narodni
N U dlozisté
1 L Sedé
6 literatury

Globally Convergent Variable Metric Method for Nonconvex Nondifferentiable
Unconstrained Minimization

Luksan, Ladislav
1999

Dostupny z http://www.nusl.cz/ntk/nusl-33843

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 22.05.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-33843
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Globally convergent variable metric method for
nonconvex nondifferentiable unconstrained
minimization

J. Vicek L. Luksan

Technical report No. 775

April 1999

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (+4202) 6884244 fax: (+4202) 8585789
e-mail: uivt@uivt.cas.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

Globally convergent variable metric method for
nonconvex nondifferentiable unconstrained
minimization®
J. Vlcek L. Lukgan

Technical report No. 775
April 1999

Abstract

A special variable metric method is given for finding stationary points of locally Lip-
schitz continuous functions which are not necessarily convex or differentiable. Time
consuming quadratic programming subproblems do not need to be solved. Global
convergence of the method is established. Some encouraging numerical experience is
reported.

Keywords
Nonsmooth minimization, nonconvex minimization, numerical methods, variable
metric methods, global convergence

!This work was supported by AS CR Grant A2030706

1 Introduction

This paper is devoted to minimizing locally Lipschitz continuous function f : RY — R.
We assume that for each y € R we can compute the value f(y) and an arbitrary sub-
gradient ¢(y), i.e. one element of the subdifferential df(y) (called generalized gradient
in [3]). Since f is assumed to be locally Lipschitz continuous, f is differentiable at y
for all y except in a set of zero (Lebesgue) measure (see [17]).

The most efficient globally convergent methods for nonconvex nonsmooth optimiza-
tion are various versions of bundle methods (see e.g. [8], [9], [17], [18], [15]). Essentially,
instead of the singleton f; = f(x1), g(zx) € 0f(xx), the bundle {(f¥,g;) : j € Ti}
is used in the k-th iteration, k > 1, where ff = fly;) + (zr — y;)" 95, g; € Of(y;),
Je C {1,... k}, a1,..., 2 are iterates and y,...,y; are trial points. The piecewise
linear function

fe(z) = max{fi + (v — 2x)"g; — B} (1.1)

7€Tk
is constructed, where ﬂ]k, ﬂ]k > 0 (to have fr > fr — minje s, ﬂ]k = fk(il?k) > min,]Ek(l'))
represent some generalization of linearization errors fj — f, k>1,35 € J. in the

nonconvex case (when it may happen that f; < ff), and the direction vector
dy = arg min { fy(es + d) + 3d" Byd (1.2)

is determined where matrix By is usually positive definite (the additional quadratic
term in (1.2) has a similar significance as in the trust region approach). The minimiza-
tion subproblem (1.2) can be replaced by the quadratic programming subproblem

(dr, &) = 2 e%&l {%dTBkd—l— f} subject to — 7 +dTg; <€ j €T (1.3)

The presented nonconvex VM method proceeds from the convex method, described
in [16] and is based on an observation that standard VM methods are relatively robust
and efficient even in the nonsmooth case (see e.g. [12] and also our experiments in [16]).
The advantage of standard VM methods consists in the fact that the time consuming
quadratic programming subproblem (1.3) does not need to be solved. Although stan-
dard VM methods require more function evaluations than bundle methods, the total
computational time is frequently shorter. On the other hand, no global convergence has
been proved for standard VM methods applied to nonsmooth problems, and possible
failures or inaccurate results can sometimes appear in practical computations.

Our main purpose was to obtain a VM method which does not require a solution
to the quadratic programming subproblem (1.3) but is globally convergent applied to a
locally Lipschitz continuous function. For this purpose, ideas essential for bundle meth-
ods were used, especially utilization of null steps which serve for obtaining sufficient
information about a minimized nondifferentiable function when a serious descent condi-
tion is not satisfied. The VM update still is the most essential part of the method; it is
carried out in both descent and null steps whenever conditions for positive definiteness
are satisfied.

To prove global convergence, additional features of bundle methods, namely simple
aggregation of subgradients and application of subgradient locality measures, have to

be utilized. These principles guarantee convergence of aggregate subgradients to zero
and allow us to use a suitable termination criterion. To improve the robustness and
the efficiency of the method, stepsize selection based on the polyhedral approximation
of the objective function and a suitable matrix scaling are finally added.

The paper is organized as follows. Section 2 is devoted to the description of a
new method and Section 3 contains the global convergence theory. Section 4 gives
more details concerning the implementation of the method, and Section 5 describes
numerical experiments confirming the computational efficiency.

2 Derivation of the method

The algorithm given below generates a sequence of basic points {z;}3>, C RY which
should converge to a minimizer of f : RN — R and a sequence of trial points {y;}
satisfying xp41 = o + t,’{dk, Yrr1 = Tp + t%dk for £ > 1 with y; = a1, where t% €
(0, tmaz), t5 € [0,%] are appropriately chosen stepsizes, dy = —0;H,.gy is a direction
vector, ¢ is an aggregate subgradient, Hj represents a VM approximation of the
aggregate inverse Hessian matrix and the number ; guarantees the boundedness of

{del).

If the descent condition f(yr11) < fl(xr) — erthwy is satisfied with suitable 5,
where ¢z, € (0,1/2) is fixed and —wj; < 0 represents the desirable amount of descent,
then xp41 = yr41 (descent step). Otherwise, a null step is taken which keeps the basic
points unchanged but accumulates information about the minimized function.

