF�	

MC�MC�

JCG�MC��I�	

MC�MC�

JCG�MC��I��

MC�MC�

JCG�MC��I

MC�MC�

JCG�MC��I�

MC�MC�

JCG�MC��I	

ICG�I����MC�

� CONTINUE

DO � KC���NC

IC�KC���

CL�KC��
�D

� CONTINUE

�ENDSET

�SET�FMODELF�

FF�
�D

DO � J���NF

WA����D
�	�D
�X�J���X�J���D

IF �J�GT� �� WA�WA�X�J���

IF �J�LT�NF� WA�WA�X�J��

FF�FFWA��	

� CONTINUE

�ENDSET

�SET�GMODELF�

DO � J���NF

GF�J��
�D

� CONTINUE

DO � J���NF

WA����D
�	�D
�X�J���X�J���D

IF �J�GT� �� WA�WA�X�J���

IF �J�LT�NF� WA�WA�X�J��

WB�	�D
�WA

GF�J��GF�J�WB����D
���D
�X�J��

IF �J�GT� �� GF�J����GF�J����WB

IF �J�LT�NF� GF�J���GF�J���WB

� CONTINUE

�ENDSET

���

�SET�FMODELC�

K�KC	

FC���D
�X�K���X�K���	�X�K�����	�D
����D
�X�K��

� ��D
��X�K��X�K����	�X�K�����	�X�K�	�X�K���

� X�K	���	

�ENDSET

�SET�GMODELC�

K�KC	

GC�K�	�����D

GC�K�������D
�X�K�	�D
�X�K���

GC�K��	��D
�X�K���	���D
�X�K�����D

GC�K������D
�X�K����D

GC�K	���	�D
�X�K	�

�ENDSET

�NF��

�M���

�NC���

�NCL�

�MC��

�KBC��

�MOUT�	

�JACC��S�

�HESF��S�

�FORM��SE�

�FMIN�

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of variables� the sparsity pattern of
the objective Hessian matrix� the sparsity pattern of the constraint Jacobian matrix� and the constraint
speci�cations� The sparse Hessian matrix� indicated by the statement �HESF��S�� is tridiagonal so
that the number of its upper half nonzero elements is �	NF������� We set �M������ since a greater
space is needed for sparse matrix processing� The sparse Jacobian matrix is indicated by the statement
�JACC��S�� Since there are only the equality constraints� we can specify only the left sides CL�KC�� �
� KC � NC� and we can set �KBC��� The speci�cation �FMIN�� is used� since the objective function
value cannot be lower than zero� By using the macrovariable �FMODELF we specify analytically the
value of the model function� By using the macrovariable �GMODELF we specify analytically the gradient
of the model function� By using the macrovariable �FMODELC we specify analytically the values of the
constraint functions� By using the macrovariable �GMODELC we specify analytically the gradients of the
constraint functions� The choice �FORM��SE� corresponds to inexact recursive quadratic programming
methods for equality constrained problems�

d� problem solution �basic screen output��

NIC�
 NIT�
 NFV� � NFG� �
 F� ���
D
� C� �	�
D
	 G� ���
D
	

NIC�
 NIT� � NFV� 	 NFG� 	
 F� ���
D
� C� ���
D
� G� ��	�D
	

NIC�
 NIT� 	 NFV� � NFG� �
 F� ����D
� C� �	��D
� G� ����D
�

NIC�
 NIT� � NFV� � NFG� �
 F� ��
�D
� C� ��	�D
� G� ���
D
�

NIC�
 NIT� � NFV� � NFG� �
 F� ���	D
� C� ����D

 G� ���
D
�

NIC�
 NIT� � NFV� � NFG� �
 F� ���	�D
	 C� ����D

 G� ���
D
�

���

NIC�
 NIT� � NFV� � NFG� �
 F� ��	�D
� C� ��
�D

 G� ����D
�

NIC�
 NIT� � NFV� �
 NFG� �
 F� ����D
� C� ����D�
� G� ����D

NIC�
 NIT� � NFV� �� NFG� �
 F� ���
D
� C� �	��D�
	 G� ����D

NIC�
 NIT� � NFV� �	 NFG� �

 F� ��	�D
� C� ��
�D�
	 G� ����D�
�

NIC�
 NIT� �
 NFV� �� NFG� ��
 F� ��	�D
� C� ����D�
� G� ��
�D�
�

NIC�
 NIT� �� NFV� �� NFG� �	
 F� ��	�D
� C� �	��D�
� G� ��
�D�
	

NIC�
 NIT� �	 NFV� �� NFG� ��
 F� ��	�D
� C� ����D�
� G� ����D�
�

NIC�
 NIT� �� NFV� �� NFG� ��
 F� ��	�D
� C� ����D�
� G� ����D�
�

 NIC�
 NIT� �� NFV� �� NFG� ��
 F� ��	�D
� C� ����D�
� G� ����D�
�

����� Optimization of dynamical systems � general integral criterion

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F �x� �
�

�

Z T

�

�y���t� � y���t��dt�
�

�
�y���T � � y���T ��

where T � ��� and where

dy��t�
dt
� y��t�� y���� � x�

dy��t�
dt
� ��� y���t��y��t� � y��t�� y���� � �

b� Problem speci�cation �input �eld��

�SET�INPUT�

X����ZERO

TA�ZERO

TAMAX����D

�ENDSET

�SET�FMODELF�

FF�HALF��YA�����	YA�	���	�

�ENDSET

�SET�DMODELF�

DF����YA���

DF�	��YA�	�

�ENDSET

�SET�FMODELA�

FA�HALF��YA�����	YA�	���	�

�ENDSET

�SET�DMODELA�

DA����YA���

DA�	��YA�	�

�ENDSET

�SET�FMODELE�

GO TO ���	� KE

� FE�YA�	�

GO TO �

	 FE��ONE�YA�����	��YA�	��YA���

� CONTINUE

��

�ENDSET

�SET�DMODELE�

GO TO ����� KE

� DE����ZERO

DE�	��ONE

GO TO �

� DE�����ONE�TWO�YA����YA�	�

DE�	��ONE�YA�����	

� CONTINUE

�ENDSET

�SET�FMODELY�

GO TO ����� KE

� FE�X���

GO TO �

� FE�ONE

� CONTINUE

�ENDSET

�SET�GMODELY�

GO TO ��
���� KE

�
 GE����ONE

GO TO �	

�� GE����ZERO

�	 CONTINUE

�ENDSET

�NF��

�NE�	

�MODEL��DF�

�MOUT�	

�NOUT��

�TOLR����
�P���

�TOLA����
�P���

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial value of the variable x� as well as the initial
and terminal times � and T� respectively� By using the macrovariables �FMODELA and �DMODELA
we specify the subintegral function and by using the macrovariables �FMODELF and �DMODELF we
specify the terminal function� The right hand sides of the di�erential equations are speci�ed by using the
macrovariables �FMODELE and �DMODELE� the while initial values and their derivatives are given by
using the macrovariables �FMODELY and �GMODELY� The option �MODEL��DF� indicates a general
integral criterion�

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG�
 F� �	��D
� G� �	�	D
�

NIT� � NFV� � NFG�
 F� ����D
� G� ����D

NIT� 	 NFV� � NFG�
 F� ����D
� G� ����D�
	

NIT� � NFV� � NFG�
 F� ����D
� G� ��		D�
�

NIT� � NFV� � NFG�
 F� ����D
� G� �	
�D�
�

 NIT� � NFV� � NFG�
 NDC�
 NCG�
 F� ����D
� G� �	
�D�
�

��	

FF� �����������D

X � �����������D

����� Optimization of dynamical systems � special integral criterion

a� Problem description�

Suppose we have to �nd a minimum of the objective function

F �x� �
�

�

Z T

�
�y��t�� ���� � t���dt

where T � � and where

dy��t�
dt

� �x�y��t�� y���� � x�

b� Problem speci�cation �input �eld��

�SET�INPUT�

X����	�
D

X�	��
�
D

TA�ZERO

TAMAX�ONE

�ENDSET

�SET�FMODELE�

FE��X����YA�����	

YE�ONE��ONETA�

WE�ONE

�ENDSET

�SET�GDMODELE�

GE�����YA�����	

GE�	��ZERO

DE�����TWO�X����YA���

�ENDSET

�SET�FMODELY�

FE�X�	�

�ENDSET

�SET�GMODELY�

GE����ZERO

GE�	��ONE

�ENDSET

�MODELA��Y�

�NF�	

�NE��

�MODEL��DQ�

�CLASS��GN�

�UPDATE��F�

�MOUT�	

�NOUT��

�TOLR����
�P���

�TOLA����
�P���

�BATCH

�STANDARD

���

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of the variables x� and x� as
well as the initial and terminal times � and T� respectively� The right hand side of the di�erential
equation is speci�ed by using the macrovariables �FMODELE and �GDMODELE� while the initial
values and their derivatives are given by using the macrovariables �FMODELY and �GMODELY� The
option �MODEL��DQ� together with �MODELA��Y� indicate a special integral criterion�

d� Problem solution �basic screen output��

NIT�
 NFV� � NFG� � F� �	�
D

 G� ����D

NIT� � NFV� � NFG� 	 F� ����D�
� G� ����D

NIT� 	 NFV� � NFG� � F� ���
D�
	 G� ����D�
	

NIT� � NFV� � NFG� � F� ��	
D�
� G� �		�D�
	

NIT� � NFV� � NFG� � F� ����D�
� G� ��

D�
�

NIT� � NFV� �� NFG� � F� �	��D��� G� �	

D�
�

 NIT� � NFV� �� NFG� � NDC� � NCG�
 F� �	��D��� G� �	

D�
�

F � �	���
��
�	D���

X � ���������	�D

 ����������
D

���� Initial value problem for ordinary di�erential equations

a� Problem description�

Suppose we have to �nd a solution of the Van der Pol equation

dy��t�
dt
� y��t�� y���� � �

dy��t�
dt
� ��� y���t��y��t� � y��t�� y���� � �

in the interval � � t � T where T � ���

b� Problem speci�cation �input �eld��

�SET�INPUT�

YA����	�
D

YA�	��
�
D

TA�
�
D

TAMAX���
D�

�ENDSET

�SET�FMODELE�

IF �KE�EQ��� THEN

FE�YA�	�

ELSE

FE����
D
�YA�����	��YA�	��YA���

ENDIF

�ENDSET

�NA�	�

�NE�	

�MODEL��NO�

�MED�	

�NOUT��

���

�BATCH

�STANDARD

c� Comments on the problem speci�cation�

By using the macrovariable �INPUT we specify the initial values of the variables y� and y� as well
as the initial and terminal times � and T� respectively� The right hand sides of the di�erential equations
are speci�ed by using the macrovariable �FMODELE� The option �MODEL��NO� indicates integration
of a system of ordinary di�erential equations�

d� Problem solution �basic screen output��

 NSTP� �� NACC� �� NREJ� �	 NEV ��		�

� AT � �

D

AY � �	

D
� �

D

	 AT � ��

D

AY � ��������	�
D
� ������	�����D

� AT � ��

D
�

AY � ���
����	��D
� ����
	��
���D

� AT � ���

D
�

AY � ��
�
��	���D
� ����	��	
���D
�

� AT � �	

D
�

AY � ��	��������D

 �����	����

D
�

� AT � �	�

D
�

AY � ����
�������D

 ��	������
��D
�

� AT � ��

D
�

AY � ������
�����D
� ���
	�
�
	��D
�

� AT � ���

D
�

AY � �����������
D
� �	��
������D

� AT � ��

D
�

AY � ���������	��D
� ��	�������	D

�
 AT � ���

D
�

AY � ��������
���D
� �����
�����D

�� AT � ��

D
�

AY � �����
������D

 ���
�
�����D
�

�	 AT � ���

D
�

AY � ����	�
��
�D�
� �	���������D
�

�� AT � ��

D
�

AY � ��	��
�����D
� �	��������
D
�

�� AT � ���

D
�

AY � �����������D
� ������
��	�D

�� AT � ��

D
�

AY � ���	
��	��
D
� ���������	��D

�� AT � ���

D
�

AY � ����

�	���D
� ���
	�������D

�� AT � ��

D
�

AY � ��	��	�	���D
� ������������D

�� AT � ���

D
�

AY � �����������D

 �������	����D
�

�� AT � ��

D
�

AY � ����	���	��
D

 ��	�	��
	���D
�

	
 AT � ���

D
�

���

AY � ������������D
� ������	�����D
�

	� AT � ��

D
	

AY � ��	

���
���D
� ��	�
����	�D�
�

���

	� Model examples for demonstration of graphic output

Here we introduce several problem speci�cations �input �les� which demonstrate the application
of graphic output� These input �les are included into the UFO system as demo��les PROC
��UFO�� � �
�PROC
��UFO� Corresponding gra�cal pictures are included in the appendix� The data recommended for
graphic pictures are introduced in lines which begin by the directive �REM�

���� Nonlinear regression

�SET�INPUT�

LDIM��

X������
D	

X�	����
D�

X����	�	D

X������
�D

X������
D��

X������
D�

X�������D

X������
�D

X������
D��

X��
����
D�

X��������D

X��	����
�D

X�����	�
D��

X�������
D�

X��������D

X�������
�D

X�������
D��

X�������
D	

X�������	D

X�	
����
�D

BETA�����D

CALL BIUD
��NF�LDIM�NA�X�XL�XU�IX�AT�AM�

�ENDSET

�SET�FMODELA�

CALL BAFU
��NF�LDIM�KA�NA�X�AT�FA�BETA�

�ENDSET

�SET�GMODELA�

CALL BAGU
��NF�LDIM�KA�NA�X�AT�GA�BETA�

�ENDSET

�NF��

�NA��

�KOUT�

�KOUT��

�KOUT	��

�KOUT���

�LOUT�

�MOUT�	

�MIT��

�MODEL��AQ�

�CLASS��GN�

�TYPE��G�

���

�DECOMP��M�

�NUMBER��

�UPDATE��F�

�TOLX����
�P����

�TOLF����
�P����

�TOLB����
�P����

�TOLG����
�P���

�KBA��

�KBF�	

�GRAPH��Y�

�SCAN��Y�

�BATCH

�ADD�REAL���BETA�AT��NA���

�ADD�SUBROUTINES�

SUBROUTINE BIUD
��N�L�NA�X�XL�XU�IX�AT�AM�

INTEGER N�L�NA�IX�N��I�K

REAL�� X�N��XL�N��XU�N��AT�NA��AM�NA�

N���L

K�

DO � I���L

X�K���LOG�X�K���

XL�K���LOG���
D
�

XU�K���LOG���
D�
�

IX�K����

X�K	��LOG�X�K	��

XL�K	��LOG���
D
�

XU�K	��LOG���
D�
�

IX�K	���

XL�K�����
D�	

XU�K�����
D	

IX�K����

XL�K�����

�D

XU�K�����

D�

IX�K����

K�K�

� CONTINUE

OPEN ����FILE��PROC
��DAT��STATUS��OLD��

NA�

	 NA�NA�

READ ������	D�������ERR��� AT�NA��AM�NA�

GO TO 	

� NA�NA��

RETURN

END

SUBROUTINE BAFU
��N�L�KA�NA�X�AT�FA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��FA�Q����QD���

REAL�� ARG�POM�BK�B�INT�BETA

INTEGER J�K

COMMON �BCOM� Q�QD

DATA BK ���������D���

FA�
�
D

��

K�

DO � J���L

ARG�X�K����BK�AT�KA��

IF �KA�EQ��� THEN

Q�J��B�INT�AT�KA��ARG�

FA�FAEXP�X�K��X�K	��ARG�

ELSE

POM�X�K�����
D

FA�FAEXP�X�K��X�K	��ARG��

� ���
D
�POM�BETA��EXP�X�K�����B�INT�AT�KA��ARG��

� Q�J�������X�K���POM�

ENDIF

K�K�

� CONTINUE

RETURN

END

SUBROUTINE BAGU
��N�L�KA�NA�X�AT�GA�BETA�

INTEGER N�L�KA�NA

REAL�� X�N��AT�NA��GA�N�

REAL�� FAC�ARG�POM�POW�BK�B�INT�B�INTD�A�B�C�D�E�F�G

REAL�� Q����QD����QQ�QQD�BETA

INTEGER J�K

COMMON �BCOM� Q�QD

DATA BK ���������D���

K�

DO � J���L

FAC���
D
��BK�AT�KA��

ARG�FAC�X�K��

IF �KA�EQ��� THEN

Q�J��B�INT�AT�KA��ARG�

QD�J��FAC�B�INTD�AT�KA��ARG�

QQ�
�
D

QQD�
�
D

ELSE

QQ�B�INT�AT�KA��ARG��Q�J�

QQD�FAC�B�INTD�AT�KA��ARG��QD�J�

ENDIF

POM�X�K�����
D

POW��X�K���POM

A�EXP�X�K��X�K	��ARG�

B�EXP�X�K���

G�B�QQ

C����
D
�POM�BETA��G�

D�C��POW

E�POW�D�C

F�POM�POM

GA�K���A��DE��POM�BETA��G�

GA�K	��A�D

GA�K���A���FAC�DE��POM�BETA��B�QQD�

GA�K���A�D��LOG�C��FPOW�G��C�BETA��

K�K�

� CONTINUE

���

RETURN

END

FUNCTION B�INT�T�X�

REAL�� T�X�B�INT

REAL�� A��A	�A��A��A��A��B��B	�B��B��B��B�

DATA A��A	�A��A��A��A� ����
D
� ��
�
D
� �����
D
�

� ���	�
D
� �
	��
D
� �	
�
D
�

DATA B��B	�B��B��B��B� ��	�
D
� ��
�
D
� �	

�
D
�

� �	�

�
D
� ���	
�
D
� �
�
�
D
�

B�INT����
D
��A�X��A�X��A�X��A�X��A	X��A�X�������

� �B�X��B�X��B�X��B�X��B	X��B�X��������EXP��X��T

RETURN

END

FUNCTION B�INTD�T�X�

REAL�� T�X�B�INTD

REAL�� A��A	�A��A��A��A��B��B	�B��B��B��B�

REAL�� C��C	�C��C��C��D��D	�D��D��D��DIS�DEN�DISD�DEND

DATA A��A	�A��A��A��A� ����
D
� ��
�
D
� �����
D
�

� ���	�
D
� �
	��
D
� �	
�
D
�

DATA B��B	�B��B��B��B� ��	�
D
� ��
�
D
� �	

�
D
�

� �	�

�
D
� ���	
�
D
� �
�
�
D
�

DATA C��C	�C��C��C� �	
��
D
� 	��
�
D
� �
����
D
�

� ������
D
� �
	��
D
�

DATA D��D	�D��D��D� �	�
�
D
� 	�	
�
D
� �	�

�
D
�

� 	�	

�
D
� ���	
�
D
�

DIS�A�X��A�X��A�X��A�X��A	X��A�X�����

DEN�B�X��B�X��B�X��B�X��B	X��B�X�����

DISD�C�X��C�X��C�X��C	X��C���
D
�X����

DEND�D�X��D�X��D�X��D	X��D���
D
�X����

B�INTD���DIS�DISDDEND�DIS�DEN��DEN���
D
��EXP��X��T

RETURN

END

�ENDADD

�STANDARD

���� Nonlinear minimax optimization

�FLOAT W

�SET�INPUT�

X����
��D
 � X�	��
�
D
 � X����
�
D

X����
�
D
 � X����
�
D

�ENDSET

�SET�FMODELA�

W�
��D
�DBLE�KA������
D

FA��X���W�X�	������
D
W��X���W��X���W�X�������EXP�W�

�ENDSET

�MODEL��AM�

�NF��

�NA�	�

�NAL�

�GRAPH��Y�

���

�MAP��Y�

�HIL��Y�

�ISO��Y�

�PATH��EXTENDED�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

���� Transformer network design

�SET�INPUT�

NEXT��

CALL EIUD
��NF�NA�NAL�X�FMIN�XMAX�NEXT�IEXT�IERR�

�ENDSET

�SET�FMODELA�

CALL EAFU
��NF�KA�X�FA�NEXT�

�ENDSET

�SET�GMODELA�

CALL EAGU
��NF�KA�X�GA�NEXT�

�ENDSET

�NF��

�NA���

�NAL�

�MOUT��

�MODEL��AM�

�GRAPH��Y�

�MAP��Y�

�HIL��Y�

�ISO��Y�

�PATH��EXTENDED�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

���� Global optimization

�SET�INPUT�

NEXT��

CALL EIUD
��NF�XL�XU�NEXT�IERR�

�ENDSET

�SET�FMODELF�

CALL EFFU
��NF�X�FF�NEXT�

�ENDSET

�NF��

�MOUT��

�GCLASS��

��

�GRAPH��Y�

�MAP��Y�

�HIL��Y�

�ISO��Y�

�EXTREM��G�

�BATCH

�STANDARD

�REM VAR��� XL������ XU����

�REM VAR�	� XL������ XU����

��	� Nonsmooth optimization

�SET�INPUT�

NEXT���

CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�

MA�NF�

�ENDSET

�SET�FMODELF�

CALL EFFU���NF�X�FF�NEXT�

�ENDSET

�SET�GMODELF�

CALL EFGU���NF�X�GF�NEXT�

�ENDSET

�KSF��

�NF��

�MOUT���

�MODEL��FF�

�GRAPH��Y�

�MAP��Y�

�HIL��Y�

�ISO��Y�

�PATH��Y�

�BATCH

�STANDARD

�REM VAR��� XL���� XU��

�REM VAR��� XL���� XU��

��
� Rosenbrock function

�SET�INPUT�

X�������	D

X�	�� ��
D

�ENDSET

�SET�FMODELF�

FF���
D	��X�����	�X�	����	�X������
D
���	

�ENDSET

�NF�	

�GRAPH��YES�

��	

�MAP��YES�

�ISO��YES�

�PATH��YES�

�BATCH

�STANDARD

���� Ordinary di�erential equations

�FLOAT W��W	�W��W�

�SET�INPUT�

TA�
�
D

YA����
����D

YA�	��
�
D

YA����
�
D

YA�����	�

�����
����
�	�		�
�����			�D

TAMAX����
��	����
�����	�������	
�	��D

�ENDSET

�SET�FMODELE�

W��
�
�		�����D

W	���D
�W�

W���YA���W����	YA�	���	

W��W��SQRT�W��

W���YA����W	���	YA�	���	

W��W��SQRT�W��

GO TO ���	����� KE

� FE�YA���

GO TO �

	 FE�YA���

GO TO �

� FE�YA���	�YA����W	��YA���W���W��W���YA����W	��W�

GO TO �

� FE�YA�	��	�YA����W	�YA�	��W��W��YA�	��W�

� CONTINUE

�ENDSET

�NE��

�NA�	

�MODEL��NO�

�SOLVER��DP��

�MOUT���

�TOLR����
�P���

�TOLA����
�P���

�MED��

�GRAPH��Y�

�BATCH

�STANDARD

���� The Lorenz attractor

�FLOAT W��W	�W�

�SET�INPUT�

���

W���
�
D

W	�	��
D

W����
D
���
D

TA�
�
D

YA�������
D

YA�	�� ��
D

YA����W	���
D

TAMAX��
�
D

�ENDSET

�SET�FMODELE�

GO TO ���	��� KE

� FE��W��YA���W��YA�	�

GO TO �

	 FE��YA����YA���W	�YA����YA�	�

GO TO �

� FE�YA����YA�	��W��YA���

� CONTINUE

�ENDSET

�NE��

�NA�	

�MODEL��NO�

�SOLVER��DP��

�MOUT���

�TOLR����
�P���

�TOLA����
�P���

�MED��

�GRAPH��Y�

�BATCH

�STANDARD

���

References

��� M�Altman� Generalized gradient methods of minimizing a functional� Bull� Acad� Polon� Sci�� Ser�
Sci� Math� Astronom� Phys� �
 ������ ������	�

��� L�Armijo� Minimization of functions having continuous partial derivatives� Paci�c J� Math� �� ������
����

��� M�Al�Baali� R�Fletcher� Variational methods for nonlinear least squares� JOTA �� ���	��
���
���

