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Abstract

The existence of a continuous best approximation or of near best approximations of a
strictly convex space by a subset is shown to imply uniqueness of the best approxima-
tion under various assumptions on the approximating subset. For more general spaces,
when continuous best or near best approximations exist, the set of best approximants
to any given element is shown to satisfy connectivity and radius constraints.
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1 Introduction

An approximant within ¢ of the best possible is usually satisfactory from a practical
standpoint. The idea of extending best approximation to near best approximation
has been investigated for many years: see [1], [7, p. 162], [3]. “Near best” has sev-
eral possible interpretations, and the one used here is a map ¢ : X — M for which
|lx — ¢(x)]| < ||l@ — M|| + e. In this paper we investigate when best or near best ap-
proximations of a normed linear space by elements of a subset can have a continuous
selection. Under various conditions on the ambient space and the subset we derive
topological and geometric consequences of the existence of continuous best and near
best approximations.

The paper is organized as follows. Section 2 gives our main theorems. We show that
continuity of best approximation implies uniqueness when the ambient space is strictly
convex. We also show that continuity of near best approximations with arbitrarily
small ¢ is enough to guarantee uniqueness in a strictly convex space when the subset
is boundedly compact and closed. The next two sections generalize these results by
removing the condition of strict convexity on the ambient space. In Section 3 the
set of best approximants to a point may no longer be a singleton but is shown to
have topological properties such as contractibility, while Section 4 establishes an upper
bound on the Chebyshev radius of the approximant set in terms of the modulus of
convexity.

2 Continuity conditions for unique best approxi-
mation

In this section we demonstrate that the existence of a continuous best approximation
or of a suitable family of continuous near best approximations defined on a strictly
convex space X and taking values in a suitable subset M necessarily implies that M
has the unique best approximation property.

Let X be a normed linear space, always taken to be over the reals. The space X
is strictly convexr iff whenever x and y are distinct unit vectors all nontrivial convex
combinations of the two have norm less than 1. For z in X and r > 0, let B(x,r)
denote the closed ball centered on x of radius r, with dB(x,r) its boundary sphere.
For any subset A we write cl(A) for its closure.

If M is a subset of X, we denote by Py(x) the set {m € M : || —m| = ||z — M]||}.
An element of Py(x) is called a best approximation to x; Py is a set-valued function
which associates to each « in X the (possibly empty) set of all its best approximations.
The terminology metric projection operatoris also used for Py (see [7]).

If Py() is nonempty for each = in X, M is said to be proziminal. If Py(x) is a
singleton for each = in X, M is called a Chebyshev set. In the latter case, we use a
lower-case “p” to denote the metric projection function; that is, when M is Chebyshev,
pa 2 X — M is the unique function satisfying Pa(2) = {pa(2)} for all « in X.

More generally, suppose A is any nonempty subset of X. A best approzimation

of A by M is a function ¢ : A — M such that ||z — ¢(2)]| = ||« — M|| for all x in



A. Our first result, a version of which appeared in [5], says that continuity implies
uniqueness for best approximation when the space is strictly convex. The proof here
helps to introduce our methods.

Theorem 2.1 Let X be a strictly convex normed linear space, and let M be a subset
of X. Let ¢ : X — M be a continuous best approximation of X by M. Then M is a
Chebyshev set.

Proof: Since ¢(x) € Py(x) for all &, Py(x) is nonempty. Given z in X, let m belong to
Py(2). For y in the line segment [m, z), and v in Py(y), |[u—z| < |lu—y||+]ly —2| <
lm —y|l + ||y — z|| = [|m — 2|| < ||u— z||. Hence, the inequalities are all equalities, u
is in Py(x), Pu(y) C Py(a), and m € Py(y). Since ||lu — || = |ju — y|| + |y — =],
a consequence of strict convexity is that w, y, and = are collinear. So u = m and
Pry(y) = {m}. Since ¢ is directionally continuous at = and ¢([m,x)) = {m}, it follows
that ¢(x) = m. Thus Py(x) = {é(x)} is a singleton set. 0

In case X is not strictly convex, there do exist subsets M of X for which a continuous
best approximation of X by M exists without M being Chebyshev.