The aggregation is very simple: denoting by m the lowest index j satisfying a; =
(index of the iteration after the last descent step) and having the basic subgradient g,,, €
Of(xk), the trial subgradient gry1 € 9f(yr41) and the current aggregate subgradient

Jr, we define gr1q1 as a convex combination of these subgradients

Jht1 = Ao 19m + Ak 29641 + A3,

where multipliers Ay, ¢ € {1,2,3} can easily be determined by minimization of a sim-
ple quadratic function, which depends on these three subgradients and two generalized
linearization errors (see Step 6 of Algorithm 1). This approach retains global con-
vergence but eliminates a solution of the rather complicated quadratic programming
subproblem (1.3) that appears in standard bundle methods.

Note that the global convergence is also assured in a simpler case when A; = 0,
l.e. §p1 18 a convex combination of only two subgradients gx1; and gi. However, this
simplification slightly deteriorates the robustness of the method, e.g. it increases the
sensitivity to the stepsize determination after the null steps (see Section 4). Moreover,
the situation when d{+1gm > 0 occurred in numerical experiments, was much more
frequent in the simplified case.

Matrices Hj are generated by using usual VM updates. After the null steps, sym-
metric rank one (SR1) update (see [6]) is used, since it preserves the boundedness
of the generated matrices as required in the global convergence theory. Because this
boundedness is not necessary after descent steps, the standard BFGS update (see [6])
appears to be more suitable.

Efficiency of the algorithm is very sensitive to the initial stepsize selection even if it
is not relevant for proving global convergence. In fact, a bundle containing trial points
and corresponding function values and subgradients is required for an efficient stepsize
selection. Nevertheless, the initial stepsize selection does not require time consuming
operations. Details are discussed in Section 4. To test whether the computed stepsize
is too small, the bundle parameter s; (see Section 4) and the matrix scaling parameter
p are determined and if p is too large after a descent step, the inverse Hessian matrix
is scaled and the BFGS update is not performed, which does not have an influence on
the global convergence but improves the efficiency of the method.

Because the proof of global convergence requires boundedness of matrices H ', the
correction ol, p > 0, is added to Hj if needed. In descent steps, if the subgradients
are identical in consecutive iterations, we extrapolate doubling the stepsize if possible
in order to exit such region quicker.

Now we are in a position to describe the method in detail. We shall state the
following basic algorithm.

Algorithm 1

Data: An upper and auxiliary lower bound for descent steps ¢, > 2 and .., € (0,1),
respectively, positive line search parameters c4, ¢f and cp satistying ¢ + ¢4 <
cr < 1/2, a distance measure parameter 4 > 0, a final accuracy tolerance ¢ > 0,
correction parameters o € (0,1) and L > 1, a locality measure parameter w > 1,
a matrix scaling bound ' > 1 and an upper bound D > 0 for the direction vector
length.

Step 0: Initiation. Choose the starting point x; € RY and positive definite matrix H;
(e.g. o, = 1), set y; = 1 and a; = 0 and compute f; = f(x1) and g1 € df(x1).
Initialize the matrix scaling parameter value g = 1, the correction, extrapolation,
matrix scaling and updating indicators ¢ = 1 = 13 = 1y = 0, the correction
counter ngc = 0, the function evaluation counter for matrix scaling ng = 0 and
the iteration counter k = 1.

Step 1: Descent step initialization. Set gp = gy, & = 0 and an index variable m = k.

E

Step 2: Correction. Set wy, = f]g[:]kf]k + 26y, If W < o|gx|? or ic =iy = 1, then set

wk:wk+g|§k|2, Hk:f{k—l-g] (21)

and ng =n¢ + 1, otherwise set wy = wy, and Hy = Hy. Tfneg > L, then set i =1.

Step 3: Stopping criterion. If wy < &, then stop.

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Line search. Set 0 = min[l, D/(|Hygx| + 1)], dr = —0xHigr, and ng = ng + 1. If
ig = 0 then determine t¥ € [t,in, timax), Otherwise set th = Qti_l and i = 0. By a
line search procedure as given below find stepsizes t¥ and t% and the corresponding

quantities xy1 = xp + t5di, Yyepr = o + thdi, fripr = f(Trg1)s gepr € f (Yrr)
and

Bryr = max|| fr — f(yer1) + a1 —) grgt | vIyesr — 21]*] (2.2)

satisfying 0 < t,’g < t% < t’} and the serious descent criterion
fror < fi = extiwy (2.3)
and either a descent step is taken: t§ = %, a1 = 0 and
ti > tmin OF Bri1 > cawp, (2.4)
or a null step occurs: t,’g =0< t%, g1 = Pryqr and
— a1 + Al gop1 > —cpwy, Y1 — Trpr| < tpaeD. (2.5)

Set ug = gry1 — G-

Scaling parameter updating. Determine the bundle parameter for matrix scaling
sp > 0. If s, < 10%, then set p = (2u + min[C, max[0.1, s4]])/3. If t§ > 0, go to
Step 8.

Aggregation. Determine multipliers Ar; > 0, ¢ € {1,2,3}, Ag1 + Apa + Aps = 1,
which minimize the function

©(A, A2, A3) = | M Wegm + AaWigrr +)\3Wk§k|2 + 2[A1 + Azdv], (2.6)
where W), = H;/Z. Set

Jht1 = Ao 19m + Ak 29641 + A3, Gkt = Ap 20y + g3l (2.7)

SR1 update. Let v, = Hpuy, — t%dk. If

giox <0 (2.8)
and in case of i = 1, furthermore
olgen? < (Gipavr)?/ugor and N < ogl*/uivx, (2.9)
then set 7y = 1 and
Hiy = Hy — vkv;{/u;‘:vk, (2.10)

otherwise set 1y = 0 and Hk-l—l = Hy. Set k =k + 1 and go to Step 2.

