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Abstract

Conjugate gradient methods have proved to be very e�cient for solving saddle point
systems� especially with inde	nite preconditioning� These systems are inde	nite and
have a 
� 
 block structure� We study various structured conjugate gradient methods
and prove their theoretical properties�
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� Introduction

Saddle point equations arise in many applications including equality constrained op�
timization problems ��� �
� and the Stokes medium �ow problems ���� Here we use
the notation from the 	rst class of problems� Consider the problem of 	nding a point
x� � Rn� such that

x� � arg min
x�F

F �x�� �����

where F � Rn is a feasible set de	ned by the system of equations

F � fx � Rn � ck�x� � �� � � k � mg� ���
�

where m � n �in fact we consider only local minima�� Here F � Rn � R and ck � Rn �
R� � � k � m� are twice continuously di�erentiable functions� whose gradients and
Hessian matrices will be denoted byrF �x��rck�x�� � � k � m� and r�F �x��r�ck�x��
� � k � m� respectively� Furthermore� we use the notation c�x� � �c��x�� � � � � cm�x��T

and A�x� � �a��x�� � � � � am�x�� � �rc��x�� � � � �rcm�x�� and we suppose that matrix
A�x� has a full column rank� Then the solution x� � Rn of the problem ���������
�
satis	es the Karush�Kuhn�Tucker �KKT� conditions� i�e�� there exists a vector u� � Rm�
such that

rxL�x
�� u�� � rF �x�� �A�x��u� � �� �����

ruL�x
�� u�� � c�x�� � �� ����

where
L�x� u� � F �x� � uT c�x� �����

is the Lagrangian function� whose gradient and Hessian matrix will be denoted by

g�x� u� � rxL�x� u� � rF �x� �
mX
k��

ukrck�x��

G�x� u� � r�

x
L�x� u� � r�F �x� �

mX
k��

ukr�ck�x��

and �x�� u�� � Rn�m is the KKT pair �	rst order necessary conditions�� Let Z�x�
be a matrix whose columns form an orthonormal basis in the null space of AT �x�
so that AT �x�Z�x� � � and ZT �x�Z�x� � I� If� in addition to ����������� matrix
ZT �x��G�x�� u��Z�x�� is positive de	nite� then the point x� � Rn is a solution of the
problem ���������
� �second order su�cient conditions��

The equations ���������� can be solved by using the inexact Newton method whose
iteration step has the form

x� � x� �dx�

u� � u� �du�

�



where �dx� du� � Rn�m is a direction pair obtained as a solution of the following saddle
point system �

G�x� u� A�x�
AT �x� �

� �
dx
du

�
� �

�
g�x� u�
c�x�

�
�����

and � � � is a suitable stepsize� Here we omit globalization theories concerning the
choice of �� which lead to the use of exact penalty functions� However� we concentrate
on the solution of ������ which is a system of n � m linear equations with n � m
unknowns �dx� du� � Rn�m� whose matrix is always inde	nite� Matrix G�x� u� can
be also inde	nite even singular in general� This fact leads to some di�culties when
standard iterative methods with standard preconditioners are used�

The contribution is organized as follows� In Section 
� we study several conjugate
gradient methods for saddle point systems� We prove the correctness and the linear
convergence of the CG method which uses the vertical step initially �Algorithm 
� and
we show an equivalence of this method with the CG method applied to the reduced
system �Algorithm ��� In Section �� we present the results of numerical experiments
which con	rm high e�ciency of CG methods applied to saddle point systems�

� Conjugate gradient algorithms

We will investigate the saddle point system

�
B A
AT �

� �
dx
du

�
�

�
bx
bu

�
�
���

�in easier notation Kd � b�� Assume that matrix A has a full column rank and
matrix ZTBZ is positive de	nite �matrix Z is de	ned as above�� In ��� the special
preconditioner

C �

�
D A
AT �

�
�
�
�

is used� where D is a positive de	nite approximation of B� This preconditioner� called
a constraint preconditioner� is also studied in ���� It is clear that the multiplication by
C�� can be expressed in the form

