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� Introduction

This paper is devoted to minimizing locally Lipschitz continuous function f � RN � R�
We assume that for each y � RN we can compute the value f�y
 and an arbitrary sub�
gradient g�y

 i�e� one element of the subdi	erential �f�y
 �called generalized gradient
in ���
� Since f is assumed to be locally Lipschitz continuous
 f is di	erentiable at y
for all y except in a set of zero �Lebesgue
 measure �see ����
�
The most e�cient globally convergent methods for nonconvex nonsmooth optimiza�

tion are various versions of bundle methods �see e�g� ���
 ���
 ����
 ����
 ����
� Essentially

instead of the singleton fk � f�xk

 g�xk
 � �f�xk

 the bundle f�fkj � gj
 � j � Jkg
is used in the k�th iteration
 k � �
 where fkj � f�yj
 � �xk � yj
T gj
 gj � �f�yj


Jk � f�� � � � kg
 x�� � � � � xk are iterates and y�� � � � � yk are trial points� The piecewise
linear function

�fk�x
 � max
j�Jk

ffk � �x� xk

Tgj � �kj g ����


is constructed
 where �kj 
 �
k
j � � �to have fk � fk�minj�Jk �kj � �fk�xk
 � minx �fk�x



represent some generalization of linearization errors fk � fkj 
 k � �
 j � Jk in the
nonconvex case �when it may happen that fk � fkj 

 and the direction vector

dk � argmin
d�RN

n
�fk�xk � d
 � �

�d
TBkd

o
����


is determined where matrix Bk is usually positive de�nite �the additional quadratic
term in ����
 has a similar signi�cance as in the trust region approach
� The minimiza�
tion subproblem ����
 can be replaced by the quadratic programming subproblem

�dk� �k
 � arg min
�d����RN��

n
�
�
dTBkd� �

o
subject to � �kj � dT gj � �� j � Jk� ����


The presented nonconvex VM method proceeds from the convex method
 described
in ���� and is based on an observation that standard VM methods are relatively robust
and e�cient even in the nonsmooth case �see e�g� ���� and also our experiments in ����
�
The advantage of standard VM methods consists in the fact that the time consuming
quadratic programming subproblem ����
 does not need to be solved� Although stan�
dard VM methods require more function evaluations than bundle methods
 the total
computational time is frequently shorter� On the other hand
 no global convergence has
been proved for standard VM methods applied to nonsmooth problems
 and possible
failures or inaccurate results can sometimes appear in practical computations�
Our main purpose was to obtain a VM method which does not require a solution

to the quadratic programming subproblem ����
 but is globally convergent applied to a
locally Lipschitz continuous function� For this purpose
 ideas essential for bundle meth�
ods were used
 especially utilization of null steps which serve for obtaining su�cient
information about a minimized nondi	erentiable function when a serious descent condi�
tion is not satis�ed� The VM update still is the most essential part of the method� it is
carried out in both descent and null steps whenever conditions for positive de�niteness
are satis�ed�
To prove global convergence
 additional features of bundle methods
 namely simple

aggregation of subgradients and application of subgradient locality measures
 have to

�



be utilized� These principles guarantee convergence of aggregate subgradients to zero
and allow us to use a suitable termination criterion� To improve the robustness and
the e�ciency of the method
 stepsize selection based on the polyhedral approximation
of the objective function and a suitable matrix scaling are �nally added�
The paper is organized as follows� Section � is devoted to the description of a

new method and Section � contains the global convergence theory� Section � gives
more details concerning the implementation of the method
 and Section � describes
numerical experiments con�rming the computational e�ciency�

� Derivation of the method

The algorithm given below generates a sequence of basic points fxkg�k�� � RN which
should converge to a minimizer of f � RN � R and a sequence of trial points fykg
satisfying xk�� � xk � tkLdk
 yk�� � xk � tkRdk for k � � with y� � x�
 where t

k
R �

��� tmax

 tkL � ��� tkR� are appropriately chosen stepsizes
 dk � ��kHk�gk is a direction
vector
 �gk is an aggregate subgradient
 Hk represents a VM approximation of the
aggregate inverse Hessian matrix and the number �k guarantees the boundedness of
fjdkjg�
If the descent condition f�yk��
 � f�xk
 � cLt

k
Rwk is satis�ed with suitable tkR


where cL � ��� �	�
 is �xed and �wk � � represents the desirable amount of descent

then xk�� � yk�� �descent step
� Otherwise
 a null step is taken which keeps the basic
points unchanged but accumulates information about the minimized function�
The aggregation is very simple� denoting bym the lowest index j satisfying xj � xk

�index of the iteration after the last descent step
 and having the basic subgradient gm �
�f�xk

 the trial subgradient gk�� � �f�yk��
 and the current aggregate subgradient
�gk
 we de�ne �gk�� as a convex combination of these subgradients