Matriz scaling. If p > 1 set 19 =125+ 1. If p > VC and ng > 3 and ig > 1, set
nsg =0,1i5 =0, Hyyy = pHy, p= /i, k =k +1 and go to Step 1.

Step 9: BFGS update. If up = 0 and t,’g < tpax/2, set i = 1. If u;‘fdk > o, set iy = 1 and

Hyyr = Hi + (t’“ + “gH’““k) didi Hyupdy + dyuf Hy
- L

u;{dk u;{dk B u;{dk ’
otherwise set 1y = 0, Hk-l—l = Hy, k=k+ 1 and go to Step 1.

A few comments on the algorithm are in order.

To generalize linearization errors to the nonconvex case, the subgradient locality
measures introduced in [8] have been used. The first absolute value in (2.2) is not
necessary but it significantly improves the numerical results.

The problem of minimizing function (2.6) in Step 6 is the dual to the following
primal problem

mzré%ize{%dirﬂgld + max[dl ¢, —apyr + d gryr, —ép + de]k]}) (2.11)
The minimization of the quadratic function (2.6) and the determination of the initial
stepsize t¥ in Step 4 and the bundle parameter for matrix scaling s in Step 5 will be
discussed in Section 4.

Condition (2.8) (or uldy > thdl H; 'dy), which implies that u} v, > 0 by Lemma 2,
assures positive definiteness of the matrix obtained by the SR1 update (see e.g. [6]).
Similarly, satisfying uldy > 0 assures positive definiteness of the matrix obtained by
the BFGS update (uld, > 0 holds whenever f is convex). Therefore all matrices Hy,
Hj generated by Algorithm 1 are positive definite. The conditions for matrix scaling
in Step 8 and corresponding relations were established empirically.

The constant D > 0 is meant to be a maximum reasonable value of |dy|. Provided
the level set {x € RN : f(x) < f(x1)} is bounded, the choice D =~ sup{|z — y| :
max[f(x), f(y)] < f(x1)} seems to be natural.

The correction (2.1) is used automatically, after every SR1 update, only if the
condition wy < p|gx|* has been satisfied L times at least. Thus we have a possibility
to eliminate the use of conditions (2.9) (restricting the use of the SR1 update) at
the beginning of the iterative process where the SR1 update may have a significant
influence on the rate of convergence.

We shall now present a line search algorithm and subsequent lemma which are based
on the ideas contained within [8].

Line Search Procedure
(i) Set t4 =0 and t =ty = t%. Choose r € (0,1/2) and cr € (cr,cr — ca).
(ii) Calculate f(xy + tdy), g € Of(xp + tdy) and

B = max{| fi — f(xx + tdi) + tdigl, 4(t]dy])”]. (2.12)

If f(or + tdy) < fi — ertwy, set t4 = ¢, otherwise set ty = t.

(iii) If f(xp +tdy) < fr — cptwy and either ¢ > ¢4, or B > cawy, set th = t§ =+ and
return.

(iv) If =3+ dlg > —cpwy, set th, = t, t§ = 0 and return.

5

(v) Choose t € [ta+ k(tv — ta),tv — k(ty — ta)] by some interpolation procedure and
go to (ii).

Lemma 1. Let f satisfy the following “semismoothness” hypothesis (see Remark 3.3./
in [8]): for any x € RN, d € RN and sequences {t;} C Ry and {§;} C RN satisfying
t; 10 and §; € Of (x + 13d), one has

lim supf];[d > lim inf[f(z + fzd) — f(:z;)]/ﬂ
Then the line search procedure terminates in a finite number of iterations, finding
stepsizes t§ and t% satisfying (2.3) and, in case of t§ =0 (null steps), also (2.5).

Proof. If the search terminates then obviously relations mentioned above hold at
termination, observing that ¢t < t’} < tpar and |di| < D. Assume, for contradiction
purposes, that the search does not terminate. Let ', %, 1, ¢' and 3° denote the
valuesof ¢, 14, ty, g and 3, respectively, after the ¢-th iteration of the procedure, hence
th e {ty, ti;} for all i. Since t', <" <71 <4, and 7 — 57 < (1 — k)(ty; — 1Y)
for all 4, there exists t* > 0 satisfying), T t*, t&; | t*, t! — t*. Let S = {t > 0 :
[z +tdy) < fr — ertwy}. Since {#',} C S, ¢, T t* and f is continuous, we have

f(l‘k + t*dk) S fk — cTt*wk 5 (213)

ie. t* € S. Let I = {i: t & S}. We prove first that the set I is infinite. If
there existed iy € I satisfying t' € S for all i > iy, it would be i = i, | t* for all
1 > 19, implying t* = t%} ¢ S, which is a contradiction. Thus [is infinite and we have
[z + tidy) > fi — crt'wy, for all 7 € I. By (2.13), we obtain

[f(l‘k + tldk) — f(l‘k + t*dk)] / (ti — t*) > —CTWg
for all z € I, hence by assumption

trdy, + (t' — t)dy) — t*d :
— crwi < liminf Fox+ 17+ (Vi) = x4 17dy) < lim sup d;‘:gl (2.14)

