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Abstract

The present paper investigates four relatively independent issues, each in one section, which complete
our knowledge regarding the computational aspects of popular Hopfield nets [9]. In Section 1, the
computational equivalence of convergent asymmetric and Hopfield nets is proved with respect to
the network size. In Section 2, the convergence time of Hopfield nets is analyzed in terms of bit
representations. In Section 3, a polynomial time approximate algorithm for the minimum energy
problem is shown. In Section 4, the Turing universality of analog Hopfield nets is studied.
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1 A Size-Optimal Simulation of Asymmetric Networks

In his 1982 paper [12], John Hopfield introduced a very influential associative memory model which
has since come to be known as the discrete-time Hopfield (or symmetric) network. He has shown that
any symmetric network is governed by a bounded Liapunov, or ‘energy’ function defined on its state
space which is properly decreasing along any nonconstant computation path (productive computa-
tion). Hence the existence of Liapunov function implies that under sequential update any (in general
asynchronous) productive computation in the underlying model with symmetric weights (and nonneg-
ative feedbacks) converges from any initial state towards some stable final state. An analogous result
can be shown for parallel update where a cycle of length at most two different states may appear [22].
Thus Hopfield nets compared with general asymmetric networks have favorable convergence proper-
ties. Part of the appeal of Hopfield nets also stems from their natural hardware implementation (e.g.
Ising spin glasses [3], optical computers [7], etc.). Besides associative memory, the proposed uses of
Hopfield networks include, e.g., fast approximate solution of combinatorial optimization problems [13].

It is known [20] that under fully parallel mode any convergent asymmetric discrete-time recurrent
neural network with n neurons can be simulated by a symmetric network of quadratic size O(n?). This
also means that the infinite polynomial-size increasing sequences of discrete symmetric networks are
computationally equivalent to (nonuniform) polynomially space-bounded Turing machines, i.e. they
compute the complexity class PSPACE/poly or P/poly when polynomial weights are considered. The
idea behind this simulation is that each directed edge is implemented by a small symmetric subnetwork
which receives energy support from a symmetric clock subnetwork (a binary counter) [11] in order to
propagate a signal in the right direction.

In this section the construction from [20] will be improved by reducing the number of neurons in
the simulating symmetric network to the linear size 6n + 2 which is asymptotically optimal. This is
achieved by simulating the neurons (instead of edges) whose states are updated by means of the clock
technique. A similar idea was used for an analogous continuous-time simulation [27]. This result can
be interpreted in the sense that convergent asymmetric networks are computationally equivalent with
symmetric ones to a greater degree when considering also the network size.

We will first briefly specify the model of a finite discrete recurrent neural network. The network
consists of n simple computational units or neurons, indexed as 1,...,n, which are connected into a
generally cyclic oriented graph or architecture in which each edge (7, j) leading from neuron ¢ to j is
labelled with an integer weight w(i,j) = w;;. The absence of a connection within the architecture
corresponds to a zero weight between the respective neurons, and vice versa. Special attention will
be paid to Hopfield (symmetric) networks, whose architecture is an undirected graph with symmetric
weights w(i, j) = w(j, ) for every 4, j.

The synchronous computational dynamics of the network, working in fully parallel mode, deter-
mines the evolution of the network state y*) = (ygt), cey yg)) € {0, 1}" for all discrete time instants
t=0,1,... as follows. At the beginning of the computation, the network is placed in an initial state
y(® which may include an external input. At discrete time t > 0, each neuron j = 1,...,n collects its
binary inputs from the states (outputs) yl(»t) € {0, 1} of incident neurons 7. Then its integer excilation
5]@ =57, w]'iyl(»t) (j =1,...,n) is computed as the respective weighted sum of inputs including an
integer bias w;o which can be viewed as the weight of the formal constant unit input y(()t) = 1. At the
next instant ¢ + 1, an activation function o is applied to 5]@ for all neurons 5 = 1,...,n in order to

determine the new network state y(*+1) as follows:
y](.H—l) :o’(f](.t)) j=1...,n (1.1)

where a binary-state neural network employs the hard limiter (or threshold) activation function

1
(0={4 @iz (12

Now we will show the following theorem concerning the computational equivalence of asymmetric
and symmetric networks:
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Figure 1.1: A 3-bit counter network

Theorem 1 Any fully parallel computation by a recurrent neural network of n binary neurons, with
generally asymmetric weights, which converges within t* discrete updates can be simulated by a Hopfield
net with 6n + 2 neurons within 4t* discrete-time steps.

