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� A Size�Optimal Simulation of Asymmetric Networks

In his ���� paper 	��
� John Hop�eld introduced a very in�uential associative memory model which
has since come to be known as the discrete�time Hop�eld �or symmetric� network� He has shown that
any symmetric network is governed by a bounded Liapunov� or �energy� function de�ned on its state
space which is properly decreasing along any nonconstant computation path �productive computa�
tion�� Hence the existence of Liapunov function implies that under sequential update any �in general
asynchronous� productive computation in the underlying model with symmetric weights �and nonneg�
ative feedbacks� converges from any initial state towards some stable �nal state� An analogous result
can be shown for parallel update where a cycle of length at most two di�erent states may appear 	��
�
Thus Hop�eld nets compared with general asymmetric networks have favorable convergence proper�
ties� Part of the appeal of Hop�eld nets also stems from their natural hardware implementation �e�g�
Ising spin glasses 	�
� optical computers 	�
� etc��� Besides associative memory� the proposed uses of
Hop�eld networks include� e�g�� fast approximate solution of combinatorial optimization problems 	��
�

It is known 	��
 that under fully parallel mode any convergent asymmetric discrete�time recurrent
neural network with n neurons can be simulated by a symmetric network of quadratic size O�n��� This
also means that the in�nite polynomial�size increasing sequences of discrete symmetric networks are
computationally equivalent to �nonuniform� polynomially space�bounded Turing machines� i�e� they
compute the complexity class PSPACE�poly or P�poly when polynomial weights are considered� The
idea behind this simulation is that each directed edge is implemented by a small symmetric subnetwork
which receives energy support from a symmetric clock subnetwork �a binary counter� 	��
 in order to
propagate a signal in the right direction�

In this section the construction from 	��
 will be improved by reducing the number of neurons in
the simulating symmetric network to the linear size �n � � which is asymptotically optimal� This is
achieved by simulating the neurons �instead of edges� whose states are updated by means of the clock
technique� A similar idea was used for an analogous continuous�time simulation 	��
� This result can
be interpreted in the sense that convergent asymmetric networks are computationally equivalent with
symmetric ones to a greater degree when considering also the network size�

We will �rst brie�y specify the model of a �nite discrete recurrent neural network� The network
consists of n simple computational units or neurons� indexed as �� � � � � n� which are connected into a
generally cyclic oriented graph or architecture in which each edge �i� j� leading from neuron i to j is
labelled with an integer weight w�i� j� � wji� The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons� and vice versa� Special attention will
be paid to Hop�eld �symmetric� networks� whose architecture is an undirected graph with symmetric
weights w�i� j� � w�j� i� for every i� j�

The synchronous computational dynamics of the network� working in fully parallel mode� deter�

mines the evolution of the network state y�t� � �y�t�� � � � � � y
�t�
n � � f�� �gn for all discrete time instants

t � �� �� � � � as follows� At the beginning of the computation� the network is placed in an initial state
y��� which may include an external input� At discrete time t � �� each neuron j � �� � � � � n collects its

binary inputs from the states �outputs� y
�t�
i � f�� �g of incident neurons i� Then its integer excitation

�
�t�
j �

Pn
i��wjiy

�t�
i �j � �� � � � � n� is computed as the respective weighted sum of inputs including an

integer bias wj� which can be viewed as the weight of the formal constant unit input y�t�� � �� At the

next instant t � �� an activation function � is applied to �
�t�
j for all neurons j � �� � � � � n in order to

determine the new network state y�t��� as follows�

y
�t���
j � �

�
�
�t�
j

�
j � �� � � � � n �����

where a binary�state neural network employs the hard limiter �or threshold� activation function

���� �

�
� for � � �
� for � � � �

�����

Now we will show the following theorem concerning the computational equivalence of asymmetric
and symmetric networks�
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Figure ���� A ��bit counter network

Theorem � Any fully parallel computation by a recurrent neural network of n binary neurons� with
generally asymmetric weights� which converges within t� discrete updates can be simulated by a Hop�eld
net with �n � � neurons within t� discrete�time steps�

Proof� Observe� �rst� that any converging computation by an asymmetric network of n binary neurons
must terminate within t� � �n steps� A basic technique used in our proof is the construction of an
�n � ���bit symmetric clock subnetwork �a binary counter� which� using �n � � units being initially
at the zero state� produces a sequence of �n well�controlled oscillations before it converges� This
sequence of clock pulses is used to drive the rest of the network where each neuron is simulated by a
symmetric subnetwork of � units� The construction of the �n����bit binary counter will be described
by induction for n� An example of a ��bit counter network is presented in Figure ���� where the
symmetric connections between neurons are labelled with corresponding weights� and the biases are
indicated by the edges drawn without an originating unit� In the sequel the symmetric weights in the
Hop�eld net will be denoted by w whereas w� denotes the original asymmetric weights�

The counter bit c� with the bias w��� c�� � ��W � �n � � denoted also by B in Figure ��� where

W � max
j�������n

nX
i��

jw�
jij � �����

which is initially passive �i�e� its state is zero�� will �re or be active �i�e� its state is �� at the next time
instant according to ����� since its excitation is positive�

For the induction step suppose that the counter has been constructed up to the �rst k � n � �
counter bits c�� � � � � ck�� and denote by Vk the set of all its nk � ��k � �� � � neurons� including the
auxiliary ones labelled a�� b� for � � �� � � � � k��� Then the counter unit ck is connected to all nk neurons
v � Vk via unit weights w�v� ck� � � which� together with its bias w��� ck� � �nk� make ck �res when
all these units are active� This includes the �rst k active counter units c�� � � � � ck�� which means that
counting from � to �k � � has been accomplished� In addition� unit ck is connected to ak which is
further linked to bk so that these auxiliary neurons are� one by one� activated after ck �res� This is
implemented by the following weights w�ck� ak� � Wk � � �speci�ed below�� w�ak� bk� � Wk�nk� and
the biases w��� ak� � ��� w��� bk� � nk�Wk� Neuron ak resets all the units in Vk to their initial zero
states� For this purpose� ak is further connected to each v � Vk via a su�ciently large negative weight
w�ak� v� � � such that �w�ak� v� � � �

P
u�Vk�f�g�w�u�v���

w�u� v� exceeds their mutual positive

in�uence �including the weight w�ck� v� � � and possibly its positive bias w��� v� � ��� This also
determines the above�mentioned large positive weight parameter Wk � � �

P
v�Vk

w�ak� v� which
makes the state of ak �similarly for bk� independent on the outputs from v � Vk� Finally� the unit bk
balances the in�uence of ak on Vk so that the �rst k counter bits can again count from � to �k�� but
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Figure ���� Symmetric simulation of neuron j

now with ck being active� This is achieved by the weight w�bk� v� � �w�ak� v�� � for each v � Vk in
which �� compensates w�ck� v� � �� This completes the induction step�

Now� the symmetric clock subnetwork� particularly the counter unit c� which outputs the state
sequence �������

n

during the computation� will be used to proceed the respective simulation of an
asymmetric network� For this purpose� neuron �c� is added which computes the negation of c� output�
Then for each neuron j from the asymmetric network� � units pj� qj� rj are introduced in the Hop�eld

net so that pj represents the new �current� state y
�t�
j of j at time t � � while qj stores the old state

y
�t���
j of j from the preceding time instant t � �� and rj is an auxiliary neuron realizing the update

of the old state� The corresponding symmetric subnetwork simulating one neuron j is depicted in
Figure ���� The total number of units simulating the asymmetric network is �n � � �including �c��
which� together with the clock size �n � �� gives the desired �n� � neurons of the Hop�eld net�

At the beginning of the simulation all the neurons in the Hop�eld net are initially passive except

for units qj corresponding to the original initially active neurons j� i�e� y���j � �� Then an asymmetric
network update at time t � � is simulated by a cycle of four steps in the Hop�eld net as follows� In
the �rst step� unit c� �res and remains active until its state is changed by the clock since its large
positive bias makes it independent on all the n neurons pj� Also the unit �c� �res because it computes
the negation of c� that was initially passive� At the same time each neuron pj computes the new

state y
�t�
j from the old ones y

�t���
i which are stored in corresponding units qi� Thus each neuron pj is

connected with units qi via the original weights w�qi� pj� � w��i� j� and also its bias w��� pj� � w���� j�

is preserved� So far� unit qj keeps the old state y
�t���
j due to its feedback� In the second step� the new