1—00, 1€1 tZ — 1—o00, 1€1

in view of i, | t* and ¢* € df(zy + t'dy). We shall consider the following two cases.
(a) Suppose that * > 0. By (2.13), ¢, < er and #* — #*, it holds f(z) + t'd)) <
fr — ept'wy, for large ¢ from the continuity of f. Since the search does not terminate, we
must have 3° < cqwy at step (iii) for large 7. From step (iv) we get d} ¢' < —cpwp+3° <
(ca — cp)wy, < —cqwy, for all large ¢ by wy > 0, which is in contradiction with (2.14).
(b) Suppose t* = 0. Then ¢* — 0, implying 3° — 0 by the continuity of f and the
locally boundedness of the subgradient mapping df (see [8]). The search does not ter-
minate, thus —3'+d} ¢' < —cpwy at step (iv) for all 7, therefore lim SUD; Lo ier dlg' <
—cpwy, < —erwg, which contradicts (2.14). O

3 Global convergence of the method

In this section, we prove global convergence of Algorithm 1 under the assumption that
function f : RN — R is locally Lipschitz continuous, that the level set {z € RY :
flz) < f(x1)} is bounded and that each execution of the line search procedure is
finite. For this purpose we will assume that the final accuracy tolerance ¢ is set to
zZero.

Lemma 2. At the k-th iteration of Algorithm 1, one has wy = g Hygy + 26y, wy, >
0lgrl?, wp > 2day > 0 and apr1 > Y|yrer — vig1|?. If in addition the condition (2.8) in
Step 7 holds, then ulvy > 0.

Proof. Considering that & > 0 by (2.2) and (2.7), relations wy = i Hygr + 2,
wy > 0|gr|*, wr > 2ay follow immediately from (2.1). Since agy1 = Bry1 and xp = g4y
for null steps, axr; = 0 and |yry1 — xp11| = 0 for descent steps, we always have

ak41 Z ’}/|yk+1 — $k+1|w from (2.2).
If glv, < 0, then g, # 0, 0 > 0 and, since v, = Hyup — thdy, we get

Ay > dYug + 0,5l ve = —0ithdl gr = 02567 Hygr > 0

by positive definiteness of Hj. The last inequality implies u; # 0, which yields
ul Hyup > 0. Using the Cauchy’s inequality, we obtain

(dfue)® = (0kgy Hrur)® < 0398 Higrug Hyue = wf Hywe(—0kdi gr) < i ;
R

which gives 0 < u{Hkuk - t%d;‘fuk = u;‘ka. O

Lemma 3. Suppose Algorithm 1 did not stop before the k-th iteration. Then the num-
bers)\f >0,7=1,....k and o, exist satisfying

J=1

k
(9> %) = DN (gis lys —ael), DA =1, a > 7oy, (3.1)
7=1

Proof. We shall first establish the existence of numbers)\é? >0,7=1,...,k satisfying

k
(Gr, o) = Z)\f(gjaoéj)a

J=1 J

-

MNo=1, M(ap—2;)=0,j=1,... .k (3.2)

1

The proof will proceed by induction. If k = 1, then we set Al = 1. Let i € {1,...,k—1}
and let (3.2) holds for k replaced by ¢. If the line search procedure results in a descent
step in the z-th iteration, we set)\;7"1 =0,y=1,...,1,)\jﬂ = 1. Since §;41 = Git1,
&1 = a;p1 = 0 at Step 1, (3.2) holds for ¢ + 1. In case of a null step, we denote by
n the value of the index variable m (defined in Step 1) at the ¢-th iteration (index of

the iteration after the last descent step, i.e. it holds @; = @41 for j =n,...,i+1) and

7

define \7F1 = X 4+ Ai3A¢)\;7"1 =)\2'73)\; for 1 <j5<4,5#nand)\jﬂ = Ai2. It is clear
that)\;"'1 >0forall j<:+1 and

i+1 n—1

Z)‘H—l =)\21 +)\23<)\Z + Z)\Z + Z)\Z) —I')\ZQ = 1.

7=1 7=1 7=n+1

Using relations (2.7), we obtain

; ' 1
(Git1, @it1) = Xin(Gns 0) + Aio(girs qigr) + D AisAi(g), ;) = >)‘;‘H(gja ;)
=1 7=1

due to a,, = 0. Finally, we have)\;"'1(:1;24_1 —x;) =)\2'73)\;(:1;2' —a;) = 0 for j < n, which
together with x; = J}H_l, j=mn,...,2+ 1 completes the induction.
Setting & = Z] L Ay — x|, we get

k w k
V&fZ’V(Z)‘ﬂyy‘_:ﬁﬂ) Z 7|yy—%|w<ZAk%—%

from (3.2), which implies &4 = Z] 1A Mly; — x|, from Lemma 2 and convexity of the
function £ — ~£¥ on R4 for v > 0 and w > 1. O

Lemma 4. Let x € RN be given and suppose that there exist vectors q, g:, y; and
numbers A\; >0 fore=1,...,1, [> 1, satisfying

l

Then q € 0f(z).

S
ol
o
S—’
I
Sl
P
QI

Proof. Let [= {i: 1 LA > 0}. By (3.3), s = 7 and g; € 9f(z) for all
1 € I. Thus we have ¢ = iGi, \i > 0for i € 1,3 ,cr A = 1,50 g € df(x) by the

convexity of df(z) (see [8]) O

Theorem 1. If Algorithm 1 terminates at the k-th iteration, the point xy, is stationary
for f.

Proof. If the algorithm terminates at Step 3, then ¢ = 0 implies w; = 0 and gz = 0,
&y, = 0 = 0 by Lemma 2 and Lemma 3. By Lemma 3 and using Lemma 4 with z = xy,
=k, G=Gr, Gi = gis ¥ = yi, M\ = AF for i < k we have 0 = ¢ € 9f(7). O

From now on we will assume that Algorithm 1 does not terminate, i.e. that wy > 0
for all £ > 1.

