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Abstract

Conjugate gradient methods have proved to be very efficient for solving saddle point
systems, especially with indefinite preconditioning. These systems are indefinite and
have a 2 x 2 block structure. We study various structured conjugate gradient methods
and prove their theoretical properties.
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1 Introduction

Saddle point equations arise in many applications including equality constrained op-
timization problems [4], [2] and the Stokes medium flow problems [3]. Here we use
the notation from the first class of problems. Consider the problem of finding a point
x* € R", such that

T :arggg}lF(x), (1.1)

where F C R" is a feasible set defined by the system of equations

F={x € R":¢(x)=0,1 <k <m}. (1.2)

where m < n (in fact we consider only local minima). Here F': R* — R and ¢, : R" —
R, 1 < k < m, are twice continuously differentiable functions, whose gradients and
Hessian matrices will be denoted by VF (), Veg(x), 1 < k < m, and V2F(z), V¢ (2),
1 < k < m, respectively. Furthermore, we use the notation ¢(z) = [e;(2),. .., cn(2)]T
and A(x) = [a1(x),...,an(z)] = [Val(z),...,Ven(x)] and we suppose that matrix
A(z) has a full column rank. Then the solution «* € R"™ of the problem (1.1)-(1.2)
satisfies the Karush-Kuhn-Tucker (KKT) conditions, i.e., there exists a vector u* € R™,
such that

V.L(z",u™") = VF(2")+ A(2™)u™ =0, (1.3)
VuL(z"u™) = e(a™) =0,
where
L{z,u) = F(x)+ uTc(:L') (1.5)

is the Lagrangian function, whose gradient and Hessian matrix will be denoted by

glx,u) = V,L(x,u)=VF(x)+ kﬁ: uEVeg(x),

G(z,u) = ViL(x,u)=V*F(z)+ i upVien(x),

k=1

and (z*,u*) € R"™™ is the KKT pair (first order necessary conditions). Let Z(z)
be a matrix whose columns form an orthonormal basis in the null space of AT(x)
so that AT(2)Z(z) = 0 and ZT(2)Z(x) = I. If, in addition to (1.3)-(1.4), matrix
ZT(x*)G(x*,u*)Z(z*) is positive definite, then the point x* € R" is a solution of the
problem (1.1)-(1.2) (second order sufficient conditions).

The equations (1.3)-(1.4) can be solved by using the inexact Newton method whose
iteration step has the form

A x+ ad,,

ut = u+ad,



where (d;,d,) € R™™ is a direction pair obtained as a solution of the following saddle

[ ci(g(,;)) AE):I:) ] [;li ] _ [ g(cﬂ(c;;) ] (1.6)

and o > 0 is a suitable stepsize. Here we omit globalization theories concerning the

point system

choice of a, which lead to the use of exact penalty functions. However, we concentrate
on the solution of (1.6), which is a system of n 4+ m linear equations with n + m
unknowns (d,,d,) € R"™, whose matrix is always indefinite. Matrix G(x,u) can
be also indefinite even singular in general. This fact leads to some difficulties when
standard iterative methods with standard preconditioners are used.

The contribution is organized as follows. In Section 2, we study several conjugate
gradient methods for saddle point systems. We prove the correctness and the linear
convergence of the CG method which uses the vertical step initially (Algorithm 2) and
we show an equivalence of this method with the CG method applied to the reduced
system (Algorithm 3). In Section 3, we present the results of numerical experiments
which confirm high efficiency of CG methods applied to saddle point systems.

2 Conjugate gradient algorithms

We will investigate the saddle point system

B A dy || b
a1k =
(in easier notation Kd = b). Assume that matrix A has a full column rank and
matrix ZTBZ is positive definite (matrix 7 is defined as above). In [4], the special
preconditioner

(J:H)T g‘] (2.2)

is used, where D is a positive definite approximation of B. This preconditioner, called
a constraint preconditioner, is also studied in [3]. It is clear that the multiplication by
C~1 can be expressed in the form

(o, _ [ DT DTAATDTIA) T ATDT DT AATDT AT ] [
"o (ATD™*A) ATD™ —(ATD7 A ry
DY (r, — At,
_ l ( ] ) ] , (2.3)

where t, = (ATD7A)"YATD r, — 1,).