Example 2.2 Let X = R? equipped with the l;-norm ||(a,b)|| = |a| + |b]. With this
norm, R? is not strictly convex. Let M = {(a,b) : b = +a}. Then, with = (0, 1),
| — M|| = inf{la|+ |Lta—1|:a € R} > 1, and Py(z) = {(a,]a|) : |a] < 1}. So M
is not a Chebyshev set. However, a continuous best approximation of R? by M does
exist, namely, the map ¢ given by: ¢(a,b) = min{a, b} for (a,b) in the first quadrant,
with similar prescriptions in the other three quadrants. Note, in addition, that M is
almost convex (see Huotari and Li [4]); i.e., any closed ball that does not meet M lies
inside arbitrarily large closed balls that also do not meet M.

For a subset A of X and a positive number ¢, an e-near best approrimation of A
by M is a map ¢ : A — M such that ||a — ¢(z)|| < ||x — M|| + ¢ for all z in A (see [1],
[7]). A subset M of X is boundedly compact iff the closure of M N B is compact for
each closed ball B in X.

Theorem 2.3 Let X be a strictly convex normed linear space, and let M be a closed,
boundedly compact subset of X. Suppose that for each ¢ > 0 there exists a continuous
e-near best approrimation ¢ : X — M of X by M. Then M is a Chebyshev set.

Proof: Since M is boundedly compact and closed, any sequence {m,} in M with
limy,—o ||[t—my,|| = |[t—M]|| accumulates at a point m in M, and so Pys(x) is nonempty.
Thus M is proximinal.



Let @9 be a point in X with r = ||xg — M|l > 0. Given an integer n > 1, let
én : X — M be continuous with ||z — ¢, ()| < ||lx — M|| + % for all z in X. Then
én : B(xo,r) — M and ||¢,(x) — x0|| > r for x in B(xo,r). Let

7wl —ao|| =2} = {x: ||z — x0]| =r} = IB(xo, 1)

be the radial retraction, i.e.,

T — T
m(x)=a0+ 7 Tz =zl
Then wo¢, : B(xg,r) — B(xo, 7). Now ¢, (x), for x in B(xo,r), satisfies ||¢,(x)— 0|
&= M|+ 1+ Jlo — o]l < 2z — ol + o — M|l + 1 < 3r + 1. Hence, g (B(zo, )
M N B(xo,3r 4+ 1) and ¢, (B(x0,r)) is a bounded subset of M. So ¢l(¢,(B(xo,r))) is
compact since M is boundedly compact. Let p : X — X be the reflection through
zo, 1.e., p(y) = 2o+ (o — y). Then cl(powo ¢,(B(xo, 7)) = pow(clp,(B(xg,r))) is a
compact subset of B(xg,r), and po 7o ¢, is a continuous function from B(xg,r) into
this set.

Rothe’s Theorem (see [8, p. 27]), a version of Schauder’s Theorem, asserts that any
continuous map from the closed ball B into X taking 0B into a compact subset of B
has a fixed point. Hence, for each n, p o7 o ¢, has a fixed point x, in B(xg,r). Thus,

<
-

T =pomwody(a,) =2x0— 70 Qp(,),

and
T 0 ¢n(a,) =220 — .

It follows that the points x,,x, 219 — 2, = * 0 ¢p(x,,), and @,(x,) are consecutive
collinear points (with the last two possibly equal), and thus ||¢,(z,) — 2,]| > ||7 o
On(x,) — xu|| = ||220 — 22,|| = 2r. In addition, for each point m in M,

1 1
| > |, — b ()| — = > 2 — = 2.1
s = ml) 2 [l = gzl = - > 2 — 2.1)

Again because M is boundedly compact, the sequence {¢,(x,)} in M N B(xq,3r 4+ 1)

has a convergent subsequence with limit v in X. Then the sequence {z,}, where

T, = powody(x,), has a convergent subsequence with limit por(u) = xo, € dB(xq, 7).
Moreover, for each m in M, because of (1)

(2o = 20) + (20 = m)|| = [[20c —ml| = 2r

If m is in Pa(xo), then ||xg — m]|| = r. By strict convexity, used here for the first
time, when |[(a + b)/2]] > r and ||a|]| = |[b]] = r, then ¢ = b. So we conclude that
Too — g = Xg — m and m = 229 — Too. Thus Py(ag) = {220 — 24} is a singleton set.

This being true for all z¢, M is Chebyshev. O

Since metric projection to a closed, boundedly compact Chebyshev subset is con-
tinuous (see [7, p. 390]), our result says that in a strictly convex space the existence of

3



continuous arbitrarily precise near best approximations is equivalent to the existence
of a unique best approximation which is continuous.