Proof: Observe, first, that any converging computation by an asymmetric network of n binary neurons
must terminate within * < 2™ steps. A basic technique used in our proof is the construction of an
(n + 1)-bit symmetric clock subnetwork (a binary counter) which, using 3n + 1 units being initially
at the zero state, produces a sequence of 2" well-controlled oscillations before it converges. This
sequence of clock pulses is used to drive the rest of the network where each neuron is simulated by a
symmetric subnetwork of 3 units. The construction of the (n 4 1)-bit binary counter will be described
by induction for n. An example of a 3-bit counter network is presented in Figure 1.1, where the
symmetric connections between neurons are labelled with corresponding weights, and the biases are
indicated by the edges drawn without an originating unit. In the sequel the symmetric weights in the
Hopfield net will be denoted by w whereas w’ denotes the original asymmetric weights.

The counter bit ¢y with the bias w(0,¢q) = (5W + 4)n + 1 denoted also by B in Figure 1.1 where

= -
W= e, Dl 09

which is initially passive (i.e. its state is zero), will fire or be active (i.e. its state is 1) at the next time
instant according to (1.2) since its excitation is positive.

For the induction step suppose that the counter has been constructed up to the first £k < n+1
counter bits cq, ..., c—1 and denote by Vi the set of all its ny = 3(k — 1) + 1 neurons, including the

auxiliary ones labelled az, b, for £ = 1, ..., k—1. Then the counter unit ¢; is connected to all ny neurons
v € V3 via unit weights w(v, ¢;) = 1 which, together with its bias w(0, ¢;) = —ny, make ¢ fires when
all these units are active. This includes the first k active counter units cq, ..., c;_1 which means that

counting from 0 to 2% — 1 has been accomplished. In addition, unit ¢ is connected to az which is
further linked to b3 so that these auxiliary neurons are, one by one, activated after ¢; fires. This is
implemented by the following weights w(ey, ar) = Wi > 0 (specified below), w(ag, by) = Wi —ny, and
the biases w(0, ar) = —1, w(0, by) = ny — W. Neuron ay, resets all the units in V4 to their initial zero
states. For this purpose, ag is further connected to each v € V; via a sufficiently large negative weight
w(ar,v) < 0 such that —w(ag,v) > 1 + ZuEVkU{O}:w(u,v)>0w(u’v) exceeds their mutual positive
influence (including the weight w(cg,v) = 1 and possibly its positive bias w(0,v) > 0). This also
determines the above-mentioned large positive weight parameter Wy = 1 — ZvEVk w(ay,v) which
makes the state of a; (similarly for b;) independent on the outputs from v € V4. Finally, the unit by
balances the influence of ag on Vj so that the first £ counter bits can again count from 0 to 2% — 1 but
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Figure 1.2: Symmetric simulation of neuron j

now with ¢ being active. This is achieved by the weight w(by,v) = —w(ag,v) — 1 for each v € V4 in
which —1 compensates w(eg, v) = 1. This completes the induction step.

Now, the symmetric clock subnetwork, particularly the counter unit ¢y which outputs the state
sequence (0111)2" during the computation, will be used to proceed the respective simulation of an
asymmetric network. For this purpose, neuron ¢y is added which computes the negation of ¢y output.
Then for each neuron j from the asymmetric network, 3 units p;, ¢;, r; are introduced in the Hopfield

()

net so that p; represents the new (current) state Y;

](»t D of J from the preceding time instant ¢ — 1, and r; is an auxiliary neuron realizing the update
of the old state. The corresponding symmetric subnetwork simulating one neuron j is depicted in
Figure 1.2. The total number of units simulating the asymmetric network is 3n + 1 (including ¢q)
which, together with the clock size 3n + 1, gives the desired 6n + 2 neurons of the Hopfield net.