Lemma 5. Suppose that {z;} is bounded (e.g. when the level set {x € RV : f(z) <
f(x1)} is bounded) and that there exist a point © € RN and an infinite set K C

{1,2,...} satisfying :z:kl—uz; wy, 25 0. Then 0 € 0f(2).

8

Proof. Let [= {1,...,N+2}. From gx € 9f(yx), k > 1, Lemma 3 and Caratheodory’s
Theorem (see [7]) we deduce the existence of vectors y**, g"* and numbers ** > 0
and o for ¢ € I, k > 1, satisfying

(Gry) = D AP (G5 P —ap]), oA =1, g™ e af(y™),iel, k>1 (3.4)

€] i€l

with (y%*, ¢*") € {(y;,9;) : j=1,....k}, e € I, k> 1. By (2.5) and the fact that
Try1 = Yra for descent steps, we always have |z —yi| < t0.D, k> 1. By assumption
this gives boundedness of {y;} and existence of points y*, i € [and an infinite set

Z

Ky C K satistying y™ Lo, y* for « € I. By the local boundedness and the upper
semicontinuity of df (see [8]) and the boundedness {*'}, we obtain boundedness of
{gx} and existence of vectors ¢7 € df(y}) and numbers A* for z € [and an infinite set

K C K, satisfying ¢** K, g and A\ x, Af for ¢ € 1. Obviously > > 0, ¢ € I,
YierAr=1 by (3 4).

From w,, N 0, Lemma 2 and Lemma 3, we obtain ¢, N 0, ag K, 0, o Ko,
Letting k € K approach infinity in (3.4) and using Lemma 4 Wlth [=N+2 qg=0,
Gi = g5, yi =y A = A5, we get 0 € Of(2). O

Lemma 6. Let vectors p, ¢ and numbers w > 0, « >0, 3 >0, M >0, ¢ € (0,1/2)
satisfy conditions w = |p|* + 2a, B+ plq < cw and max[|p|,|q|,/a] < M. Let
Q) = g+ (1 — \Jpf? + 203 + (1~ Nal, b= (1~ 2¢)/(4M). Then

min{Q(\) : X €[0,1]} < w —w?b*.

Proof. See the proof of Lemma 3.5 in [16].

Lemma 7. Let the number of descent steps be finite and let the last descent step occurs
at the k-th iteration. Then the point v, is stationary for f.

Proof. (i) At first we establish the existence of a number k*, k* > Ji (to have solely
null steps), such that

Wit < Gipr Higrpr + 20011, Tr(Hpp) < Tr(Hy), k> k" (3.5)

If ne < L for all £ > 1, we can set k* = max[l%,]% + 1], where £ is the index k, in
which n¢ changed last (or & = 1 if ng = 0 for all £ > 1). To see this, let k& > k*.
Then wiy1 = Wppq and Hypq = Hypq. If the SR1 update is not used, then (3.5) holds
with equalities, otherwise Lemma 2 implies u v > 0, which together with (2.10) gives
(3.5).

If ne < L does not hold for all k& > 1, then we set k equal to the index k in which
ic = 1 occurs first and again set k* = max/[k, e+ 1]. Then matrix Hy — ol is positive
definite, since Hy is positive definite and Hy = H + ol by the definition of k. We can
easily prove by induction that all matrices Hy — oI, k > k are positive definite. (If the

SR1 or BFGS update is used, i = ¢y = 1 and therefore Hpy1 = [:]k_|_1 + ol, otherwise
matrix Hk-l—l — ol = Hy, — pl is positive definite and the more so is matrix Hyy1 — of).

Assume that & > £*. If the SR1 update is not used, then 7;; = 0 and [:]k_|_1 = H,.
Thus gy > 0|drr1]? since the matrix Hy — ol is positive definite. Therefore wy,; =
Wiy1, Heyr = Hypq = Hy and (3.5) holds with equalities. If the SR1 update is used,
all conditions (2.8)-(2.9) are satisfied and i = iy = 1, therefore correction (2.1) (with
k replaced by k + 1) is realized. Using (2.10), we can write

Wit = Gppy HrGerr + 20041 + 0ldra [— (Ghv8) /1w vk

and the first part of (3.5) follows from the first part of (2.9). Furthermore, (2.10)
implies
Tr(Hypr) = Tr(Hy) + oN — Jog|* fuf v
and the second part of (3.5) follows from the second part of (2.9).
(ii) Combining (3.5) with (2.6) and Lemma 2, we obtain

Wit < Gpyy HiGerr + 260041 = oAk, Ak2, Aes) < 9(0,0,1) = wy, (3.6)

for k > k* and therefore the sequences {wy}, {Wigr}, {ar} are bounded. Moreover,
(3.5) assures boundedness of sequences {Hy} and {Wy}. By (2.5) we have |vp41 —
Yit1| < tpaeD, k > k%, which gives boundedness of {y;} and by the local boundedness
of df (see [8]) also boundedness of {g;} and {Wygk41}. Denote

M = sup{[Wigrt1|, [Wigrl, Vaw : k= k"}, b= (1 —2cr)/(4M) (3.7)

and assume first that w, > é > 0 for all £ > k*. Since

3
min{c,o()\l,)\g,)\g) P X >0,0=1,2,3 > A\ = 1} < A1rm[im]<,o((),)\,1 —A),
= €fo,1
we can use (3.5), (2.5) and Lemma 6 with p = Wigr, ¢ = Wigps1, w = wi, o = dy,
B = ags1, ¢ = cgr to obtain

Wri1 < Ghr Hierr + 26041 < wy, — (wih)? < wy, — (8b)°

for k > k* and thus, for sufficiently large k£, we have a contradiction with the assumption
wy > 6. Therefore wp — 0 due to the monotonicity of wy for k > k*, xp — Thiq and
Lemma 5 gives 0 € 0f(z;,). O

Theorem 2. Suppose sequence {x} is bounded. Then every cluster point of {xy} is
stationary for f.

