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Abstract

For any linear least squares problem where the matrix has full column rank	 upper
and lower bounds on the residual norm are derived in terms of a crucial singular value�
This result is particularly applicable to minimum norm iterative methods	 and the
generalized minimum residual method 
GMRES� ���
 for solving the linear system
Ax � b is closely examined in this context� The bounds have signi�cant implications
for the �nite precision behavior of the modi�ed Gram�Schmidt version of GMRES�
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� The Basic Bounds

Consider an n by k matrix B of rank k and a nonzero n�dimensional vector c� For
the matrix �c�B
	 a relevant question is how large is that part of c lying in the column
space of B � the complement of this is the residual r � c � By of the linear least
squares problem� One may also look at the residual norm as quantifying the linear
independence of the vector c and the columns of B� Another way of quantifying that
independence is to consider the smallest singular value of the matrix �c�B
� These ways
are related to each other	 and it seems interesting to determine this relation�

More speci�cally	 this paper is devoted to the following result	 where we introduce
possibly non unit � in r � c� �By for later �exibility�

Theorem ��� Given a scalar � � �� and an n by k � � matrix �c�B
 with B of rank
k� use �
�� to denote singular values and k � k to denote ��norms� De�ne

�min � �min
�c�B
���max
B� � �max � �min
�c�B
���min
B� � �� 
����

and
r � c� �By such that krk � min

z
kc� �Bzk� 
����

If �max 	 � then


L � �min
�c�B
� f�� � kyk�g �� � �min
�c�B
� f�� � kyk�
�� ��min

g ��

� krk � 
U � �min
�c�B
� f�� � kyk�
� � ��max

g �� � 
����

where the lowest bound on krk also holds if �max � ��

Proof The conditions of the theorem show

r � � � c � R
B� � �min
�c�B
� � �� 
����

where R
B� denotes the range of B� Here 
���� holds trivially	 so now assume

krk � �� �min
�c�B
� � �� 
����

First consider 
����� Let B have singular value decomposition 
SVD�

B � Uk�V
H � with � � diag
��� � � � � �k�� �� � � � � � �k � ��

Choose unitary U � �Uk� �Uk
 so that � � � in

UH�c�B


�
� �
� V

�
�

��� a �
� �
� �

��� �

�
N
�

�
� 
����

�



giving

UHr � UH
c� �By� �

��� a� � �V Hy
��
�

��� �

��� �
��
�

���
at the minimum� With a � 
��� � � � � �k�T 	

y � V ���a�� kyk� � ��
kX

i��

j�ij�
��i

� 
����

krk� � ����� 
����

Now examine the minimum singular value � � �min
�c�B
� � �min
N� � � in 
�����

There exists
	
w





�� � so that

NNH

�
w



�
�

�
�� � aaH a�

�aH ��

� �
w



�
�

�
w



�
���


�� � ��I�w � a
aHw � �
� � �

�
aHw � �
� � ��
� 
����

If 
 � � then wH
�� � ��I�w � jaHwj� � �	 which gives w � �	 a contradiction	 since
we have assumed �max 	 � and so � 	 �k from 
����� Therefore 
 �� � and a simple
manipulation of equations 
���� gives

� � �aHw � �aH
�� � ��I���a
aHw � �
�

� 
�� � ���
 � ��
 aH
�� � ��I���a�

� � 
�� � ������ � aH
�� � ��I���a

� �� ����� �
kX

i��

j�ij�
��i � ������

which with 
���� gives the key equality relating the residual norm to the singular values

� �
kX

i��

j�ij�
��i � ��

�
krk�
����

� 
�����

Using the identity

� �
kX

i��

j�ij�
��i � ��

� � �
kX

i��

j�ij�
��i 
� � �����i �

� 
�����

it is easy to derive the bounds

� �
kX

i��

j�ij�
��i

� � �
kX

i��

j�ij�
��i 
� � �������

� krk�
����

� � �
kX

i��

j�ij�
��i 
� � �����k�

� 
�����

�



so with 
���� and 
���� we obtain 
����� Finally the lowest bound on krk in 
���� is
seen to hold even when �max � � by setting � � � and z � y in the de�nition