state y
�t�
j is copied from pj to rj � and the active neuron c� makes each neuron pj passive by means of

a large negative weight which exceeds the positive in�uence from units qi �i � �� � � � � n� including its

bias w��� pj� according to ������ Similarly� the active neuron �c� erases the old state y
�t���
j from each

neuron qj by making it passive with the help of a large negative weight which exceeds its feedback
and the positive in�uence from units pi �i � �� � � � � n�� Finally� also neuron �c� becomes passive since

c� was active� In the third step� the current state y
�t�
j is copied from rj to qj since all the remaining

incident neurons pi and �c� are and remain passive due to c� being active� Therefore also unit rj

becomes passive� In the fourth step� c� becomes passive and the state y
�t�
j � being called old from now

on� is stored in qj� Thus the Hop�eld net �nds itself at the starting point of the next asymmetric
network update simulation at time t� � which proceeds in the same way� Hence the whole simulation
is achieved within t� discrete�time steps� �

�



� Convergence Time Analysis

In this section the convergence time in Hop�eld networks� which is the number of discrete updates
until the network converges� will be analyzed� We will consider only the worst case bounds while
the average�case analysis can be found in 	��
� Obviously� there are exactly �n di�erent states in
a network with n binary neurons which yields trivial �n upper bound on the convergence time in
symmetric networks of size n� On the other hand� the symmetric clock network 	��
 which was used
in the proof of Theorem � represents an explicit example of a Hop�eld net whose convergence time
is exponential with respect to n� Namely� this gives ���n�	� lower bound on the convergence time of
Hop�eld nets since the respective �k � ���bit binary counter requires n � �k � � neurons�

However� the above�mentioned bounds do not take the weight size into account� The corresponding
upper bound can be derived by the energy function argument which also witnesses the convergence
property of symmetric nets� Namely� for a sequential computation of a Hop�eld net� for the simplicity�
with zero feedbacks wjj � � and biases wj� � � �j � �� � � � � n�� an energy associated with state y�t� at
time t � � can be de�ned as follows�

E
�
y�t�
�

� E�t� � �
�

�

nX
j��

nX
i��

wjiy
�t�
i y

�t�
j �����

for which Hop�eld showed that E�t� � E�t� ��� � for every t � � of a productive computation 	��
�
Moreover� the energy function ����� is bounded� i�e� jE�t�j � W where

W �
�

�

nX
j��

nX
i��

jwjij �����

is called the weight of the network� Hence� the computation must converge within time O�W � which
can even be made more accurate by using a slightly di�erent energy function 	�
� This yields the
polynomial upper bound on the convergence time of Hop�eld nets with polynomial weights� Similar
arguments can be used for fully parallel updates�

In the following theorem these results will be translated into the convergence time bounds with
respect to the length of bit representations of Hop�eld nets� Namely� for a symmetric network which

is described within M bits� the convergence�time lower and upper bounds� �
�M
���� and �O�M

�����
respectively will be shown� It is an open problem whether these upper or lower bounds can be
improved� This is an important issue since the convergence�time results for binary�state networks can
be compared with those for analog�state �or even continuous�time� networks in which the precision of
real weight parameters �i�e� the representation length� plays an important role� For example� there
exists an analog�state symmetric network with an encoding size of M bits that converges after �
�g�M��

continuous�time units� where g�M � is an arbitrary continuous function such that g�M � � o�M ��
g�M � � ��M��	�� and M	g�M � is increasing 	��
� From the result presented here it follows that
the computation of this analog symmetric network terminates later than that of any other discrete
Hop�eld net of the same representation size� This approach also appears to be more rigorous since
we express the convergence time with respect to the full descriptional complexity of the Hop�eld net
instead of to the number of neurons which captures its computational sources only partially�

Theorem � There exists a Hop�eld network with an encoding size of M bits that converges after