�
� M�C�Biggs� Minimizationalgorithmsmaking use of nonquadratic properties of the objective function�
J� Inst� math� Appl� 	 ����� �������

��� M�C�Biggs� A note on minimization algorithms which make use of non�quadratic properties of the
objective function� Journal of the Institute of Mathematics and its Applications �� ����� �����	�

��� P�Bjorstadt� J�Nocedal� Analysis of a new algorithm for one�dimensional minimization� Computing
�� ����� �������

�� C�G�E�Boender� A�H�G�Rinnoy Kan� Bayessian stopping rules for multistart global optimization
methods� Math� Programming � ���	� ���	��

�	� C�G�E�Boender� A�H�G�Rinnoy Kan� G�T�Timmer� L�Stougie� A stochastic method for global opti�
mization� Mathematical programming �� ���	�� �����
��

��� P�T�Boggs� J�W�Tolle� A strategy for global convergence in a sequential quadratic programming
algorithm� SIAM Journal on Numerical Analysis �� ���	�� ��������

���� I�D�L�Bogle� J�D�Perkins� A New Sparsity Preserving Quasi�Newton Update for Solving Nonlinear
Equations� SIAM Journal on Scienti�c and Statistical Computations �� ������ ��������

���� I�Bongartz� A�R�Conn� N� Gould� P�L�Toint� CUTE� constrained and unconstrained testing environ�
ment� Report�

���� C�G�Broyden� The convergence of a class of double rank minimization algorithms� Part � � general
considerations� Part � � the new algorithm� J� Inst� Math� Appl� � ����� ����� ��������

���� C�G�Broyden� A class of methods for solving nonlinear simultaneous equations� Math� of Comput�
�� ������ ������

��
� K�M�Brown� J�E�Dennis� A new algorithm for nonlinear least squares curve �tting� In� �Mathemat�
ical Software� �J�Rice ed�� Academic Press� London ����

���� J�R� Bunch� B�N� Parlett� Direct methods for solving symmetric inde�nite systems of linear equa�
tions� SIAM J� Numer� Anal� 	 ����� ��������

���� R�H�Byrd� R�B�Schnabel� G�A�Shultz� Approximate solution of the trust region problem by mini�
mization over two�dimensional subspaces� Math� Programming
� ���		� �
�����

��� R�H�Byrd� J�Nocedal� R�B�Schnabel� Representation of quasi�Newton matrices and their use in
limited memory methods� Math Programming �� ����
� ��������

��	� T�F�Chan� Rank revealing QR factorizations� Linear Algebra Appl� 		�	� ���	� ��	��

���� T�F�Coleman� B�S�Garbow J�S�Mor'� Software for estimation sparse Hessian matrices� ACM Trans�
of Math� Software �� ���	�� �������

���� T�F�Coleman� Large sparse numerical optimization� Springer�Verlag� Berlin� ��	
�

���

���� T�F�Coleman� B�S�Garbow� J�S�Mor'� Software for estimating sparse Jacobian matrices� ACM Trans�
of Math� Software �� ���	
� �����
��

���� A�R� Conn� N�I�M� Gould� P�L� Toint� Testing a class of methods for solving minimization problems
with simple bounds on the variables� Mat� Comput� �� ���		� ����
���

���� A�R�Conn� N� Gould� P�L�Toint� LANCELOT� A Fortran Package for Large�Scale Nonlinear Opti�
mization� Springer Verlag� Berlin �����

��
� H�Curry� The method of steepest descent for nonlinear minimization problems� Quart� Appl� Math�
� ���

� ��	�����

���� W�C�Davidon� Variable metric method for minimisation� A�E�C� Research and Development Report
ANL������ �����

���� W�C�Davidon� Optimally conditioned optimization algorithms without line searches� Math� Pro�
gramming � ����� �����

��� T�A�Davis� I�S�Du�� An unsymmetric pattern multifrontal methodfor sparse LU factorization� Re�
port No� TR������	� CIS Department� University of Florida� Gainesville �����

��	� N�Y�Deng� Y�Xiao� F�J�Zhou� Nonmonotonic trust region algorithm� JOTA � ������ �����	��

���� R�S�Dembo� T�Steihaug� Truncated�Newton algorithms for large�scale unconstrained minimization�
Math� Programming �� ���	�� ��������

���� J�E�Dennis� Some computational techniques for the nonlinear least squares problem� In� �Numerical
solution of nonlinear algebraic equations� �G�D�Byrne� C�A�Hall� eds�� Academic Press� London ��
�

���� J�E�Dennis� H�H�W�Mei� An unconstrained optimization algorithm which uses function and gradient
values� Report No� TR����
�� Dept� of Computer Sci�� Cornell University ����

���� J�E�Dennis� R�B�Schnabel� Numerical methods for unconstrained optimization and nonlinear equa�
tions� Prentice�Hall� Englewood Cli�s� New Jersey ��	��

���� J�E�Dennis� R�E�Welsch� Techniques for Nonlinear Least Squares and Robust Regression� Commu�
nications in Statistics B ���	� �
������

��
� J�E�Dennis� N�Vicente� On the convergence theory of trust�region�based algorithms for equality�
constrained optimization� SIAM J� on Optimization ����� �������

���� I�S�Du�� J�K�Reid� The multifrontal solution of inde�nite sparse symmetric linear equations� ACM
Trans� of Math� Software � ���	�� ��������

���� R�Fletcher� A new approach to variable metric algorithms� Computer J� �� ����� �������

��� R�Fletcher� A modi�ed Marquardt subroutine for nonlinear least squares� Report No� R����� The�
oretical Physics Division� A�E�R�E� Harwell� ����

��	� R�Fletcher� A general quadratic programming algorithm� J� Inst� Math� Appl� ����� �����

���� R�Fletcher� Practical methods of optimization �Second edition�� Wiley� New York� ��	�

�
�� R�Fletcher� M�J�D�Powell� A rapidly convergent descent method for minimization� Computer J� �
������ ������	�

�
�� R�Fletcher� C�M�Reeves� Function minimization by conjugate gradients� Computer J� ����
� �
��
��
�

���

�
�� R�Fletcher� C�Xu� Hybrid methods for nonlinear least squares� IMA J� Numer� Anal� ���	� ���
�	��

�
�� R�Fletcher� Second order corrections for nondi�erentiable optimization� In� �Numerical analysis�
Dundee ��	�� �G�A�Watson ed��� Lecture Notes in Mathematics���� Springer�Verlag� Berlin ��	��

�

� R�Fletcher� Nonlinear programmming without a penalty function� Numerical analysis report
NA���� University of Dundee� ����

�
�� R�W�Freund� N�M�Nachtigal� A new Krylov�subspace method for symmetric inde�nite linear sys�
tems� Report No� ORNL�TM����
� Oak Ridge National Laboratory� Oak Ridge� Tennessee� ���
�

�
�� R�P�Ge� A �lled function method for �nding a global minimizer of a function of several variables�
Math� Programming
� ������ ������
�

�
� R�P�Ge� Y�F�Qin� A Class of �lled functions for �nding global minimizers of a function of several
variables� JOTA �
 ���	� �
������

�
	� J�C�Gilbert� C�Lemarechal� Some numerical experiments with variable�storage quasi�Newton algo�
rithms� Math� Programming�
� ���	��
��
���

�
�� P�E�Gill� W�Murray� A numerically stable form of the simplex algorithm� Linear Algebra Appl�
����� �����	�

���� P�E�Gill� W�Murray� Newton type methods for unconstrained and linearly constrained optimization�
Math� Programming ���
� ��������

���� P�E�Gill� W�Murray� Numerically stable methods for quadratic programming� Math� Programming
�
 ���	� �
�����

���� P�E�Gill� W�Murray� M�H�Wright� Practical optimization� Academic Press� London ��	��

���� D�Goldfarb� A family of variable metric algorithms derived by variational means� Math Comput� �

����� ������

��
� D�Goldfarb� A�U�Idnani� A numerically stable dual method for solving strictly convex quadratic
programms� Report No� 	������ Dept�of Computer Sci�� The City College of New York� ��	��

���� A�A�Goldstein� On steepest descent� SIAM J� Control � ������ �
�����

���� G�H�Golub� C�F�Van Loan� Matrix computations �second edition�� Johns Hopkins University Press�
Baltimore ��	��

��� A�Griewank� P�L�Toint� Partitioned variable metric updates for large scale structured optimization
problems� Numer� Math� �� ���	�� �������

��	� L�Grippo� F�Lampariello� S�Lucidi� A nonmonotone line search technique for Newton�s method�
SIAM J� Numer� Anal� �� ���	�� �����

���� E�Hairer� S�P�Norsett� G�Wanner� Solving ordinary di�erential equations I� Springer Series in Com�
putational Mathematics 	� Springer Verlag� Berlin ��	�

���� S�P�Han� Variable metric methods for minimizing a class of nondi�erentiable functions� Math� Pro�
gramming �� ���	�� �����

���� M�R�Hestenes� C�M�Stiefel� Methods of conjugate gradient for solving linear systems� J� Res� NBS

� ����
�
���
���

���

���� W�Hock� K�Schittkowski� Test examples for nonlinear programming codes� Lecture notes in eco�
nomics and mathematical systems �	� Springer Verlag� Berlin ��	��

���� R�Hooke� T�A�Jeeves� Direct search solution of numerical and statistical problems� J� Assoc� Comp�
Mach� 	 ������ ��������

��
� S�Hoshino� A formulation of variable metric methods� J� Inst� Math� Appl� �� ����� ��
�
���

���� M�E�Hribar� J�Nocedal� Improvement to the Horizontal Subproblem� Preprint �����

���� Y�F�Hu� Y�Liu� C�Storey� E�cient generalized conjugate gradient algorithms� Part � � theory� Part
� � implementation� JOTA �� ������ ������� ��������

��� Y�F�Hu� C�Storey� Motivating quasi�Newton updates by preconditioned conjugate gradient methods�
Report No� A���� Dept� of Math� Sci�� Loughborough Univ� of Technology� Loughborough �����

��	� C�M�Ip� M�J�Todd� Optimal conditioning and convergence in rank one quasi�Newton updates� SIAM
J� Numer� Anal� �� ���		� ��������

���� K�C�Kiwiel� An ellipsoid trust region bundle method for nonsmooth convex minimization� SIAM J�
on Control and Optimization � ���	�� ����

��� M�Lalee� J�Nocedal� T�Plantenga� On the implementation of an algorithm for large�scale equality
constrained optimization� Preprint ���
�

��� C�L�Lawson� R�J�Hanson� Solving least squares problems� Prentice�Hall� Englewood Cli�s� New
Jersey ��
�

��� A�V�Levy� A�Montalvo� The tunneling algorithm for the global minimization of functions� SIAM
Journal Sci� Stat� Comp� � ���	�� ������

��� G�Li� Successive column correction algorithms for solving sparse nonlinear systems of equations�
Mathematical Programming
� ���	�� �	����

�
� P�Lindstrom� P�A�Wedin� A new linesearch algorithm for nonlinear least squares problems� Math�
Programming �� ���	
� ��	�����

��� D�C�Liu� J�Nocedal� On the limited memory BFGS method for large�scale optimization� Math�
Programming
� ���	�� ������	�

��� L�Luk(an� Dual method for solving a special problem of quadratic programming as a subproblem at
linearly constrained nonlinear minimax approximation� Kybernetika �� ���	
�

��
��

�� L�Luk(an� An implementation of recursive quadratic programming variable metric methods for
linearly constrained nonlinear minimax approximation� Kybernetika �� ���	�� ���
��

�	� L�Luk(an� Variable metric methods� Unconstrained minimization� Academia� Prague ���� �in
Czech��

��� L�Luk(an� Computational experience with improved variable metric methods for unconstrained min�
imization� Kybernetika �� ������
���
���

�	�� L�Luk(an� Computational experience with improved conjugate gradient methods for unconstrained
minimization� Kybernetika �	 ������ �
������

�	�� L�Luk(an� A note on comparison of statistical software for nonlinear regression� Computational
Statistics Quaterly � ������ ������
�

��

�	�� L�Luk(an� Variationally derived scalling and variable metric updates from the preconvex part of the
Broyden family� JOTA � ������ �������

�	�� L�Luk(an� Inexact trust region method for large sparse nonlinear least squares� Kybernetika ��
������ ������
�

�	
� L�Luk(an� E�cient trust region method for nonlinear least squares� Kybernetika �� ������ ��������

�	�� L�Luk(an� Computational experience with known variable metric updates� JOTA 	� ����
� ��
�

�	�� L�Luk(an� Inexact trust region method for large sparse systems of nonlinear equations� JOTA 	�
����
� ��������

�	� L�Luk(an� Combined trust region methods for nonlinear least squares� Kybernetika �� ������ ����
��	�

�		� L�Luk(an� Hybrid methods for large sparse nonlinear least squares� JOTA 	� ������ �������

�	�� L�Luk(an� J�Vl)ek� Optimization of dynamical systems� Kybernetika �� ������
���
	��

���� L�Luk(an� J�Vl)ek� Simple scaling for variable metric updates� Report No� ���� Institute of Computer
Science� Academy of Sciences of the Czech Republic� Prague �����

���� L�Luk(an� J�Vl)ek� E�cient algorithm for large sparse equality constrained nonlinear programming
problems� Technical Report V����� Prague� ICS AS CR ����� � p�

���� L�Luk(an� J�Vl)ek� Truncated trust region methods based on preconditioned iterative subalgorithms
for large sparse systems of nonlinear equations� Journal of Optimization Theory and Applications�
Vol� ��� ���� No� �� pp� �����	�

���� L�Luk(an� J�Vl)ek� A bundle�Newton method for nonsmooth unconstrained minimization� Mathe�
matical Programming� Vol� 	�� ���	� pp �������

��
� L�Luk(an� J�Vl)ek� Computational experience with globally convergent descent methods for large
sparse systems of nonlinear equations� OptimizationMethods and Software� Vol� 	� ���	� pp� ��������

���� L�Luk(an� J�Vl)ek� Inde�nitely preconditioned inexact Newton method for large sparse equality
constrained nonlinear programming problems� Numerical Linear Algebra with Applications� Vol� ��
���	� pp� �����
�

���� L�Luk(an� J�Vl)ek� Globally convergent variable metric method for convex nonsmooth unconstrained
minimization� To appear in Journal of Optimization Theory and Applications�

��� L�Luk(an� J�Vl)ek� Subroutines for testing large sparse and partially separable unconstrained and
equality constrained optimization problems� Technical Report V��� Prague� ICS AS CR ���	�

��	� M�M�M*kel*� J�Neittaanm*ki� Nonsmooth Optimization� World Scienti�c Publishing Co� Ltd� Lon�
don �����

���� E�S�Marwill� Exploiting sparsity in Newton�like methods� Ph�D� Thesis� Cornell University� Ithaca
��	�

����� J�M�Martinez� A quasi�Newton method with modi�cation of one column per iteration� Computing
�� ���	
� ��������

����� J�M�Martinez� M�C�Zambaldi� An inverse column�updating method for solving large�scale nonlinear
systems of equations� Optimization Methods and Software � ������ �����
��

���

����� J�Miao� Two infeasible interior�point predictor�corrector algorithms for linear programming� SIAM
J� Optimization � ������ �	�����

����� R�B�Mi+in� J�L�Nazareth� The least�prior deviation quasi�Newton update� Technical Report� Dept�
of Pure and Applied Math�� Washington State University� Pullman �����

���
� S�Mizuno� Polynomiality of infeasible�interior�point algorithms for linear programming� Math Pro�
gramming � ����
� ��������

����� J�J�Mor'� The Levenberg�Maquardt algorithm� Implementation and theory� In� �Numerical Anal�
ysis� �G�A�Watson ed�� Springer Verlag� Berlin ��	�

����� J�J�Mor'� B�S�Garbow� K�E�Hillstr,m� Testing unconstrained optimization software� ACM Trans�
Math� Software ���	�� ��
��

���� J�J�Mor'� D�C�Sorensen� Computing a trust region step� Report No� ANL�	��	�� Argonne National
Laboratory� ��	��

���	� S�G�Nash� A�Sofer� Preconditioning reduced matrices� SIAM J� on Matrix Analysis and Application
� ������
��	�

����� J�A�Nelder� R�Mead� A simplex method for function minimization� Computer J� ������ ��	�����

����� J�Nocedal� Updating quasi�Newton Matrices with limited storage� Math� Comput� �� ���	�� ��
	��

����� J�Nocedal� Y�Yuan� Combining trust region and line search techniques� To appear�

����� S�S�Oren� D�G�Luenberger� Self scaling variable metric �SSVM� algorithms� Part � � criteria and
su�cient condition for scaling a class of algorithms� Part � � implementation and experiments�
Management Sci� �� ���
� 	
��	��� 	���	
�

����� S�S�Oren� E� Spedicato� Optimal conditioning of self scaling variable metric algorithms� Math
Programming �� ����� �����

���
� C�C�Paige and M�A�Saunders� LSQR� An algorithm for sparse linear equations and sparse least
squares� ACM Transactions on Mathematical Software 	 ���	��
����

����� E�Polak� G�Ribi're� Note sur la convergence des methodes de directions conjug'es� Revue Francaise
Inform� Mech� Oper� ���R������� ���
��

����� M�J�D�Powell� A new algorithm for unconstrained optimization� In� �Nonlinear Programming�
�J�B�Rosen O�L�Mangasarian� K�Ritter eds�� Academic Press� London ����

���� M�J�D�Powell� Convergence properties of a class of minimization algoritms� In �Nonlinear Program�
ming �� �O�L�Mangasarian� R�R�Meyer� S�M�Robinson eds��� Academic Press� London ����

���	� M�J�D�Powell� Restart procedures of the conjugate gradient method� Math� Programming �� ����
�
����
�

����� M�J�D�Powell� A fast algorithm for nonlinearly constrained optimization calculations�
In��Numerical analysis� �G�A�Watson ed��� Springer Verlag� Berlin ���

����� M�J�D�Powell� Convergence properties of algorithms for nonlinear optimization� Report No�
DAMPT ��	��NA�� University of Cambridge� ��	��

����� H�Ramsin� P�A�Wedin� A Comparison of Some Algorithms for the Nonlinear Least Squares Prob�
lem� BIT � ���� �����

���

����� A�H�G�Rinnoy Kan� C�G�E�Boender� G�T�Timmer� A stochastic approach to global optimization�
Computational Mathematical Programming� NATO ASI Series Vol� F���

����� A�H�G�RinnoyKan� G�T�Timmer� Stochastic global optimizationmethods� Part I� Clustering meth�
ods� Part II� Multi�level methods� Math� Programming �� ���	�� North�Holland ������ ��	�

���
� Y�Saad� M�Schultz� GMRES a Generalized Minimal Residual Algorithm for Solving Nonsymmetric
Linear Systems� SIAM Journal on Scienti�c and Statistical Computations ���	�� 	���	���

����� R�B�Schnabel� E�Eskow� A new Choleski factorization� SIAM J� Sci� Stat� Comput� �� �������
��������	�

����� L�K�Schubert� Modi�cation of a quasi�Newton method for nonlinear equations with a sparse Jaco�
bian� Math� of Comput� �
 ����� ����� ������ ������

���� D�F�Shanno� Conditioning of quasi�Newton methods for function minimization� Math� Comput� �

����� �
�����

���	� D�F�Shanno� K�J�Phua� Matrix conditioning and nonlinear optimization� Math� Programming �

���	� �

�����

����� E�Spedicato� A class of rank�one positive de�nite quasi�Newton updates for unconstrained mini�
mization� Math� Operationsforsch� Statist� Ser� Optimization �
 ������ �����

����� E�Spedicato� M�T�Vespucci� Numerical experiments with variations of the Gauss�Newton algorithm
for nonlinear least squares� JOTA � ���		� ��������

����� E�Spedicato� J�Greenstadt� On some classes of variationally derived quasi�Newton methods for
systems of nonlinear algebraic equations� Numer� Math� �� ���	� �����	��

����� T�Steihaug� Local and superlinear convergence for truncated iterated projections methods� Math�
Programming � ���	�� �������

����� T�Steihaug� The conjugate gradient method and trust regions in large�scale optimization� SIAM J�
Numer� Anal� �� ���	�� �������

���
� N�M�Steen� G�D�Byrne� The problem of minimizing nonlinear functionals� I� Least squares� In�
�Numerical solution of nonlinear algebraic equations� �G�D�Byrne� C�A�Hall� eds�� Academic Press�
London ��
�

����� G�W�Stewart� A modi�cation of Davidon�s minimization method to accept di�erence approxima�
tions of derivatives� J� ACM �
 ����� ��	��

����� M�-i(ka� Macroprocessor BEL for the UFO system �version ��	��� Report No�

	 �in Czech��
Institute of Computer and Information Sciences� Czechoslovak Academy of Sciences� Prague ��	��

���� M�-i(ka� Macroprocessor UFO �version ������ Report No�
	
 �in Czech�� Institute of Computer
and Information Sciences� Czechoslovak Academy of Sciences� Prague �����

���	� P�L�Toint� On sparse and symmetric matrix updating subject to a linear equation� Math of Comp�
�� ���� ��
�����

����� P�L�Toint� On large scale nonlinear least squares calculations� SIAM J� Sci� Stat� Comput� 	 ���	�

���
���

��
�� C�H�Tong� A comparative study of preconditioned Lanczos methods for nonsymmetric linear sys�
tems� Report No� SAND���	�
�B� Sandia National Laboratories� Livermore �����

��

��
�� D�Touati�Ahmed� C�Storey� E�cient hybrid conjugate gradient techniques� JOTA �
 ������� pp�
������

��
�� M�T.ma� A quadratic programmingalgorithm for large and sparse problems� Kybernetika � ������
�������

��
�� M�T.ma� Sparse fractioned variable metric updates� Report No�
�� Institute of Computer and
Information Sciences� Czechoslovak Academy of Sciences� Prague �����

��

� M�T.ma� Intermediate �ll�in in sparse QR decomposition� In� �Linear Algebra for Large Scale and
Real�Time Applications�� �B�de Moor� G�H�Golub� M�Moonen� eds��� Kluwer Academic Publishers�
London ����� pp�
��
��

��
�� P�S�Vassilevski� D�Lazarov� Preconditioning mixed �nite element saddle�point elliptic problems�
Numerical Linear Algebra with Applications � ������ �����

��
�� H�A�Van der Vorst� Bi�CGSTAB� A fast and smoothly converging variant of Bi�CG for the solution
of nonsymmetric linear systems� SIAM J� Sci� Stat� Comput� �� ������ �����

�

��
� H�Yabe� T�Takahashi� Factorized quasi�Newton methods for nonlinear least squares problems�
Math� Programming �� ������ ������

��
	� Y�Zhang� R�P�Tewarson� Least�change updates to Choleski factors subject to nonlinear quasi�
Newton condition� IMA J� Numer� Anal� ���	� ��������

��
�� Y�Zhang� R�P�Tewarson� Quasi�Newton algorithms with updates from the preconvex part of Broy�
den�s family� IMA J� Numer� Anal� 	 ���		�
	�����

����� A�/ilinskas� A�A�Thorn� Global optimization� Springer Verlag� Berlin �����

��	

Index of macrovariables

�ADD �

�BATCH ��� �	
�CLASS �
� ��� ��� ��
�COLLECTION 	�
�DATA �

�DECOMP ��� ��� ��� �
�DEF �

�DIALOGUE ��� �� �
�DISPLAY �
�DMODELA ��� �
�DMODELE ��� �
�DMODELES ��� �
�DMODELF �� �
�DO �

�ELSE �

�ELSEIF �

�END ��
�ENDADD �

�ENDDO �

�ENDIF �

�ENDSET �

�EPS� ��
�EPS� ��
�EPS� ��
�EPS� ��
�ERASE �

�ETA�
�� ��
�EXTREM ��� ��
�FDMODELA ��� �
�FDMODELE ��� �
�FDMODELES ��� �
�FDMODELF ��� �
�FGDMODELA ��� �
�FGDMODELE ��� �
�FGDMODELES ��� �
�FGDMODELF ��� �
�FGHMODELA �� �
�FGHMODELAS �� �
�FGHMODELC �	� �
�FGHMODELCS �	� �
�FGHMODELF ��� �
�FGMODELA �� ��� �
�FGMODELAS �� �
�FGMODELC �	� �
�FGMODELCS �	� �
�FGMODELE ��� �
�FGMODELES ��� �
�FGMODELF ��� ��� �
�FGMODELY �
� �
�FGMODELYS �
� �

�FLOAT ��
�FMIN ��� ��
�FMODELA ��� �
� �
�FMODELAS ��� �
�FMODELC �� �
�FMODELCS �� �
�FMODELE ��� ��� �
�FMODELES ��� �
�FMODELF ��� ��� �
�FMODELY ��� �
�FMODELYS ��� �
�FORM �
� ��
�GAMA ��
�GCLASS ��� ��
�GDIALOGUE ��� �
�GDMODELA ��� �
�GDMODELE ��� �
�GDMODELES ��� �
�GDMODELF ��� �
�GLOBAL ��
�GMODELA ��� �	� ��� �
�GMODELAS ��� �	� �
�GMODELC �� ��� �
�GMODELCS �� ��� �
�GMODELE ��� �
�GMODELES ��� �
�GMODELF ��� ��� �
�GMODELY �
� �
�GMODELYS �
� �
�GRAPH �� �
�GTYPE ��� ��
�HESF 	� �� ��� ��
�HIL �� 	
�HMODELA ��� ��� �
�HMODELAS ��� ��� �
�HMODELC �	� ��� �
�HMODELCS �	� ��� �
�HMODELF ��� �
�IEXT ��� �
� ��
�IF �

�INCLUDE ��
�INITIATION ��
�INITS ��
�INPUT ��� �	� ��� ��
�INPUTDATA 	�
�INT �

�ISO �� �
�JACA 	� �� ��
�JACC ��� ��� ��
�KBA ��

���

�KBC ��
�KBF ��
�KCA �
�KCC �	
�KCF ��
�KDS �	
�KOUT 	�
�KOUT� 	�
�KOUT� 	�
�KOUT� 	�
�KSA ��
�� ��
�KSF ���
�� ��
�KTERS ��
�LOG �

�LOUT 	�
�M ��
�MA �
�MAH ��
�MAP �� 	
�MC ��
�MCG ��
�MCH ��
�MED ��
�MEP ��
�MEP� �

�MEP� �

�MEP� �

�MES �	
�MES� �	
�MES�
�� �	
�MES� ��
�MET ��� �� ���
��
��
�� ��
�MET� ��� �	� ��
�MET� ��� �	
�MET� �	
�METERASE ��
�METHOD ��
�MEX
�
�MF �� ���
�
�MFV ��
�MHA ��
�MHC ��
�MIC ��
�MIT ��
�MLP
	
�MNLMIN ��
�MNRND ��
�MODEL � 	
�MODELA ��
�MODELF ��
�MODERASE ��
�MOS
�� ��� �
�MOS� ��� �
� ��
�MOS�
� ��� �
� ��� �

�MOS� ��� �

�MOT�
�
�MOT�
��

�MOUT �
�NA ��
�NAL �
�NC ��
�NCL ��
�NE ��
�NEXT 	�
�NF ��
�NORMA ��
�NORMF ��
�NOUT �
�NUMBER ��
	�
�� ��� ��� ��� �
� ��
�NUMDER
�
�OUTPUT ��� 	�
�OUTPUTDATA 	�
�P ��
�PATH �� �
�REAL �

�REPEAT ��
�RESTORE �

�REXP �

�SCAN �� �
�SEARCH �	� ��
�SET �

�SETAG ��
�SETCG ��
�SIF 	�
�SIGMA ��
�SOLVER ��
�STANDARD ��
�SUBROUTINES �
�SUBST ��
�SYSTEM ��
�TDIALOGUE ��� �
�TEST 	�
�TOLB ��
�TOLC ��
�TOLF ��
�TOLG ��
�TOLX ��
�TSTART ��
�TSTOP ��
�TYPE ��� ��� ��
�UNTIL ��
�UKMAI� ��
�UKMCI� ��
�UKMCI� ��
�UPDATE �� �	�
��
��

�
��
�� ��
�VARERASE ��
�XDEL ��
�XMAX ��� ��

�
�

Appendix A� Demonstration of the text dialogue mode

Suppose that the model function has the form

fF �x� � ����x�� � x��
� � �x� � ��

�

�the Rosenbrock function� and the starting point is x� � ���� and x� � ���� If we type the statement
UFOGO �without batch input �le speci�cation�� then the following questions �which we supplement together
with answers� appear on the screen�

UFO PREPROCESSOR V�����

AND OTHER INPUT DATA HAVE TO BE SPECIFIED�

TYPES OF CONSTRAINTS� THE STRUCTURE OF SPARSE PROBLEM�

HERE THE STARTING POINT� BOUNDS FOR VARIABLES�

USER SUPPLIED INPUT�

� INPUT � 	 �

X��	
 ����D� X��	
 ��D
� GRAPH �N	 �

SPECIFICATION OF GRAPHICAL OUTPUT

N � GRAPHICAL OUTPUT SUPPRESSED

Y � GRAPHICAL OUTPUT REQUIRED

� DISPLAY �N	 �

SPECIFICATION OF EXTENDED SCREEN OUTPUT

N � EXTENDED SCREEN OUTPUT SUPPRESSED

Y � EXTENDED SCREEN OUTPUT REQUIRED

� MODEL �FF	 �

TYPE OF OBJECTIVE FUNCTION

FF � GENERAL FUNCTION

FL � LINEAR FUNCTION

FQ � QUADRATIC FUNCTION

AF � SUM OF FUNCTIONS

AQ � SUM OF SQUARES

AP � SUM OF POWERS

AM � MINIMAX

DF � DIFFERENTIAL SYSTEM WITH GENERAL INTEGRAL CRITERION

DQ � DIFFERENTIAL SYSTEM WITH INTEGRAL OF SQUARES

NO � MODEL IS NOT SPECIFIED

� NF �	 �

NUMBER OF VARIABLES

�

�
�

� IEXT �	 �

TYPE OF EXTREMUM

 � MINIMUM

� � MAXIMUM

� FMODELF ��	 �

MODEL OF OBJECTIVE FUNCTION

FF
 �FORTRAN EXPRESSION�

FF
 ��D���X��	��� � X��		��� � �X��	 � ��D	���

GF�NF	
 �FORTRAN EXPRESSION�

�

�

GF��	
 �FORTRAN EXPRESSION�

GF��	
 �FORTRAN EXPRESSION�

MODEL OF GRADIENT OF OBJECTIVE FUNCTION

� GMODELF ��	 �

HF�M	
 �FORTRAN EXPRESSION�

�

�

HF��	
 �FORTRAN EXPRESSION�

HF��	
 �FORTRAN EXPRESSION�

MODEL OF HESSIAN MATRIX

� HMODELF ��	 �

� KCF ��	 �

COMPLEXITY OF THE OBJECTIVE FUNCTION

� � EASY COMPUTED FUNCTION

� � REASONABLE BUT NOT EASY COMPUTED FUNCTION

� � EXTREMELY COMPLICATED FUNCTION

� KSF ��	 �

SMOOTHNESS OF THE OBJECTIVE FUNCTION�

� � SMOOTH AND WELL�CONDITIONED FUNCTION

� � SMOOTH BUT ILL�CONDITIONED FUNCTION

� � NONSMOOTH FUNCTION

� HESF �D	 �

TYPE OF HESSIAN MATRIX�

D � DENSE

S � SPARSE WITH KNOWN �GENERAL	 STRUCTURE

N � HESSIAN MATRIX IS NOT USED

�
�

� KBF �	 �

TYPE OF SIMPLE BOUNDS�

 � NO SIMPLE BOUNDS

� � ONE SIDED SIMPLE BOUNDS

� � TWO SIDED SIMPLE BOUNDS

� KBC �	 �

TYPE OF GENERAL CONSTRAINTS�

 � NO GENERAL CONSTRAINTS

� � ONE SIDED GENERAL CONSTRAINTS

� � TWO SIDED GENERAL CONSTRAINTS

� EXTREM �L	 �

TYPE OF OPTIMIZATION

L � LOCAL OPTIMIZATION

G � GLOBAL OPTIMIZATION

� NORMF �	 �

SCALING SPECIFICATION FOR VARIABLES�

 � NO SCALING IS PERFORMED

� � SCALING FACTORS ARE DETERMINED AUTOMATICALLY

� � SCALING FACTORS ARE SUPPLIED BY USER

� INPUTDATA �N	 �

READ INPUT VALUES OF X �Y OR N	

� TEST �N	 �

STANDARD TEST OF EXTERNAL SUBROUTINES�

N � NO TEST

Y � PERFORM TEST BEFORE SOLUTION

A � PERFORM TEST AFTER SOLUTION

O � PERFORM TEST WITHOUT SOLUTION

� KOUT �	 �

LEVEL OF TEXT FILE OUTPUT�

ABS�KOUT	
 � NO PRINT OR PAPER SAVING PRINT

ABS�KOUT	
� � STANDARD PRINT OF ITERATIONS

ABS�KOUT	
� � ADDITIONAL PRINT OF STEPSIZE SELECTION

ABS�KOUT	
� � ADDITIONAL PRINT OF DIRECTION DETERMINATION

AND VARIABLE METRIC UPDATE

ABS�KOUT	
� � ADDITINAL PRINT OF CONSTRAINT HANDLING

ABS�KOUT	
� � ADDITIONAL PRINT OF NUMERICAL DIFFERENTIATION

KOUT� � ADDITIONAL PRINT OF DATA AND OPTIONS IN THE HEADING

�
�

� LOUT ��	 �

LEVEL OF TEXT FILE OUTPUT�

 � NO PRINT

� � COPY OF THE BASIC SCREEN OUTPUT

�� � PAPER SAVING PRINT

� MOUT ��	 �

LEVEL OF BASIC SCREEN OUTPUT�

ABS�MOUT	
 � NO OUTPUT

ABS�MOUT	
� � FINAL OUTPUT

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

ABS�MOUT	
� � ADDITIONAL FINAL OUTPUT OF LINEAR OR

QUADRATIC PROGRAMMING

ABS�MOUT	
� � ADDITIONAL OUTPUT IN EACH ITERATION

OF LINEAR OR QUADRATIC PROGRAMMING

MOUT� � FINAL OUTPUT WITH TERMINATION CRITERION

� NOUT �	 �

LEVEL OF BASIC SCREEN OUTPUT�

 � BASIC FINAL OUTPUT

� � EXTENDED FINAL OUTPUT

�
� MSELECT ��	 �

SELECTION OF OPTIMIZATION METHOD

� � AUTOMATICAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD

� � MANUAL SELECTION OF METHOD AND IMPORTANT PARAMETERS

� � MANUAL SELECTION OF METHOD AND ALL PARAMETERS

SPECIFIC OUTPUT�

CAN BE USED FOR ADDITIONAL COMPUTATIONS AND FOR A

HERE THE RESULTS OBTAINED IN THE OPTIMIZATION PROCESS

USER SUPPLIED OUTPUT�

� OUTPUT � 	 �

� OUTPUTDATA �N	 �

WRITE OUTPUT VALUES OF X �Y OR N	

UFO PREPROCESSOR STOP

Each question is represented by one frame which contains the contents of the question �name of
the macrovariable that has to be de�ned�� the default value �in brackets� and an explanation of the
requirement� If no default value is wanted� the corresponding value or text has to be typed� The dialogue
can be ended by pressing the key �� � �
The result of the UFO preprocessor action is the following control program �reported in a slightly

shortened form� consisting of global declarations� input speci�cations� problem de�nition� method real�

�

ization and control variables adjustement�

�

� �������������������

� GLOBAL DECLARATIONS

� �������������������

�

INTEGER ITIME

INTEGER IMD

INTEGER IX���

REAL�� UXVDOT

REAL�� GF�	�

REAL�� X�	�

REAL�� HD�	�

REAL�� HF�	��	���	�

REAL�� S�	�

REAL�� ALF

REAL�� BET

REAL�� XO�	�

REAL�� GO�	�

INTEGER IMB

�

� commons placed here were omitted

� since they require a large space

�

� �������������������

� END OF DECLARATIONS

� �������������������

�

OPEN �	�FILE��P�OUT��STATUS��UNKNOWN��

OPEN ���FILE��P�DIM��STATUS��UNKNOWN��

CALL UYCLEA

CALL UYINTP

�

� ����������

� METHOD ���

� ����������

�

CALL UYINT�

X�������	D

X�	����
D

M�NF��NF���	

CALL UYTIM��ITIME�

CALL UYCLST

WRITE��������PROBLEM� NEXT ����I���� NEXT

IF �NF�GT�	� THEN

CALL UOERR	��UZLMIN���
�NF�	�

ITERM���

TXFU��LACK SPC�

ENDIF

WRITE�������NUMBER OF VARIABLES� NF ����I���� NF

NDECF�

�
�

IF �ITERM�NE�
� GO TO ��	

CALL UO
FU��NF�NA�NAL�MAL�NC�NCL�MCL�EPS
�EPS��EPS	�EPS��EPS��EPS�

� �EPS��EPS��EPS��EPS��ETA
�ETA��ETA	�ETA��ETA��ETA��ETA��ETA��E

� TA��ETA��ALF��ALF	�ALF��BET��BET	�BET��GAM��GAM	�GAM��DEL��DEL

� 	�DEL��RPF��RPF	�RPF��RGF��RGF	�RGF��FMIN�XMAX�XDEL�REXP�MET�M

� ET��MET	�MET��MES�MES��MES	�MES��MOT�MOT��MOT	�MOT��MOS�MOS��M

� OS	�MOS��MEP�MEP��MEP	�MEP��MEG�MEG��MEG	�MEG��MEX�MEX��MEX	�M

� EX��MED�MED��MED	�MED��MCG�MCG��MFP�MFP��MPF�MPF��MGF�MGF��MLP

� �MLP��MQP�MQP��MEQ�MEQ��MSG�MSG��KSF�KCF�KSA�KCA�KSC�KCC�KTERS

� �INITD�INITS�INITH�IREM�IADD�IRES��IRES	�MRED�IRAN��IRAN	�ISAM

� ��ISAM	�KINP�IPRN�

�

� ����������������������

� VARIABLE METRIC METHOD

� TEMPLATE � U�FDU�

� ����������������������

�

ASSIGN ����
 TO IMD

CALL UYPRO���UXFU����

CALL UYPRO	�FMIN�FO�

����
 CONTINUE

�

� �����������������

� MODEL DESCRIPTION

� �����������������

�

���

 CALL UF�F
��NF�GF�GF�FF�F�

GOTO �����
�����
����	
� ISB�

����
 CONTINUE

ASSIGN ����
 TO IMB

���

 CONTINUE

NFV�NFV�

FF���
D	��X�����	�X�	����	�X������
D
���	

GOTO IMB

����
 CONTINUE

GOTO ���

���	
 CONTINUE

CALL UF
GS	�NF�X�IX�X�GF�FF�HD�R�SNORM���
D������
D����	���

GOTO ����

�����
� ISB�

����
 CONTINUE

ASSIGN ����
 TO IMB

GOTO ���

����
 CONTINUE

GO TO ���	

����
 CONTINUE

�

� ������������������������

� END OF MODEL DESCRIPTION

� ������������������������

�

GO TO IMD

����
 CONTINUE

�
�

CALL UYTRUG�NF�N�X�GF�GF�UMAX�GMAX�

CALL UO	FU��NF�M�NA�NC�X�GF�HF�X�X�F�DMAX�GMAX�

CALL UYFUT��N�F�FO�UMAX�GMAX�DMAX�ITES�IRES��IRES	�INEW�

IF�ITERM�NE�
� GOTO ����

����
 CONTINUE

ASSIGN ����
 TO IMD

CALL UUDSD��N�HF���

GOTO �����
�����
� ISB�

����
 CONTINUE

IF�ITERM�NE�
� GOTO ����

CALL UYCPSD�NF�IX�HF�HD�MCG��

CALL UYTRUH�NF�N�X�HF�

�

� �����������������������

� DIRECTION DETERMINATION

� TEMPLATE � UDGLG�

� �����������������������

�

CALL UOD�D�

IF �IDECF�LT�
� THEN

IDECF��

INF�

ENDIF

IF �IDECF�EQ�
� THEN

TDXX�������INV �

�

� INVERSION

�

ALF�ETA	

CALL UXDPGF�N�HF�INF�ALF�BET�

CALL UXDPGI�N�HF�

NDECF�NDECF�

IDECF��

ELSE IF �IDECF�EQ��� THEN

ELSE

ITERD���

TDXX��BAD DEC��

CALL UOERR���UDDLI�����

GO TO �	��

ENDIF

GNORM�SQRT�UXVDOT�N�GF�GF��

�

� NEWTON�LIKE STEP

�

CALL UXDSMM�N�HF�GF�S�

CALL UXVNEG�N�S�S�

INITD�MAX�ABS�INITD����

ITERD��

IF�INF�EQ�
� THEN

TDXX������� POS�

ELSEIF�INF�LT�
� THEN

TDXX������� ZER�

�

ELSE

TDXX������� NEG�

ENDIF

SNORM�SQRT�UXVDOT�N�S�S��

NRED�INF

CALL UOD�D��ALF�BET�INF�

�	��
 CALL UOD�D	�N�GF�S�

�

� ������������������������������

� END OF DIRECTION DETERMINATION

� ������������������������������

�

IF �KD�GT�
� P�UXVDOT�N�GF�S�

CALL UD�TL��NF�N�GF�S�EPS
�ALF��ALF	�R�P�GNORM�SNORM�RMIN�RMAX�XMA

� X�XDEL�MES�INITD�INITH�

IF�ITERM�NE�
� GOTO ����

IF�IREST�NE�
� GOTO ����

CALL UYTRUS�NF�X�X�XO�GF�GO�S�S�RO�FP�FO�F�PO�P�CMAX�CMAXO�

����
 CONTINUE

ASSIGN ����
 TO IMD

CALL US
L
��EPS��RO�RP�R�FO�FP�F�PO�PP�FMIN�FMAX�PAR��PAR	�RMAX�RM

� IN�SNORM�MODE�KTERS�MES�MES��MES	�INITS�MRED�

GOTO �����������	� ISB�

����	 CONTINUE

CALL UXVDIR�NF�R�S�XO�X�

GOTO ����

����� CONTINUE

IF �ITERS�LE�
� THEN

CALL UYZER
�NF�X�XO�R�F�FO�FF�P�PO�MOT��

IF�IDIR�EQ�
� THEN

CALL UYRES��TSXX�

CALL UYSET�

GO TO ����

ELSE IF �MOT��EQ�
� THEN

CALL UYSET�

GO TO ����

ELSE

ITERD�

ENDIF

ENDIF

IF�KD�GT�LD� THEN

ASSIGN ����
 TO IMD

GO TO ����

ENDIF

����
 CONTINUE

TXFU�TUXX

CALL UYUPSD�NF�X�IX�XO�GF�GO�HD�P�MCG��

CALL UYTRUD�NF�X�X�XO�GF�GO�R�F�FO�P�PO�DMAX�

CALL UUDBI��N�HF�S�XO�GO�R�PO�PAR��PAR	�F�FO�P���
D �
���

IF�IDIR�EQ�
� THEN

IF�ITERH�NE�
� CALL UYRES���UPDATE ��

GOTO ����

�
	

ELSE

GOTO ����

ENDIF

����
 CONTINUE

IF�ITERM�LT�
� TXFU�TDXX

CALL UYEPI����

��	

 CONTINUE

CALL UOERR��KOUT�LOUT�MOUT�ITERM�IER�

CALL UO�FU	�NF�NA�NC�X�X�X�X�FF�F�FO�DMAX�GMAX�XMAX�EPS
�EPS��EPS	

� �EPS��EPS��EPS��BET��BET	�GAM��GAM	�ETA��ETA	�MET�MET��MET	�ME

� T��MOT�MOT��MOT	�MOT��MES�MES��MES	�MES��MOS�MOS��MOS	�MOS��IN

� ITD�INITS�INITH�IRES��KTERS�IPRN�

����� CONTINUE

�

� �����������������

� END OF METHOD ���

� �����������������

�

CALL UYTIM	�ITIME�

CLOSE �	�

CLOSE ���

END

�

� ������������������������

� INITIATION OF METHOD ���

� ������������������������

�

SUBROUTINE UYINT�

�

� commons placed here were omitted

� since they require a large space

�

REAL�� XDELS�RPF�S�RPF	S�RPF�S�RGF�S�RGF	S�RGF�S

COMMON�UMCLST� XDELS�RPF�S�RPF	S�RPF�S�RGF�S�RGF	S�RGF�S

ETA
���
D���

ETA����
D �

ITR��

IRD��

IWR�	

�

� many other assignments follow which were

� omitted since they require a large space

�

END

�

� ���������������������

� INITIATION OF PROBLEM

� ���������������������

�

SUBROUTINE UYINTP

�

� commons placed here were omitted

�
�

� since they require a large space

�

NF�	

IEXT�

KCF�	

KSF��

KBF�

KBC�

NORMF�

KDF�

KDA���

KDC���

KDE���

KDY���

END

� ��

� BROYDEN CLASS OF VARIABLE METRIC UPDATES

� TEMPLATE � UUDBI�

� ��

SUBROUTINE UUDBI��N�H�S�XO�GO�R�PO�PAR��PAR	�F�FO�P�ETA��MET�

�

� commons placed here were omitted

� since they require a large space

�

REAL�� H�N��N���	��S�N��XO�N��GO�N��R�PO�ETA�

REAL�� PAR��PAR	

REAL�� F�FO�P

REAL�� AA�CC

COMMON �UMFUN�� AA�CC

REAL�� UXVDOT�UNFUN�

REAL�� DIS�POM�POM��POM��A�B�C�GAM�RHO�PAR

REAL�� DEN

INTEGER IUPDT

LOGICAL L��L�

LOGICAL L	

EXTERNAL UNFUN�

IF �MET�LE�
� GO TO 		

CALL UOU�D��N�XO�GO�

IF �IDECF�NE��� THEN

ITERH���

TUXX��BAD DEC��

CALL UOERR���UUDBI	����

GO TO 		

ENDIF

L��ABS����GE���OR�ABS����EQ�	�AND�NIT�EQ�KIT

L���NOT�L�

�

� DETERMINATION OF THE PARAMETERS A� B� C

�

B�UXVDOT�N�XO�GO�

IF �B�LE�ZERO� THEN

ITERH�	

���

TUXX��B � NEG��

GO TO 		

ENDIF

CALL UXDSMM�N�H�GO�S�

A�UXVDOT�N�GO�S�

IF �A�LE�ZERO� THEN

ITERH��

TUXX��A � NEG��

GO TO 		

ENDIF

IF�MET�GE���OR�L�� THEN

IF �ITERD�NE��� THEN

MET��

C�ZERO

ELSE

C��R�PO

IF �C�LE�ZERO� THEN

ITERH��

TUXX��C � NEG��

GO TO 		

ENDIF

ENDIF

ELSE

C�ZERO

ENDIF

�

� DETERMINATION OF THE PARAMETER RHO �NONQUADRATIC PROPERTIES�

�

IF �FO�FP�EQ�
� THEN

RHO�ONE

ELSE

RHO�HALF�B��FO�FP�

ENDIF

IF�RHO�LE���
D�	� RHO�ONE

IF�RHO���
D�	�GE�ONE� RHO�ONE

AA�A�B

CC�C�B

IUPDT�

IF �L�� THEN

�

� DETERMINATION OF THE PARAMETER GAM �SELF SCALING�

�

IF �C�LE�ZERO� THEN

PAR�A�B

POM��
��D

POM����
D

ELSE

PAR�SQRT�A�C�

POM��
��D

POM����
D

ENDIF

GAM�RHO�PAR

���

IF �NIT�NE�KIT� THEN

L	�PAR	�LE�ZERO

L��L	�AND�ABS�PAR���LE�
�	D

L��L��OR���NOT�L	�AND�GAM�GT�ONE�

L��L��OR��L	�AND�PAR��LT�ZERO�AND�GAM�GT�ONE�

L��L��OR��L	�AND�PAR��GT�ZERO�AND�GAM�LT�ONE�

L��L��OR�GAM�LT�POM�

L��L��OR�GAM�GT�POM�

ENDIF

ENDIF

IF �L�� THEN

GAM�ONE

PAR�RHO�GAM

ENDIF

�

� NEW UPDATE

�

POM�ONE��AA�CC�

DEN�MAX�POM��
D�����C�A���
�	D
�

POM��DEN�POM��MAX���
D����ONE�POM�

TUXX��NEW �

	
 CONTINUE

�

� GENERAL UPDATE

�

DEN�PARPOM�AA

DIS�POM�DEN

CALL UXDSMU�N�H��PAR�DIS�ONE��A�S�

CALL UXVDIR�N��DIS�S�XO�S�

CALL UXDSMU�N�H�DEN�B�S�

	� CONTINUE

ITERH�

IF �GAM�EQ�ONE� GO TO 		

�

� SCALING

�

CALL UXDSMS�N�H�GAM�

		 CONTINUE

CALL UOU�D	�N�H�S�RHO�GAM�PAR�A�B�C�POM�ETA��

RETURN

END

The results �screen output� obtained by using this control program have the following form�

 NIT� �� NFV� ��
 NFG�
 NDC�
 NCG�
 F� ����D��� G� �	��D�
�

FF� ��������	��D���

X � ��������	��D

 �����������D

TIME�
�

�

�
�

���

Appendix B� The BEL interpreter

The BEL �Batch Editor Language� interpreter� developed as a part of the UFO project� is especially
determined for the generation of computer programs� batch editing of texts� preparation of print �les�
�ltering of text �les etc� The BEL interpreter allows us to generate a prescribed output �le from the
input �le �template� which is a mixture of text lines and special instructions�
The UFO system is organized in such a way that a control program does not have to be written

in the FORTRAN language immediately� Instead� the procedure written in the UFO control language
is supplied� By using the installation template� the compiler of the UFO control language �UFOCLP �
UFO Control Language Preprocessor� generates a table of symbols which� together with the user supplied
procedure� is o�ered to the BEL interpreter� The BEL interpreter then generates the resulting control
program which is written in the FORTRAN language�

B��� General description

Although the BEL interpreter can be used in various general applications� it was developed especially
for the generation of FORTRAN programs� It is�

�� Interpreter� since instructions contained in the input text are interpreted and immediately realized�

�� Batch editor� since it serves for editing batch �les�

�� Macroprocessor� since it makes it possible to de�ne or modify special macrovariables which can be
substituted into the processed text�

The macrovariable can be an integer constant� a logical constant� a string of characters� a set of text
lines� a set of BEL instructions� even a text �le�
The BEL interpreter requires an input text �le and a table of symbols� The input text �le �template�

consists of standard text lines together with the BEL instructions� The table of symbols contains names
and values of the macrovariables used�
The BEL instructions� contained in the input text �le� can be of two types�

�� Directives� i�e� control instructions and instructions for manipulation with the table of symbols�
These instructions begin with the special character CHDIR� In the subsequent text� we will suppose
that CHDIR���� ���� is the default value��

�� Substitutions� i�e�instructions for substituting macrovariables into the text� These instructions
begin with the special character CHSUB� In the subsequent text� we will suppose that CHSUB����
���� is the default value��

The BEL interpreter works in the following way�

�� The line of the input �le is read�

�� The line is recognized and if the character CHSUB is found� a pertinent substitution is realized�

�� If the �rst character �di�erent from blank� is CHDIR� the line is a directive line� The recognized
directive is realized�

This process is repeated until the directive �END or the end of the �le is found� Note that we suppose
that CHSUB and CHDIR have the same values� This is allowed� since the correct meaning is recognized
from the context�

At the end of this subsection� we stress some speci�c features and advantages of the BEL interpreter�

�� The substitution is recursive� The depth of recursion only depends on the declared work space size�

���

�� Substitution is allowed in both the text lines and the directives�

�� The names and values of macrovariables can have an arbitrary length which again only depends on
the declared work space size�

� The set of directives is relatively small with a consistent syntax� It contains all important instruc�
tions ��IF��ELSEIF��ELSE��ENDIF� �DO��ENDDO� �REPEAT��UNTIL etc��

�� The control parameters �CHDIR� CHSUB etc�� can be changed during the work of the BEL
interpreter� This makes it possible to generate a program written in the BEL language which can
be immedialely processed�

�� The BEL interpreter is a fully portable device� It can be implemented in an arbitrary system
containing FORTRAN compiler�

B��� List of instructions

Substitutions�

�INTEGER � Substitute by the absolute label computed from the relative label�
�NAME� ��NAME� � Substitute by the value of the macrovariable NAME�
�DATA�NAME� � Substitute by a new item from the list of items which is a value of the macrovari�

able NAME�
�DEF�NAME� � Substitute by ��TRUE�� if the macrovariable NAME is de�ned in the table of

symbols� Otherwise substitute by ��FALSE��
�INT�NAME� � Substitute by ��TRUE�� if the value of the macrovariable NAME is an integer

constant� Otherwise substitute by ��FALSE��
�LOG�NAME� � Substitute by ��TRUE�� if the value of the macrovariable NAME is a logical

constant� Otherwise substitute by ��FALSE��
�REAL�NAME� � Substitute by ��TRUE�� if the value of the macrovariable NAME is a real con�

stant� Otherwise substitute by ��FALSE��
�� � Substitute ��� �replace ���� by ����� This makes possible to insert the character

CHSUB into the text�

Directives�

�ADD � Add a value to a macrovariable�
�ADD� �ENDADD � Add text lines to a macrovariable�
�CLEAR � Clear value of a macrovariable which is a list of items type�
�DO� �ENDDO � Cycle�
�ERASE � Erase a macrovariable from the table of symbols�
�EXIT � Termination of the BEL interpreter work�
�HELP� �CHECK � Set a default value to a macrovariable which has not been previously de�ned�
�IF� �ELSEIF�
�ELSE� �ENDIF � Conditioned instruction�
�INCLUDE � Insert a macrovariable or a text �le into the output �le�
�OPTION � Change some optional parameter of the BEL interpreter�
�REM � Remark�
�REPEAT� �UNTIL � Cycle�
�RESTORE � Adjust the list of items pointer to the �rst item�
�REWIND � Rewind the �le on a given unit�
�SET � Set a value to a macrovariable�
�SET� �ENDSET � Set text lines to a macrovariable�
�STOP � Termination of the BEL interpreter work�
�SUBST � Substitute a text �le into the input �le�

��

B��� Special characters

The following special characters are important for the BEL interpreter work�

� � CHSUB �Substitution Character� � this is the �rst character in every substitution� If ��� should be
inserted into the text� we have to use �����

� � CHDIR �Directive Character� � if the �rst character on the line is CHDIR� then the line is a directive
line �CHSUB and CHDIR are distinguished by the context��

% � CHCON �Continuation Character� � if the last character on the line is CHCON� then it is assumed
that the logical line continues on the next physical line�

� � CHEOL �End Of Line Character� � this character speci�es the end of the logical line if it does not
coincide with the end of the physical line� This makes it possible to write several logical lines by
using the same physical line�

n � CHDS �Data Separator Character� � this character separates individual items in the list of items
type macrovariable�

The use of special characters can be demonstrated by the following simple example� Assume that the
input text has the form

�A��PaulnPeternJanenMary�
This is a list of my brothers and sis%
ters�
�DO�I���
�� �DATA�A�� �ENDDO

Then the output from the BEL interpreter has the form

This is a list of my brothers and sisters�
Paul
Peter
Jane
Mary

The special characters can be changed by the directive �OPTION� But no special character has to
be the alphabet or the digit� Moreover� di�erent special characters have to di�er �with the exception of
CHSUB and CHDIR��

B��� Description of instructions

This subsection contains a detailed description of the syntax and action of individual BEL instructions�
The following de�nitions will be used�

�digit� ��� � j � j � j � j � � � � � j �

�alphabet� ��� A j B j C j D j � � � � � j Z

�character� ��� an arbitrary character with the exception of apostrophe

�integer constant� ��� �� j �� �digit� f�digit�g

�logical constant� ��� �TRUE� j �FALSE�

�macroname� ��� �alphabet� f�alphabet� j �digit�g

�string of characters� ��� �f�character� j �g

�text� ��� �string of characters� �f� �string of characters�g

�list of items� ��� �string of characters� �fn �string of characters�g

���

Substitutions�

�INTEGER

Syntax�
The type of INTEGER is an integer constant� Although it can have an arbitrary value� an application
to the control program generation requires it to be positive and lower than LABEL� �see the directive
�OPTION��

Action�
The integer constant INTEGER is a relative label in a given template� The absolute label� substituted
into the control program� is computed by the formula LABEL�LABEL��K	LABEL�� where LABEL�
and LABEL� are options of the BEL interpreter �see the directive �OPTION� and K is a serial number
of the application of the directive �SUBST�

Example�

���

generates

�����

if the main template is used or

�����

after the �rst application of the directive �SUBST�

�NAME� ��NAME�

Syntax�
The type of NAME is a macroname� This substitution has two forms� either �NAME or ��NAME�� The
latter form is required if the substitution appears inside a continuous string of characters to separate the
NAME from the adjacent text�

Action�
The string ��NAME� is replaced by the value of the macrovariable NAME�

Example�

�A��UFO�
�A SYSTEM

generates

UFO SYSTEM

�DATA�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The string ��DATA�NAME�� is replaced by the next item of the list of items which is a value of the
macrovariable NAME� If the next item does not exist� the list of items pointer is returned to the �rst
item� Additional information is contained in the description of the directive �RESTORE�

Example�

�LIST��ITEM�nITEM�nITEM��
�DATA�LIST�
�DATA�LIST�

���

�DATA�LIST�
�DATA�LIST�

generates

ITEM�
ITEM�
ITEM�
ITEM�

�DEF�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the macrovariable NAME is de�ned in the table of symbols� the string ��DEF�NAME�� is replaced by
the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A���
�DEF�A�

generates

�TRUE�

�INT�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is an integer constant� the string ��INT�NAME�� is replaced by
the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A����
�INT�A�

generates

�TRUE�

�LOG�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is a logical constant� the string ��LOG�NAME�� is replaced by
the logical constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A��FALSE�
�LOG�A�

generates

�TRUE�

��

�REAL�NAME�

Syntax�
The type of NAME is a macroname�

Action�
If the value of the macrovariable NAME is a real constant �i�e� a string of characters which satis�es
the syntactic rules for FORTRAN real constants�� the string ��REAL�NAME�� is replaced by the logical
constant �TRUE�� otherwise it is replaced by the logical constant �FALSE� �

Example�

�A�������D����
�REAL�A�

generates

�TRUE�

��

Action�
The string ���� is replaced by the character ���� This substitution alows us to insert the character ��� into
the generated text or into the macrovariable�

Example�

�I��NAME�
��DEF��I�

generates

�DEF�NAME�

Directives�

�ADD�NAME��NAME� or VALUE�

Syntax�
The type of NAME� and NAME� is a macroname�
The type of VALUE is an integer constant or a logical constant or a string of characters�

Action�
The value of the macrovariable NAME� or the VALUE is added to the value of the macrovariable NAME�
�the resulting value of the macrovariable NAME� is �NAME��NAME� in the �rst case��

Example�

�NAME��TOM�
�ADD�NAME�� JONES��
Name� �NAME

generates

Name� TOM JONES

�ADD�NAME�
TEXT

�ENDADD

Syntax�
The type of NAME is a macroname�
The type of TEXT is a text�

��	

Action�
The TEXT is added to the value of the macrovariable NAME�

Example�

�SET�A�
Day� ��

�ENDSET
�ADD�A�
Month� December
Year� ���	

�ENDADD

generates

Day� ��
Month� December
Year� ���	

Remark� Only substitutions are realized in the text TEXT �not directives��

�CLEAR�NAME�

Syntax�
The type of NAME is a macroname�

Action�
This directive clears a list�of�items�type value of the macrovariable NAME� i�e� it deletes all duplications
of items� Small and capital letters of items are not distinguished�

Example�

�DECL��NnIX�N�nNnMn InJnNnM�
�CLEAR�DECL�
�END���DATA�DECL��
�REPEAT
�I���DATA�DECL��
INTEGER �I

�UNTIL�I�END�

generates

INTEGER IX�N�
INTEGER M
INTEGER I
INTEGER J
INTEGER N

�DO�NAME�INDEX��INDEX��INDEX��
TEXT

�ENDDO

Syntax�
The type of NAME is a macroname�
The type of INDEX�� INDEX�� INDEX� is a macroname or an integer constant�
The type of TEXT is a text�

Action�
This directive has a similar meaning as the statement DO in the FORTRAN language�
NAME is the cycle counter�

���

INDEX� is the initial value of the cycle counter�
INDEX� is the �nal value of the cycle counter�
INDEX� is the change of the cycle counter after a cycle step�
If INDEX� is not present� the default value INDEX��� is assumed�
The cycle counter NAME does not have to be changed in the cycle step�
The value INDEX� does not have to be equal to ��
The body of the cycle is terminated by �ENDDO�
If INDEX��INDEX� and INDEX��� or INDEX��INDEX� and INDEX���� then the cycle is not
realized�
Cycles can be nested� The maximum depth of nested cycles is ���

Example�

�A��XnYnZ�
�DO�I�������
A��I����C��I���DATA�A�

�ENDDO

generates

A������C����X
A������C����Y
A������C����Z

�ERASE�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The macrovariable NAME is erased from the table of symbols�

Example�

�A��
�DEF�A�
�ERASE�A�
�DEF�A�

generates

�TRUE�
�FALSE�

�EXIT

Action�
The directive �EXIT has the same meaning as the end of the �le achievement� If the nested �les are
processed �see the description of the directive �SUBST�� the directive �EXIT realizes return to the higher
level �le �if the higher level �le does not exist� then �EXIT has the same meaning as �STOP��

�HELP
TEXT

�CHECK�NAME�DEFAULT�TYPE�LEVEL�TRANSFER�

Syntax�
The type of TEXT is a text�
The type of NAME is a macroname�
The type of DEFAULT is either a macroname or an integer constant or a logical constant or a string of
characters�

���

The type of TYPE is either a list of items or one of the strings INT �integer�� LOG �logical�� REAL
�real��
The type of LEVEL is an integer constant�
The type of TRANSFER is a logical constant�

Action�
The text TEXT appears on the screen if the dialogue mode is used� The value of the macrovariable
�NAME is checked to have the type TYPE� If the macrovariable �NAME is not de�ned or if it has a
wrong value� the value DEFAULT is used� The value of LEVEL gives the lowest level of the dialogue
������ or
� from which the text TEXT appears on the screen� The value of TRANSFER speci�es
transfer of the variable �NAME into the control program �YES if transfer is accepted or NO if transfer
is suppressed��

Example�

�HELP
TYPE OF THE HESSIAN MATRIX�

D � DENSE
B � SPARSE WITH KNOWN �PARTITIONED� STRUCTURE
S � SPARSE WITH KNOWN �GENERAL� STRUCTURE
N � HESSIAN MATRIX IN NOT USED

�CHECK�HESF��N���DnBnSnN����NO�

�IF�CONDITION� LINE

Syntax�
The CONDITION can be of the following types�
The type of CONDITION is a macroname and a value of CONDITION is a logical constant�
The type of CONDITION is a logical constant ��TRUE� or �FALSE���
The type of CONDITION is a string of the form PART��operator�PART��
The type of PART� and PART� can be a macroname or an integer constant or a logical constant or a
string �values of PART� and PART� have to be of the same type� and �operator� can have the following
forms�

� equal to
�� not equal to
� less than �for integer values only�
�� less than or equal to �for integer values only�
� greater than �for integer values only�
�� greater than or equal to �for integer values only�

LINE is either a text line or a directive�

Action�
If the condition CONDITION is satis�ed� LINE is inserted into the output �le �if it is a text line� or
carried out �if it is a directive�� If the values of PART� and PART� are strings� then small and capital
letters are not distinguished and blanks are ignored�

Example�

�A��J O H N�
�IF�A��John�� Yes
�IF�A���Mary�� No

generates

Yes
No

���

�IF�CONDITION��
TEXT�

�ELSEIF�CONDITION��
TEXT�
�
�
�

�ELSE
TEXT

�ENDIF

Syntax�
CONDITION� and CONDITION� have the same syntax and meaning as CONDITION in the previous
case� The number of repeated �ELSEIF is not limited� �ELSEIF or �ELSE can be omitted�

Action�
This directive has a similar meaning as the conditioned statement IF�ELSEIF�ELSE�ENDIF in the FOR�
TRAN language� The conditioned statements can be nested� The maximumdepth of nested conditioned
statements is ���

Example�

�A���
�L��FALSE�
�IF�A����
A � A � �
B � B � �
�IF�L�
C � C � �
�ENDIF

�ELSE
WRITE�"�"� I

�ENDIF

generates

A � A � �
B � B � �

�INCLUDE�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The directive �INCLUDE�NAME� is a special case of substitution� This directive makes it possible to
insert �into the generated text� one or more lines� which were previously assigned to the macrovariable
NAME� In contrast to the standard substitution �NAME� the inserted lines are not processed by the
BEL interpreter� so the directives are not carried out�

Example�

�SET�LINES�
�ADD�A�
X � Y � Z
CALL SUB�X�
�ENDADD

�ENDSET

���

�INCLUDE�LINES�

generates

�ADD�A�
X � Y � Z
CALL SUB�X�
�ENDADD

�INCLUDE��FILE��

Syntax�
The type of FILE is a string�

Action�
The directive �INCLUDE��FILE�� is a special case of substitution� This directive makes it possible to
insert �into the generated text� the text which is stored in the �le with the name FILE� The inserted text
is not processed by the BEL interpreter� so the directives are not carried out�

Example�

�INCLUDE��C�nUFOnUMCOMN�I��

includes FORTRAN common blocks into the generated text �these common blocks are stored in the �le
C�nUFOnUMCOMN�I�

�OPTION�OPTIONNAME�NAME or VALUE�

Syntax�
OPTIONNAME is a selected name from the table of optional parameters �see below��
The type of NAME is a macroname� The value of NAME has to be an integer constant or a logical
constant or a string of character and has to correspond to the type of OPTIONNAME�
The type of VALUE has to be an integer constant or a logical constant or a string of character and has
to correspond to the type of OPTIONNAME�

Action�
This directive makes us possible to change selected optional parameter of the BEL interpreter� Optional
parameters are contained in the following table�

���

Name Type Default Description
CHDIR char� ��� see B��
CHEOL char� ��� see B��
CHCON char� �%� see B��
CHDS char� �n� see B��
FN� char� � � �rst part of the �le name
FN� char� ��I � last part of the �le name
ILNLEN int� 	� physical length of the input line
OLNLEN int� 	� physical length of the output line
IUNIT int� � No� of the input �le unit
OUNIT int� � No� of the output �le unit
INUNIT int� � No� of the �INCLUDE �les unit
IIUNIT int� � No� of the interactive mode input unit
OIUNIT int� � No� of the interactive mode output unit
DIALOG int� � level of dialogue �� or � or ��
MODERW int� � READ�WRITE mode �� or � or ��
LABEL� int� ����� initial label
LABEL� int� ��� di�erence between two consecutive labels
LSUBS log� �TRUE� substitutions carried out
LOUT log� �TRUE� output �le created
LSMLET log� �TRUE� small letters used in instructions
LFORTO log� �TRUE� output in standard FORTRAN format
LFRFMT log� �TRUE� input in free FORTRAN format

�used only if LFORTO��TRUE��
SIFDEC log� �FALSE� using the SIF decoder
DIALGR log� �FALSE� using the graphic dialogue

�REM

Action�
The rest of the line �following after �REM� is ignored by the BEL interpreter� The directive �REM is
used for remarks�

�REPEAT
TEXT

�UNTIL�CONDITION�

Syntax�
The type of TEXT is text�
CONDITION has the same syntax and meaning as that in the directive �IF�� � ���

Action�
This directive has a similar meaning as the statement REPEAT�UNTIL in the PASCAL language�
The cycle is terminated whenever the condition CONDITION is satis�ed �at least one realization is
carried out��
Cycles can be nested� The maximum depth of nested cycles is ���

Example�

�N���
�REAL��X��N�nG��N�nH��N��N�n�END��
�REPEAT
�I��DATA�REAL�
REAL �I

�UNTIL�I���END���

��

generates

REAL X����
REAL G����
REAL H�������

�RESTORE�NAME�

Syntax�
The type of NAME is a macroname�

Action�
The directive �RESTORE�NAME� can only be used if the value of the macrovariable NAME is a list
of items� Such a macrovariable uses a pointer which points out the next called item� The directive
�RESTORE adjust this pointer to point out the �rst item of the list �if the end of this list is found� the
pointer is adjusted to point out the �rst item without applying the directive �RESTORE��

Example�

�A��XnYnZ�
�DATA�A�
�DATA�A�

�RESTORE�A�
�DATA�A�

generates

X
Y
X

�REWIND�UNIT�

Syntax�
The type of UNIT is an integer constant�

Action�
The �le opened on the unit with the number UNIT is rewound� so it can again be read from the �rst
record �numbering of I�O units is used in the FORTRAN language��

�NAME� � NAME� or VALUE

�SET�NAME� � NAME� or VALUE�

Syntax�
The type of NAME� and NAME� is a macroname�
The type of VALUE is an integer constant or a logical constant or a string of characters�
This directive has two forms� The latter form is used if the macroname is identical with a directive �e�g�
�SET�REM��REMARK����

Action�
The new macrovariable with the name NAME� and the value equal to the value of the macrovariable
NAME� or constant VALUE is inserted into the table of symbols� If the macrovariable NAME� has
already been de�ned in the table of symbols� then it is changed�

�SET�NAME�
TEXT

�ENDSET

Syntax�
The type of NAME is a macroname�

���

The type of TEXT is text�

Action�
The macrovariable NAME is inserted into the table of symbols with the value TEXT� If the macrovariable
NAME has already been de�ned in the table of symbols� then it is changed�

Example�

�SET�INIT�
CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�
IF �IERR�NE��� GO TO ��ENDTEST

�ENDSET
�INIT

generates

CALL EIUD���NF�X�FMIN�XMAX�NEXT�IEXT�IERR�
IF �IERR�NE��� GO TO �ENDTEST

Remark� Only substitutions are realized in the text TEXT �not directives��

�STOP

Action�
The directive �STOP terminates the BEL interpreter work�

�SUBST��FILE��

Syntax�
The type of FILE is a string�

Action�
This directive performs the following actions�
The new reference label is computed �using the parameters LABEL� and LABEL� of the BEL interpreter��
The �le with the name FILE is opened�
This �le is processed by the BEL interpreter�
The �le with the name FILE is closed�
The old reference label is restored�

This directive is similar to the directive �INCLUDE��FILE��� But the inserted text is now processed
by the BEL interpreter� All substitutions and directives are carried out� The directive �SUBST��FILE��
serves for dividing large texts into segments and makes it possible to generate texts by using conditioned
branching� This is advantageously used for generation of the control program in the UFO system where
templates corresponding to individual subroutines are such segments�

Example�

�SUBST��C�nUFOnPROBLEM�UFO��

inserts a template� written in the UFO control language� into the generated text �this template is stored
in the �le C�nUFOnPROBLEM�UFO�

���

Appendix C� Graphic screen output

C��� Nonlinear regression

��

��	

���

C��� Nonlinear minimax optimization

��

��

��

C��� Transformer network design

��

�

��

��

C��� Global optimization

�

C�	� Nonsmooth optimization

�	

C�
� Rosenbrock function

��

C��� Ordinary di�erential equations

�	�

C��� The Lorenz attractor

�	�

�	�

