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Abstract

Dempster�Shafer theory is an interesting and useful mathematical tool for uncertainty
quanti�cation and processing� From one point of view it can be seen as an alternative
apparatus to probability theory and mathematical statistics based on this probability
calculus� as D��S� theory can be developed in a way quite independent of probability
theory� beginning with a collection of more or less intuitive demands which an uncer	
tainty degree calculus should meet� On the other side� however� D��S� theory can be
developed also as a particular sophisticated application of probability theory� using the
notion of non�numerical� in particular� set�valued random variables 
random sets� and
their numerical characteristics� This later aspect enables to generalize D��S� theory
beyond its classical scopes using appropriately the apparatus of probability theory and
measure theory�

This report is the third part of a surveyal work cumulating� and presenting in a
systematic way� some former author�s ideas and achievements dealing with applica	
tions of probability theory and mathematical statistics when de�ning� developing� and
generalizing various parts of D��S� theory� The more detailed contents of this report
can be understood from the list of the titles of the particular chapters presented just
below�
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�� Signed Belief Functions and Belief Functions

with Nonstandard Values

Both signed belief functions and belief functions with nonstandard values generalize
the notion of belief function in the sense that the domain of this function is the same
as in the classical case� i� e�� the �eld of all subset of a nonempty set S 
as a rule� we
shall limit ourselves to �nite sets S�� but the values are either real numbers including
those beyond the scope of the unit interval h�� �i� or even some objects from a more
complicated structure� A theoretical motivation for such generalization can be given
by our attempt to de�ne an operation inverse to the Dempster combination rule ��
i� e�� to de�ne an operation � such that� given basic probability assignments 
b�p�a��s�
m� and m� on S� the equality 

m� � m�� � m�� 
A� � m�
A� would hold for all
A � S� Although the problem is stated at a purely theoretical and algebraical level�
it possesses an intuitive interpretation which is perhaps worth being discussed in more
detail� Let us consider a subject whose degrees of belief concerning the membership of
the actual state of the investigated system in particular subsets of the set S of all states
are quanti�ed by a basic probability assignment 
b�p�a�� m� and by the corresponding
belief function belm� � The subject combines her�his beliefs with the beliefs of her�his
colleague quanti�ed by a b�p�a� m� and by belm� � so that she�he obtains the actualized
beliefs quanti�ed by m��m� and by belm��belm�� and completely forgets the original
beliefs m� and m�� erasing them totally from her�his memory� Later� however� she�he
obtains a new piece of information saying that the former information given by the
second subject was completely irrelevant� unreliable and in this sense wrong� As the
�rst subject takes� for no matter which reason� this new information as more reliable
than that o�ered sooner by the second subject� the �rst subject wants to cancel� some	
how� the impact of m� to her�his beliefs and to turn back to the original beliefs m�� If
she�he wants to realize such a cancellation by an application of the Dempster combi	
nation rule� she�he must express the reliable information claiming the nonreliability of
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the second subject by the means of a b�p�a� m� such that 
m� �m���m� � m�� As
the operation � is associative� 
m� �m���m� � m� � 
m� �m�� � m� �mS should
be valid� so that the problem converts into that to �nd m� such that m� �m� � mS


let us recall that mS
S� � �� mS
A� � � for each A � S� A �� S�� As can be easily
seen� up to trivial cases when m� � mS holds 
and in this case also m� � mS holds��
this problem is unsolvable at least within the space of b�p�a��s and belief functions as
de�ned above�

Let us illustrate the problem of �deconditionalization� or �de	actualization� by the
most simple case� Let the �rst subject know nothing about the problem in question
which she�he is to solve so that her�his beliefs are quanti�ed by the vacuous b�p�a�
mS expressing just the assumption of closed world� Then the subject obtains a new
information saying that the actual state of the system is in a proper subset A of S�
Hence� she�he combines mS and mA 
mA
A� � �� mA
B� � � for all B � S� B �� A�
by the Dempster rule and obtains mS �mA � mA� Later� a new piece of information
arrives saying that the last information was not true� This can be taken� however� in
the two di�erent ways�

Either� it is taken as the information saying that the negation of the former infor�
mation holds true� i� e�� as the information saying that the actual state of the system is
not in A� consequently� due to the closed world assumption� that it is in S �A� This
information is quanti�ed by the b�p�a� mS�A� however� combiningmS�mA � mA with
mS�A we obtain the contradiction and we cannot escape from this contradiction if no
matter which further information is combined with mS� mA and mS�A�

Another and more acceptable� in our context� interpretation of the meta	information
�the information contained in mA is not true� is to take this information as completely
irrelevant in the sense that all consequences possibly drawn from the information that
the actual state of the system is in A should be cancelled and the state of the sub	
ject�s beliefs should turn back to the previous state� i� e�� to the state expressed by the
belief function mS in our most simpli�ed exmaple� This is just the case which should
be expressed formally by combining mA with its inverse element m��

A in such a way
that the result should be mS� and to this case we shall orient our e�ort in the rest
of this chapter� Before going on with an explanation of the solution proposed in this
chapter let us refer the reader to ���� or ����� where the algebraic properties of b�p�a��s�
belief functions and Dempster operations are discussed in more detail� Besides the
mathematical and methodological motivations for an operation inverse to the Demp	
ster combination rule there are also motivations of a very practical nature connected
with the HUGIN expert system 
cf� ��� for more detail�� This �eld of investigation
seems to be very interesting and useful� but because of a limited extent of this chapter
and because of the declared theoretical and formally mathematical nature of this work
as a whole we have to postpone such a research till another occasion�

When facing the negative result of our e�ort to de�ne m�� for non	vacuous b�p�a��s
m� our solution will follow the clasical paradigma applied already many times in math	
ematics� if some operation can be de�ned only partially within some structure� we shall
extend the support of this structure by new objects in order to make the operation in
question totally de�nable� The new problem is then to �nd an interpretation for the
new objects as close as possible to the interpretation introduced before for the objects





of the original structure� An alternative motivation can read as follows� to solve a
problem it is often advantageous to embed it in a larger context� and to solve it here� if
it is guaranteed that the solution itself belongs to the original domain 
remember the
use of complex numbers in physics� e� g��� For example� negative integers were de�ned
in order to be able to de�ne the operation of substraction as a total operation� and then
these objects were interpreted as quantities for debts� altitudes below the sea surface�
etc� The same was the story with rational� real and complex numbers� Namely� in our
case of belief functions we shall take pro�t of the de�nition of b�p�a��s and belief func	
tions through set	valued random variables replacing� in this de�nition� the underlying
notion of probability space by a more general space with signed measure�

From one side it is quite natural and legitimate to consider probability measures as
functions taking their values in the unit interval of real numbers� Or� probabilities have
been always conceived as idealized 
from the philosophical point of view� or limit 
from
the mathematical point of view expressed by various laws of large numbers� values of
relative frequences which are trivially embedded within the unit interval by de�nition

cf� ��� for a more detailed philosophical discussion�� From the other side� however�
probabilities are de�ned by measures� i� e�� by functions quantifying numerically the
sizes of some sets and obeying the common laws of such quanti�cations postulated as
soon as in the antic Greece 
cf� ������ But these rules and laws allow to consider also
size quanti�cations taking values outside the unit interval� Consequently� at least from
the purely mathematical point of view taken as primary in this work� generalizations
of probability measures which extend the scope of their possible values are worth
considering� Let us introduce the formal de�nitions�

De�nition ����� Let h��Ai be a measurable space� i� e�� � is a nonempty set and A
is a nonempty �	�eld of subsets of ��


i� A mapping P � A � h�� �i is called probability measure� if it is �	additive�
i� e�� P 


S�
i��Ai� �

P�
i��P 
Ai� holds for each in�nite sequence A�� A�� � � � of mutually

disjoint sets from A� and P 
�� � ��


ii� a mapping � � A � R� � h��	�
f	g is called measure� if it is �	additive and
�
�� � � for the empty subset � of �� Obviously� f���g � A holds for each nonempty
�	�eld of subsets of �� The usual conventions concerning the arithmetical operations
with the value 	 are supposed to be adopted�


iii� a mapping � � A � R� � 
�	�	� 
 f�	g 
 f	g is called signed measure�
if it is �	additive� if �
�� � �� and if it takes at most one of the values �	� 	� i� e��
if there are no sets A� B � A such that �
A� �	 and �
B� � �	 in order to avoid
expressions like	�	� cf� �����

Let h��Ai be a measurable space� A triple h��A� �i is called probability space� if �
is a probability measure on A� it is called space with �signed� measure� if � is a 
signed�
measure� A measurable mapping f which takes a probability space or a space with

signed� measure h��A� �i into a measurable space hX�Xi is called random variable�
Sometimes the term generalized random variable is used in this case preserving the ex	
pression �random variable� for the particular case of real	valued mappings measurable
in the Borel sense� i� e�� for the case when hX�Xi � h
�	�	��Bi�
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The way to the notions of basic signed measure assignment and signed belief func	
tion mostly copies that one presented above for the probabilistic case just with prob	
ability space replaced by a space with signed measure and with a stronger simplifying
consistence condition than in the probabilistic case� So� let S be a �nite nonempty
set of states of a system� let E be a space of possible values of empirical data and
observations concerning the system and equipped by a nonempty �	�eld of subsets of
E denoted by E� let � � S  E � f�� �g be a compatibility relation� let h��A� �i be a
measurable space with a signed measure �� and let X � h��A� �i � hE� Ei be a random
variable such that the composed mapping U � h��A� �i � hP
S��P
P
S��i de�ned by
U
�� � U
X
��� � fs � S � �
s�X
��� � �g� for each � � �� is a set	valued random
variable taking as its values subsets of S� Besides the already presented simplifying
assumption that S is �nite we shall also suppose that signed belief functions are de�ned
only if the composed mapping U � � � P
S� is strongly consistent in the sense that�
for all � � �� U
�� �� �� The reason is that we want to escape from di�culties con	
nected with the necessity to introduce conditional signed measures and to investigate
their properties which do not need copy the properties of conditional properties in the
extent necessary for our purposes� The introduced stronger form of the consistence
condition 
f� � � � U
�� � �g � � instead of �
f� � � � U
�� � �g� � �� is involved
by the fact that sets of zero measure are of di�erent nature in spaces with signed mea	
sures and in probability spaces� e� g�� a set of zero signed measure can be a union of
two sets of non	zero measures�

Since now� we shall suppose that we have a space h��A� �i with signed measure� a
�nite set S� and a strongly consistent set	valued random variable U taking h��A� �i
into hP
S��P
P
S��i�

De�nition ����� Let S be a nonempty �nite set� Basic signed measure assignment

b�s�m�a�� de�ned on S is a mapping m � P
S�� R� � 
�	�	�
 f�	g
f	g such
that m takes at most one of the in�nite values �	� 	� A b�s�m�a� m on S is induced
by a set�valued random variable U de�ned on a space h��A� �i with signed measure
and taking its values in P
S�� if m
A� � �
f� � � � U
�� � Ag� for each A � S� If m
is a b�s�m�a� on S induced by a strongly consistent U � then the signed belief function
induced by m is the mapping belm � P
S�� R� de�ned by belm
A� �

P
B�Am
B� for

each A � S� Ifm is de�ned by a strongly consistent set	valued random variable U � then
obviously belm
A� � �
f� � � � U
�� � Ag� for each A � S� A b�s�m�a� m 
signed
belief function belm� resp�� is called �nite� if �	 � m
A� �	 
�	 � belm
A� �	�
resp�� holds for each A � S� �

Lemma ����� Let m be a b�s�m�a� on a �nite set S� Let m�
B� �
P

A�Bm
A� for
each � �� B � P
S�� let m�
�� � � for the empty subset of P
S�� Then m� is a signed
measure on the measurable space hP
S��P
P
S��i� �

Proof� As S and P
S� are �nite spaces� �	additivity of m� coincides with �nite
additivity and this property follows immediately from the de�nition� as well as the
equality m�
�� � �� As each B � P
S� is �nite� m�
B� �	 
� �	� resp�� can hold

�



i� m
A� � 	 
� �	� resp�� holds for at least one A � B� So� m� can take only
this in�nite value which is taken by m� consequently� m� can take at most one in�nite
value� Hence� m� is a signed measure� �

The following statement proves that in the case of �nite b�s�m�a��s there exists a
one	to	one relation between b�s�m�a��s and signed belief functions like as in the case of
basic probability assignments investigated above� On the other side� however� if m is
a b�s�m�a� ascribing an in�nite value to a proper subset of S� then there exists another
b�s�m�a� m�� m� �� m� generating the same belief function as m�

Lemma ����� Let m�� m� be �nite b�s�m�a��s on a �nite set S such that belm� and
belm� are de�ned� If m� �� m�� then belm� �� belm�� hence� if there exists A � S such
that m�
A� �� m�
A�� then there exists B � S such that belm�
B� �� belm�
B�� If m
is a b�s�m�a� on a �nite set S such that belm is de�ned and m
A� � 	 for a subset
A � S� A �� S� then there exists b�s�m�a� m� on S such that m
B� �� cm�
B� for some
B � S and for all �	 � c �	� but belm
C� � belm�
C� for all C � S� �

Proof� The proof for the case of �nite m�� m� over a �nite set S is by induction on
the cardinality of S like as in the case of basic probability assignments investigated
above� Let

n� � min
n
n�N� � f�� � � � �g � 
�A�S� 
cardA � n�m�
A� �� m�
A��

o
� 
�����

by the conditions imposed on m� and m� such an n�� � � n� � cardS� is uniquely
de�ned� Let A � S be such that cardA � n� and m�
A� �� m�
A�� Then

belm�
A� �
X

B�A
m�
B� �

X
B�A�B ��A

m�
B� �m�
A� �� 
����

��
X

B�A�B ��A
m�
B� �m�
A� � belm�
A��

as m�
B� � m�
B� for all B � S� cardB � n�� in particular� for all B � A� B �� A�
and m�
A� �� m�
A��

Let m be a b�s�m�a� on a �nite set S� let A � S� A �� S� be such that m
A� � 	

consequently� �	 � m
A� holds for each A � S�� Let B� A � B � S be such
that A �� B� as A �� S� such a B always exists� Let m�
B� � 	� if m
B� � 	�
let m�
B� � 	 be chosen arbitrarily� if m
B� � 	� Let m�
C� � m
C� for all
C � S� C �� B� so that m
B� �� cm�
B� holds for all �	 � c �	�

Let C � S be such that B �� C� Then

belm
C� �
X

D�C
m
D� �

X
D�C

m�
D� � belm�
C�� 
�����

as B �� C implies that m
D� � m�
D� for all D � C� Let C � S be such that B � C�
Then also A � C holds and

belm
C� �
X

D�C�D ��A
m
D� �m
A� �	 � 
�����

�
X

D�C�D ��A
m�
D� �m�
A� � belm�
C��

as m
A� � m�
A� �	� So� belm � belm� and the lemma is proved� �
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De�nition ����� Two random variables U�� U� � h��A� �i � hP
S��P
P
S��i� de	
�ned on a measurable space h��Ai with a signed measure �� taking as their values
subsets of S and such that the values �
f� � � � Ui
�� � Ag� � mi
A� are �nite for
all A � S and for both i � �� � are called statistically �stochastically� independent� if
the equality

�
f� � � � U�
�� � A� U�
�� � Bg� � m�
A�m�
B� 
�����

holds true for all A� B � S� The generalization to the case of a �nite sequence
U�� U�� � � � � Un of random variables is straightforward� �

Not so straightforward� however� is a generalization of this de�nition to the case
when the b�s�m�a� mi generated by U� or U� 
or both� on P
S� can take also in�nite
values� as in such a case we have to adopt some conventions concerning expressions
like � �	� � � 
�	�� 	� �� 
�	� � �� 	�	� 	� 
�	�� etc� The notion of statistical
independence will then substantially depend on the convention adopted� E� g�� random
events f� � � � U�
�� � Ag and f� � � � U�
�� � Bg� A� B � S� such that

�
f� � � � U�
�� � Ag� � �
f� � � � U�
�� � A� U�
�� � Bg� � �� 
��� �

�
f� � � � U�
�� � Bg� �	�

are statistically independent� if � � 	 � �� but they are not statistically independent�
if � � 	 � �� In order to avoid� in the most possible degree� the in!uence of certain
arbitrariness connected with the conventions of this kind� we shall investigate� at least
now� just the case of such random variables which generate �nite b�s�m�a��s on S�

Let U�� U� be two stochastically independent set	valued random variables de�ned
on a measurable space h��Ai with a signed measure �� taking as their values subsets
of a �nite set S� and such that both the b�s�m�a��s m�� m� generated by U�� U� are
�nite� Let A � S� Then

�
f� � � � U�
�� � U�
�� � Ag� � 
�����

�
X

hB�Ci�P�S��P�S��B	C�A
�
f� � � � U�
�� � B� U�
�� � Cg� �

�
X

hB�Ci�P�S��P�S��B	C�A
�
f� � � � U�
�� � Bg� � �
f� � � � U�
�� � Cg� �

�
X

hB�Ci�P�S��P�S��B	C�A
m�
B�m�
C��

So� denoting by m� the b�s�m�a� generated by the random variable U� � U�� i� e��
m�
A� � �
f� � � � U�
�� � U�
�� � Ag�� the relation between the b�s�m�a� m� and
the pair hm��m�i of b�s�m�a��s is close to that between basic probability assignments
m�� m�� and m��m�� for the non	normalized Dempster combination rule� This analogy
motivates the following de�nition�

De�nition ����� Let m�� m� be �nite basic signed measure assignments over a �nite
set S� Let m� be the b�s�m�a� on S de�ned� for each A � S� by the relation

m�
A� �
X

hB�Ci�P�S��P�S��B	C�A
m�
B�m�
C�� 
�����

 



Then m� is called the Dempster product of the b�s�m�a��s m� and m� and denoted by
m� � m�� The operation � which transforms pairs of b�s�m�a��s into a new b�s�m�a�
is called the Dempster combination rule for �nite b�s�m�a��s� �

In the same way as in the case of b�p�a��s we can prove that also the operation �

over the pairs of �nite b�s�m�a��s is commutative and associative� i� e�� m� � m� �
m� � m�� and m� � 
m� � m�� � 
m� � m�� � m� holds for all �nite b�s�m�a��s
m�� m�� m� with � denoting� as above� the equality of the corresponding values for all
subsets of S� Given A � S and a � 
�	�	�� denote by mA�a the b�s�m�a� for which
mA�a
A� � a and mA�a
B� � � for each B � S� B �� A� In particular� we write �S
for mS�� and 
S for mS�� 
� mA�� for all A � S�� hence �S
S� � �� �S
A� � � for all
A � S� A �� S� and 
S � � for all A � S� The index S in �S and 
S will be omitted
supposing that S is �xed and no misunderstanding menaces�

Lemma ����� The b�s�m�a� 
S is a zero element and the b�s�m�a� �S is a unit element
in the space of all �nite b�s�m�a��s over a �nite set S and with respect to the Dempster
combination rule � � �

Proof� An easy calculation yields that for each �nite b�s�m�a� m over a �nite S� and
for each A � S�


m � �� 
A� � 
� � m� 
A� �
X

hB�Ci�P�S��P�S��B	C�A
�
B�m
C� 
�����

�
X

C�S� S	C�A
�
S�m
C� � m
A��

and


m � 
� 
A� � 

 � m� 
A� �
X

hB�Ci�P�S��P�S��B	C�A


B�m
C� � �� 
������

as 

B� � � for all B � S� �

As can be easily proved� 
S and �S are the only zero and unit elements with respect
to the Dempster combination rule � �

It is perhaps worth recalling explicitly that the mapping qm � P
S� � 
�	�	�
de�ned� for each b�s�m�a� m on S and each A � S� by qm
A� �

P
B
Am
B�� is

nothing else than a straightforward generalization of the so called commonality function
de�ned in this way when m is a b�p�a� on S� This function possesses a number of
properties dual� in an intuitive sense� to those of belief functions� Moreover� some
formulas describing the basic properties of the Dempster�Shafer theory take a more
simple syntactical pattern when using commonality degrees 
values of commonality
functions� as the basic numerical degrees of uncertainty instead of the degrees of belief�
On the other side� at least in the author�s subjective opinion� the possible intuitions
and interpretations behind the degrees of belief 
�probability of provability�� say� seem
to be more transparent and lucid� so that the use of the degrees of belief as the basic
stones in our constructions and reasonings is perhaps at least partially justi�ed�

�



De�nition ����� A �nite signed measure assignment m over a �nite set S is called
invertible� if the inequality

P
B
Am
B� �� � holds for each A � S� �

The following statement illustrates the motivation for the adjective �invertible� just
introduced� Let us postpone a discussion on this notion till an appropriate place below�

Theorem ����� Let m be an invertible �nite b�s�m�a� over a �nite set S� Let m��

be the b�s�m�a� over S de�ned recurrently in this way�

m��
A� � 
m
S����� 
������

m��
A� �

P
B�S�C�S� B	C�A�B ��Am

��
B�m
C�P
B�S�B
Am
B�

� 
�����

if A � S� A �� S� Then m � m�� � �� �

Remark� An open question arises� whether there is some relation between the trans	
formation just de�ned and the so called M"obius transformation� but we shall not ana	
lyze this problem in more detail now�

Proof� First of all� we have to prove that the de�nitions 
������ and 
����� are
correct� Applying the condition

P
B
Am
B� �� � to the case A � S� we obtain that

m
S� �� � for invertible b�s�m�a�s� Hence� 
m
S���� is de�ned� The summation on the
right	hand side of 
����� goes over the sets B such that B �C�A and B �� A� hence�
over the sets B � S such that B � A and card
B� � card
A�� Consequently� m��
A�
is uniquely de�ned in the recurrent way according to the decreasing cardinality of A�
I� e�� �rst of all m��
S� is de�ned by 
������� in the de�nition of m��
A� for A such
that card
A� � card
S�� � only m��
S� occurs� so that the de�nition is correct� and
so on till

m��
�� �

P
B�S�C�S� B	C���B ���m

��
B�m
C�P
B�Sm
B�

� 
������

For the whole set S we obtain


m � m��� 
S� �
X

B�S�C�S� B	C�S
m
B�m��
C� � m
S�m��
S� � �� 
������

Let A � S� A �� S� Then


m � m��� 
A� �
X

B�S�C�S� B	C�A
m
B�m��
C� 
������

by de�nition� The set fhB�Ci � P
S� P
S�� B � C � Ag can be decomposed into
four disjoint subsets�

fhA�Aig� 
���� �

fhB�Ai � B � S� B � A� so that B �A � A� B �� Ag�

fhA�Bi � B � S� B � A� so that B �A � A� B �� Ag�

fhB�Ci � B � S� C � S� B �� A� C �� A� B � C � Ag�

�



So� omitting the expression �� � �� P
S� P
S�� for the sake of simplicity we obtain
that


m � m��� 
A� �
X

B�C�B�A�C�A
m
B�m��
C� � 
������

�
X

B�C�B
A�B ��A�C�A
m
B�m��
C� �

�
X

B�C�B
A�C�A
m
B�m��
C� �

�
X

B�C�B ��A�C ��A� B	C�A
m
B�m��
C� �

� m
A�m��
A� �
X

B
A�B ��A
m
B�m��
A� �

�
X

B�B
A�B ��A
m
A�m��
B� �

�
X

B�C�B ��A�C ��A� B	C�A
m
B�m��
C� �

� m��
A�
�
m
A� �

X
B�B
A�B ��A

m
B�
�
�

�
X

B�C�B
A�B ��A�C ��A
m
C�m��
B� �

�
X

B�C�B ��A�C ��A� B	C�A
m��
B�m
C��

as the last sum contains� with each productm
B�m��
C�� also the productm
C�m��
B��
Or� if B� C are such that B �� A� C �� A� and B � C � A� the same holds for the pair
hC�Bi� Consequently�


m � m��� 
A� � m��
A�
�X

B�B
A
m
B�

�
� 
������

�
X

B�C�B
A�B ��A�C
A� B	C�A
m��
B�m
C��

Combining 
������ and 
����� we obtain that 
m � m��� 
A� � � for eachA � S� A ��
S� so that m � m�� � � holds� The theorem is proved� �

Let S be a �nite set� As basic probability assignments 
b�p�a��s� over S are particular
cases of �nite b�s�m�a��s� Theorem ���� holds for b�p�a��s as well� As can be easily seen�
a b�p�a� m is invertible i� m
S� is positive� Or� if m
S� � �� then

P
B
Am
B� �

m
S� � � holds for each A � S� if m
S� � �� then
P

B
Sm
B� � m
S� � � and m is
not invertible� It follows immediately that the A	conditioning b�p�a� mA de�ned� for
� �� A � S� A �� S� by mA
A� � �� so that mA
B� � � for each B � S� B �� A� cannot
be inverted� Let us consider an 
	�A�	conditioning b�p�a� m��A� where 	 � 
�� �� is a
real number� de�ned in this way 
� �� A � S� A �� S��

m��A
A� � � � 	� m��A
S� � 	� m��A
B� � �� B�S� B ��A� B ��S� 
������

Hence� the result of 
	�A�	conditioning applied to a b�p�a� m is de�ned by the Dempster
product m � m��A 
� m�m��A in this particular case��

Lemma ����� Let m��A� 	 � 
�� ��� � �� A �� S� A � S� be de�ned by 
������� Then

m��
��A
S� � �
	� m��

��A
A� � 
�����

� �
�� 	�
	� m��
��A
B� � �� B�S� B ��A� B �� S�

�



Proof� Let us omit the indices 	 and A throughout this proof� An easy calculation
yields that


m � m��� 
S� � m��A
S�m
��
��A
S� � �� 
�����


m � m��� 
A� �
X

B�C�S�B	C�A
m
B�m��
C� � 
����

�
X

B�C�S�B	C�A�m�B�����m���C����
m
B�m��
C� �

�
X

hB�Ci�fhA�Ai�hS�Ai�hA�Sig
m
B�m��
C� �

� m
A�m��
A� �m
S�m��
A� �m
A�m��
S� �

� �	��
� � 	�� � 	��
	
�� 	�� � 	��
�� 	� �

� 	��
�� � 	� 	� � 	� 	� � �� 	� � ��

Let D � S� D �� A� D �� S� Then A � A �� D� A � S �� D� S � A �� D� S � S �� D�
but for each hB�Ci � P
S�P
S� such that hB�Ci 
� fhA�Ai� hA�Si� hS�Ai� hS� Sig�
either m
B� � � or m��
C� � �� so that


m � m��� 
D� �
X

B�C�S�B	C�D
m
B�m��
C� � �� 
�����

Consequently� 
m � m��� 
B� � � for all B � S� B �� S� so that m��A � m��
��A � �� �

De�nition ����� A nonempty set R of basic signed measure assignments over a
�nite set S is called coherent� if there are no m��m� � R and no A � S such that
m�
A� �	 and m�
A� � �	� �

Lemma ����� LetR be a coherent set of b�s�m�a��s over a �nite set S� let � � RR �
R� � 
�	�	� 
 f	g 
 f�	g be de�ned by

�
m��m�� � maxfjm�
A��m�
A�j � A � Sg� m�� m� � R� 
�����

where 	 � a � 	� �	 � a � �	� a � 
�	� � 	� a � 	 � �	� 	 �	 �

�	�� 
�	� � � for each a � 
�	�	�� Then � is a metric on R� �

Proof� Obviously �
m��m�� � � and �
m��m�� � �
m��m�� for all m�� m� � R� Let
m�� m�� m� � R� Then

�
m��m�� � maxfjm�
A��m�
A�j � A � Sg � 
�����

� maxfjm�
A��m�
A� �m�
A��m�
A�j � A � Sg �

� maxfjm�
A��m�
A�j� jm�
A��m�
A�j � A � Sg �

� maxfjm�
A��m�
A�j � A � Sg�maxfjm�
A��m�
A�j � A � Sg �

� �
m��m�� � �
m��m���

all the inequalities in 
����� being evidently valid also when some of the values
mi
A�� i � �� � �� are in�nite� Hence� the triangular inequality for � and the lemma
as a whole are proved� �

Every b�s�m�a� over a �nite set S is almost invertible in the sense de�ned in the
following assertion�

��



Theorem ����� For each b�s�m�a� m over a �nite set S and for each 	 � � there
exists a b�s�m�a� m� over S such that �
m�m�� � 	 holds and m��

� is de�ned� �

Proof� Let m be a b�s�m�a� over a �nite set S� let 	 � � be given� let � � 	� � 	� If
the inequality

P
B
Am
B� �� � holds for each A � S� then m�� is de�ned� hence� for

m � m� the assertion trivially holds� as �
m�m� � � � 	� If this is not the case� set

i� � maxfn � �A � S� cardA � n�
X

B
A
m
B� � �g� 
��� �

Set also� for each A � S�

m�
A� � m
A� � 	�� if cardA � i� and
P

B
Am
B� � �� 
�����

m�
A� � m
A� otherwise�

In particular� 
����� yields that m�
A� � m
A� for all A � S such that cardA � i� or
cardA � i� holds�

Let A � S be such that cardA � i�� Then
P

B
Am�
B� �
P

B
Am
B� �� �
holds due to the de�nition of i�� as for each B � A the relations cardB � i� and
m�
B� � m
B� follow� Let A � S be such that cardA � i� and

P
B
Am
B� �� ��

Then� again� m�
B� � m
B� for all B � A� B �� A� but also m�
A� � m
A� due
to 
������ so that

P
B
Am�
B� �

P
B
Am
B� �� �� Finally� let A � S be such that

cardA � i� and
P

B
Am
B� � �� Then m�
B� � m
B� for each B � A� B �� A� but
m�
A� � m
A� � 	�� so thatX

B
A
m�
B� �

X
B
A�B ��A

m�
B� �m�
A� � 
�����

�
X

B
A
m
B� � 	� �� ��

Consequently� for each A � S� cardA � i�� the inequality
P

B
Am�
B� �� � holds�
By induction� let us apply the same modi�cation to m�� Set

i� � maxfn � �A � S� cardA � n�
X

B
A
m�
B� � �g� 
�����

and de�ne m� by 
������ just with m replaced by m�� Evidently� i� � i� andP
B
Am�
B� �� � for all A � S� cardA � i�� by the same way of reasoning as above�

Moreover�m�
B� � m�
B� for all B � S such that cardB � i�� so that m�
B� � m
B�
for all B � S with cardB � i�� Hence� repeating this induction step n�	times for an
appropriate n� � cardS� we arrive at a b�s�m�a� mn� such that

P
B
Amn�
B� �� �

holds for each A � S� consequently� m��
n�

is de�ned� For each particular A � S the
original value m
A� is changed at most once during the procedure leading from m to
mn�� so that either mn�
A� � m
A�� or mn�
A� � m
A� � 	� for each A � S� Hence�
�
m�mn�� � maxfjm
A� � mn�
A�j � A � Sg � 	� � 	 obviously follows� so that�
setting m� � mn� � we can conclude the proof� �

Corollary ����� Let R be a coherent set of b�s�m�a��s over a �nite set S� let �� �
RR � R 
 f	g 
 f�	g be de�ned� for each m�� m� � R� by

��
m��m�� �
X

B�S
jm�
B��m�
B�j� 
������

Then Theorem ��� holds for �� instead of �� �

��



Proof� Given 	 � �� take 	� � 	

cardS ��� and apply the same inductive process of
modi�cation as in the proof of Theorem ��� in order to obtain the b�s�m�a� m� such
that

P
B
Am�
B� �� � holds for each A � S� Again� for each B � S either m�
B� �

m
B� or m�
B� � m
B� � 	� holds� so that jm�
B��m
B�j � 	�� Consequently�

��
m�m�� �
X

B�S
jm
B��m�
B�j � 	�cardP
S� � 
������

�
h
	

cardS � ��

i
cardS � 	�

so that the corollary is proved� �

Let us generalize the approach explained in this chapter using also signed measures
with �almost zero� and �almost in�nite� values� We refer the reader to ��� for more
detail� but we consider as useful to present a brief sketch of this generalization also
here� so that the connections can be easily seen�

We shall generalize the approximative solution to the invertibility problem for
b�p�a��s illustrated above by the 		quasiconditioning approach� The weak point of
this approximation consists in the fact that it introduces a new and ontologically in	
dependent parameter 	� the actual value of which cannot be justi�ed only within the
framework of the used mathematical formalism� Consequently� the subject 
user� must
choose some value on the grounds of her�his subjective opinion taking into consid	
eration� e� g�� the intended �eld of application and other extra	mathematical circum	
stances� Below� we shall present a model which enables to invert also b�p�a��s ascribing
to the whole space a value �greater than � but smaller than any positive 	�� in other
words� a �quasi	zero value�� both these notions being given a correct mathematical
sense� The corresponding inverse �generalized b�p�a�� then will take �quasi	in�nite
values� smaller than 	 but greater than any �nite real number�

Let R � X
�
i��Ri� Ri � 
�	�	� for each i � N� � f�� � � � �g be the space of all

in�nite sequences of real numbers� For each x � R� xi denotes the i	th member of x� so
that x � hxii�i��� Given x � R� set w
x� � limi�� xi supposing that this limit value is
de�ned and including the case when w
x� � �	� Let Rc � fx � R � w
x� is de�nedg
be the space of all convergent in�nite sequences of real numbers� let Rcf � fx � Rc �
�	 � w
x� � 	g be the subspace of convergent in�nite sequences with �nite limit
values� Let us de�ne three following binary relations in R�


i� identity� given x� y � R� x � y i� xi � yi for each i � N��


ii� strong equivalence 
s�e��� given x� y � R� x � y if there exists i� � N� such
that xi � yi for each i � i��


iii� weak equivalence 
w�e��� given x� y � Rc� x � y i� w
x� � w
y��

Arithmetical operations in R will be de�ned in the pointwise way� so that x� y �
hxi � yii�i�� and xy � hxiyii�i�� for each x� y � R� It follows easily that

Pn
j�� x

j �DPn
j�� x

j
i

E�
i��

and
Qn
j�� x

j �
DQn

j�� x
j
i

E�
i��

holds for each �nite sequence x�� x�� � � � � xn

of sequences from R� Both the addition and multiplication operations can be easily
extended to equivalence classes from R or Rcf�� Let �x� � fy � R � y � xg� let
�x�� � fy � Rcf � y � xg� Setting �x� � �y� � �x � y� for all x� y � R� and
�x�� � �y�� � �x � y�� for all x� y � Rcf � we obtain a correct extension of both the

�



arithmetical operations to R andRcf�� as the de�nitions do not depend on the chosen
respresentants of the classes �x�� �y�� �x��� and �y��� For �x� � �y� de�ned by �xy�� if
x� y � R� and for �x�� � �y�� de�ned by �xy��� if x� y � Rcf � as well as for �nite products
in general� the situation is analogous� However� if w
x� � �	 or w
y� � �	� the
de�nitions of �x�� � �y�� and �x�� � �y�� are evidently not correct� Also the extension
of both the operations to in�nite sums and products is impossible� take xj � hxji i

�
i��

such that xii � �� xji � � for each i �� j� Then w
xj� � � for each j � N�� but

w
�P�

j�� x
j
�
� �� We use intentionally the same symbols � and � for operations in

R� R� R and Rcf�� to emphasize their analogous role in all the cases� It should be
always clear from the context� in which space these operations work�

Also the ordering relation can be extended� even if only as a partial ordering� from
R � 
�	�	� to other spaces under consideration� If x� y � R� we write x � y� if
xi � yi holds for each i � N�� and we write x � �y� if there exists i� � N� such
that xi � yi holds for each i � i�� if x� y � Rc� we write x � y� if w
x� � w
y�
holds� The inequality� and � � on R� and � on Rc� are de�ned analogously� just with
xi � yi replaced by xi � yi� and w
x� � w
y�� by w
x� � w
y�� also the inequalities
�� �� � �� � and � are obvious� The relations � � and � � can be extended to R� and
�� � to Rcf�� setting �x� � ��y�� if x � �y� and setting �x�� � �y��� if x � y� Both
these de�nitions are correct� i� e�� independent of the representants of the equivalence
classes in question� Inequalities � and � are extended to R and Rcf� in the same
way�

Let a � R be a real number� let a� � haii�i��� ai � a for each i � N� be the
corresponding constant sequence from Rcf � The real line can be embedded into R�
when identifying each a � R with the equivalence class �a��� and R can be embedded
into Rcf�� when identifying a with �a���� However� there is an important di�erence�
The second mapping takes R onto Rcf�� as for each x � Rcf there is a real number
a� namely a � w
x�� which is mapped on �x� � Rcf�� Contrary to this fact� there
are many x � R such that no a � R is mapped onto �x�� take� e� g�� x � hni�n��� or
y � h�
ni�n��� Denoting the classes from R which are images of real numbers from R�
by standard real numbers� �x� and �y� just de�ned are examples of nonstandard real
numbers� In particular� �x� is an example of quasi�in�nite nonstandard real number�
as �x� � ��a�� obviously holds for each a � R� and �y� can serve as an example of
quasi�zero nonstandard real number� as �y� � ������ but also �a�� � ��y� for each
a � R� a � �� can be easily veri�ed�

De�nition ����� Let S be a �nite nonempty set� Basic dynamic assignment 
b�d�a��
on S is a mapping m � R
S� � R � X

�
i��Ri� Ri � 
�	�	�� i � �� � � � �� If

m
�� � �� 
� h�� �� � � �i�� then dynamic belief function induced by b�d�a� m on S is a
mapping beln � P
S� � R such that belm
A� �

P
B�Am
B� for each A � S� If m

is a �nite b�s�m�a� on S� then m� is the b�d�a� on S de�ned by m�
A� � 
m
A��� for
each A � S� if m is a b�d�a� on S� then m� � m� i� e� m�
A� � m
A� for each A � S�
Let us recall that a� � ha� a� � � �i for each a � R � 
�	�	�� Let m�� m� be b�p�a��s�
b�s�m�a��s or b�d�a��s on S� Then m� is strongly equivalent to m�� m� � m� is symbols�
if m�

�
A� � m�
�
A� holds for each A � S� m� is weakly equivalent to m�� m� � m� in

symbols� if m�
�
A� � m�

�
A� holds for each A � S� �

��



De�nition ���	� Let m�� m� be b�d�a��s on a �nite set S� Their Dempster product
m� � m� is the b�d�a� on S de�ned by the relation


m� � m�� 
A� �
X

B�C�S�B	C�A
m�
B�m�
C� 
�����

for each A � S� If m is a b�d�a� on S� then mi denotes the �nite b�s�m�a� on S
de�ned by 
mi� 
A� � 
m
A��i for each i � N� and A � S� Let us recall that xi
is the i	th member of the sequence x � hxii�i�� � R� Vacuous b�d�a� on S is such
mV that mV 
S� � �� and mV 
A� � �� for each A � S� A �� S� Consequently�

mV �i is the vacuous b�s�m�a� 
and the vacuous b�p�a�� on S for each i � N�� The
dynamic commonality function induced by a b�d�a� m on a �nite set S is the mapping
qm � P
S��R de�ned by qm
A� �

P
B
Am
B� for each A � S� �

Theorem ����� Let m be a convergent b�d�a� on a �nite set S� i� e�� let m
A� � Rc

for each A � S� Then there exist b�d�a��s m� and m��
� on S such that m� � m

and m� � m��
� � mV � In other words� for each convergent b�d�a� m there exists an

invertible b�d�a� weakly equivalent to m� �

Proof� Let m be a convergent b�d�a� on a �nite set S� For each i � N�� let m�
i

be such a b�s�m�a� on S� that jmi
A� � m�
i 
A�j � �
i and qi
A� �� � holds for each

A � S� such m�
i exists due to Theorem ���� Let m� be the b�d�a� on S such that

m�
A� � hm�
i 
A�i

�
i�� for each A � S� As w
m
A�� � limi��mi
A� exists for each A �

S� w
m�
A�� � limi��m�
i 
A� � w
m
A�� exists as well� so that m � m� holds� Let


m�
i �
�� be the b�s�m�a� on S de�ned by 
������ and 
����� above 
cf� Theorem �����

for the b�s�m�a� m�
i � Then 
m�

i � 
m�
i �
��� � mS 
the vacuous b�s�m�a� on S�� so that�

setting 
m����
A� � h
m�
i �
��
Ai��i�� we obtain� that m�

� 
m���� � mV � here mV is
the 
obviously convergent� vacuous b�d�a� on S de�ned above� The assertion is proved�
�

Let us illustrate this statement by the example of the single support b�p�a� mA

de�ned by mA
A� � � for a given A � S� hence mA
B� � � for each B � S� B �� A�
this b�p�a� is used� if � �� A �� S� in the conditioning operation� Here we can de�ne
m�

A � mA in such a way that 
m�
A�i
A� � � � 
�
i�� 
m�

A�i
S� � �
i� 
m�
A�i
B� � �

for each B � S� B �� S� B �� A� Let 
m�
A�

�� be the b�d�a� de�ned by 

m�
A�

���i
S� �
i� 

m�

A�
���i
A� � �
i� ��� 

m�

A�
���i
B� � � for all B � S� B �� S� B �� A and for

all i � N�� An easy calculation then yields that mA � m�
A and m�

A � 
m�
A�

�� � mV

hold�

��



�� Jordan Decomposition of Signed Belief Func�

tions

In this chapter we shall try to arrive at some decompositions into generalized or even
into classical probabilistic belief functions inspired by� and similar to� the Jordan de	
composition of signed measure� Here generalized belief function is a particular case
of signed belief function supposing that the signed measure � used when de�ning the
belief function in question takes only non	negative values 
possibly including �	��
so that � is just what is called simply 
�	additive� measure in ����� We shall also
prove that generalizations of basic probability assignments� generated on P
S� with a
�nite S by signed belief functions� are also signed measures on the measurable space
hP
S��P
P
S��i� The following well	known theorem will play the key role of an inspi	
ration� but also as a technical tool for all our reasonings and constructions throughout
this chapter�

Theorem ����� 
Hahn decomposition theorem�� Let h��Ai be a measurable space�
let � be a signed measure de�ned on h��Ai� Then there exist disjoint subsets ��� ��

of � such that �� 
 �� � �� �� � A� hence� �� � A as well� and both the mappings
��� �� � A � 
�	�	� de�ned by ��
A� � �
A � ��� and ��
A� � ��
A � ��� for
each A � A� are measures 
i� e�� non	negative signed measures�� so that �i
A� � h��	i
for both i � �� � So� for each signed measure � de�ned on h��Ai and for each A � A
the value �
A� � ��
A� � ��
A� is the di�erence of the values ascribed to A by two

��




non	negative� measures de�ned on h��Ai� The pair h�����i is called the Hahn
decomposition of � and it need not be de�ned uniquely� the pair h��� ��i is called the
Jordan decomposition of the signed measure � and it is de�ned uniquely� �

Proof� Cf� ���� for a more general case of signed measures de�ned on �	rings of
subsets of �� �

The following statement is an almost obvious application of the Hahn decomposition
theorem to the case of basic signed measure assignments�

Theorem ����� Let h��Ai be a measurable space� let � be a signed measure on
h��Ai� let S be a �nite nonempty set� let U be a measurable mapping which takes
the measurable space h��Ai into the measurable space hP
S��P
P
S��i� Set� for each
A � S� m
A� � � 
f� � � � U
�� � Ag� 
i� e�� �
f� � � � U
�� � U
�� � fAg �
P
P
S��g�� and set� for each B � P
S�� m�
B� �

P
A�Bm
A� with the convention

that ��
�� � � for the empty subset � of P
P
S��� Then m� � P
P
S�� � 
�	�	�
is a signed measure on hP
S��P
P
S��i� Set P�
S� � fA � S � m
A� � �g� P�
S� �
fA � S � m
A� � �g� Let P�
S� � P
S�� p� � P
S� be such that P�
S� � P�
S��
P�
S� � P�
S�� P�
S��P�
S� � �� P�
S�
P�
S� � P
S�� Then hP�
S��P�
S�i
is a Hahn decomposition of P
S� with respect to the signed measure m�� �

Remark� Obviously� this Hahn decomposition is not uniquely de�ned supposing that
m
�� � �� as in this case we can take either � � P�
S� or � � P�
S��

Proof� The equalitym�
�� � � follows immediately from the de�nition of m�� Due to
the �niteness of S and� consequently� of P
S�� �	additivity reduces to �nite additivity
and this property obviously holds for m�� Or� if B�� B� are disjoint subsets of P
S��
then

m�
B� 
 B�� �
X

A�B��B�
m
A� �

X
A�B�

m
A� �
X

A�B�
m
A� � 
����

� m�
B�� �m�
B���

Let the signed measure � be such that �	 � �
E� � 	 holds for each E � A 
the
case when �	 � �
E� � 	 holds is processed analogously�� Hence� for each A � S
the relation �	 � m
A� � �
f� � � � U
�� � Ag� � 	 holds so that� as S and P
S�
are �nite sets� the same relation

�	 � m�
B� �
X

A�B
m
A� � 	 
���

holds for each B � P
S�� Hence� m� is signed measure on the measurable space
hP
S��P
P
S��i�

Let hP�
S��P�
S�i be a decomposition of P
S� such that� for all A � P�
S� 
A �
P�
S�� resp��� the relation m
A� � � 
m
A� � �� resp�� holds� Then� evidently� the
inclusions P�
S� � fA � S � m
A� � �g � P�
S� and P�
S� � fA � S � m
A� �
�g � P�
S� are valid� Let B � P
S�� Then the inequalities

m�
B � P�
S�� �
X

A�B	P��S�
m
A� � � 
����

� 



and
m�
B � P�
S�� �

X
A�B	P��S�

m
A� � � 
����

obviously hold� as m
A� � � for each A � P�
S� and m
A� � � for each A � P�
S��
Hence� hP�
S��P�
S�i is a Hahn decomposition of P
S� with respect to the signed
measure m� and the 
nonnegative and �	additive� measures m�

�
�� � m�
� � P�
S��
and m�

�
�� � �m
�
� � P�
S�� on P
P
S�� represent the 
obviously uniquely de�ned�

Jordan decomposition of m�� �

Obviously� each Hahn decomposition hP�
S��P�
S�i of P
S� is such that P�
S� �
P�
S� � fA � S � m
A� � �g and P�
S� � P�
S� � fA � S � m
A� � �g hold� Or�
if there exists A � S such that m
A� � � and A � P�
S� hold simultaneously� then
for B � fSg � P
S� we obtain that m�
B � P�
S�� � m�
fAg� � �� Hence� P�
S�
is not a positive set and this fact contradicts the assumption that hP�
S��P�
S�i is a
Hahn decomposition of P
S�� The case with A � P�
S� such that m
A� � � is treated
analogously�

Theorem ����� Let the notations and conditions of Theorem �� hold� Let A� � A
be the minimal �	�eld of subsets of � containing all the sets f� � � � U
�� � Ag� A �
S� Let x be an object di�erent from all subsets of S� Then there exist probabil	
ity measures P�� P�� de�ned on the measurable space h��A�i� two random variables
U�� U� taking h��A�i into hP
S� 
 fxg�P
P
S� 
 fxg�i� and two �nite nonnegative
real numbers �� � such that� for all A � S with �	 � bel
U� �� 
A� �	�

bel
U� �� 
A� � �bel
U�� P�� 
A�� �bel
U�� P�� 
A�� 
����

Remark� The values � and � are independent of A� Hence� the value ascribed to
A � S by the signed belief function bel
U� �� can be obtained as a linear combination
of the values ascribed to the same set A by two 
classical probabilistic� belief functions
bel
U�� P�� and bel
U�� P��� The relation 
���� can be taken as something like a Jordan
decomposition of signed belief functions� If bel
U� �� 
A� is in�nite� 
���� obviously
cannot hold for �nite �� �� as bel
Ui� Pi� 
A�� i � �� � are probability values� hence�
values embedded within the unit interval of reals�

Proof of Theorem ����� Let hP�
S��P�
S�i be a Hahn decomposition of P
S�
with respect to m�� De�ne the mappings Ui � �� P
S� 
 fxg� i � �� � in this way�
U�
�� � A � S i� U
�� � A and A � P�
S�� U�
�� � x otherwise� U�
�� � A
i� U
�� � A and A � P�
S�� U�
�� � x otherwise� Evidently� both U�� U� are
measurable mappings� i� e� 
generalized� non	numerical� random variables� as f� � � �
Ui
�� � Ag � A� holds for both i � ��  and for all A � S or A � x� For A � S it is
clear� for A � x we obtain that f� � � � U�
�� � xg �

S
A�P��S�f� � � � U
�� � Ag

and f� � � � U�
�� � xg �
S
A�P��S�f� � � � U
�� � Ag and both these sets are inA�

due to the fact that P�
S� and P�
S� are �nite systems of sets� Moreover� if U�
�� � A
for some A � S� then m
A� � �
f� � � � U
�� � Ag� � �� and if U�
�� � A � S�
then m
A� � � due to the de�nitions of U� and U�� As f� � � � U
�� � �g � �� also
f� � � � Ui
�� � �g � � for both i � �� �

��



Let us suppose that there exist A� B � S such that � � m
A� � 	 and � �
m
B� � �	 hold� in other words� suppose that P�
S� � Fin�
m�S� �� � and P�
S� �
Fin�
m�S� �� �� where Fin�
m�S� � fA � S � m
A� � 	g and Fin�
m�S� �
fA � S � m
A� � �	g� let us recall that P�
S� � fA � S � m
A� � �g and
P�
S� � fA � S � m
A� � �g� Set

� �
X

A�P��S�	Fin
�
�m�S�

m
A�� 
�� �

� � �
X

A�P��S�	Fin
�

�m�S�
m
A��

By assumptions 
P
S� �nite� P�
S� and P�
S� nonempty� we obtain that � � � �	
and � � � �	 hold�

De�ne Pi � A�� h�� �i� i � �� � in this way�

P�
f� � � � U
�� � Ag� � m
A�
�� if A � P�
S�� m
A� �	� 
����

� � for other A � S�

P�
f� � � � U
�� � Ag� � �m
A�
�� if A � P�
S�� m
A� � �	� 
����

� � for other A � S�

Both the mappings P�� P� can be uniquely extended to �	additive probability measures
on the �	�eld A�� as non	negativity is clear andX

A�S
P�
f� � � � U�
�� � Ag� �

X
A�P��S�	Fin��m�S�

m
A� � � 
����


similarly for P� and U��� Hence� for both i � �� � h��A�� Pii is a probability space
and Ui � �� P
S�
fxg is a random variable 
measurable mapping with respect to the
�	�eld P
P
S� 
 fxg��� Consequently� we can de�ne the classical probabilistic belief
functions bel
U�� P�� and bel
U�� P�� on P
S 
 fxg�� setting bel
Ui� Pi� 
A� � Pi
f� �
� � Ui
�� � Ag� for every A � S 
 fxg� In particular� for A � S an easy calculation
yields that

bel
U�� P�� 
A� � P�
f� � � � U�
�� � Ag� � 
�����

�
X

B�A
P�
f� � � � U�
�� � Bg� �

�
X

B�A�B�P��S��m�B���
P 
f� � � � U�
�� � Bg� �X

B�A�B�P��S��m�B���
m
B�
� �

� 
�
���
�
f� � � � U
�� � P
A� � P�
S� � Fin�
m�S�g

�
�

so that

�
f� � � � U
�� � P
A� � P�
S� � Fin�
m�S�g� � 
�����

� �bel
U�� P�� 
A��

Analogously�

bel
U�� P�� 
A� �
X

B�A�B�P��S��m�B����

�m
B�
�� � 
����

� �
�
���
�
f� � � � U
�� � P
A� � P�
S� � Fin�
m�S�g

�

��



and

�
f� � � � U
�� � P
A� � P�
S� � Fin�
m�S�g� � 
�����

� ��bel
U�� P�� 
A��

Let A � S be such that

bel
U� �� 
A� � �
f� � � � U
�� � Ag� �
X

B�A
m
B� �	� 
�����

If there exists B � A such that m
B� � 	� then it cannot exist B� � S such that
m
B �� � �	� as in this case m�
fBg� � 	 and m�
fB�g� � �	� what contradicts
the proved fact that m� is a signed measure on P
P
S��� Hence� m
B� �	 for some
B � A implies that m
A� � 	 as well� in other words� bel
U� �� 
A� � 	 implies
that m
B� � 	 for all B � A� in symbols� 
����� yields that P
A� � Fin�
m�S��
Analogously� if bel
U� �� 
A� � �	� then m
B� � �	 for all B � A� hence� P
A� �
Fin�
m�S�� So� if bel
U� �� 
A� is �nite� then P
A� � Fin�
m�S� � Fin�
m�S� and

bel
U� �� 
A� � �
f� � � � U
�� � Ag� � 
�����

� �
f� � � � U
�� � P
A�g� �

� �
f� � � � U
�� � P
A� � P�
S� � Fin�
m�S�g� �

� �
f� � � � U
�� � P
A� � P�
S� � Fin�
m�S�g� �

� �bel
U�� P�� 
A�� �bel
U�P�� 
A�

by 
����� and 
������ so that 
���� holds�
Let us consider� now� the case when P�
S� or P�
S� is empty� If P�
S� � P�
S� � ��

then m
A� � � for all A � S so that bel
U� �� 
A� � � for all A � S� Consequently�

bel
U� �� 
A� � � � bel
U�� P�� 
A�� � � bel
U�� P�� 
A� 
��� �

for no matter which probability measures P�� P� on A�� Let P�
S� �� �� P�
S� � ��
so that m
A� � � holds for each A � S� Then hP
S�� �i is also a Hahn decomposition
of P
S� with respect to m� 
here � is the empty subset of P
S�� i� e�� the empty
system of subsets of S�� As the Jordan decomposition of m� is independent of the
Hahn decomposition of P
S�� we can replace hP�
S��P�
S�i by hP
S�� �i and apply
the same way of reasoning as above� Let there exist at least one A � S such that
� � m
A� �	� i� e� let P�
S� � Fin�
m�S� �� �� Then

� � � �
X

A�Fin
�
�m�S�

m
A� �	 
�����

holds� so that� for P� de�ned as above with P�
S� � P
S� and for P� de�ned arbitrarily
on A�� we obtain that

bel
U�� P�� 
A� � 
�
���
f� � � � U
�� � P
A� � Fin�
m�S�g�� 
�����

In the same way as in 
���� we prove that if bel
U� �� 
A� � 	� then P
A� �
Fin�
m�S�� so that

bel
U� �� � �
f� � � � U
�� � Ag� � 
�����

� �
f� � � � U
�� � P
A� � Fin�
m�S�g� �

� �bel
U�� P�� 
A�� � � bel
U�� P�� 
A��

��



so that 
���� holds again with � � �� The case when P�
S� � � and P�
S� �
Fin�
m�S� �� � is processed analogously� Finally� if m
A� � 	 for all A � S 
or if
m
A� � �	 for all A � S�� then there is no A � S with �nite and nonozero value
bel
U� �� 
A�� so that 
���� holds either trivially� or with � � � � �� The theorem is
proved� �

Let us extend the de�nition of conditioned belief functions to the generalized ver	
sions of belief functions as de�ned above� The assertion following this de�nition proves
that if the basic space S is �nite� the well	known combinatorial expressions for the
conditioned belief functions are valid in the generalized case as well� As elsewhere
in this text� we shall limit ourselves to the purely formalized and mathematical as	
pects of conditioning operations for belief functions� leaving aside the motivation and
interpretation 
the reader is kindly invited to consult ��� or other sources for this sake��

De�nition ����� Let h��Ai be a measurable space� let � be a probability measure

a measure� a signed measure� resp�� de�ned on h��Ai� let S be a nonempty �nite set�
let U � h��Ai � hP
S��P
P
S��i be a measurable mapping which takes � into P
S��
let T be a nonempty subset of S� The conditioned classical probabilistic �generalized�
signed� resp�� belief function bel
U� �� 
�
T � is the mapping of P
S� into h�� �i de�ned�
for each A � S� by the relation� bel
U� �� 
A
T � � �� if A �� T �

bel
U� �� 
A
T � � �
f� � � � � �� U
�� � T � A � Tg� 
����

otherwise� Evidently� bel
U� �� 
�� � bel
U� �� 
�
S� for all the three kinds of belief
functions�

Theorem ����� Let the notations and conditions of De�nition ��� hold� Then
for the conditioned classical probabilistic 
generalized� signed� resp�� belief function
bel
U� �� 
�
T � the relation

bel
U� �� 
A�T � � bel
U� �� 
A 
 
S � T ��� bel
U� �� 
S � T � � 
����

�
X

���B�A	T

X
X�S�T

m
B 
X�

holds for each A � T � where m
C� � �
f� � � � U
�� � Cg� for all C � S� �

Proof� Because of the evident fact that probability measures are a special case of
measures and the later ones are a special case of signed measures� it is su�cient to
prove the assertion for the case when � is a signed measure� For the sake of simplicity
we omit the parameters U and � throughout this proof�

As S and� consequently� P
S� are �nite sets� the �	additivity of � immediately
yields that� for A � T �

bel
A
T � �
X

B�S� ���B	T�A	T
�
f� � � � U
�� � Bg�� 
���

Each B � S such that � �� B � T � A � T can be uniquely decomposed into disjoint
subsets � �� B� � B�T and B� � B�
S�T �� conversely� for each � �� B� � A�T and

�



B� � S�T the set B � B�
B� belongs to the class of sets over which the summation
in 
��� is de�ned� As the mapping B � hB�� B�i is one	to	one� 
��� immediately
yields that

bel
A
T � �
X

���B��A	T

X
B��S�T

m
B� 
B�� 
����

and the equality between the �rst and the third item in 
���� is proved� In fact� it is
just this equality which serves� as a rule� as the de�nition of conditioned belief function
in the works dealing with belief functions over �nite spaces S�

By the de�nition of the 
unconditioned� signed belief function we obtain that

bel
A 
 
S � T ��� bel
S � T � �
X

B�A��S�T �
m
B��

X
B�S�T

m
B� �
����

�
X

B�A��S�T ��B ��S�T
m
B� �

�
X

B�fC�S	C	A	T ����C��A	T ���S�T �g
m
B� �

�
X

B�B��B�����B��A	T�B��S�T
m
B� 
 B�� �

�
X

���B��A	T

X
B��S�T

m
B� 
B���

The assertion is proved� �

Theorem ����� Let the notations and conditions of Theorem �� hold� let A� and x
be as in Theorem ���� let bel
U� �� 
A
T � be de�ned as in De�nition ���� Then there
exist probability measures P�� P�� random variables U�� U�� and �nite nonnegative
real numbers �� � with the properties claimed in Theorem ��� and such that� for all
A � T � S with the property that bel
U� �� 
A 
 
S � T �� and bel
U� �� 
S � T � are
�nite numbers� the equality

bel
U� �� 
A
T � � �bel
U�� P�� 
A
T �� �bel
U�� P�� 
A
T � 
����

holds� �

Proof� Applying 
���� to the sets A 
 
S � T � � S and S � T � S we obtain� by
an easy calculation� that

bel
U� �� 
A
T � � bel
U� �� 
A 
 
S � T ��� bel
U� �� 
S � T � � 
�� �

� ��bel
U�� P�� 
A 
 
S � T ��� �bel
U�� P�� 
A 
 
S � T ����

� ��bel
U�� P�� 
S � T �� �bel
U�� P�� 
S � T �� �

� �bel
U�� P�� 
A 
 
S � T ��� bel
U�� P�� 
S � T ���

�� �bel
U�� P�� 
A 
 
S � T ��� bel
U�� P�� 
S � T �� �

� �bel
U�� P�� 
A
T �� �bel
U�� P�� 
A
T ��

�

Hence� Jordan decomposition of a conditioned signed belief function can be obtained
as the linear combination of the corresponding conditioned classical probabilistic belief
functions with the same coe�cients as in the unconditioned case� The last fact is quite
intuitive� as in the case when T � S 
���� immediately converts into 
�����

�



�� Monte�Carlo Estimations for Belief Functions

Let S be a �nite set� let E be an empirical space� let � � S  E � f�� �g be a
compatibility relation� let X � h��A� P i � hE� Ei be a random variable� let belm��X

be
the belief function de�ned� for each A � S� by

belm��X

A� � P 
f� � � � U�
X
��� � Ag�� 
�����

Let us suppose that there exists� for each x � E� a value s � S such that �
s� x� � �
so that U�
X
��� �� � holds for every � � �� hence� m��X
�� � ��

Taken as a mapping from P
S� into h�� �i� belief function does not meet� in general�
the demands imposed to probability measure� as a matter of fact� belm��X

is additive i�
belm��X


A� � � for all A � S such that card
A� �� �� However� as the particular values
of belief functions can be de�ned� due to 
������ by values of probability measures
ascribed to certain random events� they can be also estimated using the well	known
Monte	Carlo methods 
or probabilistic algorithms� in other terms�� The basic idea
behind is very simple� to take arithmetical means� de�ned by a large enough �nite
number of stochastically independent and identically distributed 
i�i�d�� random sam	
ples� as reasonable and good enough estimations of the corresponding expected values�
The theoretical soundness of the basic idea of Monte	Carlo methods as just outlined is
based on two elementary assertions of the axiomatic probability theory� the strong law
of large number 
SLLN� and the Chebyshev inequality� Both of these statements will
be used below in the form presented in Chapter  
Part One of this Research Report�
so that it is not necessary to recall them here in more detail�





The most obvious and immediate application of the SLLN to the case of belief
functions reads as follows�

Theorem ����� Let h��A� P i be a probability space� let hP
S��Si be a measurable
space over a nonempty set S such that P
T � � S holds for each T � S� let U be
a 
generalized set	valued� random variable de�ned on h��A� P i� taking its values in
hP
S��Si� and such that U
�� �� � holds for each � � �� Let U�� U�� � � � be a sequence
of statistically independent random variables de�ned on h��A� P i� taking their values
in hP
S��Si� and possessing the same probability distribution as U � so that for each
k � N� � f�� � � � �g� each n� � n� � � � � � nk� and V��V�� � � � � Vk � S the equality

P
�Tk

i��f� � � � Uni
�� � Vig
�
�
Yk

i��
P 
f� � � � Uni
�� � Vig� 
����

holds� Moreover� for each i � N� and each V � S

P 
f� � � � Ui
�� � Vg� � P 
f� � � � U
�� � Vg� � 
�����

Let T � S� let P�T � be the characteristic function 
identi�er� of the system P
T � of
all subsets of T � so that P�T �
A� � �� if A � P
T �� i� e�� if A � T� P�T �
A� � �
otherwise� Let

belU
T � � P 
f� � � � U
�� � Tg� 
�����

denote the belief function induced by the random variable U � Then

P
�n
� � � � limn��

h
n��

Xn

i��
P�T �
Ui
���

i
� belU 
T �

o�
� �� 
�����

�

Proof� An immediate consequence of SLLN� Setting

Ai � f� � � � Ui
�� � P
T �g 
� f� � � � Ui
�� � Tg�� 
��� �

we can easily observe that hA�� A�� � � �i is a sequence of statistically independent random
events such that P 
Ai� � belU
T � holds for each i � N�� Hence� n��

Pn
i�� P�T �
Ui
���

is the relative frequency of occurences of a random event with the probability belU
T �
in a sequence of n statistically independent realizations� and this relative frequency
tends to belU
T � almost surely� �

Before focusing our attention to more sophisticated and complex Monte	Carlo al	
gorithms for belief functions we should mention� at least very brie!y� our motivation
for such an e�ort� In order to de�ne and to compute the value belU 
T � we need not
only the notion �state compatible with an observation�� de�ned by a binary compat	
ibility relation between states and empirical values at the intensional level� but also
the extension of this notion in the form of a subset of the state space S� If S is �nite�
such an extension can be obtained by testing� sequentially for each s � S� whether
s is compatible with the observation in question� if neglecting� for the moment� the
problems with high computational complexity of such a procedure for large S� If S

�



is in�nite� this approach is impossible and problems arise with the de�nability of the
set of compatible states in terms acceptable by the used formal apparatus� So� our
aim will be to suggest a Monte	Carlo algorithm for belief functions using the binary
compatibility relation between states and empirical values just at the level of a black
box outputing the answers YES 
compatible� of NO 
incompatible� for each input pair
�state	empirical value�� but incapable to generate sets of states compatible with a
given empirical observation�

Let S� hE� Ei and � � SE � f�� �g be as above� A random variable X de�ned on
the probability space h��A� P i and taking its values in the measurable space hE� Ei is
called regular with respect to the compatibility relation �� if the mapping UX�� � ��
P
S�� de�ned by

UX��
�� � Um��X
�� � fs � S � �
s�X
��� � �g 
�����

and each � � �� is a random variable de�ned on h��A� P i and taking its values
in the measurable space hP
S��Si� where S is the minimal �	�eld over the system
fP
T � � T � Sg � P
P
S��� Hence� if X is regular with respect to �� then f� � � �
UX��
X
��� � Tg � A holds for each T � S� so that the value belUX��
T � � P 
f� �
� � UX��
�� � Tg� is de�ned for all T � S� Let X��X�� � � � be a sequence of statistically
independent and identically distributed random variables de�ned on h��A� P i� taking
their values in hE� Ei and regular with respect to ��

Theorem ����� Let Ui � UXi�� for each i � �� � � � �� Then U�� U�� � � � is a sequence
of statistically independent and identically distributed random variables de�ned on
h��A� P i and taking their values in hP
S��Si� �

Remark� In the rest of this chapter we shall omit the symbols �� � � � � ��� � �� in the
expressing de�ning particular subsets of �� if no misunderstanding menaces�

Proof� Let V � S� let i � N�� Then

P 
fUi
�� � Vg� � P 
fU
Xi
��� � Vg� � P 
fXi
�� � U
��
V�g� � 
�����

� P 
fXi
�� � fx � E � U
x� � Vgg� � P 
fX�
�� � fx � E � U
x� � Vgg� �

� P 
fU
X�
��� � Vg� � P 
fU�
�� � Vg�

due to the identical distribution of Xi and X�� so that the random variables Ui and
U� are also identically distributed� Let k � N�� let n� � n� � � � � � nk be positive
integers� let V��V�� � � � �Vk � S� Then

P
�Tk

i��fUni
�� � Vig
�
� P

�Tk
i��fU
Xni 
��� � Vig

�
� 
�����

� P
�Tk

o��fXni
�� � U
��
Vi�g

�
�
Yk

i��
P 
fXni 
�� � U

��
Vi�g� �

�
Yk

i��
P 
fU
Xni 
��� � Vig� �

Yk

i��
P 
fUni
�� � Vig�

due to the statistical independence of the random variables X��X�� � � �� So� U�� U�� � � �
is a sequence of statistically independent and identically distributed 
generalized set	
valued� random variables� �

�



Suppose� since now on� that the state space S is �nite or countable� Let fYijg�i�j��

be a system of statistically independent and identically distributed random variables
de�ned on h��A� P i� taking their values in the measurable space hS�P
S�i and such
that� for each s � S� P 
fY��
�� � sg� � � holds� What we have at our disposal� it

is the system f�
Yij
���g
n m�i�
i�� j�� for some n� m
i� � N� of binary values and our aim

will be to estimate the value belUX� ��

T �� for a given T � S� on the ground of these

data�
Informally� if for some i � N�� for m
i� large enough� and for all j � m
i� such that

Yij
�� is compatible with Xi
�� also the relation Yij
�� � T holds� we are temptated
to believe that all s � S compatible with Xi
�� belong to T � in other words� that
the inclusion U
Xi
��� � T holds� So� setting �i
T� �� � �� if for all j � m
i� such
that �
Yij
���Xi
��� � � also T 
Yij
��� � �� and setting �i
T� �� � � otherwise� we
feel that �i
T� �� is a reasonable and relatively good approximation of the value P�T �

UXi���� De�ning �i
T� �� more formally we can write that

�i
T� �� � �� if 
� j � m
i�� 
�
Yij
���Xi
��� � T 
Yij
����� 
������

�i
T� �� � � otherwise�

hence
�i
T� �� �

Ym�i�

j��
�ij
T� ��� 
������

where

�ij
T� �� � �� if �
Yij
���Xi
��� � T 
Yij
���� 
�����

�ij
T� �� � � otherwise�

Accepting the convention that �� � � we obtain easily that

�ij
T� �� � min ��� � � �
Yij
���Xi
��� � T 
Yij
���� � 
������

� �T 
Yij
����
��Yij����Xi���� �

and

�i
T� �� �
Ym�i�

j��
min 
�� �� �
Yij
���Xi
��� � T 
Yij
���� � 
������

�
Ym�i�

j��
�T 
Yij
����

��Yij����Xi���� �

Using the values �i
T� �� as approximations of P�T �
UXi��

���� like as in Theorem ����

we arrive at the following random variable�

BX��� 
T� n� hm
i�ini��� �� � n��
Xn

i��
�i
T� �� � 
������

� n��
Xn

i��

Ym�i�

j��
min
�� �� �
Yij
���Xi
��� � T 
Yij
���� �

� n��
Xn

i��

Ym�i�

j��
�T 
Yij
����

��Yij����Xi���� �

We shall try to demonstrate� in the rest of this chapter� that� and in which sense and
degree� the value BX���
T� n� hm
i�ini��� �� is a reasonable and good estimation of the
value belUX���


T ��

�



Theorem ����� Let the systems fXigni�� and fYijg
n m�i�
i��� j�� of random variables de	

�ned above be mutually statistically independent� let hE� Ei be such that E is �	
nite or countable and E � P
E�� let 	 � � be given� Then there exists a value
�� � hbelUX���


T ��belUX���

T � � 	i and a value m� � N� such that� if m
i� � m� for

each i � N�� then the relation

P
��

� � � � lim
n��

BX���
T� n� hm
i�ini��� �� � ��
�	

� � 
���� �

holds� �

Proof� First� let us prove that� given T � S� h�i
T� ��ini�� is a sequence of statistically
independent random variables� So� we have to prove that the equality

P 

Tn
i��f�i
T� �� � �ig� �

Yn

i��
P 
f�i
T� �� � �ig� 
������

holds for each n	tuple h��� ��� � � � � �ni � f�� �gn� The proof will be done by induction
on the number of occurrences of zeros in h��� ��� � � � � �ni� so that the �rst step deals
with the case when k � �� i� e�� when �i � � for each i � n�

Let FT 
s� � fx � E � �
s� x� � �g� if s � S � T � set FT 
s� � E otherwise� An
easy calculation using the supposed statistical independences among particular random
variables Xi� i � n� Yij � i � n� j � m
i�� as well as between the systems fXigni�� and

fYijg
n m�i�
i��� j�� of random variables yield that

P
�Tn

i��f�i
T� �� � �g
�
� P

�Tn
i��

Tm�i�
j�� f�
Yij
���Xi
��� � T 
Yij
���g

�
�
������

� P
�S

hhs�������s
�
m���

i�����hsn� �����s
n
m�n�

ii�X
n

i��S
m�i�

Thm����m��������m�n�i
hj������jni�h���������i

f�
siji �Xi
��� � T 
s
i
ji
�� Yij
�� � sijig

�
�

�
X

hhs�������s
�
m���i�����hs

n
� �����s

n
m�n�ii�X

n

i�� S
m�i�

P
�Tn

i��

Tm�i�
j�� fXi
�� � FT 
s

i
j�� Yij
�� � sijg

�
�

�
X

hhs�������s
�
m���i�����hs

n
� �����s

n
m�n�ii�X

n

i�� S
m�i�Yn

i��

Ym�i�

j��
P 
fXi
�� � FT 
s

i
j�� Yij
�� � sijg� �

�
X

hsn� �����s
n
m�n�

i�Sm�n�

X
hhs�������s

�
m���

i�����hsn��� �����s
n��
m�n���

ii�X
n��

i�� S
m�i��Yn��

i��

Ym�i�

j��
P 
fXi
�� � FT 
s

i
j�� Yij
�� � sijg�

�
�

�
�Ym�n�

k��
P 
fXn
�� � FT 
s

n
k�� Ynk
�� � snkg�

�
�

�


X
hsn� �����s

n
m�n�

i�Sm�n�

Ym�n�

k��
P 
fXn
�� � FT 
s

n
k �� Ynk
�� � snkg�

�
�

hX
hhs�������s

�
m���

i�����hsn��� �����s
n��
m�n���

ii�X
n��

i�� Sm�i�

Yn

i��

Ym�i�

j��
P 
fXi
�� � FT 
s

i
j�� Yij
�� � sijg�

i
�

 



Applying the same calculation to the last component in the last right	hand side ex	
pression in 
������ we obtain� after n� � further steps� that

P 

Tn
i��f�i
T� �� � �g� � 
������

�
Yn

i��


X
hs
j
������s

i
m�i�

i�Sm�i�

Ym�i�

k��
P 
fXi
�� � FT 
s

i
k�� Yik
�� � sikg�

�
�

�
Yn

i��


X
hs
j
������s

i
m�i�

i�Sm�i�i

Ym�i�

k��
P 
f�
sik�Xi
�� � T 
s

i
k�� Yik
�� � sikg�

�
�

�
Yn

i��
P
�Tm�i�

k�� f�
Xi
��� Yik
��� � T 
Yik
���g
�

�
Yn

i��


f�i
T� �� � �g���

Hence� the �rst step of our induction� i� e�� the validity of the relation 
������ for
h��� ��� � � � �
� � � � �ni � h�� �� � � � � �i� is proved�

Let 
������ hold for k � K�� i� e�� for each h��� ��� � � � � �ni � f�� �gn such thatPn
i�� �i � n�K� let h��� ��� � � � � �ni be such that

Pn
i�� �i � n�K��� Take arbitrarily

i� � n such that �i� � �� and set ��i � �i for all i �� i�� �
�
i�
� �� hence�

Pn
i�� �

�
i � n�K�

Then

P 

Tn
i��f�i
T� �� � �ig� � P 


Tn
i��f�i
T� �� � ��i g� � 
�����

� P 

Tn
i��f�i
T� �� � �ig� �

Yn

i��
P 
f�i
T� �� � �ig� �

� P 

Tn
i��f�i
T� �� � ��i g� �

Yn

i��� i��i�
P 
f�i
T� �� � ��i g� �

so that

P 

Tn
i��f�i
T� �� � ��i g� �

Yn

i��� i��i�
P 
f�i
T� �� � ��i g� 
�����

�
Yn

i��
P 
f�i
T� �� � ��i g� �

�
Yn

i��� i��i�
P 
f�i
T� �� � ��i g� ��� P 
f�i�
T� �� � ��i g�� �

�
Yn

i��� i��i�
P 
f�i
T� �� � ��i g� ��� P 
f�i�
T� �� � �g�� �

�
hYn

i��� i��i�
P 
f�i
T� �� � ��i g�

i
P 
f�i�
T� �� � �g� �

�
hYn

i��� i��i�
P 
f�i
T� �� � ��i g�

i
P 
f�i�
T� �� � �i�g� �

�
nY
i��

P 
f�i
T� �� � �ig��

So� 
������ holds also for all h��� ��� � � � � �ni with K � � occurrences of zero� hence� by
induction� 
������ holds for each h��� ��� � � � � �ni � f�� �gn� and the random variables
f�i
T� ��gni�� are proved to be statistically independent� Our further goal will be to
compute the value P 
f�i
T� �� � �g�� which is evidently identical with the expected
value E �i
T� ��� An easy calculation yields that

P 
f�i
T� �� � �g� � P
�Tm�i�

j�� f�
Yij
���Xi
��� � T 
Yij
���g
�
� 
����

�



� P
�hTm�i�

j�� f�
Yij
���Xi
��� � T 
Yij
���g
i
� fU
Xi
��� � Tg

�
�

�P
�hTm�i�

j�� f�
Yij
���Xi
��� � T 
Yij
���g
i
� fU
Xi
��� �� Tg

�
�

� P 
fU
Xi
��� � Tg� �

�P
�hTm�i�

j�� f�
Yij
���Xi
��� � T 
Yij
���g
i
� fU
Xi
��� �� Tg

�
�

as U
Xi
��� � T implies that if Yij
�� � U
Xi
���� i� e�� if �
Yij
���Xi
��� � � �
then Yij
�� � T � hence� T 
Yij
��� � �� consequently� for all j � m
i� the inequality
�
Yij
���Xi
��� � T 
Yij
��� holds� Another easy calculation yields that

P
�hTm�i�

j�� f�
Yij
���Xi
��� � T 
Yij
���g
i
� fU
Xi
��� �� Tg

�
� 
�����

� P
�hTm�i�

j�� fYij
�� 
� 
U
Xi
���� T �g
i
� fU
Xi
��� �� Tg

�
�

� P
�hTm�i�

j�� fYij
�� � S � 
U
Xi
���� T �g
i
� fU
Xi
��� �� Tg

�
�

�
X

x�E�U�x���T
P
�Tm�i�

j�� fYij
�� � S � 
U
x�� T �g � fXi
�� � xg
�
�

�
X

x�E�U�x���T

��Ym�i�

j��
��� P 
fYij
�� � U
x�� Tg��

��
P 
fXi
�� � xg� �

�
X

x�E�U�x���T
f��� P 
fY��
�� � U
x�� Tg��m�i�gP 
fXi
�� � xg��

as the random variables Yij are supposed to be statistically independent and identically
distributed� Random variables Xi are also identically distributed� so that we can
replace Xi by X� in 
������

As the set E is �nite of countable� there exists� given 	 � �� a �nite subset E�
	� � E
such that P 
fX�
�� � E�g� � � � 
	
� holds� If x � E� is such that U
x� �� T � i� e��
such that U
x��T �� �� then P 
fY��
�� � U
x��Tg� �

P
s�U�x��T P 
fY��
�� � sg� �

� holds due to the conditions imposed to random variables Yij� Hence� the value

m�
x� � minfm � N� � 
�� P 
fY��
�� � U
x�� Tg��m � 	
g �	 
�����

is uniquely de�ned for each x � E� such that U
x� �� T � Set

m� � maxfm�
x� � x � E�g 
�����

and de�ne

��� �
X

x�E�U�x���T

n
��� P 
fY��
�� � U
x�� Tg��m

�

P 
fX�
�� � xg�
o
� 
��� �

Obviously�

��� �
X

x�E��U�x���T

n
��� P 
fY��
�� � U
x�� Tg��m

�

P 
fX�
�� � xg�
o
�
�����

�
X

x�E�E��U�x���T

n
��� P 
fY��
�� � U
x� � Tg��m

�

P 
fX�
�� � xg�
o
�

�
X

x�E�� U�x���T

n
��� P 
fY��
�� � U
x�� Tg��m

�

P 
fX�
�� � xg�
o
�

�
X

x�E�E�
P 
fX�
�� � xg� �

�
X

x�E�

	
�P 
fX�
�� � xg� � P 
fX�
�� � E � E�g� �

� 
	
�P 
fX�
�� � E�g� � 
	
� � 	�

�



Consequently� setting m
i� � m� for each i � N�� setting

�� � P 
fU
X�
��� � Tg� � ��� � belUX���

T � � ���� 
�����

and combining together all the relations from 
���� to 
����� we obtain that� for
each i � N��

P 
f�i
T� �� � �g� � P 
fU
X�
��� � Tg� � ��� � �� � 
�����

� hP 
fU
X�
��� � Tg�� P 
fU
X�
��� � Tg� � 	� �

� hbelUX���

T ��belUX���


T � � 	��

Hence� f�i
T� ��g�i�� is a sequence of statistically independent and identically distributed
binary	valued random variables so that� due to the strong law of large numbers� the
relative frequency of occurrences of unit values taken by �i
T� ��� i� e�� the value
BX��
T� n� hm
i�ini��� �� according to 
������� tends� with n increasing� almost surely
to the probability �� with which each �i
T� �� takes the unit value� So� the assertion

���� � is proved� �

Theorem ����� Let the notations and conditions of Theorem ���� hold� let limi��m
i� �
	� Then the equality

P
�n
� � � � limn��BX���
T� n� hm
i�ini��� �� � belUX���


T �
o�

� � 
������

holds� �

Proof� Let m
���m
�� � � � � N� be such that limi��m
i� � 	� Set� for each
i� k � N��

#m�k�
i� � m
k�� if i � k� #m�k�
i� � m
i�� if i � k� 
������

De�ne #��k�i 
T� �� analogously to 
������ but with m
i� replaced by #m�k�
i�� so that

#��k�i 
T� �� �
Y 
m�k��i�

j��
minf�� �� �
Yij
���Xi
��� � T 
Yij
���g � 
�����

Consequently� for i � k the equality #��k�i 
T� �� � �i
T� �� holds for each � � �� The

values taken by the random variables #��k�i 
T� �� are either � or �� so that the limit values
of the relative frequencies of both the outcomes� if de�ned� do not depend on any initial
segment of a sequence of such values� Hence�

limn�� n��
Xn

i��
#��k�i 
T� �� � limn�� n��

Xn

i��
�i
T� �� 
������

for each k � N� each and � � � for which one of these limit values is de�ned� So�
setting

#B
�k�
X���


T� n� hm
i�ini��� �� � n��
Xn

i��
#�
�k�
i 
T� �� 
������

�



for each k � N� and each � � �� we obtain that

limn��
#B�n�
X���


T� n� hm
i�ini��� �� � 
������

� limn��
#B
�n�
X���

�
T� n� h #m�k�
i�ini��� �

�
�

� limn�� n��
Xn

i��
#�
�k�
i 
T� �� �

� limn�� n��
Xn

i��
�i
T� �� �

� limn�� BX��� 
T� n� hm
i�ini��� �� �

� limn�� BX���

�
T� n� h #m�k�
i�ini��� �

�

by 
������ for each � � � for which at least one of the limit values in 
������ is de�ned�
and for each k � N��

Take arbitrarily 	 � � and de�ne� for x � E� m�
�
x� by 
������ de�ne also m�

�

by 
������ As limk��m
k� � 	� there exists k� � N� such that m
k� � m�
� holds

for every k � k�� hence� #m�k�
j� � m�
� holds for each such k and each j � N��

Theorem ���� then yields that� for each k � k�� the relation

limn��BX���

�
T� n� h #m�k�
i�ini��� �

�
� hbelUX���


T ��belUX���

T � � 	�� 
���� �

so� due to 
������� also the relation

limn�� BX��� 
T�m� hm
i�ini��� �� � hbelUX���

T ��belUX���


T � � 	� 
������

holds for each � � �� � �� where �� � A and P 
��� � �� As 	 � � was taken
arbitrarily� 
������ immediately implies that

P
�n
� � � � limn��BX���
T� n� hm
i�ini��� �� � belUX���


T �
o�

� �� 
������

and the assertion is proved� �

Let us sketch� very brie!y� a Monte	Carlo algorithm based on the limit assertions
presented and proved above and o�ering numerical values which can be taken� in the
sense speci�ed by Theorem ���� below� as reasonable estimations of the values of the
belief function in question� Let S � fs�� s�� � � � � sNg be a nonempty �nite state space of
an investigated system� let E � fe�� e�� � � � � eKg be a nonempty �nite space of empirical
or observational values� let � � S  E � f�� �g be a compatibility relation such that
�
sj� ei� � � i� sj cannot be eliminated from the set of possible internal states of the
investigated system supposing that the empirical value ei was obtained or observed as
the result of some measurements� experiments or observations concerning the system
in question and�or the environment where it is situated�

The role of the input of the proposed algorithm plays a �nite sequence Y �
hxi� yi� ziiRi�� of triples where xi � E� yi � S

� �
S�
k��S

k� and zi � f�� �g� �
S�
k��f�� �g

k�
Namely� for each � � i � R� xi � E is an empirical value� i� e� xi � ej for some
j � N� yi � hsi�� si�� � � � � sim�i�

i is a �nite nonempty string of elements of the state
space S� and zi � h�i�� �i�� � � � � �i	�i�i is a �nite binary string such that �
i� � m
i� and
�ij � �
sij � xii for each � � j � m� Informally� xi is an element of E sampled at

��



random by the random variable Xi� si are the elements of the state space S sampled
at random by the random variables Yi and tested� whether there are compatible with
xi or not� and the results of these tests are encoded by zi� Evidently� xi maybe be
the same for di�erent triples and also the possibility that two or more triples in Y are
identical is not excluded�

Set� for each � � i � R and for hxi� yi� zii� yi � hsi�� si�� � � � � sim�i�
i� zi � h�i�� �i�� � � � � �im�i�

i�

u
xi� � fsij � � � j � m
i�� �ij � �g � 
������

set also� for each � � j � K�

U
ej� �
S
��k�R� xk�eju
xk�� 
������

The set U
ej� approximates� in the statistical sense� the set U�
ej� of states compatible
with the empirical value ej � E� Setting� moreover�

p
ej� � R��cardfk � � � k � R� xk � ejg� 
������

we can see that p
ej� approximates the probability with which Xi
�� � ej� Combining
both those approximations together� we can set

bel�
T � �
X

��j�K� U�ej��T
p
ej� 
�����

and we obtain that bel�
T � is a reasonable statistical estimation of the value belUX���

T ��

The quality of this estimation is stated by the following assertion

Theorem ����� Let the notations and conditions of Theorem ���� hold� let 	 � �
be such that the inequality � � 	 � E �i
T� �� � belUX���


T � holds for a given subset
T � S� here �i
T� �� is de�ned by 
������� Then the inequality

P
�n
� � � � jBX���
T� n� hm
i�ini��� ��� belUX���


T �j � 	
o�
� 
������

� �
�n
	 � 
E�i
T� ��� belUX���

T ����

holds� �

Proof� Due to the Chebyshev inequality for binary random variables we obtain that

P 
f� � � � jBX���
T� n� hm
i�ini��� �� �E �i
T� ��j � 	g� �
�

�n	�

������

holds due to Theorem ����� Evidently� if���BX���
T� n� hm
i�ini��� ��� belUX���

T �

��� � 	 
������

holds� then

jBX���
T� n� hm
i�ini��� �� �E �i
T� ��j � 
���� �

� 	�
���E �i
T� ��� belUX���


T �
���

��



must hold as well� So

P
�n
� � � � jBX���
T� n� hm
i�ini��� ��� belUX���


T �j � 	
o�
� 
������

� P
�n
� � � � jBX���
T� n� hm
i�ini��� ��� E �i
T� ��j �

	�
�
E �i
T� ��� belU���
T �

�o�
�

� �
�n
	 � 
E �i
T� ��� belUXn��
T ���
�

follows immediately from 
������ when replacing 	 by 	� jE �i
T� ���belUX���

T �j and

taking into consideration that E �i
T� �� � belUX���

T � always holds 
cf� the proof of

Theorem ������ �

The dependence of the upper bound on the right	hand side of 
������ on the value
belUX���


T � can be eliminated� using Theorem ����� when choosing m
i� uniformly large
enough�

Theorem ����� Let the notations and conditions of Theorem ���� hold� let 	 � � be
given� Then there exists m�
	� � N� such that� if m
i� � m�
	� holds for each i � n�
then

P
�n
� � � � jBX���
T� n� hm
i�ini��� ��� belUX���


T �j � 	
o�
� �
n	� 
������

holds� �

Proof� Theorem ���� yields that there exists m�
	� such that

���E �i
T� ��� belUX���

T �

��� � 	
 
������

holds supposing that m
i� � m�
	� holds for each i � n� Combining 
������ and

������ we obtain immediately that 
������ is valid� �

�



�� Boolean�Valued and Boolean�Like Processed

Real�Valued Belief Functions

The reasons for which it may seem useful to reconsider the Dempster�Shafer model
of uncertainty quanti�cation and processing from the point of view of possible non	
numerical quanti�cation of occurring uncertainty degrees can be divided into two
groups� why to refuse the numerical real	valued degrees� and why to choose just this or
that set of values and structure over this set as an adequate alternative to the original
numerical evaluation� First� there are some general arguments in favour of the claim
that structures over sets of abstract objects of non	numerical nature can be sometimes
more close to the spaces of uncertain events and structures over them than the space of
real numbers with all the riches of notions� relations and operations over these numbers

overspeci�cation of the degrees of uncertainty by real numbers� these degrees need not
be dichotomic� a danger of an ontological shift from structures over real numbers to
structures over uncertainties� and so on�� A more detailed discussion in this direction
can be found in ��� and ����� as far as fuzzy sets are concerned� in ��� for set	valued
probability measures� and in � �� ��� for applications of such probabilities in uncertain
data processing expert 
knowledge� systems� we shall not repeat this discussion here
and refer to these sources� The reason for our particular alternative choice taken in
this chapter is twofold� boolean algebras� which generalize the set	theoretical struc	
tures over the power	set 
set of all subsets� of a �xed basic space� are perhaps the most
developed non	numerical abstract mathematical structures� Moreover� just because of

��



their just mentioned near relation to the set	theoretical structures boolean	valued un	
certainty degrees in D�	S� theory seem to be easy compatible with the set	theoretical
operations 
e� g�� joints� and relations 
e� g�� inclusions�� often occurring above when
de�ning belief functions and other numerical characteristics typical for the D�	S� the	
ory�

De�nition ����� Boolean algebra is a quadruple B � hB������i� where B is a
nonempty set called the support of B� � is a binary operation taking BB into B and
called supremum� � is a binary operation taking B  B into B and called in�mum�
and � is a unary operation taking B into B and called complement� these operations
are supposed to satisfy� for each x� y� z � B� the following �ve axioms 
cf� ����


A�� x � y � y � z� x � y � y � x�


A� x � 
y � z� � 
x � y� � z� x � 
y � z� � 
x � y� � z�


A�� 
x � y� � y � y� 
x � y� � y � y�


A�� x � 
y � z� � 
x � y� � 
x � z�� x � 
y � z� � 
x � y� � 
x � z��


A�� 
x � 
�x�� � y � y� 
x � 
�x�� � y � y�

where � denotes the identity relation on B� The partial ordering relation�B 
or simply
�� if no misunderstanding menaces� is de�ned by x � y df x � y � y or� what turns
to be the same� x � y �df x � y � x� As can be easily proved� there exists just one
element 
B � B such that 
B � x holds for each x � B� this element is called the
zero or the minimum element of the Boolean algebra B� Dually� there exists just one
element �B � B such that x � �B holds for each x � B� this element is called the
unit or the maximum element of B� also in these cases the indices B are omitted if no
misunderstanding menaces� The operations � 
�� resp�� can be easily proved to possess
all the properties of supremum 
in�mum� resp�� operation with respect to the partial
ordering relation �B� The Boolean algebra B is called nontrivial� if card
B� � � if this
is the case� then 
B �� �B and only such Boolean algebras will be considered in what
follows� �

We refer to ���� and ��� as far as some elementary facts concerning Boolean algebras
and used below are concerned�

De�nition ����� Let � be a nonempty set� let A be a nonempty �	�eld of subsets
of �� let B � hB������i be a nontrivial Boolean algebra� Conditional boolean�
valued probability measure 
c�b�v�p�m�� de�ned on the measurable space h��Ai and
taking its values in B is a mapping P � A � B  B such that� setting for each
A � A� P 
A� � hP�
A�� P�
A�i� Pi
A� � B for both i � �� � the following conditions
hold�


i� P�
A� � P�
A� for each A � A� 
�����


ii� if A � �� then P�
A� � P�
A�

��




iii� P 
� �A� � h�P�
A�� P�
A�i for each A � A�


iv� if A� � fA�� A�� � � �g � A� and if P 
Ai� � hP�
Ai�� P�
Ai�i

with the same P�
Ai� � C � B independent of i� thenW�
i��P�
Ai� is de�ned and P 


S�
i��Ai� � h

W�
i��P�
Ai�� Ci �

�

De�nition ����� Let P be a c�b�v�p�m� over h��Ai taking its values in the Boolean
algebra B� let A� C � A be two measurable sets 
random events�� then the condi	
tional boolean	valued probability of A given C 
or� under the condition that C holds�
generated by P will be denoted by P 
A
C� and de�ned by

P 
A
C� � hP�
A� � P�
C�� P�
A� � P�
C�i� 
����

�

De�nition ����� C�b�v�p�m� P over �� A� and B is called regular� if P�
A� �� 
B
is the same for all A � A� P is called unconditional� a priori or simply boolean�
valued probability measure� if P�
A� � 
B for each A � A� C�b�v�p�m� P over �� A�
and B is called complete� if A � P
�� and if 
iv� of De�nition ��� holds for each
� �� A� � P
�� 
� fA � A � �g��

�

Lemma ����� Let P be a�c�b�v�p�m� over �� A� and B� let A� � fA�� A�� � � �g satisfy
the conditions of 
iv�� De�nition ���� Then

V�
i��P�
Ai� is de�ned and P 


T�
i��Ai� �

h
V�
i��P�
Ai�� Ci� �

Proof� As Ai � A for each i � �� � � � �� then
T�
i��Ai � ��

S�
i��
��Ai� � A as well�

hence� P 

T�
i��Ai� is de�ned and

P 

T�
i��Ai� � hP� 


T�
i��Ai� � P� 


T�
i��Ai�i � 
�����

� hP� 
��
S�
i��
��Ai�� � P� 
� �

S�
i��
��Ai��i �

� hP� 
��
S�
i��
��Ai�� � Ci � h�P� 


S�
i��
��Ai�� � Ci �

� h�
W�
i��P�
��Ai�� Ci � h�

W�
i��
�P�
��Ai��� Ci �

� h
V�
i��P�
Ai�� Ci �

using appropriate points of De�nition ��� in particular steps� �

De�nition ����� Let x � B� let � �� C� � B� C� is called a decomposition of x�
if for each y� z � C�� y �� z implies that y � z � 
B and

W
y�C�y � x� The set of

all decompositions of x will be denoted by Dcp
x�� obviously� Dcp
x� � P
P
B���
A decomposition C of x is called strict� if 
B 
� C� only x �� 
B possesses strict
decomposition
s�� Let h��Ai be a measurable space such that f�g � A holds for each
� � �� let P be a complete a priori b�v�p�m� over �� A and B� Then the system
fP�
f�g� � � � �g of elements of B is called a priori boolean�valued probability
distribution 
a priori b�v�p�d�� over � de�ned by the a priori b�v�p�m� P � �

��



Lemma ����� If P is a complete a priori b�v�p�m� over �� A and B such that f�g � A
holds for each � � �� then fP�
f�g� � � � �g � Dcp
�B�� �

Proof� Let A� � f�g for each � � �� so that
S
���A� � �� As P is complete� 
ii�

and the extended version of 
iv� in De�nition ��� yield that

P 

S
���A�� � P 
�� � hP�
��� P�
��i � h�B��Bi � 
�����

� h
W
���P�
A����Bi

so that W
���P�
A�� �

W
���P�
f�g� � �B� 
�����

Let ��� �� � �� �� �� ��� Then� for A � fA�� A�� � � �g � A such that A� � f��g� A� �
f��g� Ak � � for every k � �� Lemma ���� yields that

P� 

T�
i��Ai� � P�
�� � �P�
�� � 
B �

V�
i��P�
Ai� � 
��� �

� P�
f��g� � P�
f��g� � P�
�� � P�
f��g� � P�
f��g� � �B �

� P�
f��g� � P�
f��g��

hence� fP�
f�g� � � � �g � Dcp
�B�� �

Let S be a �nite set� let P be an a priori b�v�p�m� de�ned on the measurable space
hP
S��P
P
S��i� let fP�
E� � E � Sg be the a priori b�v�p�d� de�ned by P and such
that P�
�� � 
B� Then the boolean�valued belief function belB
T � and b�v� plausibility
function plB
T � can be de�ned� in an abstract way following the pattern of algebraic
de�nition of numerical belief and plausibility functions� for each T � S as follows�

belB
T � � h
W
A�TP�
A���Bi 
�����

plB
T � �
DW

A�A	T ���P�
A���B
E
� 
�����

If P�
A� �� 
B� 
����� and 
����� are replaced by

belB
T � �
DW

���A�TP�
A��
W
���A�SP�
A�

E
� 
�����

plB
T � �
DW

A�A	T ���P�
A��
W
���A�SP�
A�

E
� 
������

Let U be a measurable mapping de�ned on an abstract measurable space h��Ai
and taking its values in the measurable space hP
S��P
P
S��i� let P � be an a priori
b�v�p�m� on h��Ai such that� for each A � S

P �
� 
f� � � � U
�� � Ag� � P�
A�� 
������

Then

W
���A�TP�
A� �

W
���A�TP�
f� � � � U
�� � Ag� � 
�����

� P �
�

�S
���A�Tf� � � � U
�� � Ag

�
� P �

� 
f� � � � � �� U
�� � Tg��

� 



In the same way� W
���A�SP�
A� � P 
f� � � � U
�� �� �g�� 
������

So� 
����� implies that

belB
T � � hP �
� 
f� � � � � �� U
�� � Tg�� P �

� 
f� � � � � �� U
�� � Tg�i �
������

� P � 
f� � � � � �� U
�� � Tg
f� � � � U
�� �� �g�

according to the de�nition of conditional boolean	valued probability given by De�ni	
tion ����� Let us recall that P � is an a priori b�v�p�m�� so that P �

� 
f� �� U
�� �
Tg� � �B� An analogous relation can be easily proved also for plB� consequently� also
boolean	valued belief and plausibility functions can be equivalently de�ned� using the
set	valued random variable U � in a way similar to that in the case of numerical belief
functions�

Let us investigate� now� a variant of Dempster combination rule �tted for boolean	
valued belief functions� First of all� let us brie!y return to the numerical belief functions
as developed above� Let bel�� bel� be numerical belief functions� A mapping 
or�
combination rule� � ascribing the belief function bel� � bel�� i� e�� the value 
bel� �
bel�� 
T � � h�� �i to each T � S� is called extensional� if there exists a function F �
h�� �i  h�� �i � h�� �i such that


bel� � bel�� 
T � � F 
bel�
T ��bel�
T �� 
������

for each bel�� bel� and each T � S� The validity of an analogous relation for pl� � pl�

with a di�erent functionG instead of F � of course� then immediately follows supposing
that pl� � pl� is the plausibility function corresponding to bel� � bel�� Neither the
Dempster combination rule de�ned in the abstract algebraic way� nor its alternative
de�nition based on the set	valued random variable U�
�� � U�
��� are extensional in
this sense� as can be easily seen�

Let m�� m� be two 
numerical� b�p�a��s such that m�
�� � m�
�� � �� let m� be a
mapping which takes P
S� into h�� �i such a way that

m�
E� �

P
A�B�S�A	B�Em�
A�m�
B�P
A�B�S�A	B ���m�
A�m�
B�


���� �

supposing that this value is de�ned� i� e�� supposing that there exist A� B � S such
that m
A� � �� m
B� � � and A � B �� � hold� Then m� is also b�p�a� on S and
Dempster combination rule reduces to


bel� � bel�� 
T � �
X

���E�T
m�
E�� 
������

Hence� the operation � is weakly extensional or quasi�extensional in the sense that
bel��bel� is de�ned by a b�p�a� m� which is given as an extensional function h
m��m��
of the b�p�a��s m�� m� de�ning bel� and bel��

In order to arrive at the boolean	valued case of the Dempster combination rule� let
us consider the case when S is �nite� Ui� i � �� � are random variables de�ned on the

��



probability space h��A� P i and taking their values in P
S�� let beli� i � �� � be the
corresponding belief functions� Then


bel� � bel�� 
T � � 
������

� P 
f� � � � U�
�� � U�
�� � Tg
f� � � � U�
�� � U�
�� �� �g� �

If P is a numerical probability measure� then 
������ can be converted into the com	
binatoric case 
���� � only under some further conditions including the statistical in	
dependence of the set	valued random variables U�� U� and analyzed� in more detail� in
Section  above� If P is an a priori b�v�p�m�� we obtain that� for each T � S


belB� � belB� � 
T � � 
������

� hP�
f� � � � � �� U�
�� � U�
�� � Tg�� P�
f� � � � � �� U�
�� � U�
��g�i �

However� due to the extensionality of boolean	valued probability measures we obtain
that

P 
f� � � � � �� U�
�� � U�
�� � Tg� � 
�����

� hP�
f� � � � � �� U�
�� � U�
�� � Tg���Bi �

�
D
P�

�S
���E�T

S
hA�Bi�P�S��P�S��A	B�E 
f� � � � U�
�� � Ag�

�f� � � � U�
�� � Bg�� ��Bi �

�
D
P�

�S
hA�Bi�P�S��P�S��A	B�T�A	B ��� 
f� � � � U�
�� � Ag�

�f� � � � U�
�� � Bg�� ��Bi �

�
DW

hA�Bi�P�S��P�S�����A	B�T 
P�
f� � � � U�
�� � Ag��

�P�
f� � � � U�
�� � Bg�� ��Bi �

In an analogous way we obtain that

P 
f� � � � U�
�� � U�
�� �� �g� � 
�����

�
DW

hA�Bi�P�S��P�S�����A	B 
P�
f� � � � U�
�� � Ag��

�P�
f� � � � U�
�� � Bg�� ��Bi �

so that


belB� �� belB� 
T � � 
����

�
DW

hA�Bi�P�S��P�S�����A	B�T 
P�
f� � � � U�
�� � Ag��

�P�
f� � � � U�
�� � Bg�� �W
hA�Bi�P�S��P�S�����A	B 
P�
f� � � � U�
�� � Ag��

�P�
f� � � � U�
�� � Bg��i �

Hence� setting� for i � �� �

mB
i � fhP�
f� � � � Ui
��g � A�� P�
f� � � � Ui
�� ���g�ig � � ��A � S� 
�����

��



as two boolean	valued basic probability assignments de�ning the boolean	valued belief
functions belBi � i � �� � and considering the system

mB
� �

DW
hA�Bi�P�S��P�S��A	B�E�A	B ��� 
P�
f� � � � U�
�� � Ag�� 
�����

�P�
f� � � � U�
�� � Bg�� �W
hA�Bi�P�S��P�S��A	B ��� 
P�
f� � � � U�
�� � Ag��

�P�
f� � � � U�
�� � Bg��i���E�S �

we can easily observe that m� is also a boolean	valued b�p�a� which de�nes belB� �belB� �
Hence� for boolean	valued belief functions the combination rule� is weakly extensional
or quasi	extensional as in the case of the abstract combinatoric de�nition of the Demp	
ster combination rule for numerical b�p�a��s and the corresponding belief functions�
The fact that in the boolean	valued case no supplementary conditions of statistical
independence imposed on the set	valued random variables U� and U� are necessary� is
a trivial consequence of the extensional nature of boolean	valued probability measures
with respect to the set	theoretic operations over random events�

Let us close this chapter by a short and rather sketched reasoning which shows
that the weak or quasi	extensionality of the combination rule for belief functions is
achievable� without any conditions of statistical independence of the random variables
U� and U� also for certain numerical	valued probability measures supposing that they
are de�ned in a rather nonstandard way conserving the extensionality of boolean op	
erations over a particular Boolean algebra� Let us focus our attention to the three
following particular Boolean algebras which are obviously isomorphic with each other�

Let N� � f�� � � � �g be the set of all 
standard� positive integers� let P
N�� be the
power	set of all subsets of N�� let 
� � and N� � � be the set	theoretic operations of
union� intersection and complement� Then the quadruple B� � hP
N���
���N� � �i
is evidently a complete Boolean algebra with the empty subset � of N� as the zero
element 
B�� the set N� as the unit element �B� � and with the set	theoretic relation of
inclusion � playing the role of the partial ordering �B��

Let B� � f�� �g� be the space of all in�nite binary sequences� let x � hx�� x�� � � �i
or x � hxii�i��� xi � f�� �g for all i � N�� denote an element of B� 
and similarly
for y� z� � � ��� Let �� � h�� �� �� � � �i � B� and �� � h�� �� �� � � �i � B� denote the two
constant sequences� let �� and �� be binary operations taking B�B� into B� in such
a way that x�� y � hsupfxi� yigi�i�� and x� �� y � hinffxi� yigi�i�� for each x� y � B��
here sup and inf are the usual supremum and in�mum operations in f�� �g� so that
supfxi� yig � � i� xi � yi � � and inffxi� yig � � i� xi � yi � �� Let �� � � be
the unary operation taking B� into B� in such a way that �� � x � h� � xii�i�� for
all x � B�� Then the quadruple B� � hf�� �g�������� �� � �i is a complete Boolean
algebra with the zero element �B� � O� and the unit element �B� � ��� The Boolean
algebras B� and B� are isomorphic� their isomorphism being established by the � � �
mapping  � P
N�� � f�� �g� which ascribes to each A � N� its characteristic
function 
sequence� in this particular case� 
A� � h
A�ii�i�� � f�� �g

�� de�ned for
each i � N� by 
A�i � �� if i � A� 
A�i � � otherwise�

The third Boolean algebra will be obtained by a particular ��� encoding of sets of
positive integers and in�nite binary sequences by real numbers from 
a certain subset

��



of� the unit interval of 
standard� real numbers� Let C be the well	known Cantor
subset of h�� �i� Informally� C is de�ned by erasing the open interval 
�
�� 
�� from
h�� �i� and by repeated applications of the same operation to the remaining closed
intervals� I� e�� the open interval 
�
�� 
�� is reased from h�� �
�i and 
�
�� �
�� from
h
�� �i and so on ad in�nitum� what remains is just the Cantor set C� Formally� C
is the set of all real numbers from the unit interval for which there exists its ternary
decomposition 
decomposition to the base �� which does not contain any occurrence of
the numeral �� It follows immediately that if a decomposition satisfying this property
exists� it is de�ned uniquely 
the ternary decomposition �� ��� ��� � � � � �n� �� �� �� �� � � ��
alternative to �� ��� � � � � �n� � �� �� �� � � � does not meet the constraint not to contain
any occurrence of ��� Hence� the mapping �� � f�� �g� � C ascribing to each x �
hx�� x�� � � �i � f�� �g� the real number

P�
i�� xi �

�i is a � � � mapping as well as the
composed mapping � � P
N��� C de�ned by

�
A� � ��

A�� �
X�

i��

A�i �

�i 
�����

for each A � N��
The mapping � induces binary operations �� and ��� and unary operation � $�� in

C as follows� Set� for each �� � � C�

� �� � � �
�
���
�� 
 ���
��

�
� 
��� �

� �� � � �
�
���
�� � ���
��

�
�

� $�� � �
�
N� � ���
��

�
�

in the last row ��� denotes the set	theoretic operation of complement� All the three
operations are evidently correctly and unambiguously de�ned� moreover� an easy cal	
culation yields that � $�� � �� � holds for each � � C� where � � � denotes the usual
operation of substraction in h�� �i� The quadruple B� � hC������� �� �i is a complete
Boolean algebra� �B� � � and �B� � �� and B� is obviously isomorphic with the Boolean
algebras B� and B� due to the mappings �� and �� de�ned above�

The following partial operation
P� � C� � C ascribing to 
some� in�nite sequences

of real numbers from the Cantor set C a number from C will be de�ned as follows� Let
h��� ��� � � �i be a sequence of numbers from C such that the subsets ���
�i� of N�� i �
�� � � � �� are mutually disjoint� Then

P��
i�� �i is de�ned by � 


S�
i���

��
�i���
P��

i�� �i
being unde�ned otherwise� As can be easily seen� for each sequence h��� ��� � � �i � C�

the following implication holds� if
P��

i�� �i is de�ned� then
P��

i�� �i �
P�

i�� �i� where
the last expression denotes the usual operation of summation in h�� �i� The operationP��

i�� is commutative in the sense that if
P��

i�� �i is de�ned� then
P��

i�� �
�i� is also
de�ned and� consequently� equal to

P��
i�� �i�

P�
i�� �i� and

P�
i�� �
�i�� for each � � �

mapping � � N� � N�� The de�nition of
P��

i�� �i can be easily extended� contrary to
the classical de�nition of

P�
i�� �i� to that of

P�
��D � for each nonempty subset D � C�

but we shall not need and use this generalization in what follows�
It is perhaps worth mentioning explicitly� that the partial operation

P��
i�� can be

de�ned also in an alternative� direct product like way based on the classical 
stan	
dard� operations over particular items of in�nite binary sequences� Namely� given

��



h��� ��� � � �i � C�� let d
�i� � hd�i � d
�
i � � � �i be the unique ternary decomposition of �i

not containing any occurrence of �� let d
j

i � dji
 for each i� j � N�� so that d
�i� �

hd
�
i � d

�
i � � � �i is an in�nite binary sequence� Let

P��
i�� d
�i� �

DP�
i�� d

�
i �
P�

i�� d
�
i � � � �

E
be

the in�nite sequence from fN� 
 f�g 
 f	gg� resulting when summing� in the stan	
dard sense� the particular items of the corresponding binary sequences d
���� d
���� � � ��
Now�

P��

i�� �i is de�ned i�
P��

i�� d
�i� � f�� �g
� holds� and in this case

X��

i��
d
�i� �

�X
j��


�X�

i��
d
�ji �

�
��j � 
�����

Both the de�nitions of
P��

i�� can be easily proved to be equivalent�
The basic structure� enabling to formalize� at the most abstract level� the notion

of probability and random event� is that of probability space� Let us recall� for the
sake of reader�s convenience� its usual 
standard� de�nition� immediately followed by
its nonstandard modi�cation�

De�nition ����� 
i� Let � be a nonempty set� let A be a �	�eld of subsets of �� i� e��
A is nonempty and� for each A�A�� A�� � � � � A also ��A � A and

S�
i��Ai � A hold�

The pair h��Ai is called measurable space 
generated in � or over � by the �	�eld A�
and elements of A are called measurable sets�


ii� A mapping P � A � h�� �i ascribing to each A � A a real number P 
A� from the
unit interval of reals is called �standard� probability measures 
p�m�� abbreviately� on
h��Ai� if 
a� P 
�� � � 
� � A and � � A obviously hold for each �	�eld A � P
���
and 
b� P 


S�
i��Ai� �

P�
i�� P 
Ai� holds for each sequence hA�� A�� � � �i of mutually

disjoint sets from A�


iii� A mapping � � A � C 
Cantor subset of h�� �i� is called non�standard �Cantor�
valued probability measure 
n�s�p�m�� abbreviately� on h��Ai� if 
a� �
�� � � and

b� for each sequence hA�� A�� � � �i of mutually disjoint sets fromA the series

P��
i�� �
Ai�

is de�ned and � 

S�
i��Ai� �

P��
i�� �
Ai��


iv� A triple h��A� P i 
h��A� �i� resp��� where h��Ai is a measurable space and
P is a probability measure 
� is a nonstandard probability measure� resp�� on h��Ai
is called �standard� probability space 
nonstandard or ns�probability space� resp��� In
both the cases� measurable sets� i� e�� elements of A� are called random events� For
each A � A� the value P 
A� 
�
A�� resp�� is called the probability �nonstandard or
ns�probability� resp�� of the random event A� �

It follows immediately from what we told above� that if
P��

i�� �
Ai� is de�ned� thenP��
i�� �
Ai� �

P�
i�� �
Ai�� hence� every ns�probability measure on h��Ai is a �special

case of� standard probability measure on the same measurable space� Consequently�
perhaps the adjective �strong� or �special� probability measure would better express
the relation between the usual operations over the space of values of probability mea	
sures� i� e�� over the unit interval h�� �i� and their alternatives introduced above in this
chapter� On the other side� not every standard probability measure is also a nonstan	
dard one� Take� e� g�� the probability measure de�ning a regular coin tossing� where

��



P 
head� � P 
tail� � �
� as �
 
� C� P is obviously not nonstandard� in general�
this is the case for every probability measure P which takes a value P 
A� 
� C for at
least one random event A�

The formal di�erence between 
ii� and 
iii� in De�nition ��� � consisting in the fact
that the condition of convergence of the series

P��
i�� �
Ai� is explicitly requested to be

satis�ed� in spite of the case when standard probability measure P is de�ned� could be
avoided by joining the condition that

P�
i�� P 
Ai� is de�ned to 
ii�� De�nition ��� � As

a matter of fact� if the operation
P�

i�� is taken in its usual sense and as an operation
over the extended real line including both the in�nite values �	 and �	� then any
series of nonnegative real numbers from the unit interval always converge� However� ifP�

i�� is de�ned as a partial operation on the non	extended real line 
�	�	�� i� e�� not
admitting the in�nite values� or even as a partial operation taking the space h�� �i�

of in�nite sequences of real numbers from the unit interval into h�� �i� the condition of
convergence of the series

P�
i�� P 
Ai� would become non	trivial and its satisfaction must

be explicitly demanded� In the case of nonstandard probability measure the demand
that

P��
i�� �
Ai� is de�ned is obviously non	trivial and� as will be seen below� it will

play the key role in what follows�
In our context� the most important property of nonstandard probability measures

consists in the fact that they are extensional in the sense that nonstandard probabilities
of random events combined from some �elementary� random events by the set	theoretic
operations of union� intersection and complement can be de�ned and computed as
real	valued 
vector� functions of the nonstandard probabilities of these �elementary�
random events� The corresponding formalized statement reads as follows�

Theorem ����� Let h��A� �i be a nonstandard probability space� Then� for all
A� B � A�

�
� �A� � �� �
A�� �
A 
B� � 
�����

� �
A� �� �
B�� �
A �B� � �
A� �� �
B��

where �� and �� are the binary operations taking C  C into C de�ned by 
��� �� �

Proof� The following relation between the operations �� and
P��

i�� is almost evident�
If h�ii�i�� is a sequence of real numbers from C such that �i � � for all i � n andP��

i�� �i is de�ned� then X��

i��
�i � �� �� �� �� � � � �� �n 
�����

holds and we shall use the notation
Pn�

i�� �i to abbreviate the right	hand side expression
in 
������ Or� 
����� yields� by an easy induction� that

�� �� �� �� � � � �� �n � �
�Sn

i���
��
�i�

�
� 
������

from what also the associativity of the operation �� and� consequently� the possibility
to avoid bracketing in the left	hand side expression in 
������ follows� If �i � �� then

�



���
�i� � � � N�� hence� if �i � � for all i � n� the equalityX��

i��
�i � �

�S�
i���

��
�i�
�
� �

�Sn
i���

��
�i�
�
� 
������

� �� �� �� �� � � � �� �n �
Xn�

i��
�i

holds�
Let A� B � A� Setting E� � A� B� E� � A � B� E� � B � A� and Ei � � � �

for each i � �� we obtain a sequence of mutually disjoint measurable sets from A� so
that

P��
i�� �
Ei� is de�ned and

S�
i��Ei � A 
B� So� 
��� � and 
������ yield that

�
A 
 B� �
X��

i��
�
Ei� � �
E�� �� �
E�� �� �
E�� � 
�����

� �
A�B� �� �
A �B� �� �
B �A� �

� 
�
A�B� �� �
A �B�� �� �
B �A� �

� �
�
���
�
A�B�� 
 ���
�
A �B��

�
�� �
B �A� �

� �
h
���

�
�
���
�
A�B�� 
 ���
�
A �B���

�

 ���
�
B �A��

i
�

� �
h
���
�
A�B�� 
 ���
�
A �B�� 
 ���
�
B �A��

i
�

� �
h�
���
�
A�B�� 
 ���
�
A �B�� 
 ���
�
A �B�� 
 ���
�
B �A��

�i
�

� �
h
���
�
A�� 
 ���
�
B��

i
� �
A� �� �
B��

As each nonstandard probability measure is also a classical probability measure�
�
� �A� � �� �
A� holds for each A � A� De Morgan rules then yield that

�
A �B� � �
� � 

��A� 
 
��B��� � 
������

� �� 
�
� �A� �� �
� �B�� �

� �
�
N� � ���
�
��A� �� �
��B��

�
�

� �
�
N� � ���������
�
� �A�� 
 ���
�
� �B����

�
�

� �
�
N� � ����
�
� �A�� 
 ���
�
��B���

�
�

� �
�
N� � �N� � 
���
�
A��� � ���
�
B���

�
�

� �
�
���
A� � ���
B�

�
� �
A� �� �
B��

as for each A � A�

���
�
��A�� � ���
� � �
A�� � N� � ���
�
A�� 
������

holds� The theorem is proved� �

Let us recall explicitly that
Pn�

i�� �i is de�ned� and if this is the case� equal to
�������� � � ����n� i�

P��
i�� �i is de�ned for �i � � for all i � n� Hence� when de�ningW�

��D 

W�D� abbreviately� and

V�
��D 


V�D� abbreviately� for each � �� D � C byW�D � �
�S

��D�
��
��

�
�

V�D � �
�T

��D�
��
��

�
� 
������

then
W�D is a conservative extension of

P��
i�� �i in the case when D � f��� ��� � � �g andP��

i�� �i is de�ned� However�
W�D 
and

V�D� is de�ned for all � �� D � C� but
P��

i�� �i
is de�ned only when ���
�i�����
�j� � � � N� holds for each i� j � �� � � � � � i �� j�

��



De�nition ����� Let S be a �nite nonempty set� Basic nonstandard probability
assignment �b�ns�p�a�� on S 
or� over S� is a mapping m� � P
S� � C such thatP�

A�S m
�
A� is de�ned and

P�
A�S m

�
A� � �� �

Remark� The value
P�

A�S m
�
A� is de�ned by

P��

i�� �i� where hA�� A�� � � � � Asi� s �
card
P
S�� � card�S�� is an ordering 
without repetitions� of all subsets of S� �i �
m�
Ai� for i � s� and �i � � for all i � N�� i � s� If this is the case� i� e�� ifP�

A�S m
�
A� is de�ned� then obviously

P��
i�� �i �

Ps�
i�� �i �

Ps�
i��m

�
Ai� � m�
A�� ��
m�
A�� �� � � � �� m�
As�� As the operation �� is commutative and associative� the
value

P�
A�S m

�
A� is de�ned unambiguously� i� e�� it does not depend on the particular
ordering hA�� A�� � � � � Asi of all subsets of S�

As in the case of usual b�p�a��s� every ns	b�p�a� on a �nite set S can be induced
by a set � valued random variable de�ned on a nonstandard probability space� as the
following statement claims and proves�

Theorem ����� There exists a nonstandard probability space h��A� �i such that� for
each �nite nonempty set S and each ns�	b�p�a� m� on S� there exists a measurable map	
ping 
set	valued random variable� in other terms� Um� � h��A� �i � hP
S��P
P
S��i
such that� for each A � S�

m�
A� � � 
f� � � � Um�
�� � Ag� � 
���� �

�

Proof� Let � � N� � f�� � � � �g be the set of all positive integers� let A � P
N��
be the system of all sets of positive integers� let �
fig� �  � ��i for all i � N�� Hence�
�
�� � �
N�� �

P�
i��  � �

�i � 

�� 
� � 
�
����� � � and �
A� �
P

i�A �
fig� �P
i�A  � ��i � C holds for each A � N�� Consequently� h��A� �i � hN��P
N��� �i

is a ns� probability space� Or� let A�� A�� � � � � N� be an in�nite sequence of mutually
disjoint subsets of N�� Then

� 

S�
i��Ai� �

X
i�
S
�

i��Ai
 � ��j �

X�

i��

X
j�Ai

 � ��j � 
������

�
X�

i��
�
Ai� �

X��

i��
�
Ai��

Let us recall the � � � mapping � � P
N�� � C 
the Cantor set� de�ned above�
For each x � C� x� hx�� x�� � � �i � f�� g��

���
x� � fi � N� � xi � g� 
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and the assertion is proved� �

The following theorem deduces and presents a boolean	like modi�cation of Demp	
ster combination rule which can be obtained within the framework of our nonstan	
dard model� The obtained combination rule conserves the semi	extensional nature of
the classical Dempster combination rule in the sense that the values of the combined
ns� basic probability assignment are de�ned by� and can be computed from� the values
of the two particular ns� b�p�a��s which are to be combined together� but no assumption
concerning the statistical independence 
or a special kind and�or degree of depencen	
dence� of the random variables in question is needed�

Theorem ����� Let h��A� �i be a nonstandard probability space� let S be a nonempty
�nite set� let Ei� i � �� � be nonempty empirical spaces� let Ei� i � �� � Ei � P
Ei��
be nonempty �	�elds of subsets of these empirical spaces� Let Xi � h��A� �i � hEi� Eii�
i � �� � be measurable mappings 
generalized random variables�� let �i � S  Ei �
f�� �g� i � �� � be compatibility relations over the corresponding spaces� Let the
mappings Ui � �� P
S� de�ned� for each � � � and for both i � �� � by

Ui
�� � fs � S � �i
s�Xi
��� � �g 
������

be measurable mappings taking the ns� probability space h��A� �i into the measurable
space hP
S��P
P
S��i�

Let ��� � S 
E�E��� f�� �g be the compatibility relation over the space S and
the Cartesian product E� E� of the empirical spaces E�� E�� de�ned by

���
s� hx�� x�i� � minf��
s� x��� ��
s� x��g 
�����

for every s � S� x� � E�� x� � E�� Set

U��
�� � fs � S � ���
s� hX�
���X�
��i� � �g 
������

and denote by m�
i 
A�� i � �� � �� A � S� the value

m�
i 
A� � �
f� � � � Ui
�� � Ag�� 
������

Then m�
i is a ns�b�p�a� on S for each i � �� � �� and
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holds for each A � S� where �� is the nonstandard in�mum operation de�ned by

��� �� �

Proof� For i � �� � both the mappings Ui � � � P
S� de�ned by 
������ are
supposed to be measurable with respect to hP
S��P
P
S��i� so that f� � � � Ui
�� �
Ag � A holds for each A � S and both i � �� � Consequently� �
f� � � � Ui
�� � Ag�
is de�ned� If A�� A� � S� A� �� A�� then

f� � � � Ui
�� � A�g � f� � � � Ui
�� � A�g � � 
���� �

��



is valid for both i � �� � so that ff� � � � Ui
�� � Ag � A � Sg is a system of
mutually disjoint subsets of � 
a decomposition of � to subsets from A� in fact�� and
for such systems

P�
A�S �
f� � � � Ui
�� � Ag� is de�ned and equals to � for i � �� �

as h��A� �i is a nonstandard probability space� Hence� both m�
� and m�

� de�ned by

������ are ns�b�p�a��s over S�

As in the standard case� 
����� and 
������ yield that

U��
�� � fs � S � minf��
s�X�
���� ��
s�X�
���g � �g � 
������

� fs � S � ��
s�X�
��� � ��
s�X�
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� fs � S � ��
s�X�
��� � �g � fs � S � ��
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� U�
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For each A � S�

f� � � � U��
�� � Ag � f� � � � U�
�� � U�
�� � Ag � 
������

�
S
B�C��S�B	C�A 
f� � � � U�
�� � Bg � f� � � � U�
�� � Cg� �

This subset of � belongs to A� as due to the �niteness of S and� consequently� also of
P
S�� there is only a �nite number of pairs hB�Ci � P
S�P
S� such that B�C � A�
Being a �	�eld� A is closed with respect to �nite intersections and �nite unions� Hence�
U�� is also a measurable mapping which take h��A� �i into hP
S��P
P
S��i� and the
relation X�

A�S
�
f� � � � U��
�� � Ag� �

X�

A�S
m�

��
A� � � 
������

can be proved in the same way as in the case of m�
� and m�

��
Let hB�� C�i� hB�� C�i be two di�erent pairs of subsets of S� so that either B� �� B�

or C� �� C�� Then� obviously�

f� � � � U�
�� � B�� U�
�� � C�g � f� � � � U�
�� � B�� U�
�� � C�g � �� 
������

so that m�
��
A� can be written as

m�
��
A� � �
f� � � � U��
�� � Ag� � 
������

�
X�

B�C�S�B	C�A
� 
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�� � Cg� �X�

B�C�S�B	C�A
� 
f� � � � U�
�� � Bg� �� � 
f� � � � U�
�� � Cg� �

�
X�

B�C�S�B	C�A
m�

�
B� �m�
�
C�

due to Theorem ���� and due to the de�nition of m�
�
B� and m�

�
C� by 
������� The
theorem is proved� �

It is perhaps worth noting explicitly� that the formula 
������� which de�nes the
modi�ed form of the Dempster combination rule� can be rewritten in a way still more
close to the standard one� As a matter of fact� the binary operation �� on C can be seen
also as a natural extension of the standard multiplication 
product� operation in h�� �i
extended in the same boolean	like pointwise way as

P� extends addition� This idea

� 



follows from the trivial fact that the in�mum operation �� on B� � f�� �g�� de�ned�
for each x � hx�� x�� � � �i� y � hy�� y�� � � �i � f�� �g� by x�� y � hinffxi� xigifi � �g��
is identical with the binary operation !�� de�ned by x!�y � hxiyii�i��� Hence� we can
write also !� instead of �� and 
������ can be converted into

m�
��
A� �

X�

B�C��S�B	C�A
m�

�
B�!� m
�
�
C�� 
�����

An open� and perhaps interesting question for a further research reads� whether the
Boolean algebra B� of all subsets of the set N� of positive integers can be replaced
by another and perhaps more general and abstract Boolean algebra B� and which
restrictions should be imposed on B in order to be able to encode its elements by 
some�
real numbers from the unit interval in a reasonable and one	to	one way� or at least to
assure that such a mapping exists� However� let us postpone such an investigation till
another occasion�
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