A set M is positively homogeneous provided AM = M for each positive number A.
It M is nonempty, closed and positively homogeneous, then 0 is in M.

The next theorem gives conditions under which the existence of a single continuous
near-best approximation is sufficient to guarantee continuous unique best approxima-
tion.

Corollary 2.4 Let X be a strictly conver normed linear space, and let M be a closed,
boundedly compact, positively homogeneous subset of X. Suppose that for some ¢ > 0
there exists a continuous e-near best approvimation ¢ : X — M of X by M. Then M
is a Chebyshev set.

Proof: For A > 0, consider the maps ¢, defined by ¢x(z) = A¢(F) for 2 in X.
The map ¢, is continuous. It is a Ae-near best approximation of X by M since
|loa(z) — || = Aqu(f) — %H < A(Hf — M| +¢) = ||z — M|+ Ae for « in X. Theorem
2.3 can be applied to this family of maps. a

A special case of some interest is when M consists of a finite union of finite-
dimensional subspaces. See Theorem 3.6 of [5].

3 Continuity conditions for connectivity of Py (x)

Theorems 2.1 and 2.3 are special cases of a family of results that we now develop in
more detail. The following result was established in the proof of Theorem 2.1 without
the requirement that X be strictly convex.

Lemma 3.1 Let X be a normed linear space, M a subset of X, x an element of X,
and m an element of Py(x). Then for each y € [m,x], {m} C Py(y) C Pu(x).

For x in X and S a subset of X, let z* .5 denote the union of all line segments with
one endpoint in S and the other equal to x. The tangent hypercone to the closed ball
B at the point * € 9B is the union of all closed affine hyperplanes containing = but
not meeting the interior of B. Such hyperplanes are said to be tangent to B at z. By
Mazur’s version of the Hahn-Banach Theorem (see [2, p. 23]) any line (or flat) through
x that does not meet the interior of B lies in a closed affine hyperplane tangent to B
at x, and hence is in the tangent hypercone to B at .

A subset A of a space X is called contractible to a point ag in A if there is a
continuous map h : A x [0,1] — A with h(e,0) = a and h(a,1) = ag for all a in A (see
[9, p. 25]).



Theorem 3.2 Let X be a normed linear space and M a subset of X. Let x be an
element of X with r = ||e — M|| > 0 and Py(x) nonempty. Let ¢ : x* Py(x) — M be
a continuous best approximation of x * Py(x) by M. Then

(i) Py(x) is contractible to ¢(x);
(ii) Py(x) is a subset of the tangent hypercone to B(x,r) at ¢(x).

Proof: Define h : Py(x) x [0,1] — Py(x) by h(m,t) = (1 — t)m + tx). By
Proposition 3.3 the range of this map is a subset of Py (x). Since Py(m) = {m} for
m € M, ¢(m) = m for points m € Py(x), h is a homotopy between the identity map
on Py(2) and the constant map with output ¢(x).

If Py(x) consists of two or more points, let one of them be ¢(x) and let another
be m. Let y be a point on the open interval (m,z) with ¢(y) # m for y in [z,y).
Such a point y exists by continuity of ¢ at . Then as in Theorem 2.1 ||¢(x) — z|| =
lo(y) — || = ||o(y) — y|| + ||y — z||. Choose y’ on the open interval (x, ¢(y)) such that
lly" — z|| = ||y — x||- Then all points on the line segment [y, y’] are equidistant from x.
This follows from the fact that each such point has distance to x bounded above by
I~ ]| = ly — o], and distance to 6(y) bounded above by [ly' — (3| = [lz — 6(y)| -
e — 3l = lle — ()l — 1z — 91l = I — @) — llz — yll = Iy — (&)l = 1y — ().
Since the sum of these two distances is thus bounded above and below by ||z — ¢(y)||,
all bounds are equalities. Expanding this line segment radially from = by a factor of
%ﬁu, we obtain the line segment [m, ¢(y)] and each point on this line segment is
equi
segment [m, ¢(x)] are all at distance r = || — M|| from x. Thus the line through m
and ¢(x) is a tangent line to B(x,r) at ¢(x) and hence m lies in the tangent hypercone
to B(x,r) at ¢(x). O

istant from = as well. Varying y toward x, we find that the points on the line

Since Pyr(x) is contractible, it is path-connected and has trivial homology.

When a continuous best approximation is defined on all of X, a fortiori Py(x) is
contractible for every = in X. Thus M belongs to a class of sets called “Cy” by Klee
[6] (see also [7, p. 370]). If, in addition, X is strictly convex, each tangent hypercone
intersects the ball at a single point, and Py(x) = {é(x)} for all . This implies
Theorem 2.1.