At the beginning of the simulation all the neurons in the Hopfield net are initially passive except

of j at time ¢ > 1 while ¢; stores the old state

for units ¢; corresponding to the original initially active neurons j, i.e. y(o) = 1. Then an asymmetric
network update at time ¢t > 1 is simulated by a cycle of four steps in the Hopfield net as follows. In
the first step, unit ¢g fires and remains active until its state is changed by the clock since its large
positive bias makes it independent on all the n neurons p;. Also the unit ¢; fires because it computes
the negation of ¢y that was initially passive. At the same time each neuron p; computes the new

state y]( ) from the old ones yl(»t_l) which are stored in corresponding units ¢;. Thus each neuron p; is
connected with units ¢; via the original weights w(q;, p;) = w'(4, j) and also its bias w(0, p;) = w'(0, j)
is preserved. So far, unit ¢; keeps the old state y](»t_l) due to its feedback. In the second step, the new

state y( ) is copied from p; to r;, and the active neuron ¢y makes each neuron p; passive by means of
a large negative weight which exceeds the positive influence from units ¢; (¢ = 1,...,n) including its

bias w(0, p;) according to (1.3). Similarly, the active neuron ¢, erases the old state y](»t_1
neuron ¢; by making it passive with the help of a large negative weight which exceeds its feedback
and the positive influence from units p; (¢ = 1,...,n). Finally, also neuron é; becomes passive since

()

co was active. In the third step, the current state y;

) from each

is copied from r; to ¢; since all the remaining
incident neurons p; and ¢; are and remain passive due to ¢y being active. Therefore also unit r;

becomes passive. In the fourth step, ¢y becomes passive and the state y](»t), being called old from now
on, is stored in ¢;. Thus the Hopfield net finds itself at the starting point of the next asymmetric
network update simulation at time ¢ + 1 which proceeds in the same way. Hence the whole simulation
is achieved within 44* discrete-time steps. a



2 Convergence Time Analysis

In this section the convergence time in Hopfield networks, which is the number of discrete updates
until the network converges, will be analyzed. We will consider only the worst case bounds while
the average-case analysis can be found in [17]. Obviously, there are exactly 2" different states in
a network with n binary neurons which yields trivial 2”7 upper bound on the convergence time in
symmetric networks of size n. On the other hand, the symmetric clock network [11] which was used
in the proof of Theorem 1 represents an explicit example of a Hopfield net whose convergence time
is exponential with respect to n. Namely, this gives 9(2”/3) lower bound on the convergence time of
Hopfield nets since the respective (k + 1)-bit binary counter requires n = 3k 4+ 1 neurons.

However, the above-mentioned bounds do not take the weight size into account. The corresponding
upper bound can be derived by the energy function argument which also witnesses the convergence
property of symmetric nets. Namely, for a sequential computation of a Hopfield net, for the simplicity,
with zero feedbacks w;; = 0 and biases wjo =0 (j =1,...,n), an energy associated with state y(t) at
time ¢ > 0 can be defined as follows:

E (ym) =E() = —% Zn: Zn: wjiy " (2.1)

j=1l4i=1

for which Hopfield showed that E(t) < E(t — 1) — 1 for every t > 1 of a productive computation [12].
Moreover, the energy function (2.1) is bounded, i.e. |E(¢)| < W where

W= 230 (2:2)

j=1li=1

is called the weight of the network. Hence, the computation must converge within time O(1¥) which
can even be made more accurate by using a slightly different energy function [8]. This yields the
polynomial upper bound on the convergence time of Hopfield nets with polynomial weights. Similar
arguments can be used for fully parallel updates.

In the following theorem these results will be translated into the convergence time bounds with
respect to the length of bit representations of Hopfield nets. Namely, for a symmetric network which
is described within M bits, the convergence-time lower and upper bounds, 2UM®) and 20(M1/2),
respectively will be shown. It is an open problem whether these upper or lower bounds can be
improved. This is an important issue since the convergence-time results for binary-state networks can
be compared with those for analog-state (or even continuous-time) networks in which the precision of
real weight parameters (i.e. the representation length) plays an important role. For example, there
exists an analog-state symmetric network with an encoding size of M bits that converges after 2°9(M))
continuous-time units, where g(M) is an arbitrary continuous function such that g(M) = o(M),
g(M) = Q(M?/3), and M/g(M) is increasing [27]. From the result presented here it follows that
the computation of this analog symmetric network terminates later than that of any other discrete
Hopfield net of the same representation size. This approach also appears to be more rigorous since
we express the convergence time with respect to the full descriptional complexity of the Hopfield net
instead of to the number of neurons which captures its computational sources only partially.

Theorem 2 There exists a Hopfield network with an encoding size of M bits that converges after
M) updates and any computation of a symmetric network with a binary representation of M bits
terminates within 20M"%) discrete computational steps.

Proof: For the underlying lower bound the clock network with parameter B = 1 from the proof of
Theorem 1 can again be exploited. It is sufficient to estimate its representation length. By induction,
the maximum weight in the (k + 1)-bit counter with n = 3k + 1 neurons is of order 20(7) " This
corresponds to O(n) bits per weight which is repeated O(n?) times, and thus yields at most M = O(n?)
bits in the representation. Hence, the convergence-time lower bound 2%") of the clock network can

be expressed as UMM



On the other hand, consider a Hopfield network with an M-bit representation that converges after
T(M) updates. A major part of this M-bit representation consists of m binary encodings of weights
w1, . .., Wy of the corresponding lengths My, ..., M, where >."" . M, = ©(M). Clearly, there must be
at least T'(M) different energy levels corresponding to the states visited during the computation. Thus
the underlying weights must produce at least S > T(M) different sums 3, w, for A C{1,...,m}
where w, for r € A agrees with w;; for y; = y; = 1 in (2.1). So, it is sufficient to upper bound
the number of different sums over m weights whose binary representations form a ©(M)-bit string
altogether.

For m = @(Ml/z) consider m weights 1,2,4,8, .. .,2®(M1/2), each with a representation length
of order M, = O(M'?), which generate S = 99(M'?) Jifferent sums. For m = o(M*/?) we have
only 2™ = o(M*/?) possible sums, which is less than that in the previous case. On the contrary,
suppose that m = w(Ml/z). We define the maximum number of nonzero weights similarly as in the
first case so that each nonzero weight representation consists of zeros except for one bit in which the
remaining weight representations have zeros. Thus p such nonzero weights altogether require at least
1+24+...4p=Q(p?) bits for their representation which must be M at most and hence p = O(M/?)
which yields at most 20(M"%) Jifferent sums. Tt follows from the weight definition that the bits in the
representations of the remaining zero weights can arbitrarily be generated by summing appropriate
nonzero weights, otherwise p would not be the maximum. An alternative definition of weights can
possibly increase the number of different sums by exploiting at most O(logm) carry bits that are
produced by summing m weights. However, this yields only factor O(m) and hence the number of

different sums S < m20M2) — 9OM' ) 651 < M. Thus T(M) < 9O(M*2), |

3 Approximating the Minimum Energy Problem

Another important issue in Hopfield nets is the MIN ENERGY or GROUND STATE problem of
finding a network state with minimal energy (2.1) for a given symmetric neural network. Remember
that in (2.1) it is assumed, for reasons of simplicity, that w;; = 0 and w;p = 0for j =1,...,n. In
addition, without loss of generality [21], we will work throughout this section with frequently used
bipolar states —1, 1 of neurons instead of binary ones 0, 1 introduced in (1.2) where 0 is now replaced
by —1. This problem appears to be of a special interest since many hard combinatorial optimization
problems have been heuristically solved by minimizing the energy in Hopfield nets [1, 13]. This issue
is also important in statistical physics which originally inspired the Hopfield net models, e.g. Ising
spin glasses [3].

Unfortunately, the decision version of the MIN ENERGY problem, i.e. whether there exits a
network state having an energy less than the prescribed value, is NP-complete. This can be observed
from the above-mentioned reductions of hard optimization problems to MIN ENERGY . For an explicit
NP-completeness proof see e.g. [29] where a reduction from SAT is exploited. On the other hand there
is a MIN ENERGY polynomial algorithm for special cases of Hopfield nets whose architectures are
planar lattices [6] or planar graphs [3].

Perhaps, the most direct and frequently used reduction to MIN ENERGY is from the MAX CUT
problem (see e.g. [4]) which, given an undirected graph G = (V, E) with an integer edge evaluation
c¢: B — Z is the issue of finding a cut V7 C V which maximizes the cut size

(V1) = > c({t,5}) - > c({t,5}) - (3.1

{i.j}EE i€V1,jEV1 {i,d}eB,c({i,j})<0

In fact, this is a generalized version of MAX CUT that allows negative edge evaluations necessary for
the opposite reduction from MIN ENERGY to MAX CUT. Recently, a new randomized approximation
algorithm with a high performance guarantee o = 0.87856 for this MAX CUT formulation has been
proposed [10] and later derandomized [19] which we will exploit for approximating the MIN ENERGY
problem. Namely, we will show the theorem that MIN ENERGY can be approximated in a polynomial
time within the absolute error less than 0.243W where W is the network weight (2.2). For W = O(n?)
which is satisfied by e.g. Hopfield nets with n neurons and constant weights, this result matches the
lower bound ©(n?~¢) which cannot be guaranteed by any approximate polynomial time MIN ENERGY



algorithm for every ¢ > 0 [4], unless P = NP. In addition, an approximate polynomial time MIN
ENERGY algorithm with absolute error O(n/logn) is also known in a special case of Hopfield nets
whose architectures are two-level grids [5].