C��r �

�
D�� �D��A�ATD��A���ATD�� D��A�ATD��A���

�ATD��A���ATD�� ��ATD��A���

� �
rx
ru

�

�

�
D���rx �Atu�

tu

�
� �
���

where tu � �ATD��A����ATD��rx � ru��
Consider 	rst the standard conjugate gradient method with preconditioner C ap�

plied to the system Kd � b� which� using �
��� and �
���� can be implemented by the
following algorithm�






Algorithm �

dx � given �usually dx � ��� du � ��
rx � bx �Bdx� ru � bu �ATdx�
tx � D���rx �Atu�� tu � �ATD��A����ATD��rx � ru��
px � tx� pu � tu�
� � rT

x
tx � rT

u
tu�

while krxk � �kbxk or kruk � �kbuk do
qx � Bpx �Apu� qu � ATpx�
� � pT

x
qx � pT

u
qu� � � �	��

d�
x
� dx � �px� d�

u
� du � �pu�

r�
x
� rx � �qx� r�

u
� ru � �qu�

t�
x
� D���r�

x
�At�

u
�� t�

u
� �ATD��A����ATD��r�

x
� r�

u
��

�� � �r�
x
�T t�

x
� �r�

u
�T t�

u
� 
 � ��	��

p�
x
� tx � 
px� p�

u
� tu � 
pu�

�delete ���

end while�

This algorithm has one nonstandard feature� namely the termination criterion krxk �
�kbxk� kruk � �kbuk� where � � � � �� which is required by the inexact Newton
method applied to nonlinear KKT equations �����������

The above general algorithm has two possibilities to break down� Either � � pT q
can be equal to zero� since K is inde	nite� or � � rT t can be equal to zero� since C
is inde	nite� In �� it has been proved that these breakdowns cannot occur before the
solution d�

x
is reached whenewer the initial approximation is chosen in such a way that

ru � bu �ATdx � �� Now we will investigate this case in more details�
Assume that the initial approximation is the vertical direction given by the formula

dx � D��A�ATD��A���bu so that ru � bu �ATdx � �� If we use the following unique
representations

dx � ZdZ �D��AdA� tx � ZtZ �D��AtA� px � ZpZ �D��ApA�
rx � DZ�ZTDZ���rZ �ArA � rZ � ZTrx� rA � �ATD��A���ATD��rx�
qx � DZ�ZTDZ���qZ �AqA � qZ � ZTqx� qA � �ATD��A���ATD��qx

and the fact that ZTA � �� then the formulas in Algorithm � can be rewritten in the
following theoretical form �we assume exact computations��

Algorithm �a

dZ � �� dA � �ATD��A���bu� du � ��
rZ � ZT �bx �BD��AdA�� rA � �ATD��A���ATD���bx �BD��AdA�� ru � ��
tZ � �ZTDZ���rZ� tA � �� tu � rA�
pZ � tZ� pA � �� pu � tu�
� � rT

Z
tZ � rT

Z
�ZTDZ���rZ�

�



while krxk � �kbxk or kruk � �kbuk do
qZ � ZTBZpZ� qA � �ATD��A���ATD��BZpZ � pu� qu � �
� � pT

Z
qZ � pT

Z
ZTBZpZ� � � �	��

d�
Z
� dZ � �pZ � d�

A
� dA� d�

u
� du � �pu�

r�
Z
� rZ � �qZ � r�

A
� rA � �qA� r�

u
� ��

t�
Z
� �ZTDZ���r�

Z
� t�

A
� �� t�

u
� r�

A
�

�� � �r�
Z
�T t�

Z
� �r�

Z
�T �ZTDZ���r�

Z
� 
 � ��	��

p�
Z
� t�

Z
� 
pZ� p�

A
� �� p�

u
� tu � 
pu�

�delete ���

end while�

See also the proof of Theorem ��� in ��� Algorithm �a implies several coclusions�
The iterations for dZ are the same as iterations of conjugate gradient method with
preconditioner ZTDZ applied to the reduced system ZTBZdZ � bZ where bZ �
ZT �bx � BD��AdA�� Since Z has a full column rank and D is positive de	nite� this
method cannot break down before solution d�

Z
is obtained� Therefore� Algorithm �a

cannot break down before the solution d�
x
is obtained either� Since dA is the same in

each iteration� we can write dx � d�
x
� Z�dZ � d�

Z
� �Z is an orthogonal matrix� so that

the convergence rate for dx � d�
x
is the same as those for dZ � d�

Z
� Nevertheless� there

is a serious di�culty� If dx � d�
x
then du � d�

u
usually does not hold� but Algorithm

�a breaks down because � � �� Fortunately� d�
u
can be easily found as a solution of

equation A�d�
u
� du� � rx in this case� Taking this fact into account� Algorithm �

can be slightly modi	ed� Since kruk � � when dx � D��A�ATD��A���bu is chosen
initially� we can replace the termination criterion krxk � �kbxk by � � ��� where � is
the initial value of �� After termination we add tu � �ATD��A���ATD��rx to du� The
following algorithm is the corresponding modi	cation of Algorithm ��

Algorithm �

dx � D��A�ATD��A���bu� du � ��
rx � bx �Bdx� ru � bu �ATdx�
tx � D���rx �Atu�� tu � �ATD��A����ATD��rx � ru��
px � tx� pu � tu�
� � rT

x
tx � rT

u
tu� � � ��

while � � �� do

qx � Bpx �Apu� qu � ATpx�
� � pT

x
qx � pT

u
qu� � � �	��

d�
x
� dx � �px� d�

u
� du � �pu�

r�
x
� rx � �qx� r�

u
� ru � �qu�

t�
x
� D���r�

x
�At�

u
�� t�

u
� �ATD��A����ATD��r�

x
� r�

u
��

�� � �r�
x
�T t�

x
� �r�

u
�T t�

u
� 
 � ��	��

p�
x
� tx � 
px� p�

u
� tu � 
pu�

�delete ���

end while�





set du �� du � tu�

Notice that Algorithm 
 only di�ers from Algorithm � by the initial choice of dx� a
di�erent termination criterion and a 	nal rede	nition of du� The following theorem
holds if the computations are exact�

Theorem �� Consider Algorithm � �with � � �� applied to the saddle point system
������ Assume that matrix A has a full column rank and matrix ZTBZ is positive
de�nite� Then�
�a� The solution pair �d�

x
	 d�

u
� is found after n�m iterations at most�

�b� The algorithm cannot break down�
�c� The error kdx � d�

x
k converges to zero at last R 
 linearly with the quotient

�
p
� � ��	�

p
� � �� where � � ��ZTBZ�ZTDZ���� is a spectral condition

number of matrix ZTBZ�ZTDZ����

Proof� Theorem � follows immediately from our above considerations �see also the
proof of Theorem ��� in ����

Notice that ru � � if the computations are exact� which could make Algorithm 

easier� However� the proposed form is more stable with respect to the round�o� errors�

Now let us compare Algorithm 
 with the preconditioned conjugate gradient method
applied to the reduced system� which is proposed in �
�� Consider again the unique
representation dx � ZdZ �D��AdA� Using the second equation in �
���� we get dA �
�ATD��A���bu and the 	rst one gives BZdZ � bx � BD��AdA � Adu which after
premultiplying by ZT gives

ZTBZdZ � bZ� �
��

where bZ � ZT �bx � BD��AdA�� Thus dZ can be obtained by the conjugate gradient
method with preconditioner ZTDZ applied to equation �
��� Unfortunately� matrix Z
is not usually known �its computation is time�consuming and di�cult for large sparse
A because of 	ll�in�� For this reason� Gould� Hribar and Nocedal �
� modify conjugate
gradient iterations in such a way that they use vectors dz � ZdZ � tz � ZtZ� pz � ZpZ
and rz� qz� such that rZ � ZTrz� qZ � ZTqz� Then preconditioning tZ � �ZTDZ���rZ
can be expressed in the form

tz � Z�ZTDZ���ZT rz � �D�� �D��A�ATD��A���ATD���rz �
���

so that matrix Z need not be used explicitly� Since dz does not in�uence formulas in
conjugate gradient iterations directly� we can use dx � dz � D��AdA instead of dz�
Since du cannot be obtained from conjugate gradient iterations� it has to be estimated
in any way� The most natural choice is the weighted least�square minimization of the
total residuum rz �Adu� This way leads to formula du � �ATD��A���ATD��rz� The
following algorithm summarizes the above considerations�

�



Algorithm �

dx � D��A�ATD��A���bu
rz � bx �Bdx�
tz � D���rz �Atu�� tu � �ATD��A���ATD��rz
pz � tz�
� � rT

z
tz� � � ��

while � � �� do

qz � Bpz�
� � pT

z
qz� � � �	��

d�
x
� dx � �pz�

r�
z
� rz � �qz�

t�
z
� D���r�

z
�At�

u
�� t�

u
� �ATD��A���ATD��r�

z

�� � �r�
z
�T t�

z
� 
 � ��	��

p�
z
� t�

z
� 
pz�

�delete ���

end while�

set du �� tu�

Theorem �� Algorithm � and Algorithm � are equivalent in the sense that both
generate the same vectors dx and give the same �nal pair �dx	 du��

Proof� By de	nition� dz � ZdZ� tz � ZtZ� pz � ZpZ � where dZ � tZ� pZ are vectors
obtained by the conjugate gradient method with preconditioner ZTDZ applied to the
system �
��� But vectors dZ � tZ� pZ in Algorithm �a have the same property� Since
tA � �� pA � � in Algorithm �a� we can set tx � ZtZ � tz� px � ZpZ � pz in
Algorithm 
� Moreover� the same initial vector dx � D��A�ATD��A���bu is used
in both Algorithm 
 and Algorithm �� Therefore both algorithms generate the same
vectors dx� The 	nal vector du is also the same in both algorithms� since it is the
least�square solution of the equation Bdx �Adu � bx� �

Theorem 
 says that the conjugate gradient method with preconditioner �
�
� ap�
plied to original system �
��� is equivalent to the conjugate gradient method with
preconditioner ZTDZ applied to reduced system �
��� when the vertical direction
dx � D��A�ATD��A���bu is chosen initially�

� Numerical experiments

The algorithms described above can be used for solving large saddle�point systems
arising in equality constrained optimization� In this case� matrix ATD��A should
be sparse� Unfortunately� this is not satis	ed when matrix A contains dense rows�
Therefore� some modi	cations of the algorithms are necessary� The 	rst modi	cation
is based on the Woodbury theorem� Assume that AT � �AT

s
� AT

d
� where AT

s
D��
s
As is

sparse and Ad contains dense columns� Then

�



�ATD��A��� � �AT

s
D��

s
As �AT

d
D��

d
Ad�

��

� �AT

s
D��

s
As�

�� � �AT

s
D��

s
As�

��AT

d
M��

d
Ad�A

T

s
D��

s
As�

�� �����

where
Md � Dd �Ad�A

T

d
D��

d
Ad�

��AT

d

is a �low�dimensional� dense matrix� Another modi	cation is based on the sparse
Bunch�Parlet decomposition� Since

�
D A
AT �

� �
tx
tu

�
�

�
rx
ru

�
� ���
�

vectors tx and tu can be easily obtained after decomposition of the left�hand side matrix�
Numerical stability of both of these possibilities is studied in �
��

Now we are in the position to introduce the results of our experiments� We have
used a collection of �� equality constrained problems with ���� variables proposed in
report ���� which can be downloaded �together with corresponding fortran codes� from
the home�page http���www�uivt�cas�cz� �luksan�� The following table contains
total numbers of outer iterations �numbers of saddle�point systems solved� NSP� total
numbers of inner �conjugate�gradient� iterations NCG and total CPU times over all
�� problems� We have tested three above algorithms with two realizations� ����� and
���
�� Moreover� the results for trust region method ��� are added for comparison�

Algorithm NSP NCG CPU
Algorithm � � ����� ��� ���� �����
Algorithm � � ���
� ��� ���� �����
Algorithm 
 � ����� ��� ��� ����
Algorithm 
 � ���
� �
� �� �����
Algorithm � � ����� ��� ��� 
����
Algorithm � � ���
� ��� ��� ����
Trust region ��� ��� ��
 �����

Table �

Table � shows high e�ciency of the conjugate�gradient methods applied to saddle
point systems� Surprisingly� Algorithm � �with the initial choice dx � �� is very e�cient
and competitive with Algorithm � although it can lead to a breakdown theoretically� In
Algorithm �� numbers � and � are not guaranteed to be positive� They have sometimes
acquired negative values in our computations�

�
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