�
�M
���� updates and any computation of a symmetric network with a binary representation of M bits

terminates within �O�M
���� discrete computational steps�

Proof� For the underlying lower bound the clock network with parameter B � � from the proof of
Theorem � can again be exploited� It is su�cient to estimate its representation length� By induction�
the maximum weight in the �k � ���bit counter with n � �k � � neurons is of order �O�n�� This
corresponds to O�n� bits per weight which is repeated O�n�� times� and thus yields at most M � O�n	�
bits in the representation� Hence� the convergence�time lower bound �
�n� of the clock network can

be expressed as �
�M
�����





On the other hand� consider a Hop�eld network with an M �bit representation that converges after
T �M � updates� A major part of this M �bit representation consists of m binary encodings of weights
w�� � � � � wm of the corresponding lengths M�� � � � �Mm where

Pm
r��Mr � ��M �� Clearly� there must be

at least T �M � di�erent energy levels corresponding to the states visited during the computation� Thus
the underlying weights must produce at least S � T �M � di�erent sums

P
r�A wr for A � f�� � � � �mg

where wr for r � A agrees with wji for yi � yj � � in ������ So� it is su�cient to upper bound
the number of di�erent sums over m weights whose binary representations form a ��M ��bit string
altogether�

For m � ��M���� consider m weights �� �� � �� � � �� ���M
����� each with a representation length

of order Mr � O�M����� which generate S � ���M
���� di�erent sums� For m � o�M���� we have

only �m � �o�M
���� possible sums� which is less than that in the previous case� On the contrary�

suppose that m � 
�M����� We de�ne the maximum number of nonzero weights similarly as in the
�rst case so that each nonzero weight representation consists of zeros except for one bit in which the
remaining weight representations have zeros� Thus p such nonzero weights altogether require at least
���� � � ��p � ��p�� bits for their representation which must be M at most and hence p � O�M����

which yields at most �O�M
���� di�erent sums� It follows from the weight de�nition that the bits in the

representations of the remaining zero weights can arbitrarily be generated by summing appropriate
nonzero weights� otherwise p would not be the maximum� An alternative de�nition of weights can
possibly increase the number of di�erent sums by exploiting at most O�logm� carry bits that are
produced by summing m weights� However� this yields only factor O�m� and hence the number of

di�erent sums S � m�O�M
���� � �O�M

���� from m �M � Thus T �M � � �O�M
����� �

� Approximating the Minimum Energy Problem

Another important issue in Hop�eld nets is the MIN ENERGY or GROUND STATE problem of
�nding a network state with minimal energy ����� for a given symmetric neural network� Remember
that in ����� it is assumed� for reasons of simplicity� that wjj � � and wj� � � for j � �� � � � � n� In
addition� without loss of generality 	��
� we will work throughout this section with frequently used
bipolar states ��� � of neurons instead of binary ones �� � introduced in ����� where � is now replaced
by ��� This problem appears to be of a special interest since many hard combinatorial optimization
problems have been heuristically solved by minimizing the energy in Hop�eld nets 	�� ��
� This issue
is also important in statistical physics which originally inspired the Hop�eld net models� e�g� Ising
spin glasses 	�
�

Unfortunately� the decision version of the MIN ENERGY problem� i�e� whether there exits a
network state having an energy less than the prescribed value� is NP�complete� This can be observed
from the above�mentioned reductions of hard optimization problems to MIN ENERGY� For an explicit
NP�completeness proof see e�g� 	��
 where a reduction from SAT is exploited� On the other hand there
is a MIN ENERGY polynomial algorithm for special cases of Hop�eld nets whose architectures are
planar lattices 	�
 or planar graphs 	�
�

Perhaps� the most direct and frequently used reduction to MIN ENERGY is from the MAX CUT
problem �see e�g� 	
� which� given an undirected graph G � �V�E� with an integer edge evaluation
c � E �� Z� is the issue of �nding a cut V� � V which maximizes the cut size

c�V�� �
X

fi�jg�E�i�V��j ��V�

c�fi� jg��
X

fi�jg�E�c�fi�jg���

c�fi� jg� � �����

In fact� this is a generalized version of MAX CUT that allows negative edge evaluations necessary for
the opposite reduction from MIN ENERGY to MAX CUT� Recently� a new randomized approximation
algorithm with a high performance guarantee � � ������� for this MAX CUT formulation has been
proposed 	��
 and later derandomized 	��
 which we will exploit for approximating the MIN ENERGY
problem� Namely� we will show the theorem that MIN ENERGY can be approximated in a polynomial
time within the absolute error less than ����W where W is the network weight ������ For W � O�n��
which is satis�ed by e�g� Hop�eld nets with n neurons and constant weights� this result matches the
lower bound ��n��	� which cannot be guaranteed by any approximate polynomial time MIN ENERGY