Proof. Let @ be a cluster point of {x} and K C {1,2,...} be an infinite set such that

K _ . .
ry — z. In view of Lemma 7, we can restrict to the case when the number of descent

steps (with ¢% > 0) is infinite. We denote K’ = {k: 5 >0, F € K, 1 < k, x; = x1}.

Obviously K’ is infinite and S Continuity of f implies that f; =, f(z) and

10

therefore fi, | f(#) by monotonicity of {fi}, which follows from the descent condition
(2.3). Using nonnegativity of t§ for £ > 1 and the condition (2.3), we obtain

0<epthwp < fe— frgr — 0, k>1. (3.8)

If the set Ky = {k € K': t§ > t,,,} is infinite then wy SR 0, N by (3.8)
and 0 € df(z) by Lemma 5.

If Ky is finite, the set Ky = {k € K': [ri1 > cawi} must be infinite by (2.4).
For Contradlctlon purposes, we assume that w; > 6 > 0 for all £ € K,. From (3.8)

we have t¥ %2, 0 and Step 4 implies |vppy — x| = th|dp| < 5D for k > 1, thus

Tpy1 — Tg 22,0, Since {1} is bounded and yr41 = 2141 for descent steps, the local

boundedness of df (see [8]) yields also boundedness of {gx41}trex. By (2.2) and (3.8)
we obtain [riq fe, 0, which is in contradiction with c40 < cqwp < fra1, & € K.

Therefore there exists an infinite set K3 C K5 satisfying wy EiEN 0, xp Ko, % and

0 € df(x) by Lemma 5. 0

Remark 1. If we choose ¢ > 0, Algorithm 1 always terminates in a finite number
of steps, since wy — 0 in case the number of descent steps is finite (see the proof of

Lemma 7) and since wy 210 or Wy 5, 0 in case the number of descent steps is
infinite (see the proof of Theorem 2).

4 Implementation

In this section we discuss some details concerning our implementation of the algorithm.
Assume that we have the current iteration xy, fi = f(xx), g(xx) € df(xx), k> 1 and
a bundle y;, f(y;), g; € 0f(y;), J € Tx C{l,...,k}, where y;, j € J are some of the
trial points. Furthermore, we have the current aggregate subgradient gy, the positive
definite VM approximation Hj of the inverse Hessian matrix, the search direction
di, = —Higr and the bundle parameter for matrix scaling sy and define generalized
linearization errors ﬂ]k = max[|fr — f(y;) — (zx — y;) g5, ¥]2r — w;]*).

After the descent step we have g = ¢gr = g¢(xx) and we search for a suitable
initial stepsize t¥ for the line search procedure. The significant descent in the last step
encourages us to construct the following quadratic approximation of f(xy + tdy):

4410 = b il L St (1 36

The bundle represents the polyhedral function (1.1). For # =) + td), we have the
following piecewise linear approximation of f(xy + tdy)

Up(t) = felwy + tdy) = max{ fi — B} + tdig;}.

(1), 15(t)] within
0,2] and ¢x # 0.

To calculate t§ we will minimize the convex function (1) = max[th§
[

[0, 2], since obviously 4(0) = fi and () > L/Jg(t) > fi for t &

Thus we set
tk = arg mlﬂ{ﬁ)k(t) e [tminvmin [tmax727B/|dk|]]}7

11

where B is a given upper bound for the distance from point x; in one step. Note that
the possibility of stepsizes greater than 1 is useful here, because the information about
function f, included in matrix Hy, is not sufficient for a proper stepsize determination
in the nonsmooth case.

After the null step, the unit stepsize is mostly satisfactory, as has been found from
numerical experiments. To utilize the bundle and improve the robustness and the
efficiency of the method, we use the aggregate subgradient g. to construct the linear
approximation f (t) = fi + tdi gy of f(xy +tdy) and set

th = arg min {max[y)} (t), (1)) + 22T H ' dy 1€ [ty min[L, B/|di]]]} .

The function 1% (¢) has sometimes no influence on the stepsize determination (then
obviously #§ = 1). Tt can mean that the initial stepsize is too small. Thus we have
introduced the bundle parameter for matrix scaling s;; in view of (2.11), (1.2) and
since function (2.6) is not minimized for descent steps, we could define s by

arger%in {max[@/}f(s), Vi (s)] + %l/ksflgﬂkf]k}) (4.1)

where v, = 1 for null steps, vz = 0 for descent steps. For simplification, we omit in
(4.1) the lines of ¥} with df g; < Lvd] gy and set

sk =min {10%, B/dl (g; — gi) = dLg; > vndfn,j € Ti}

(minimum abscissa of an intersection of the lines, which create ¥} (¢) and have df g; >
svrdf i, with of(t)).