Note that the conclusions of Theorem 3.2 are illustrated in Example 2.2 by the
subset Pp(0,1).

Versions of Theorem 2.3 also hold without the assumption of strict convexity.

A set M is approximatively compact iff whenever x € X and {m,} is a sequence in
M such that lim,—. ||t — m,|| = ||@ — M|, then {m,} has a convergent subsequence
with limit in M. An approximatively compact set is always closed. Conversely, a
set that is both closed and boundedly compact is approximatively compact since the
sequence {m,} is bounded and hence has a convergent subsequence.

We remark that if M is an approximatively compact set in a normed linear space,
then Py (x) is compact for each « in X. Indeed, any sequence {m,} in Py(x) is a



sequence in M with ||m, — z|| = ||M — ||, and by the definition of approximative
compactness has a convergent subsequence with limit in M, and hence in Pys(x).

It M is an approximatively compact Chebyshev set, then pys is continuous on X
(see [7, p. 390]). Theorem 2.1 says that if Py; has a continuous selection in a strictly
convex space X, then M is Chebyshev. In the absence of strict convexity, Example
2.2 above shows that even if M is approximatively compact and Py; has a continuous
selection, M need not be Chebyshev.

The next result says that if we vary the hypotheses of Theorem 3.2 by requiring
near best approximations but insist that M be approximatively compact, then Pys(x)
retains the basic topological property of being connected.

Proposition 3.3 Let M be approximatively compact in the normed linear space X,
and let x be an element of X. Suppose that for each ¢ > 0 there is an e-near best
approzimation ¢ : x * Py(x) — M of x * Py(x) by M. Then Py(x) is connected.

Proof: If, to the contrary, Py(x) were not connected, there would exist distinct open
sets Uy and U, covering Py (x) with Py (2)NUy # 0 # Py(2)NUy and Py(z)NUNU, =
0. Let A= Py(z)NUf and B = Py(a) NUS where S¢ denotes the complement of the
set S in X. Then, by our remark above, A and B are compact. They are also disjoint,
nonempty and their union contains Pys(x). Since the distance from A to B is positive,
there exist disjoint open neighborhoods V; of A and V; of B.

Pick z1 € A and z, € B. Choose ¢ sufficiently small so that B(z;,¢) CV;, ¢ =1,2.
The e-near best approximation ¢, takes [z1, 2] U [z, z2] into a path in M from ¢.(z1) to
d(22) so that ||¢:(zi) — z|| < ||zs — M|+ e =¢ for i = 1,2. Then ¢.(z;) € V; = ¢ for
i=1,2.

Because V4 N V3 = () there is a point m. in (V; U V3)° with m. = ¢.(z.) for some .
in [z1,2] U [z, 22], and we claim that ||m. — z|| < ||M — z|| + . Indeed, ||m. — «||
e — ell -+ e — 2l) < 1M = ool +6 + e — o = i — el + e — 2] + <

|z: — ||+ & = ||M — z|| + € where ¢ = 1 or 2 according as x. is in [z1, 2] or [z2, x].

[N

As ¢ approaches 0, ||m. — x|| approaches ||x — M]||. Since m. is in M for each ¢ > 0
and M is approximatively compact, we can find a sequence in the set {m. : ¢ > 0} with
limit m in M satisfying ||m —z|| = ||M —z||. So m isin Py(x) = AUB C V;UV,. But
m is the limit of points in the complement of the open set Vi U V3, for a contradiction.
O

Connectivity of Py(x) implies that if Py(«) contains more than one point, it con-
tains an uncountable number of points.

Corollary 3.4 Let X be a normed linear space, and M an approximatively compact
subset of X which is countably proximinal (i.e., Py(x) is nonempty and countable)
for each x in X. Suppose that for each ¢ > 0 there exists a continuous c-near best

approzimation ¢ : X — M of X by M. Then M is a Chebyshev set.

Proof: By Proposition 3.3, for each x, Py(x) is connected. The only nonempty
countable connected set is a singleton. O



Note that if M is proximinal and a countable union of Chebyshev sets, then M is
countably proximinal.

Theorem 3.5 Let X be a normed linear space, M a closed, boundedly compact subset
of X, and x an element of X with r = || — M|| > 0. If, for each ¢ > 0, there exists a
continuous e-near best approximation ¢ : B(x,r) — M of B(x,r) by M, then

(i) Py(x) is connected, and

(ii) Py(x) is a subset of the tangent hypercone to B(x,r) at some point on 0B(x,r).