Theorem 3 The MIN ENERGY problem for Hopfield nets can be approzimated in a polynomial teme
within the absolute error less than 0.243W where W is the network weight (2.2).

Proof: We will first recall the well-known simple reduction between MIN ENERGY and MAX CUT
problems. For a Hopfield network with architecture G and weights w(%, j) we can easily define the
corresponding instance G = (V, E); ¢ of MAX CUT with the edge evaluation ¢({i,j}) = —w(i, j) for
{i,7} € E (i.e. for w(i, j) #0). We will show that any cut ¥V} C V of GG corresponds to a Hopfield net
state y € {—1,1}" where y; = 1 ifi € V} and y; = —1 for j € V' \ V1, so that the respective cut size
¢(V1) is related to the underlying energy FE(y). Thus the energy function (2.1) can be expressed in
terms of cut size (3.1) as follows:

By) = —5 3 wli i =

ijEV
1 | | | .
= -3 Z w(l,j)—|—§ Z w(z,j)—|—§ Z w(z,j)—§ Z w(i, j) =
Yi=y; YitYs YiFY5 YitYs
1 . . 1 | .
= —g > wli )+ Y wi=-5 Y wii)-5 Y wlii)+
i,jEV Yi#Y; w(i,j)<0 w(i,j)>0
| | .
+ Z w(z,g)—l—i Z w(i, j) — 2 Z w(i,j) =
ity w(i,j)>0 w(i,j)>0
1 | . .. .
= -3 Z w(i, j) + ) Z w(i, j) — Z w(i, j) + Z w(i, j) =
w(4,5)<0 w(i,5)>0 w(i,j)>0 YiZY;
= w2 Y b2 Y i =
{i,j}€E,e({1,j})<0 {i,j}EE,ieV1,jEV1
= W —=2e(V1). (3.2)

It follows from (3.2) that the minimum energy state corresponds to the maximum cut.

Now, the approximate polynomial time algorithm from [10] can be employed to solve instance
G = (V, E); ¢ of the MAX CUT problem which provides a cut V; whose size ¢(V1) > ac* is guaranteed
to be at least o« = 0.87856 times the maximum cut size ¢*. Let cut Vi correspond to the Hopfield
network state y which implies ¢(V1) = 1/2(W — E(y)) from (3.2). Hence, we get a guarantee W —
E(y) > a(W — E*) = aWW — a* where E* is the minimum energy corresponding to the maximum
cut ¢ which implies E(y) < (1 — o)W + o EF*. By adding —FE*, this inequality can be rewritten as
E(y)— E* < (1 —a)(W — E*). Since |E*| < W, we obtain the desired guarantee for the absolute
error E(y) — E* < (1 — «)2W < 0.243W. i

4 Turing Universality of Finite Analog Hopfield Nets

In this section we will deal with the computational power of finite analog-state discrete-time recurrent
neural networks which, instead of the threshold activation function (1.2), employ e.g. the saturated-
linear sigmoid activation function

1 for &>1
o(f)=4¢ & for 0<£<1 (4.1)
0 for £<0.

Hence the states of analog neurons are real numbers within the interval [0, 1], and similarly the weights
(including biases) are allowed to be reals.



The computational power of asymmetric analog networks is known to increase with the Kolmogorov
complexity of real weights [2]. With integer weights such networks are equivalent to finite automata [14,
15, 28], while with rational weights arbitrary Turing machines can be simulated [15, 24]. With arbitrary
real weights the network can even have ‘super-Turing’ computational capabilities, e.g. polynomial time
computations correspond to the complexity class P/poly and all languages can be recognized within
exponential time [23]. On the other hand, it is known that any amount of analog noise reduces the
computational power of this model to that of finite automata [18].