Consider first the standard conjugate gradient method with preconditioner C' ap-
plied to the system Kd = b, which, using (2.1) and (2.3), can be implemented by the
following algorithm.



Algorithm 1

d, — given (usually d, =0), d, =0,

re = by — Bd,, r,=0b,— A'd,,

ty = D7 (ry — Aty), t, = (ATD_IA)_I(ATD_ITQU —Ty),
Pz = tm Pu = tuv

p = rgtl’ —I_ Tgtu,
while ||r;|| > wl[bz]| or |[r.]| > w]||b.|| do

4z = Bpx + Apu7 Gu = ATva

0=plqe+plqu, a=plo,

df =d, + ap,, df =d, + ap,,

F=re—aq, rf=r,—aq,

F=D7Nrf = AtY), th = (ATDTTA)TH (AT DT R — ),
pt = (D)t + (rh)TtE, B=0"/p,

pi =to+ Bpe, P =tu+ Bpu

(delete +),

~

end while.

This algorithm has one nonstandard feature, namely the termination criterion |[r,|| <
Wbz, [|7rall < w|[by]|, where 0 < w < 1, which is required by the inexact Newton
method applied to nonlinear KKT equations (1.3)-(1.4).

The above general algorithm has two possibilities to break down. Either o = pq
can be equal to zero, since K is indefinite, or p = rTt can be equal to zero, since C
is indefinite. In [4] it has been proved that these breakdowns cannot occur before the
solution d is reached whenewer the initial approximation is chosen in such a way that
ry = b, — ATd, = 0. Now we will investigate this case in more details.

Assume that the initial approximation is the vertical direction given by the formula
d, = D7YA(ATD=*A)~1b, so that r, = b, — ATd, = 0. If we use the following unique

representations

dx:ZdZ—I'D_lAdAv tx:ZtZ—I'D_lAtAv pl’:ZpZ—I'D_lApA?
ro = DZ(ZTDZ) vy + Arg = rz=ZTr,, 4= (ATDTA)LATD r,,
G=DZ(ZTDZ) Yqz + Aqs = qz=71q., qa=(ATDTA)LATD ¢,

and the fact that ZT A = 0, then the formulas in Algorithm 1 can be rewritten in the
following theoretical form (we assume exact computations).

Algorithm 1a

dz =0, dy=(ATD'A)"Y,, d,=0,

ry = ZT(bw — BD_IAdA), T4 = (ATD_IA)_IATD_I(Z)QU — BD_IAdA), Ty = 0,
ty; = (ZTDZ)_lrz, tqg = 0, t, =r4,

pz =1z, pa=0, p,=t,

p=rkty; =rL(ZTDZ) ry,



while ||r;|| > wl[bz]| or |[r.]| > w]||b.|| do

a7 =72TBZpz, qi=(ATD'A)YATDYBZps +pu, qu=0
o =pyqz =pyZ BZps, a=plo,

d}:dz—l_apzv dj :dA7 dj :du—l_apuv

r} =rz; —aqz, rj{ =7r4— Qqy, rj’ =0,

th=(ZTDZ)y"YrE, th=0, tf=r1,

pt =)t = ) (ZTDZ) g, B =pt/p,

(delete +),

end while.

See also the proof of Theorem 3.5 in [4]. Algorithm la implies several coclusions.
The iterations for dz are the same as iterations of conjugate gradient method with
preconditioner ZT DZ applied to the reduced system ZTBZdy; = by where by, =
ZT(b, — BD71Ady). Since Z has a full column rank and D is positive definite, this
method cannot break down before solution d% is obtained. Therefore, Algorithm la
cannot break down before the solution d} is obtained either. Since d4 is the same in
each iteration, we can write d, — df = Z(dz — d%) (Z is an orthogonal matrix) so that
the convergence rate for d, — d is the same as those for d; — d7,. Nevertheless, there
is a serious difficulty. If d, = d then d, = d usually does not hold, but Algorithm
la breaks down because p = 0. Fortunately, d* can be easily found as a solution of
equation A(dZ — d,) = r, in this case. Taking this fact into account, Algorithm 1
can be slightly modified. Since ||r,|| = 0 when d, = D7'A(AT D=1 A)~b, is chosen
initially, we can replace the termination criterion ||r;|| < w||b;|| by p < wp, where 7 is
the initial value of p. After termination we add ¢, = (ATD='A)"*AT D=1y, to d,. The