From now on we will use the same notation as in Algorithm 1. The minimization
of the quadratic function (2.6) in Step 6, or @(A1,A2) = (A1, A2, 1 — Ay — Ag), is
not complicated. If it is not possible to compute the intersection of straight lines
0¢/0A\ =0, dp/0Ay = 0, the convexity of ¢ implies that we can restrict our attention
to the lines Ay = 0, Ay = 0 and Ay + Ay = 1. As an example we give a formula for
minimization within the line Ay = 0, which we regularly apply in the first null step
after any descent step due to gy = gx = ¢,n and & = 0. If gr41 # Gg, then set

dr — g 5o
A2 = min [1,max l()7 i (Grs - gjxj) + ay, og,i_HH
(gr+1 — 1) T He(grs1 — k)

otherwise set Ay = 0 for oy < apqr or Ay o =1 for ay > apyr.

Finally we mention the stopping criterion. We define the descent tolerance 4 > 0
and the maximum number m; > 1 of consecutive too small function value variations
and add to Step 0 the initialization of auxiliary variables ny = 0 and Ay = |f1|+ 1. To
prevent accidental termination, we modify Step 3 in the following way:

Step 37: 1t wy < e and either Ap/max[l, fi] < 100, after a descent step, or wy_y <
after two consecutive null steps, then stop.

To cut off useless iterations and update Ay, we modify Step 5 in the following way:

12

Step 510 | f(yrer) — fu] = 1075 Ay, set A = |f(yrs1) — fr|, otherwise set A = A, If
A/ max[l, f(yes1)] < ejor f(yrs1) = fr, thenset ny = ny+1, otherwise set ny =
0. If ny > my, then stop. Determine the bundle parameter for matrix scaling
sp > 0 and set Apyy = Ap. If 5, < 109, set g = (2 + min[C, max[0.1, s¢]])/3.
If 5 >0, set Appy = A and go to Step 8.

5 Numerical examples

The above concept was implemented in FORTRAN 77 as VMNC. In this section we
compare our results for 30 standard test problems from literature (problem 1 is smooth,
all the others are nonsmooth) with those obtained by our convex VM method [16]
(VMC) and by our proximal bundle method PBL mentioned in [15]. A comparison with
the BT algorithm [18] and the ellipsoid bundle method [10] for some problems can be
found in [15], a comparison with a smooth VM method from [14] in [16]. Problems 1-16
are described in [17], problems 17-18 in [19], problems 19-22 in [10], problem 23 in [2],
problem 24 in [5], problems 25-29 in [13], problem 30 in [4]; details to problems 15
and 22 can be found in [11] and to problem 26 in [1].
In Table 1 we give optimal values of the functions tested.

Nr.| N | Problem Minimum || Nr.| N | Problem Minimum

1| 2| Rosenbrock | 0 16 | 50 | Goflin 0

2| 2| Crescent 0 171 6| El Attar 0.5598131

3|1 21CB2 1.9522245 18 | 2| Wolfe -8.0

41 21 CB3 2.0 19 | 50 | MXHILB 0

5| 2| DEM -3.0 20 | 50 | L1HILB 0

6] 2| QL 7.20 21 | 5 | Colvillel -32.348679

7| 2| LQ -1.4142136 || 22 | 15 | SHELL DUAL | 32.348679

8| 2| Mifflinl -1.0 23 110 | Gill 9.7857721

9| 2| Mifflin2 -1.0 24 | 12 | Steiner?2 16.703838
10 | 4 | Rosen -44.0 251 5 | EXP 0.0001224
11| 5| Shor 22.600162 26 | 6 | TRANSF 0.1972906
12 | 10 | Maxquadl | -0.8414083 || 27 | 7 | Wongl 680.63006
13 | 20 | Maxq 0 28 | 10 | Wong?2 24.306209
14 | 20 | Maxl 0 29 | 20 | Wong3 133.72828
15 | 48 | TR48 -638565.0 30 | 9 | Filter 0.0061853

Table 1. Test problems

The parameters of the algorithm had the values tynyn = 10710, tha = 102, ¢4 =
c, =107 cp =025, ¢ =2-107% ¢ =107% g4, = 5-1077, p = 10712, L = 1,
w=2 C=100, D =10, J; = {max|[l,k — N —2],...,k}, k > 1 and m; = 2 for
problems 1-14, 17-21, 23-24 and 26-29, m; = 3 for problem 15, m; = 4 for problem 16
and my = 5 for problems 22, 25 and 30.

Our results are summarized in Table 2, in which the following notation is used. N; is
the number of iterations, Ny is the number of objective function - and also subgradient
- evaluations, F' is the objective function value at termination, B is the maximum

13

allowable distance in one step (see Section 4) and 7 is the distance measure parameter;
values of B and v were chosen experimentally. Note that a similar choice of parameters
(to optimize Ny) was also performed for VMC and PBL; we refer to [16] for values of
B in the case of VMC.

Our limited numerical experiments indicate that the adapted VM methods can
compete with the well-known proximal bundle methods in the number of function and
subgradient evaluations, applied to nonconvex nonsmooth problems. Moreover, we can
expect that the computational time will be mostly significantly shorter.