Proof: Since a closed, boundedly compact subset is approximatively compact, con-
nectedness of Py(x) is a consequence of Proposition 3.3.

The remainder of the proof repeats the proof of Theorem 2.3 (with zy in place
of @) until strict convexity is mentioned. For each point m in Py (xg), we have that
|2co — m|| > 2r where r = ||m — x¢|| = ||2e0 — 20|| = ||M — 20]|. Since [|A(xg — 25 ) +
(I=X)(m —x0)]| <rfor0 <A <1 and H%(l‘o — Zoo) + %(m — 29)|| = r, it follows that
the line joining 2x¢ — x5 to m does not meet the interior of B(xo,r). Hence m is in

the tangent hypercone to B(xo,r) at 229 — @ 0. O

4 Bounds on the radius of Py(z)

In addition to topological properties, one can also deduce constraints on the radius of
the approximant set Py(x). Recall from [2, p. 111] that the Chebyshev radius of a set
A with respect to a point x is the number sup{||x — a|| : @« € A}. The following lemma
restates a result obtained in the first part of the proof of Theorem 2.3 (up through
Equation (1)).

Lemma 4.1 Let X be a normed linear space, M a boundedly compact subset of X, and
x an element of X with r = ||x — M|| > 0. Suppose that for some ¢, with 0 < & < 2r,
there exists a continuous e-near best approvimation ¢ : B(x,r) — M of B(x,r) by M.
Then there exists a point & in OB(x,r) such that ||z — m|| > 2r — ¢ for all m in M.

In particular, any point m in Py () is at distance 2r — ¢ or more from & and at
distance r from x. In a Hilbert space the right triangle with legs from m to x and from
m to 2z — & has hypotenuse 2r and one leg of length > 2r —c. Accordingly its other
leg, between m and 2z — x, has length at most v/4er — ¢2. Thus the Chebyshev radius
of Py(a) with respect to the point 2¢ — & is less than or equal to 4er — 2.

For more general spaces we consider two notions associated with the geometry of
the unit sphere.

In a normed space X define a function 6x called the modulus of convexity of X by
§x(t) = inf{l — 2(le + yl|) : ||z]| = |lyl| = L,]|]x — y|| > ¢} for ¢ a real number. The
function 6y is a nondecreasing function and satisfies 6x(0) = 0 (see, e.g., [2, p. 145]),



0x(2) <1, 6x(t) = oo for t > 2. If the modulus is strictly positive-valued for ¢ strictly
positive, the space X is said to be uniformly convex.

A related measure of convexity is the function wy. For ¢ < 1, let wx (¢) = sup{||x —
yll « 1 —¢ < |I=2], ||lz]| = |ly|]l = 1}, and set wx(t) = 2 for ¢ > 1. Then wx is a
nondecreasing function. In a uniformly convex space X, wx(t) > 0 for £ > 0 and
lim; o4 wx(t) = 0.

The following inequality can be easily verified:

wx(t) <sup{s:ox(s) <t}

for all real numbers ¢. Equality occurs if £ <0 or > 1, or if X is finite-dimensional.

Theorem 4.2 Let X be a normed linear space, M a boundedly compact subset of
X, and x an element of X with ||@ — M|| = r > 0. Suppose that for some &, with
0 < & < 2r, there exists a continuous e-near best approzimation ¢ : B(x,r) — M
of B(x,r) by M. Then there exists a point ¥’ on dB(x,r) such that R, (Py(x)), the
Chebyshev radius of Py(x) with respect to @, satisfies:

£
Ro(Pu(2)) < rwx (o).
r
Proof: Let «’ = 2x — & where Z is as in Lemma 4.1. Then v = (m — x)/r and
v = (2’ — «)/r are unit vectors in X with [[(u + v)/2|| = |ZE| > 1 — £. Hence,
51 = e = ol < wx (57)- O

Example 2.2 illustrates that in some non-strictly convex spaces the lower bound of
2r — ¢ does not limit the radius of the approximating set. With the norm as in 2.2,
the points (0,1),(1,0), and (—1/2),(—1/2) are unit vectors and their distances apart
are all equal to 2. The fact that any one of them is “far” from the other two does not
force those two to be close together. Indeed, in this case wx(t) = 2 for ¢t > 0.
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