�gk�� � 
k��gm � 
k��gk�� � 
k���gk�

where multipliers 
k�i
 i � f�� �� �g can easily be determined by minimization of a sim�
ple quadratic function
 which depends on these three subgradients and two generalized
linearization errors �see Step � of Algorithm �
� This approach retains global con�
vergence but eliminates a solution of the rather complicated quadratic programming
subproblem ����
 that appears in standard bundle methods�
Note that the global convergence is also assured in a simpler case when 
k�� � �


i�e� �gk�� is a convex combination of only two subgradients gk�� and �gk� However
 this
simpli�cation slightly deteriorates the robustness of the method
 e�g� it increases the
sensitivity to the stepsize determination after the null steps �see Section �
� Moreover

the situation when dTk��gm � � occurred in numerical experiments
 was much more
frequent in the simpli�ed case�
Matrices Hk are generated by using usual VM updates� After the null steps
 sym�

metric rank one �SR�
 update �see ���
 is used
 since it preserves the boundedness
of the generated matrices as required in the global convergence theory� Because this
boundedness is not necessary after descent steps
 the standard BFGS update �see ���

appears to be more suitable�

�



E�ciency of the algorithm is very sensitive to the initial stepsize selection even if it
is not relevant for proving global convergence� In fact
 a bundle containing trial points
and corresponding function values and subgradients is required for an e�cient stepsize
selection� Nevertheless
 the initial stepsize selection does not require time consuming
operations� Details are discussed in Section �� To test whether the computed stepsize
is too small
 the bundle parameter sk �see Section �
 and the matrix scaling parameter
� are determined and if � is too large after a descent step
 the inverse Hessian matrix
is scaled and the BFGS update is not performed
 which does not have an in�uence on
the global convergence but improves the e�ciency of the method�
Because the proof of global convergence requires boundedness of matrices H��

k 
 the
correction �I
 � 
 �
 is added to Hk if needed� In descent steps
 if the subgradients
are identical in consecutive iterations
 we extrapolate doubling the stepsize if possible
in order to exit such region quicker�
Now we are in a position to describe the method in detail� We shall state the

following basic algorithm�

Algorithm �

Data� An upper and auxiliary lower bound for descent steps tmax 
 � and tmin � ��� �


respectively
 positive line search parameters cA
 cL and cR satisfying cL � cA �
cR � �	�
 a distance measure parameter � 
 �
 a �nal accuracy tolerance � � �

correction parameters � � ��� �
 and L � �
 a locality measure parameter � � �

a matrix scaling bound C 
 � and an upper bound D 
 � for the direction vector
length�

Step �� Initiation� Choose the starting point x� � RN and positive de�nite matrix �H�

�e�g� �H� � I

 set y� � x� and �� � � and compute f� � f�x�
 and g� � �f�x�
�
Initialize the matrix scaling parameter value � � �
 the correction
 extrapolation

matrix scaling and updating indicators iC � iE � iS � iU � �
 the correction
counter nC � �
 the function evaluation counter for matrix scaling nS � � and
the iteration counter k � ��

Step �� Descent step initialization� Set �gk � gk
 ��k � � and an index variable m � k�

Step �� Correction� Set �wk � �gTk �Hk�gk � ���k� If �wk � �j�gkj� or iC � iU � �
 then set

wk � �wk � �j�gkj�� Hk � �Hk � �I ����


and nC�nC��
 otherwise set wk � �wk and Hk � �Hk� If nC � L
 then set iC���

Step �� Stopping criterion� If wk � �
 then stop�

�



Step �� Line search� Set �k � min���D	�jHk�gkj� �
�
 dk � ��kHk�gk and nS � nS � �� If
iE � � then determine t

k
I � �tmin� tmax

 otherwise set t

k
I � �t

k��
L and iE � �� By a

line search procedure as given below �nd stepsizes tkL and t
k
R and the corresponding

quantities xk�� � xk � tkLdk
 yk�� � xk � tkRdk
 fk�� � f�xk��

 gk�� � �f�yk��

and

�k�� � max�jfk � f�yk��
 � �yk�� � xk

Tgk��j� �jyk�� � xkj�� ����


satisfying � � tkL � tkR � tkI and the serious descent criterion

fk�� � fk � cLt
k
Lwk ����


and either a descent step is taken� tkL � tkR
 �k�� � � and

tkL � tmin or �k�� 
 cAwk� ����


or a null step occurs� tkL � � � tkR
 �k�� � �k�� and

� �k�� � dTk gk�� � �cRwk� jyk�� � xk��j � tmaxD� ����


Set uk � gk�� � gm�

Step �� Scaling parameter updating� Determine the bundle parameter for matrix scaling
sk � �� If sk � ����
 then set � � ��� �min�C�max����� sk��
	�� If tkL 
 �
 go to
Step ��

Step 	� Aggregation� Determine multipliers 
k�i � �
 i � f�� �� �g
 
k�� � 
k�� � 
k�� � �

which minimize the function

��
�� 
�� 
�
 � j
�Wkgm � 
�Wkgk�� � 
�Wk�gkj� � ��
��k�� � 
���k�� ����


where Wk � H
���
k � Set

�gk�� � 
k��gm � 
k��gk�� � 
k���gk� ��k�� � 
k���k�� � 
k����k� ����


Step 
� SR� update� Let vk � Hkuk � tkRdk� If

�gTk vk � � ����


and in case of iC � �
 furthermore

�j�gk��j� � ��gTk��vk
�	uTk vk and �N � jvkj�	uTk vk� ����


then set iU � � and
�Hk�� � Hk � vkv

T
k 	u

T
k vk� �����


otherwise set iU � � and �Hk�� � Hk� Set k � k � � and go to Step ��

Step �� Matrix scaling� If � 
 � set iS � iS � �� If � 

p
C and nS 
 � and iS 
 �
 set

nS � �
 iS � �
 Hk�� � �Hk
 � �
p
�
 k � k � � and go to Step ��

�



Step �� BFGS update� If uk � � and tkL � tmax	�
 set iE � �� If uTk dk 
 �
 set iU � � and

�Hk�� � Hk �

�
tkL �

uTkHkuk
uTk dk

�
dkd

T
k

uTk dk
� Hkukd

T
k � dku

T
kHk

uTk dk
�

otherwise set iU � �
 �Hk�� � Hk
 k � k � � and go to Step ��

A few comments on the algorithm are in order�
To generalize linearization errors to the nonconvex case
 the subgradient locality

measures introduced in ��� have been used� The �rst absolute value in ����
 is not
necessary but it signi�cantly improves the numerical results�
The problem of minimizing function ����
 in Step � is the dual to the following

primal problem

minimize
d�RN

n
�
�d

TH��
k d �max�dTgm���k�� � dT gk������k � dT �gk�

o
� �����


The minimization of the quadratic function ����
 and the determination of the initial
stepsize tkI in Step � and the bundle parameter for matrix scaling sk in Step � will be
discussed in Section ��
Condition ����
 �or uTk dk 
 tkRd

T
kH

��
k dk

 which implies that uTk vk 
 � by Lemma �


assures positive de�niteness of the matrix obtained by the SR� update �see e�g� ���
�
Similarly
 satisfying uTk dk 
 � assures positive de�niteness of the matrix obtained by
the BFGS update �uTk dk � � holds whenever f is convex
� Therefore all matrices �Hk

Hk generated by Algorithm � are positive de�nite� The conditions for matrix scaling
in Step � and corresponding relations were established empirically�
The constant D 
 � is meant to be a maximum reasonable value of jdkj� Provided

the level set fx � RN � f�x
 � f�x�
g is bounded
 the choice D � supfjx � yj �
max�f�x
� f�y
� � f�x�
g seems to be natural�
The correction ����
 is used automatically
 after every SR� update
 only if the

condition �wk � �j�gkj� has been satis�ed L times at least� Thus we have a possibility
to eliminate the use of conditions ����
 �restricting the use of the SR� update
 at
the beginning of the iterative process where the SR� update may have a signi�cant
in�uence on the rate of convergence�
We shall now present a line search algorithm and subsequent lemmawhich are based

on the ideas contained within ����

Line Search Procedure

�i
 Set tA � � and t � tU � tkI � Choose � � ��� �	�
 and cT � �cL� cR � cA
�

�ii
 Calculate f�xk � tdk

 g � �f�xk � tdk
 and

� � max�jfk � f�xk � tdk
 � tdTk gj� ��tjdkj
��� �����


If f�xk � tdk
 � fk � cT twk
 set tA � t
 otherwise set tU � t�

�iii
 If f�xk � tdk
 � fk � cLtwk and either t � tmin or � 
 cAwk
 set tkR � tkL � t and
return�

�iv
 If �� � dTk g � �cRwk
 set tkR � t
 tkL � � and return�

�



�v
 Choose t � �tA � ��tU � tA
� tU � ��tU � tA
� by some interpolation procedure and
go to �ii
�

Lemma �
 Let f satisfy the following �semismoothness� hypothesis �see Remark �
�
�
in ����� for any x � RN � d � RN and sequences f�tig � R� and f�gig � RN satisfying
�ti 	 � and �gi � �f�x� �tid
� one has

lim sup
i��

�gTi d � lim inf
i��

�f�x� �tid
� f�x
�	�ti �

Then the line search procedure terminates in a �nite number of iterations� �nding
stepsizes tkL and tkR satisfying ��
�� and� in case of tkL � � �null steps�� also ��
��


Proof� If the search terminates then obviously relations mentioned above hold at
termination
 observing that t � tkI � tmax and jdkj � D� Assume
 for contradiction
purposes
 that the search does not terminate� Let ti� tiA� tiU � gi and �i denote the
values of t� tA� tU � g and �
 respectively
 after the i�th iteration of the procedure
 hence
ti � ftiA� tiUg for all i� Since tiA � ti��A � ti��U � tiU and t

i��
U � ti��A � �� � �
�tiU � tiA


for all i
 there exists t� � � satisfying tiA 
 t�� tiU 	 t�
 ti � t�� Let S � ft � � �
f�xk � tdk
 � fk � cT twkg� Since ftiAg � S� tiA 
 t� and f is continuous
 we have