�min
�c�B
� � min	
�
z



���

kc� �Bzk
fj�j� � kzk�g �� � krk

f�� � kyk�g �� �

The full case where �max � � turns out to be subtle	 and since it is unlikely and not
crucial for our main discussion	 it is treated in the Appendix� Note that we could have
taken � � � since � has played no part in the theorem	 and in fact just scales each
expression in 
����	 but this scaling factor does give us useful �exibility in Section ��

The reader might �nd it strange that we gave upper and lower bounds on the easily
computable krk in terms of the somewhat di�cult to compute �min
�c�B
�	 but we will
later show why we think this is so useful� Of course 
���� also tells us that�

Corollary ��� Under the same conditions as in Theorem ���

�
L � krk�
�
�� �

kyk�
�� ��max

� �

�

� �min
�c�B
� � krk�
�
�� �

kyk�
� � ��min

� �

�

� �
U � krk�f�� � kyk�g �� � 
�����
where it is now the weakest upper bound which also holds when �max � ��

A crucial aspect of the theorem is that it gives both an upper and a lower bound
on the residual	 or singular value� The weaker lower bound in 
����	 or upper bound in

�����	 is su�cient for many uses	 and is relatively easy to derive	 but the upper bound
in 
����	 or lower bound in 
�����	 is what gives the theorem its power�

The ratios of singular values �max � �min � � appear in the bounds	 which would
appear to limit their usefulness� Fortunately there are cases where we know these must
be small	 see for example Section �� The gaps between upper and lower bounds in 
����
and 
����� both depend on �max in an interesting way	 as we now show�

Corollary ��� Under the conditions of Theorem ��� and Corollary ���� and assuming
krk � �� �min
�c�B
� � �� whether in ���	
 we de�ne the relative measures of tightness

� � krk � 
L
krk � � � 
U � 
L

krk �

or in ����	
 we de�ne the corresponding relative measures of tightness

� � �min
�c�B
�� �
L
�min
�c�B
�

� � � �
U � �
L
�min
�c�B
�

�

we have the following bounds on � and �

� � � � ��max�

� � � � ��max

�
� � ��max�



� ��max when �max �

p
�

�

�
� 
�����

�



Proof For � � 
krk � 
L��krk we see with 
����

� � � � �� 
L
krk � �� 
�L

krk� � � � ��min
�c�B
�
�� � kyk��
��min
�c�B
�
�� � kyk�

����
max

�
� ��max�

while for � � 
�min
�c�B
�� �
L���min
�c�B
�	 with 
����� and � � �min
�c�B
�

� � � � �� �
L
�
� �� �
�L

��
� �� krk�

��
�� � kyk�

����
max

�
� � � ��
�� � kyk��

��
�� � kyk�

����
max

�
� ��max�

For � � 

U � 
L��krk we see with 
����

� � � �

U � 
L
krk �


�U � 
�L
krk

U � 
L�

�
��min
�c�B
�kyk�
krk

U � 
L�

��max


� � ��max�

� ��min
�c�B
�kyk�
�
�L

��max


�� ��max�
� ��max

�
�� ��max�
�

For � � 
�
U � �
L���min
�c�B
� we see with 
����� and the above

� � � � krk



�


L
� �


U

�
� krk
U � 
L


L
U
�

krk

L
U

��min
�c�B
�kyk�


U � 
L�

��max


� � ��max�

� ��min
�c�B
�kyk�
�
�L

��max


�� ��max�
� ��max

�
� � ��max�
�

Thus when �max 	 � the upper and lower bounds in 
���� and 
����� are not
only very good	 but very good in a relative sense	 which is important for small krk or
�min
�c�B
�	 
note 
������ In fact when �max is small	 these relative measures of tightness
� are even smaller	 since � � ��max when �max 	 ����� Clearly �max is very interesting�

For small �max	 
���� with Corollary ��� gives the useful information

krk 
 �min
�c�B
� f�� � kyk�g �� � 
�����

The theorem seems very important in iterative solutions of nonsingular linear systems
Ax � b	 where B � Bk	 y � yk	 and r � rk will be changing each step� In reasonable
iterations 
see for example Section �� with Bk increasing in dimension with k	 we will
usually have �min
Bk�� constant � �	 while �min
�c�Bk
� ultimately converges to zero�
Consequently � � �min � �max� �	 and in 
���� 
with � � kr�k�

� � krkk � �min
�c�Bk
� fkr�k� � kykk�g ��
krkk � �k � ��max � �� 
�����

which is a strong �asymptotic� relation between minimum residual and minimum sin�
gular value�

In Section � we will brie�y discuss Krylov subspace methods and recall a particular
method of this class	 the generalized minimum residual method 
GMRES����
	 since
this is what �rst motivated the bounds in this paper� In Section � we will give the

�



necessary mathematics of GMRES� In Section � we will show just why Theorem ���
is	 in our opinion	 so important to our understanding of GMRES and related meth�
ods� In Section � we will give an extreme example which shows that the unusual case
corresponding to y � � in 
����	 and possibly �max � � in 
����	 can occur up until
the very last step of the GMRES iteration� Section � will suggest that for more re�
alistic GMRES iterations we often have at each step �max 	 � in 
����	 so that the
GMRES equivalent of 
����� holds� The Appendix develops the fully general version
of Theorem ���	 including the case of �max � � in 
�����

� Krylov Subspace Methods

Krylov subspace methods are useful for solving some problems involving very large
sparse matrices	 since these methods use these matrices only for multiplying vectors	
and the resulting Krylov subspaces frequently exhibit good approximation properties�
The Arnoldi method ��
 is a Krylov subspace method designed for solving the eigenprob�
lem of unsymmetric matrices� The generalized minimum residual method 
GMRES�
���
 uses the Arnoldi iteration and adapts it for solving the linear system Ax � b�

Because of its computational expense	 GMRES has only limited practical use for
solving linear equations	 and there are methods which are often far more e�cient	
see for example Bi�CGSTAB ���
	 QMR ��	 �
 for unsymmetric A	 and LSQR ��	 �

for unsymmetric or even rectangular A� But GMRES is interesting to study	 simply
because it does in theory minimize the ��norm of the residual at each step for the
solution approximation xk from the linear variety x��spanfr�� Ar�� � � � � Ak��r�g	 where
x� is an initial approximation to the solution x	 and r� � b�Ax� is the initial residual�
Thus theoretical results on GMRES can for example provide lower bounds for the
residuals of other methods using this Krylov subspace�

GMRES is also interesting to study computationally	 especially since there appears
to be a strong relationship between convergence of GMRES to a small residual	 and loss
of orthogonality of the Arnoldi vectors computed via �nite precision modi�ed Gram�
Schmidt 
MGS� orthogonalization	 see ��
� An understanding of this will be just as
important for the practical use of the Arnoldi method as it will be for GMRES itself�
The bounds in Theorem ��� appear to give the key to understanding the strong relation�
ship between convergence and loss of orthogonality in the �nite precision application
of MGS�GMRES	 see Section ��

In the remainder of the paper we will use �k
X� to denote the kth largest singular
value of X	 �
X� to be the ratio of the largest to the smallest singular value of X	
and refer to �
X� brie�y as the condition number of X� When it will be helpful	 we
will use the word �ideally� to refer to a result that would hold using exact arithmetic	
and �computationally� or �numerically� to a result of a �nite precision computation�
The vector of elements i to j of a vector y will be denoted yi�j	 and ej denotes the j�th
column of the unit matrix I�

�



� The GMRES Method

For a given n by n 
usually unsymmetric� nonsingular matrix A and n�vector b	 we
wish to solve Ax � b� Given an initial approximation x� 
perhaps zero� we form the
residual

r� � b�Ax�� �� � kr�k� v� � r����� 
����

and use v� to initiate the Arnoldi process ��
� At step k this forms Avk	 orthogonalizes
it against v�� v�� � � � � vk	 and if the resulting vector is nonzero	 normalizes it to give vk��	
giving ideally