N VMNC VMC PBL
NN, F B~ N, F N, F
1 33 33 0.320E-07 1 1 36 0.416E-10 45 0.381E-06
2 13 15 0.949E-10 10° 2 54 0.189E-05 20 0.462E-08
3 15 16 1.9522250 1 2 17 1.9522246 33 1.9522245
4 17 17 2.0000000 10° 107° 17 2.0000000 16 2.0000000
5 19 20 -2.9999997 10° 1 22 -3.0000000 19 -3.0000000
6 17 18 7.2000023 1 1079 22 7.2000001 15 7.2000015
7 10 10 -1.4142133 1 2 8 -1.4142136 12 -1.4142136
8 55 59 -0.9999925 0.2 0.01 179 -0.9999979 68 -0.9999994
9 35 35 -0.9999998 1 1079 28 -1.0000000 15 -1.0000000
10 31 32 -43.999975 1 1079 38 -43.999991 45 -43.999999
11 29 30 22.600186 1 1079 38 22.600163 29 22.600162
12 89 89 -0.8414057 20 1073 87 -0.8413999 75 -0.8414083
13| 110 111 0.898E-05 10 0.1 135 0.775E-06 151 0.167E-06
14 23 23 0 10 107° 23 0 40 0.124E-12
151 293 295 -638562.27 10° 0.1 285 -638559.63 | 251 -638530.48
16 | 368 368 0.332E-05 10° 1072 | 225 0.164E-05 53 0.117E-11
17 74 76 0.5598184 1 1 115 0.5598147 93 0.5598157
18 14 14 -7.9999998 1 1 18 -7.9999995 46 -8.0000000
19 66 67 0.201E-05 1 1075 74 0.175E-05 20 0.513E-08
20 63 64 0.153E-05 5 0.1 68 0.122E-05 28 0.234E-07
21 46 47 -32.348675 0.5 0.25 64 -32.348595 62 -32.348679
22| 286 289 32.349018 10 0.1 165 32.470010 598 32.348768
23| 107 108 9.7862324 10 0.25 | 124 9.7858075 162 9.7857723
24 61 62 16.703937 1 2 79 16.703848 143 16.703862
25 68 70 0.0001224 0.1 0.25 82 0.0001295 92 0.0001224
26 70 71 0.1972947 1 1079 73 0.1972932 135 0.1972923
27 46 47 680.63011 1 1079 52 680.63026 96 680.63011
28 75 76 24.306706 2 1079 97 24.306219 90 24.306224
29 | 220 221 133.73418 10?2 0.1 239 133.72841 156 133.72864
30 90 91 0.0061862 1 0.5 171 0.0061855 119 0.0061853
3 2441 2474 2635 2727
Time = 9.34 sec Time = 8.29 sec | Time = 23.17 sec

Table 2. Our test results

14

Bibliography

1]

2]

3]

[4]

[11]

[12]

BANDLER, J.W., SRINIVASAN, T.V., and CHARALAMBOUS, C., Minimaz Opti-
mization of Networks by Grazor Search, IEEE Transactions on Microwawe Theory

and Techniques, Vol. MTT-20, pp. 596-604, 1972.

BinaiN, A., Optimization of Upper Semidifferentiable Functions, Journal of Op-
timization Theory and Applications, Vol.4, pp. 545-568, 1984.

CLARKE, F.H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New
York, 1983.

CHARALAMBOUS, C., Acceleration of the Least pth Algorithm for Minimax Opti-
mization with Engineering Applications, Mathematical Programming 17, pp. 270-

297, 1979.

Faccuingel, F., and Lucipi, S., Nonmonotone Bundle-Type Scheme for Convex
Nonsmooth Minimization, Journal of Optimization Theory and Applications, Vol.

76, pp. 241-257, 1993,

FLETCHER, R., Practical Methods of Optimization, John Wiley & Sons, Chich-
ester, 1987.

HIRIART-URRUTY, J.B., and LEMARECHAL, C., Conver Analysis and Minimiza-
tion Algorithms I, II, Springer, Berlin, Heidelberg, New York, 1993.

KiwieL, K.C., Methods of Descent for Nondifferentiable Optimization, Lecture
Notes in Mathematics 1133, Springer-Verlag, Berlin, 1985.

Kiwier, K.C., A Method of Linearizations for Linearly Constrained Nonconvex
Nonsmooth Minimization, Mathematical Programming 34, pp. 175-187, 1986.

Kiwier, K.C., An FEllipsotd Trust Region Bundle Method for Nonsmooth Convex
Minimization, SIAM J. Control and Optimization, Vol. 27, pp. 737-757, 1989.

LEMARECHAL, C., and MIFFLIN, R., eds., Nonsmooth Optimization, Pergamon
Press, Oxford, 1978.

LEMARECHAL, C., Numerical Ezperiments in Nonsmooth Optimization, in:
Progress in Nonsmooth Optimization (E.A. Nurminski, ed.), pp. 61-84, ITASA,
Laxenburg, Austria, 1982.

15

[13] LUKSAN, L., A Compact Variable Metric Algorithm for Linear Minimaz Approx-
imation, Computing, Vol. 36, pp. 355-373, 1986.

[14] LUKSAN, L., Computational Experience with Known Variable Metric Updates,
Journal of Optimization Theory and Applications, Vol. 83, pp. 27-47, 1994.

[15] LUKSAN, L., and VLCEK, J., A Bundle-Newton Method for Nonsmooth Uncon-
strained Minimization, Mathematical Programming 83, pp. 373-391, 1998.

[16] LUKSAN, L., and VLCEK, J., Globally Convergent Variable Metric Method for
Convex Nonsmooth Unconstrained Minimization, accepted in Journal of Opti-
mization Theory and Applications.

[17] MAKELA, M.M., and NEITTAANMAKI, P.. Nonsmooth Optimization, World Sci-
entific Publishing Co., London, 1992.

[18] ScHrAMM, H., and ZOWE, J., A Version of the Bundle Idea for Minimizing a
Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results,

SIAM J. Optimization, Vol. 2, pp. 121-152, 1992.

[19] ZoWE, J., Nondifferentiable Optimization, in: Computational Mathematical Pro-
gramming (K. Schittkowski, ed.), pp. 323-356, Springer Verlag, Berlin, 1985.

16