f�xk � t�dk
 � fk � cT t
�wk � �����


i�e� t� � S� Let I � fi � ti �� Sg� We prove �rst that the set I is in�nite� If
there existed i� � I satisfying ti � S for all i 
 i�
 it would be t

i�
U � tiU 	 t� for all

i 
 i�
 implying t� � ti�U �� S
 which is a contradiction� Thus I is in�nite and we have
f�xk � tidk
 
 fk � cT t

iwk for all i � I� By �����

 we obtain

h
f�xk � tidk
� f�xk � t�dk


i
	
�
ti � t�

�

 �cTwk

for all i � I
 hence by assumption

� cTwk � lim inf
i��� i�I

f�xk � t�dk � �ti � t�
dk
� f�xk � t�dk


ti � t�
� lim sup

i��� i�I
dTk g

i �����


in view of tiU 	 t� and gi � �f�xk � tidk
� We shall consider the following two cases�
�a
 Suppose that t� 
 �� By �����

 cL � cT and ti � t�
 it holds f�xk � tidk
 �

fk�cLt
iwk for large i from the continuity of f � Since the search does not terminate
 we

must have �i � cAwk at step �iii
 for large i� From step �iv
 we get d
T
k g

i � �cRwk��i �
�cA � cR
wk � �cTwk for all large i by wk 
 �
 which is in contradiction with �����
�
�b
 Suppose t� � �� Then ti � �
 implying �i � � by the continuity of f and the

locally boundedness of the subgradient mapping �f �see ���
� The search does not ter�
minate
 thus ��i�dTk gi � �cRwk at step �iv
 for all i
 therefore lim supi��� i�I d

T
k g

i �
�cRwk � �cTwk
 which contradicts �����
� �

�



� Global convergence of the method

In this section
 we prove global convergence of Algorithm � under the assumption that
function f � RN � R is locally Lipschitz continuous
 that the level set fx � RN �
f�x
 � f�x�
g is bounded and that each execution of the line search procedure is
�nite� For this purpose we will assume that the �nal accuracy tolerance � is set to
zero�

Lemma �
 At the k�th iteration of Algorithm �� one has wk � �gTkHk�gk � ���k� wk �
�j�gkj�� wk � ���k � � and �k�� � �jyk��� xk��j�
 If in addition the condition ��
�� in
Step 
 holds� then uTk vk 
 �


Proof� Considering that �� � � by ����
 and ����

 relations wk � �gTkHk�gk � ���k

wk � �j�gkj�
 wk � ���k follow immediately from ����
� Since �k�� � �k�� and xk � xk��
for null steps
 �k�� � � and jyk�� � xk��j � � for descent steps
 we always have
�k�� � �jyk�� � xk��j� from ����
�
If �gTk vk � �
 then �gk �� �
 �k 
 � and
 since vk � Hkuk � tkRdk
 we get

dTk uk 
 dTk uk � �k�g
T
k vk � ��ktkRdTk �gk � ��kt

k
R�g

T
kHk�gk 
 �

by positive de�niteness of Hk� The last inequality implies uk �� �
 which yields
uTkHkuk 
 �� Using the Cauchy�s inequality
 we obtain

�dTk uk

� � ��k�g

T
kHkuk


� � ��k�g
T
kHk�gku

T
kHkuk � uTkHkuk���kdTk �gk
 �

uTkHkukd
T
k uk

tkR
�

which gives � � uTkHkuk � tkRd
T
k uk � uTk vk� �

Lemma �
 Suppose Algorithm � did not stop before the k�th iteration
 Then the num�
bers 
kj � �� j � �� � � � � k and ��k exist satisfying

��gk� ��k
 �
kX

j��


kj �gj � jyj � xkj
�
kX

j��


kj � �� ��k � ����k � ����


Proof� We shall �rst establish the existence of numbers 
kj � �
 j � �� � � � � k satisfying

��gk� ��k
 �
kX

j��


kj �gj � �j
�
kX

j��


kj � �� 
kj �xk � xj
 � �� j � �� � � � � k� ����


The proof will proceed by induction� If k � �
 then we set 
�� � �� Let i � f�� � � � � k��g
and let ����
 holds for k replaced by i� If the line search procedure results in a descent
step in the i�th iteration
 we set 
i��j � �
 j � �� � � � � i
 
i��i�� � �� Since �gi�� � gi��

��i�� � �i�� � � at Step �
 ����
 holds for i � �� In case of a null step
 we denote by
n the value of the index variable m �de�ned in Step �
 at the i�th iteration �index of
the iteration after the last descent step
 i�e� it holds xj � xi�� for j � n� � � � � i��
 and

�



de�ne 
i��n � 
i���
i��

i
n
 


i��
j � 
i��


i
j for � � j � i
 j �� n and 
i��i�� � 
i��� It is clear

that 
i��j � � for all j � i� � and

i��X
j��


i��j � 
i�� � 
i��

�

in �

n��X
j��


ij �
iX

j�n��


ij

�
� 
i�� � ��

Using relations ����

 we obtain

��gi��� ��i��
 � 
i���gn� �
 � 
i���gi��� �i��
 �
iX

j��


i��

i
j�gj � �j
 �

i��X
j��


i��j �gj� �j


due to �n � �� Finally
 we have 

i��
j �xi�� � xj
 � 
i��


i
j�xi � xj
 � � for j � n
 which

together with xj � xi��
 j � n� � � � � i� � completes the induction�
Setting ��k �

Pk
j�� 


k
j jyj � xkj
 we get

����k � �
� kX

j��


kj jyj � xjj
��

�
kX

j��


kj�jyj � xjj� �
kX

j��


kj�j � ��j

from ����

 which implies ��k �
Pk

j�� 

k
j jyj � xjj
 from Lemma � and convexity of the

function � � ��� on R� for � 
 � and � � �� �

Lemma �
 Let �x � RN be given and suppose that there exist vectors �q� �gi� �yi and
numbers �
i � � for i � �� � � � � l� l � �� satisfying

��q� �
 �
lX

i��

�
i��gi� j�yi � �xj
� �gi � �f��yi
� i � �� � � � � l�
lX

i��

�
i � �� ����


Then �q � �f��x



Proof� Let I � fi � � � i � l� �
i 
 �g� By ����

 �yi � �x and �gi � �f��x
 for all
i � I� Thus we have �q �

P
i�I
�
i�gi
 �
i 
 � for i � I


P
i�I
�
i � �
 so �q � �f��x
 by the

convexity of �f��x
 �see ���
� �

Theorem �
 If Algorithm � terminates at the k�th iteration� the point xk is stationary
for f 


Proof� If the algorithm terminates at Step �
 then � � � implies wk � � and �gk � �

��k � ��k � � by Lemma � and Lemma �� By Lemma � and using Lemma � with �x � xk

l � k� �q � �gk� �gi � gi� �yi � yi� �
i � 
ki for i � k we have � � �q � �f��x
� �

From now on we will assume that Algorithm � does not terminate
 i�e� that wk 
 �
for all k � ��

Lemma �
 Suppose that fxkg is bounded �e
g
 when the level set fx � RN � f�x
 �
f�x�
g is bounded� and that there exist a point �x � RN and an in�nite set K �
f�� �� � � �g satisfying xk

K�� �x� wk
K�� �
 Then � � �f��x



�



Proof� Let I � f�� � � � � N��g� From gk � �f�yk

 k � �
 Lemma � and Caratheodory�s
Theorem �see ���
 we deduce the existence of vectors yk�i
 gk�i and numbers 
k�i � �
and ��k for i � I
 k � �
 satisfying

��gk� ��k
 �
X
i�I


k�i�gk�i� jyk�i � xkj
�
X
i�I


k�i � �� gk�i � �f�yk�i
� i � I� k � � ����


with �yk�i� gk�i
 � f�yj� gj
 � j � �� � � � � kg
 i � I� k � �� By ����
 and the fact that
xk�� � yk�� for descent steps
 we always have jxk�ykj � tmaxD
 k � �� By assumption
this gives boundedness of fykg and existence of points y�i � i � I and an in�nite set

K� � K satisfying yk�i
K��� y�i for i � I� By the local boundedness and the upper

semicontinuity of �f �see ���
 and the boundedness f
k�ig
 we obtain boundedness of
fgkg and existence of vectors g�i � �f�y�i 
 and numbers 


�
i for i � I and an in�nite set

K � K� satisfying gk�i
K�� g�i and 
k�i

K�� 
�i for i � I� Obviously 
�i � �� i � I
P
i�I 


�
i � � by ����
�

From wk
K�� �
 Lemma � and Lemma �
 we obtain �gk

K�� �
 ��k
K�� �
 ��k

K�� ��
Letting k � K approach in�nity in ����
 and using Lemma � with l�N��
 �q � �

�gi � g�i 
 �yi � y�i 
 �
i � 
�i 
 we get � � �f��x
� �

Lemma �
 Let vectors p� q and numbers w � �� � � �� � � �� M � �� c � ��� �	�

satisfy conditions w � jpj� � ��� � � pT q � cw and max�jpj� jqj�p�� � M 
 Let
Q�

 � j
q � �� � 

pj� � ��
� � ��� 

��� b � �� � �c
	��M

 Then

minfQ�

 � 
 � ��� ��g � w � w�b��

Proof� See the proof of Lemma ��� in �����

Lemma �
 Let the number of descent steps be �nite and let the last descent step occurs
at the �k�th iteration
 Then the point x	k�� is stationary for f 


Proof� �i
 At �rst we establish the existence of a number k�
 k� 
 �k �to have solely
null steps

 such that

wk�� � �gTk��Hk�gk�� � ���k��� T r�Hk��
 � Tr�Hk
� k � k�� ����


If nC � L for all k � �
 we can set k� � max��k� �k � ��
 where �k is the index k
 in
which nC changed last �or �k � � if nC � � for all k � �
� To see this
 let k � k��
Then wk�� � �wk�� and Hk�� � �Hk��� If the SR� update is not used
 then ����
 holds
with equalities
 otherwise Lemma � implies uTk vk 
 �
 which together with �����
 gives
����
�
If nC � L does not hold for all k � �
 then we set �k equal to the index k in which

iC � � occurs �rst and again set k� � max��k� �k � ��� Then matrix H
k � �I is positive
de�nite
 since �H
k is positive de�nite and H
k � �H
k � �I by the de�nition of �k� We can
easily prove by induction that all matrices Hk � �I
 k � �k are positive de�nite� �If the