following algorithm is the corresponding modification of Algorithm 1.

Algorithm 2

d, = D‘lA(ATD_lA)_lbu, d, =0,

T, = bl’ — de7 Ty = bu — Ang;,

te= D7 re — Aty), tu=(ATDTTA)T (AT Dy — 1),
Pr = txa Pu = tua

P = Tgtx + rgtuv P =p,
while p > wp do

4z = Bpx + Apu7 Gu = ATva

oc=plge+pLqu, a=plo,

df =d, + ap,, df =d, + ap,,

F=re—aq, rf=r,—aq,

F=D7Nrf = AtY), th = (ATDTTA)TH (AT DT R — ),
pt = (D)t + (rh)TtE, B=0"/p,

pf =to+ Bpey, Y =tu+ Bpu

(delete +),

~

end while,



set d, :=d, +1,.

Notice that Algorithm 2 only differs from Algorithm 1 by the initial choice of d,, a
different termination criterion and a final redefinition of d,. The following theorem
holds if the computations are exact.

Theorem 1. Consider Algorithm 2 (with w = 0) applied to the saddle point system

(2.1). Assume that matrix A has a full column rank and matrix ZT BZ is positive

definite. Then:

(a) The solution pair (d%, d¥) is found after n — m iterations at most.

(b) The algorithm cannot break down.

(c) The error ||d, — d%|| converges to zero at last R - linearly with the quotient
(VE — 1)/(\/& + 1) where k = w(ZTBZ(ZTDZ)™') is a spectral condition
number of matrix ZTBZ(ZT D7)~ .

Proof. Theorem 1 follows immediately from our above considerations (see also the
proof of Theorem 3.5 in [4]).

Notice that r, = 0 if the computations are exact, which could make Algorithm 2
easier. However, the proposed form is more stable with respect to the round-off errors.

Now let us compare Algorithm 2 with the preconditioned conjugate gradient method
applied to the reduced system, which is proposed in [2]. Consider again the unique
representation d, = Zdyz + D' Ad4. Using the second equation in (2.1), we get da =
(ATD=1A)~1b, and the first one gives BZdy; = b, — BD™'Ady — Ad, which after
premultiplying by Z7 gives

Z7'BZdy = by, (2.4)

where by = ZT(bx — BD7'Ady,). Thus dz can be obtained by the conjugate gradient
method with preconditioner ZT DZ applied to equation (2.4). Unfortunately, matrix Z
is not usually known (its computation is time-consuming and difficult for large sparse
A because of fill-in). For this reason, Gould, Hribar and Nocedal [2] modify conjugate
gradient iterations in such a way that they use vectors d, = Zdz, t, = Ztz, p. = Zpy
and 7., q., such that r; = ZTr_, qz = Z%q.. Then preconditioning tz = (ZTDZ)~'ry,
can be expressed in the form

t,=2(ZTD7Z) ' 7, = (D' = DTPA(ATDTY AT AT D, (2.5)

so that matrix Z need not be used explicitly. Since d. does not influence formulas in
conjugate gradient iterations directly, we can use d, = d, + D71 Ad, instead of d..
Since d,, cannot be obtained from conjugate gradient iterations, it has to be estimated
in any way. The most natural choice is the weighted least-square minimization of the

total residuum r, — Ad,. This way leads to formula d, = (AT D71 A)"LATD=1r_. The

following algorithm summarizes the above considerations.