�



algorithm for every � � � 	
� unless P � NP � In addition� an approximate polynomial time MIN
ENERGY algorithm with absolute error O�n	 logn� is also known in a special case of Hop�eld nets
whose architectures are two�level grids 	�
�

Theorem � The MIN ENERGY problem for Hop�eld nets can be approximated in a polynomial time
within the absolute error less than ����W where W is the network weight ������

Proof� We will �rst recall the well�known simple reduction between MIN ENERGY and MAX CUT
problems� For a Hop�eld network with architecture G and weights w�i� j� we can easily de�ne the
corresponding instance G � �V�E� c of MAX CUT with the edge evaluation c�fi� jg� � �w�i� j� for
fi� jg � E �i�e� for w�i� j� �� ��� We will show that any cut V� � V of G corresponds to a Hop�eld net
state y � f��� �gn where yi � � if i � V� and yi � �� for j � V n V�� so that the respective cut size
c�V�� is related to the underlying energy E�y�� Thus the energy function ����� can be expressed in
terms of cut size ����� as follows�

E�y� � �
�

�

X
i�j�V

w�i� j�yiyj �

� �
�

�

X
yi�yj

w�i� j� �
�

�

X
yi ��yj

w�i� j� �
�

�

X
yi ��yj

w�i� j��
�

�

X
yi ��yj

w�i� j� �

� �
�

�

X
i�j�V

w�i� j� �
X
yi ��yj

w�i� j� � �
�

�

X
w�i�j���

w�i� j��
�

�

X
w�i�j���

w�i� j� �

�
X
yi ��yj

w�i� j� �
�

�

X
w�i�j���

w�i� j� �
�

�

X
w�i�j���

w�i� j� �

� �
�

�

X
w�i�j���

w�i� j� �
�

�

X
w�i�j���

w�i� j� �
X

w�i�j���

w�i� j� �
X
yi ��yj

w�i� j� �

� W � �
X

fi�jg�E�c�fi�jg���

c�fi� jg�� �
X

fi�jg�E�i�V��j ��V�

c�fi� jg� �

� W � �c�V�� � �����

It follows from ����� that the minimum energy state corresponds to the maximum cut�
Now� the approximate polynomial time algorithm from 	��
 can be employed to solve instance

G � �V�E� c of the MAX CUT problem which provides a cut V� whose size c�V�� � �c� is guaranteed
to be at least � � ������� times the maximum cut size c�� Let cut V� correspond to the Hop�eld
network state y which implies c�V�� � �	��W � E�y�� from ������ Hence� we get a guarantee W �
E�y� � ��W � E�� � �W � �E� where E� is the minimum energy corresponding to the maximum
cut c� which implies E�y� � �� � ��W � �E�� By adding �E�� this inequality can be rewritten as
E�y� � E� � �� � ���W � E��� Since jE�j � W � we obtain the desired guarantee for the absolute
error E�y�� E� � ��� ���W � ����W � �

� Turing Universality of Finite Analog Hop�eld Nets

In this section we will deal with the computational power of �nite analog�state discrete�time recurrent
neural networks which� instead of the threshold activation function ������ employ e�g� the saturated�
linear sigmoid activation function

���� �

��
�

� for � � �
� for � � � � �
� for � � � �

����

Hence the states of analog neurons are real numbers within the interval 	�� �
� and similarly the weights
�including biases� are allowed to be reals�

�



The computational power of asymmetric analog networks is known to increase with the Kolmogorov
complexity of real weights 	�
� With integer weights such networks are equivalent to �nite automata 	��
��� ��
� while with rational weights arbitrary Turing machines can be simulated 	��� �
� With arbitrary
real weights the network can even have �super�Turing� computational capabilities� e�g� polynomial time
computations correspond to the complexity class P�poly and all languages can be recognized within
exponential time 	��
� On the other hand� it is known that any amount of analog noise reduces the
computational power of this model to that of �nite automata 	��
�

For �nite symmetric networks� only the computational power of binary�state Hop�eld nets is
fully characterized� Namely� they recognize the so�called Hop�eld languages 	��
 which establish a
proper subclass of regular languages and hence� they are less powerful than �nite automata� Hop�eld
languages can also be faithfully recognized by analog symmetric neural networks 	��� ��
 and this
provides the lower bound on their computational power� A natural question arises whether the �nite
analog Hop�eld nets are Turing universal� i�e� whether a Turing machine simulation can be achieved
with rational weights similarly as in the asymmetric case 	��� �
� The main problem is that under
fully parallel update any analog Hop�eld net with rational weights converges to a limit cycle of length
at most two 	��
� Thus the only possibility of simulating Turing machines is to exploit a sequence of
rational network states converging to this limit cycle which seems to be tricky if possible at all� A more
reasonable approach is to supply an external clock that produces an in�nite sequence of binary pulses
providing the symmetric network with an energy support� e�g� for simulating an asymmetric analog
network similarly as in Theorem �� In this way the computational power of the analog Hop�eld nets
with an external clock is proved to be the same as that of the asymmetric analog networks� Especially
for rational weights� this implies that they are Turing universal� The following theorem also completely
characterizes the in�nite binary sequences by the external clock� which prevent the Hop�eld network
from converging�

Theorem � Any fully parallel computation by an analog�state recurrent neural network with real
weights and n neurons can be simulated by an analog Hop�eld net with real weights of the same
Kolmogorov complexity having �n�� units and one external input producing an in�nite binary sequence
including the in�nite number of strings of the form bx�b � f�� �g	 where b �� �b� which are necessary to
prevent the symmetric network from converging�

Proof� First observe that an in�nite binary sequence produced by the external input �clock� c that
does not satisfy the assumption of the theorem must be of the form u�b�b��� where b�� b� � f�� �g�
and u � f�� �g� is a pre�x which clearly cannot prevent the network from converging to a limit cycle
of length two� On the other hand we will prove that if the sequence meets the respective condition�
then it must contain an in�nite number of strings of the form �x� �x � f�� �g� since these strings
necessarily accompany the in�nite number of strings �x�� Thus consider two subsequent occurrences
of �x�� For x � �� after ��� possibly followed by several ��s� at least one � must appear due to the
next �x�� For x � �� the string ��� is followed either by � which means the previous case with ���
applies or by � possibly succeeded by several occurrences of ��� which is followed either by a desired
� or by �� which again leads to ����

The symmetric simulation of the asymmetric analog network is very similar to the discrete one
�see Theorem ��� Thus each neuron j in the original analog asymmetric network with n neurons is
simulated by � units pj � qj� rj which are controlled by other � central neurons f� g� h �corresponding
to c�� �c� in the discrete case� whose binary states are generated by a small symmetric subnetwork of
� auxiliary units a� d� e� r� s transforming the binary external input signal from c to a well�controlled
binary sequence� This gives the desired �n�� units of the simulatinganalog Hop�eld net� The situation
is depicted in Figure �� including the de�nition of symmetric weights where W is introduced in �����
and B � �W � ��n � ��

Every binary external input bit is copied from clock c to r and further to s and therefore the states
of these neurons s� r� c store the last � bits of the input sequence� respectively� Neuron a detects the
underlying strings of the form �x� �x � f�� �g� at the input� i�e� it is active iff s is active and c is
passive� It may happen that two such strings follow each other immediately �also notice that it is
impossible for such string to appear again the next step but one�� This case is indicated by the activity
of both neurons a� d where d copies the state from a� Thus unit e copies the state � from a iff d is

�
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Figure ��� Analog symmetric simulation of analog neuron j

passive� Hence� the neuron e produces a �noiseless� sequence of zeros containing an in�nite number of
strings ���� each being exploited for the simulation of one computational step of the original analog
asymmetric network similarly as in the proof of Theorem ��

Namely� qj stores the old analog state y
�t���
j by its unit feedback according to ���� and also h

remains initially active preserving the stability of pj � qj� rj� After e �res� the unit h becomes passive

and f is active which controls the computation of a new analog state y
�t�
j by pj via the original weights

w�qi� pj� � w��i� j� and the bias w�f� pj� � w���� j�� Then the control signal is further copied from

f to g� which enables rj to receive the state y
�t�
j � Finally� h becomes active and the state of qj is

updated by y
�t�
j until e �res again to proceed the next simulation step� �

�
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