�



SR� or BFGS update is used
 iC � iU � � and therefore Hk�� � �Hk�� � �I
 otherwise
matrix �Hk��� �I � Hk � �I is positive de�nite and the more so is matrix Hk�� � �I
�
Assume that k � k�� If the SR� update is not used
 then iU � � and �Hk�� � Hk�

Thus �wk�� � �j�gk��j� since the matrix Hk � �I is positive de�nite� Therefore wk�� �
�wk��
 Hk�� � �Hk�� � Hk and ����
 holds with equalities� If the SR� update is used

all conditions ����
�����
 are satis�ed and iC � iU � �
 therefore correction ����
 �with
k replaced by k � �
 is realized� Using �����

 we can write

wk�� � �g
T
k��Hk�gk�� � ���k�� � �j�gk��j� � ��gTk��vk
�	uTk vk

and the �rst part of ����
 follows from the �rst part of ����
� Furthermore
 �����

implies

Tr�Hk��
 � Tr�Hk
 � �N � jvkj�	uTk vk
and the second part of ����
 follows from the second part of ����
�
�ii
 Combining ����
 with ����
 and Lemma �
 we obtain

wk�� � �gTk��Hk�gk�� � ���k�� � ��
k��� 
k��� 
k��
 � ���� �� �
 � wk ����


for k � k� and therefore the sequences fwkg
 fWk�gkg
 f��kg are bounded� Moreover

����
 assures boundedness of sequences fHkg and fWkg� By ����
 we have jxk�� �
yk��j � tmaxD
 k � k�
 which gives boundedness of fykg and by the local boundedness
of �f �see ���
 also boundedness of fgkg and fWkgk��g� Denote

M � supfjWkgk��j� jWk�gkj�
p
��k � k � k�g� b � �� � �cR
	��M
 ����


and assume �rst that wk 
 � 
 � for all k � k�� Since

min
�
��
�� 
�� 
�
 � 
i � �� i � �� �� ��

�X
i��


i � �
	
� min

�������
���� 
� � � 

�

we can use ����

 ����
 and Lemma � with p � Wk�gk
 q � Wkgk��
 w � wk
 � � ��k

� � �k��
 c � cR to obtain

wk�� � �gTk��Hk�gk�� � ���k�� � wk � �wkb

� � wk � ��b
�

for k � k� and thus
 for su�ciently large k
 we have a contradiction with the assumption
wk 
 �� Therefore wk � � due to the monotonicity of wk for k � k�
 xk � x	k�� and
Lemma � gives � � �f�x	k��
� �

Theorem �
 Suppose sequence fxkg is bounded
 Then every cluster point of fxkg is
stationary for f 


Proof� Let �x be a cluster point of fxkg andK � f�� �� � � �g be an in�nite set such that
xk

K�� �x� In view of Lemma �
 we can restrict to the case when the number of descent
steps �with tkL 
 �
 is in�nite� We denote K � � fk � tkL 
 �� �i � K� i � k� xi � xkg�
Obviously K � is in�nite and xk

K��� �x� Continuity of f implies that fk
K��� f��x
 and

��



therefore fk 	 f��x
 by monotonicity of ffkg
 which follows from the descent condition
����
� Using nonnegativity of tkL for k � � and the condition ����

 we obtain

� � cLt
k
Lwk � fk � fk�� � �� k � �� ����


If the set K� � fk � K � � tkL � tming is in�nite then wk
K��� �
 xk

K��� �x by ����

and � � �f��x
 by Lemma ��
If K� is �nite
 the set K� � fk � K � � �k�� 
 cAwkg must be in�nite by ����
�

For contradiction purposes
 we assume that wk � � 
 � for all k � K�� From ����


we have tkL
K��� � and Step � implies jxk�� � xkj � tkLjdkj � tkLD for k � �
 thus

xk�� � xk
K��� �� Since fxkg is bounded and yk�� � xk�� for descent steps
 the local

boundedness of �f �see ���
 yields also boundedness of fgk��gk�K�� By ����
 and ����


we obtain �k��
K��� �
 which is in contradiction with cA� � cAwk � �k��
 k � K��

Therefore there exists an in�nite set K� � K� satisfying wk
K��� �
 xk

K��� �x and
� � �f��x
 by Lemma �� �

Remark �� If we choose � 
 �
 Algorithm � always terminates in a �nite number
of steps
 since wk � � in case the number of descent steps is �nite �see the proof of

Lemma �
 and since wk
K��� � or wk

K��� � in case the number of descent steps is
in�nite �see the proof of Theorem �
�

� Implementation

In this section we discuss some details concerning our implementation of the algorithm�
Assume that we have the current iteration xk
 fk � f�xk

 g�xk
 � �f�xk

 k � � and
a bundle yj
 f�yj

 gj � �f�yj

 j � Jk � f�� � � � � kg
 where yj
 j � Jk are some of the
trial points� Furthermore
 we have the current aggregate subgradient �gk
 the positive
de�nite VM approximation Hk of the inverse Hessian matrix
 the search direction
dk � �Hk�gk and the bundle parameter for matrix scaling sk and de�ne generalized
linearization errors �kj � max�jfk � f�yj
� �xk � yj
T gjj� �jxk � yjj���
After the descent step we have �gk � gk � g�xk
 and we search for a suitable

initial stepsize tkI for the line search procedure� The signi�cant descent in the last step
encourages us to construct the following quadratic approximation of f�xk � tdk
�

�k
Q�t
 � fk � tdTk gk �

�
�t

�dTkH
��
k dk � fk � �t� �

�t
�
dTk gk�

The bundle represents the polyhedral function ����
� For x � xk � tdk we have the
following piecewise linear approximation of f�xk � tdk


�k
P �t
 �

�fk�xk � tdk
 � max
j�Jk

ffk � �kj � tdTk gjg�

To calculate tkI we will minimize the convex function �k�t
 � max��
k
Q�t
� �

k
P �t
� within

��� ��
 since obviously �k��
 � fk and �k�t
 � �k
Q�t
 
 fk for t �� ��� �� and gk �� ��

Thus we set

tkI � arg minf�k�t
 � t � �tmin�min �tmax� �� B	jdkj��g �

��



where B is a given upper bound for the distance from point xk in one step� Note that
the possibility of stepsizes greater than � is useful here
 because the information about
function f 
 included in matrix Hk
 is not su�cient for a proper stepsize determination
in the nonsmooth case�
After the null step
 the unit stepsize is mostly satisfactory
 as has been found from

numerical experiments� To utilize the bundle and improve the robustness and the
e�ciency of the method
 we use the aggregate subgradient �gk to construct the linear
approximation �k

L�t
 � fk � tdTk �gk of f�xk � tdk
 and set

tkI � arg min
n
max��k

L�t
� �
k
P �t
� �

�
�
t�dTkH

��
k dk � t � �tmin�min��� B	jdkj��

o
�

The function �k
P �t
 has sometimes no in�uence on the stepsize determination �then

obviously tkI � �
� It can mean that the initial stepsize is too small� Thus we have
introduced the bundle parameter for matrix scaling sk� in view of �����

 ����
 and
since function ����
 is not minimized for descent steps
 we could de�ne sk by

arg min
s�R

n
max��k

L�s
� �
k
P �s
� �

�
��ks�g

T
kHk�gk

o
� ����


where �k � � for null steps
 �k � � for descent steps� For simpli�cation
 we omit in
����
 the lines of �k

P with d
T
k gj � �

��kd
T
k �gk and set

sk � min
n
����� �kj 	d

T
k �gj � �gk
 � dTk gj 
 �

��kd
T
k �gk� j � Jk

o

�minimum abscissa of an intersection of the lines
 which create �k
P �t
 and have d

T
k gj 


�
�
�kd

T
k �gk
 with �

k
L�t

�

From now on we will use the same notation as in Algorithm �� The minimization
of the quadratic function ����
 in Step �
 or ���
�� 
�
 � ��
�� 
�� � � 
� � 
�

 is
not complicated� If it is not possible to compute the intersection of straight lines
� ��	�
� � �
 � ��	�
� � �
 the convexity of �� implies that we can restrict our attention
to the lines 
� � �
 
� � � and 
� � 
� � �� As an example we give a formula for
minimization within the line 
� � �
 which we regularly apply in the �rst null step
after any descent step due to �gk � gk � gm and ��k � �� If gk�� �� �gk
 then set


k�� � min



��max



��
dTk �gk�� � �gk
 � ��k � �k��
�gk�� � �gk
THk�gk�� � �gk


��
�

otherwise set 
k�� � � for ��k � �k�� or 
k�� � � for ��k � �k���
Finally we mention the stopping criterion� We de�ne the descent tolerance �f 
 �

and the maximum number mf � � of consecutive too small function value variations
and add to Step � the initialization of auxiliary variables nf � � and  � � jf�j��� To
prevent accidental termination
 we modify Step � in the following way�

Step ��� If wk � � and either  k	max��� fk� � ����f after a descent step
 or wk�� � �
after two consecutive null steps
 then stop�

To cut o	 useless iterations and update  k
 we modify Step � in the following way�

��



Step ��� If jf�yk��
 � fkj � ���
 k
 set  � jf�yk��
 � fkj
 otherwise set  �  k� If
 	max��� f�yk��
� � �f or f�yk��
 � fk
 then set nf � nf��
 otherwise set nf �
�� If nf � mf 
 then stop� Determine the bundle parameter for matrix scaling
sk � � and set  k�� �  k� If sk � ����
 set � � ��� �min�C�max����� sk��
	��
If tkL 
 �
 set  k�� �  and go to Step ��

� Numerical examples

The above concept was implemented in FORTRAN �� as VMNC� In this section we
compare our results for �� standard test problems from literature �problem � is smooth

all the others are nonsmooth
 with those obtained by our convex VM method ����
�VMC
 and by our proximal bundle method PBL mentioned in ����� A comparison with
the BT algorithm ���� and the ellipsoid bundle method ���� for some problems can be
found in ����
 a comparison with a smooth VM method from ���� in ����� Problems ����
are described in ����
 problems ����� in ����
 problems ����� in ����
 problem �� in ���

problem �� in ���
 problems ����� in ����
 problem �� in ���� details to problems ��
and �� can be found in ���� and to problem �� in ����
In Table � we give optimal values of the functions tested�

Nr� N Problem Minimum Nr� N Problem Minimum
� � Rosenbrock � �� �� Go�n �
� � Crescent � �� � El Attar ���������
� � CB� ��������� �� � Wolfe ����
� � CB� ��� �� �� MXHILB �
� � DEM ���� �� �� L�HILB �
� � QL ���� �� � Colville� ����������
� � LQ ���������� �� �� SHELL DUAL ���������
� � Mi!in� ���� �� �� Gill ���������
� � Mi!in� ���� �� �� Steiner� ���������
�� � Rosen ����� �� � EXP ���������
�� � Shor ��������� �� � TRANSF ���������
�� �� Maxquad� ���������� �� � Wong� ���������
�� �� Maxq � �� �� Wong� ���������
�� �� Maxl � �� �� Wong� ���������
�� �� TR�� ��������� �� � Filter ���������

Table �� Test problems

The parameters of the algorithm had the values tmin � �����
 tmax � ���
 cA �
cL � ����
 cR � ����
 cT � � 
 ����
 � � ����
 �f � � 
 ����
 � � �����
 L � �

� � �
 C � ���
 D � ��
�
 Jk � fmax��� k � N � ��� � � � � kg
 k � � and mf � � for
problems ����
 �����
 ����� and �����
 mf � � for problem ��
 mf � � for problem ��
and mf � � for problems ��
 �� and ���
Our results are summarized in Table �
 in which the following notation is used� Ni is

the number of iterations
 Nf is the number of objective function � and also subgradient
� evaluations
 F is the objective function value at termination
 B is the maximum

��



allowable distance in one step �see Section �
 and � is the distance measure parameter�
values of B and � were chosen experimentally� Note that a similar choice of parameters
�to optimize Nf 
 was also performed for VMC and PBL� we refer to ���� for values of
B in the case of VMC�
Our limited numerical experiments indicate that the adapted VM methods can

compete with the well�known proximal bundle methods in the number of function and
subgradient evaluations
 applied to nonconvex nonsmooth problems� Moreover
 we can
expect that the computational time will be mostly signi�cantly shorter�

VMNC VMC PBL
Nr�

Ni Nf F B � Nf F Nf F

� �� �� �����E��� � � �� �����E��� �� �����E���
� �� �� �����E��� ��� � �� �����E��� �� �����E���
� �� �� ��������� � � �� ��������� �� ���������
� �� �� ��������� ��� ���� �� ��������� �� ���������
� �� �� ���������� ��� � �� ���������� �� ����������
� �� �� ��������� � ���� �� ��������� �� ���������
� �� �� ���������� � � � ���������� �� ����������
� �� �� ���������� ��� ���� ��� ���������� �� ����������
� �� �� ���������� � ���� �� ���������� �� ����������
�� �� �� ���������� � ���� �� ���������� �� ����������
�� �� �� ��������� � ���� �� ��������� �� ���������
�� �� �� ���������� �� ���� �� ���������� �� ����������
�� ��� ��� �����E��� �� ��� ��� �����E��� ��� �����E���
�� �� �� � ��� ���� �� � �� �����E���
�� ��� ��� ���������� ��� ��� ��� ���������� ��� ����������
�� ��� ��� �����E��� ��� ���� ��� �����E��� �� �����E���
�� �� �� ��������� � � ��� ��������� �� ���������
�� �� �� ���������� � � �� ���������� �� ����������
�� �� �� �����E��� � ���
 �� �����E��� �� �����E���
�� �� �� �����E��� � ��� �� �����E��� �� �����E���
�� �� �� ���������� ��� ���� �� ���������� �� ����������
�� ��� ��� ��������� �� ��� ��� ��������� ��� ���������
�� ��� ��� ��������� �� ���� ��� ��������� ��� ���������
�� �� �� ��������� � � �� ��������� ��� ���������
�� �� �� ��������� ��� ���� �� ��������� �� ���������
�� �� �� ��������� � ���� �� ��������� ��� ���������
�� �� �� ��������� � ���� �� ��������� �� ���������
�� �� �� ��������� � ���� �� ��������� �� ���������
�� ��� ��� ��������� ��� ��� ��� ��������� ��� ���������
�� �� �� ��������� � ��� ��� ��������� ��� ���������

���� ���� ���� ����P
Time � ���� sec Time � ���� sec Time � ����� sec

Table �� Our test results

��
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