Algorithm 3
d, = D7YA(ATD=tA)~ b,

r,=b, — Bd,,
t,=D7Yr, — At,), t,=(ATDTA)LATD 1y,
p. =t

p=rits, D=p.
while p > wp do

4 = sz,
o=plqg., a=plo,
dt =d, + ap.,

Tj =T, —aq.,

th =D Y(rf — Ath), tF =(ATDTA)LATD- S
pt = (DNt B=p"/p,

pf =t + Bp.,

(delete +),

end while,

set d, :=1,.

Theorem 2. Algorithm 2 and Algorithm 3 are equivalent in the sense that both
generate the same vectors d,, and give the same final pair (d,, d,, ).

Proof. By definition, d. = Zdy, t. = Zt;, p. = Zpy, where dy, tz, py are vectors
obtained by the conjugate gradient method with preconditioner Z7DZ applied to the
system (2.4). But vectors dz, tz, pz in Algorithm la have the same property. Since
ty = 0, pa = 0 in Algorithm la, we can set t, = Zty = t,, p, = Zpz = p. In
Algorithm 2. Moreover, the same initial vector d, = D_IA(ATD_IA)_lbu is used
in both Algorithm 2 and Algorithm 3. Therefore both algorithms generate the same
vectors d,. The final vector d, is also the same in both algorithms, since it is the
least-square solution of the equation Bd, + Ad, = b,. O

Theorem 2 says that the conjugate gradient method with preconditioner (2.2) ap-
plied to original system (2.1) is equivalent to the conjugate gradient method with
preconditioner ZTDZ applied to reduced system (2.4), when the vertical direction
d, = DY A(AT D=1 A)~1b, is chosen initially.

3 Numerical experiments

The algorithms described above can be used for solving large saddle-point systems
arising in equality constrained optimization. In this case, matrix AT D™!'A should
be sparse. Unfortunately, this is not satisfied when matrix A contains dense rows.
Therefore, some modifications of the algorithms are necessary. The first modification
is based on the Woodbury theorem. Assume that AT = [AT AT] where AT D1 A, is
sparse and Ay contains dense columns. Then



(ATDT'A)™Y = (ATDI'A, + ATD A
= (AID7'A)™ = (AID7Y A )T AT M AATDTT AT (3.0

where

My = Dy + Ag(ATD Ayt AT

is a (low-dimensional) dense matrix. Another modification is based on the sparse
Bunch-Parlet decomposition. Since

[fT SXHZ]:[Z] (3.2)

vectors £, and t, can be easily obtained after decomposition of the left-hand side matrix.
Numerical stability of both of these possibilities is studied in [2].

Now we are in the position to introduce the results of our experiments. We have
used a collection of 18 equality constrained problems with 1000 variables proposed in
report [5], which can be downloaded (together with corresponding fortran codes) from
the home-page http://www.uivt.cas.cz/ “luksan/. The following table contains
total numbers of outer iterations (numbers of saddle-point systems solved) NSP, total
numbers of inner (conjugate-gradient) iterations NCG and total CPU times over all
18 problems. We have tested three above algorithms with two realizations, (3.1) and
(3.2). Moreover, the results for trust region method [1] are added for comparison.

Algorithm NSP | NCG | CPU
Algorithm 1 / (3.1) | 306 | 1015 | 31.09
Algorithm 1 / (3.2) | 306 | 1015 | 33.73
Algorithm 2 / (3.1) | 330 | 738 | 34.66
Algorithm 2 / (3.2) | 329 | 749 | 36.96

(3.1)

(3.2)

]

Algorithm 3 / 311 | 598 | 29.60
Algorithm 3 / 311 | 598 | 34.39
Trust region [1 518 | 1452 | 39.88

Table 1

Table 1 shows high efficiency of the conjugate-gradient methods applied to saddle
point systems. Surprisingly, Algorithm 1 (with the initial choice d, = 0) is very efficient
and competitive with Algorithm 3 although it can lead to a breakdown theoretically. In
Algorithm 1, numbers p and o are not guaranteed to be positive. They have sometimes
acquired negative values in our computations.
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