For finite symmetric networks, only the computational power of binary-state Hopfield nets is
fully characterized. Namely, they recognize the so-called Hopfield languages [25] which establish a
proper subclass of regular languages and hence, they are less powerful than finite automata. Hopfield
languages can also be faithfully recognized by analog symmetric neural networks [18, 26] and this
provides the lower bound on their computational power. A natural question arises whether the finite
analog Hopfield nets are Turing universal, i.e. whether a Turing machine simulation can be achieved
with rational weights similarly as in the asymmetric case [15, 24]. The main problem is that under
fully parallel update any analog Hopfield net with rational weights converges to a limit cycle of length
at most two [16]. Thus the only possibility of simulating Turing machines is to exploit a sequence of
rational network states converging to this limit cycle which seems to be tricky if possible at all. A more
reasonable approach is to supply an external clock that produces an infinite sequence of binary pulses
providing the symmetric network with an energy support, e.g. for simulating an asymmetric analog
network similarly as in Theorem 1. In this way the computational power of the analog Hopfield nets
with an external clock is proved to be the same as that of the asymmetric analog networks. Especially
for rational weights, this implies that they are Turing universal. The following theorem also completely
characterizes the infinite binary sequences by the external clock, which prevent the Hopfield network
from converging.

Theorem 4 Any fully parallel computation by an analog-state recurrent neural network with real
weights and n neurons can be simulated by an analog Hopfield net with real weights of the same
Kolmogorov complezity having 3n+8 units and one external input producing an infinite binary sequence
including the infinite number of strings of the form bxb € {0,113 where b # b, which are necessary to
prevent the symmetric network from converging.

Proof: First observe that an infinite binary sequence produced by the external input (clock) e that
does not satisfy the assumption of the theorem must be of the form u(b1b2)* where b1,b2 € {0, 1},
and u € {0, 1}* is a prefix which clearly cannot prevent the network from converging to a limit cycle
of length two. On the other hand we will prove that if the sequence meets the respective condition,
then it must contain an infinite number of strings of the form 120 (¢ € {0,1}) since these strings
necessarily accompany the infinite number of strings Ox1. Thus consider two subsequent occurrences
of 0zl. For z = 1, after 011 possibly followed by several 1’s, at least one 0 must appear due to the
next Ozl. For z = 0, the string 001 is followed either by 1 which means the previous case with 011
applies or by 0 possibly succeeded by several occurrences of 10, which is followed either by a desired
0 or by 11 which again leads to 011.

The symmetric simulation of the asymmetric analog network is very similar to the discrete one
(see Theorem 1). Thus each neuron j in the original analog asymmetric network with n neurons is
simulated by 3 units p;, ¢;,r; which are controlled by other 3 central neurons f, g, h (corresponding
to cg, ég in the discrete case) whose binary states are generated by a small symmetric subnetwork of
5 auxiliary units a, d, e, r, s transforming the binary external input signal from ¢ to a well-controlled
binary sequence. This gives the desired 3n+48 units of the simulating analog Hopfield net. The situation
is depicted in Figure 4.1 including the definition of symmetric weights where 1 is introduced in (1.3)
and B=(4W+1)n+ 7.

Every binary external input bit is copied from clock ¢ to r and further to s and therefore the states
of these neurons s, r, ¢ store the last 3 bits of the input sequence, respectively. Neuron a detects the
underlying strings of the form 120 (z € {0,1}) at the input, i.e. it is active iff s is active and ¢ is
passive. It may happen that two such strings follow each other immediately (also notice that it is
impossible for such string to appear again the next step but one). This case is indicated by the activity
of both neurons a,d where d copies the state from a. Thus unit e copies the state 1 from a iff d is
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Figure 4.1: Analog symmetric simulation of analog neuron j

passive. Hence, the neuron e produces a ‘noiseless’ sequence of zeros containing an infinite number of
strings 100, each being exploited for the simulation of one computational step of the original analog
asymmetric network similarly as in the proof of Theorem 1.

Namely, ¢; stores the old analog state y](»t_l) by its unit feedback according to (4.1) and also h
remains initially active preserving the stability of p;, ¢;,r;. After e fires, the unit h becomes passive
and f is active which controls the computation of a new analog state y](»t) by p; via the original weights
w(gs, pj) = w'(4,j) and the bias w(f,p;) = w'(0,7). Then the control signal is further copied from
f to g, which enables r; to receive the state y]»t . Finally, h becomes active and the state of ¢; is

()

updated by Y; until e fires again to proceed the next simulation step. a
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