AVk � Vk��Hk���k� V T
k��Vk�� � Ik��� Vk�� � �v�� v�� � � � � vk��
� 
����

Here Hk���k is a k�� by k upper Hessenberg matrix with elements hij where hj���j �� �	
j � �� �� � � � � k � �� If at any stage hk���k � � we would stop with AVk � VkHk�k�
Computationally we are unlikely to reach such a k	 and we stop when we assess the
norm of the residual 
usually computed as below in 
����� is small enough�

In general	 at each step we take xk � x��Vkyk as our approximation to the solution
x	 which gives the residual

rk � b�Axk � r� �AVkyk � v��� � Vk��Hk���k yk

� Vk��
e��� �Hk���k yk�� 
����

where yk solves the linear least squares problem

krkk � min
y
ke��� �Hk���k yk� 
����

To solve 
���� we apply orthogonal rotations 
Ji through the angle �i� sequentially
to Hk���k to bring it to upper triangular form Sk�

Jk � � �J�J�Hk���k � QT
kHk���k �

	
Sk

�



�

The vectors yk and rk ideally then satisfy

Skyk � 
QT
k e������k� 
����

krkk � jeTk��QT
k e���j

� js�s� � � � skj kr�k� si � sin �i� 
����

The measure 
���� of the 
nonincreasing� residual norm is available without computing
yk	 and since yk�� will usually di�er in every element from yk	 we do not compute yk
or xk until we decide the residual is small enough to stop� Mathematically equivalent
variants of the GMRES method are described in ���
�

� Application of the New Bounds

Note that Theorem ��� says nothing about an iterative method	 or where B or c come
from	 and so is a general result� In applying it to any iterative method we will be

�



interested in the cases when �max 	 �	 so that the upper bound is meaningful in 
����	
and when �max	 � so the upper and lower bounds are very close�

With c � v�	 B � AVk and � � kr�k	 Theorem ��� can be applied to the k�th step
of GMRES as follows� Note that	 by construction	 B has full column rank�

Theorem ��� Residuals and singular values in GMRES�
If �k
X� denotes the kth largest singular value of X� and n by n A� r�� yk� rk and Vk
are as in the GMRES algorithm �	��
��	��
 using exact arithmetic� then when
�k � �k��
�v�� AVk
���k
AVk� 	 ��

�k��
�v�� AVk
� fkr�k� � kykk�g �� � krkk
� �k��
�v�� AVk
� fkr�k� � 
�� ��k�

��kykk�g �� � 
����

and

krkk
fkr�k� � 
�� ��k�

��kykk�g ���k
AVk�
� �k

� krkk
fkr�k� � kykk�g ���k
AVk�


����

� krkk
fkr�k� � kykk�g ���n
A�

� krkk
kr�k

�

�n
A�
� 
����

where the lower bound in ����
 and upper bounds in ����
 and ���	
 also hold if �k � ��

Proof We see c � v�	 B � AVk and � � kr�k satisfy the conditions in Theorem ���	
and from 
���� and 
���� we see that rk and yk correspond to r and y in 
����	 so the
theorem holds with 
���� giving 
����	 while 
����� gives 
����	 and 
���� follows�

We did not include the tighter lower bound in 
���� as it is not needed in what
follows� Note that the result does not depend on orthogonality of the columns of Vk	
since Theorem ��� says nothing about B � AVk here except that it has full column
rank	 but it is necessary for krkk to be a minimum at each step� It should also be
pointed out that due to monotonicity of krkk	 possible oscillations in the upper bound

���� can be eliminated by taking the minimum

krkk � min
j�������k

f�j��
�v�� AVj
� fkr�k� � 
�� ��j �
��kyjk�g ��g� 
����

A di�erent upper bound for krkk in terms of �k has already been derived in ��
	
relation 
����	 but no lower bound was given there� Extending and slightly modifying
the approach from ��
	 we obtain the following upper and lower bounds


��
p
���k��
�v�� AVk
� kr�k 
� � �����
AVk��

�

� � krkk
� �k��
�v�� AVk
� kr�k 
� � ����k
AVk��

�

� 
����

and

krkk
kr�kf� � ��k
AVk�g

�

�

� �k �
p
� krkk�
AVk�

kr�kf� � ���
AVk�g
�

�

� 
����

�



where the upper bound in 
���� and the lower bound in 
���� hold trivially also for
�k � �� The bounds from Theorem ��� o�er	 in general	 much deeper insight into the
problem and the following discussion is based on them�

De�ne the relative measure of closeness of krkk to its lower bound

�k � krkk � �k��
�v�� AVk
� fkr�k� � kykk�g ��
krkk � 
����

From Corollary ��� we have � � �k � ��k� This implies that whenever �k 	 �	 we have
the equivalent of 
�����

krkk 
 �k��
�v�� AVk
� fkr�k� � kykk�g �� � 
����

but perhaps more importantly 
since in iterative solution of equations with nonsingular
A we expect krkk � ��	 
���� shows that if krkk � � then �k � �	 so in 
���� the relative
precision �k of the lower bound goes to zero as the square of �k�

For nonsingular A it is easy to see that �k 	 � is necessary eventually� Indeed	

�k � �k��
�v�� AVk
���k
AVk� � �k��
�v�� AVk
���n
A�� 
����

and when �k��
�v�� AVk
� is su�ciently small	 the upper bound on �k becomes smaller
than unity� For a general 
�nite dimensional� problem this seems trivial	 but there are
extreme possibilities� �k may	 for example	 be close to � 
or �k � � in some special
cases� for k � �� �� � � � � n � � and �n � �� However	 in many practical problems there
exists k� much smaller than n such that �k 	 � for k � k�� k� � �� � � � and

� � �k 
 � 
�����

holds for k � k�� In other problems �k 	 � for a number of steps but then suddenly
�k appears very close to �� In these cases the smoothed upper bound 
���� should be
considered � it is usually very close to krkk for all iteration steps k� Typical examples
are shown in Section ��

Now we show why we consider the bounds from Theorem ��� so important� As
noticed in ��
	 the Arnoldi process 
���� ideally gives the QR factorization of �v�� AVk
	
since on de�ning upper triangular Rk�� � �e��Hk���k
	 we see

�v�� AVk
 � Vk���e��Hk���k
 � Vk��Rk��� V T
k��Vk�� � Ik��� 
�����

What is more	 if the orthogonalization in 
���� is carried out by the modi�ed Gram�
Schmidt technique	 then this is easily seen to be numerically identical to the QR
factorization of �v�� gAV k
 by MGS	 where gAV k indicates the multiplications Avj	 j �
�� � � � � k	 are computed numerically� A parallel statement holds when classical Gram�
Schmidt orthogonalization is used in 
�����

With a computer using �nite precision with unit round�o� �	 the computed vectors
v�� v�� � � � tend to lose orthogonality� It was shown by Bj�orck ��
 that using MGS in the
numerical QR factorization C � QR leads to Q such that

kI �QTQk � �
C�O
���

�



so	 from the discussion following 
�����	 for the �nite precision version of 
���� we have

kI � V T
k��Vk��k � �
�v�� AVk
�O
��� 
�����

Note that �
�v�� AVk
� is used here instead of �
�v�� gAV k
�	 for the justi�cation see ��
	
��
�

It has been observed that when MGS is used in 
����	 leading to the MGS�GMRES
method	 loss of orthogonality in Vk�� is accompanied by small krkk	 see ��
� That is	 loss
of orthogonality in MGS�GMRES apparently cannot occur before convergence occurs�
This fortuitous behavior was analyzed numerically in ��
 and a partial explanation
was o�ered there� A much stronger and more complete theoretical explanation of the
observed behaviour can be derived from the bounds 
�����
�����

For this purpose we need to combine our approach described above with the round�
ing error properties of MGS�GMRES to prove the equivalent of Theorem ��� for the
quantities computed numerically� We will not attempt to prove it rigorously here	 but
point out that such a proof would lead to the bound

kI � V T
k��Vk��k 	
 �
�v�� AVk
�O
��


 k�v�� AVk
k 
kr�k� � kykk�� �� O
��

krkk � 
�����

which would imply that total loss of orthogonality can only occur if we have a residual
norm approaching k�v�� AVk
k 
kr�k� � kykk�� �� O
�� in size	 that is when the residual
is e�ectively negligible� Moreover	 for a given A	 b	 and x�	 the value �
�v�� AVk
�
determining in practical computation loss of orthogonality 
extensive experimental
evidence suggests that the bound 
����� is sharp� is inversely proportional to the norm
of the MGS�GMRES residual	 and so this analysis supports what has been observed
in practice	 see ��
�

We point out that the analysis suggests we have obtained important relationships
that will be useful not only for analyzing GMRES ���
	 but also for MINRES ��
	 as in
theory GMRES with symmetricA behaves identically to MINRES� The approach here
can also be applied to Krylov subspace methods which minimize other norms	 such as
minimum error methods	 as we now show�

With Vk � �v�� � � � � vk
 generated some way	 and r� � b�Ax� � v�kr�k	 xk � x� �
Vkyk	 rk � b�Axk � r��AVkyk	 A nonsingular	 if we have for example a method that
minimizes kA��rkk � kx�xkk	 then taking � � �� � kr�k and �c�B
 � A���v�� AVk
 �
�
x � x������ Vk
 in Theorem ��� gives with �k � �k��
�
x � x������ Vk
���k
Vk� the
bounds

�k��
�
x� x������ Vk
� fkr�k� � kykk�g �� � kx� xkk 
�����

� �k��
�
x� x������ Vk
� fkr�k� � 
�� ��k�
��kykk�g �� �

so the theory holds for more general minimum norm methods than just GMRES� Of
course if V T

k Vk � I then �k
Vk� � ��
The approach can also be applied to methods which minimize some norm with

respect to other Krylov subspaces	 such as LSQR ��	 �
 for solution of equations with

�



unsymmetric A	 or least squares solutions with rectangular A� It may also be useful
for methods which are not based on Krylov subspaces�

In Theorem ��� the scalar � is arbitrary to the extent that if we scale it	 then both
kyk and krk in 
���� will be scaled proportionally	 but �c�B
 will be unchanged	 so the
result 
���� will be the same� Thus it would simplify the theorem to set � � �	 but we
left � in 
and used c� rather than just c� to parallel the GMRES case more obviously
and facilitate our discussion above� However � can be used for further analysis� Suppose
we hold d � c� constant while increasing � � �	 then kyk and krk � kd � Byk �
minz kd �Bzk will be unchanged	 but �min
�d���B
�� � so �max � �	 and the upper
and lower bounds in 
���� approach each other	 and

� � krk � �min
�d���B
� f�� � kyk�g ��
krk � � as � ��� 
�����

which shows how this smallest singular value behaves for large ��

� Delayed Convergence of GMRES

It is possible for convergence of GMRES to be very slow	 and stagnate entirely even
with exact arithmetic� Suppose

A � �e���� e���� � � � � en�n� e���
� b � e���� x� � ��

with �i � �	 i � �� � � � � n	 then in 
���� and 
���� for k 	 n

Vk�� � �e�� e�� � � � � ek��
� Hk���k � �e���� e���� � � � � ek���k��
�

and in 
���� and 
����

yk � �� xk � �� rk � r�� k � �� �� � � � � n� ��

so any convergence at all is delayed until step k � n�
In the application of Theorem ��� to GMRES we took �c�B
 � �v�� AVk
	 so yk � �

in GMRES gives y � � in Theorem ���� But here �k��
�v�� AVk
� � �k
AVk� if any
�i � �	 i � �� �� � � � � k � �	 since �k
AVk� � minf��� � � � � �k��g	 while �k��
�v�� AVk
� �
minf�� ��� � � � � �k��g� This would mean �max � � in 
����	 and so Theorem ��� would
not apply	 and the fully general version in the Appendix would be required�

� Behavior of �k � �k����v�� AVk����k�AVk� in GMRES

We saw that �k plays an important part in the analysis here	 so in an attempt to
understand it further	 we will focus again on GMRES� Section � showed it is possible
to have �k � � for all but the last step	 and in that example the residual stagnated at
kr�k until the �nal step� If �k 
 � then there can be a large gap between the upper
and lower bounds in 
����� This does not negate the argument that orthogonality is

��



e�ectively maintained until convergence in �nite precision MGS�GMRES 
�k 	 � is
necessary eventually�	 but it does make us question the tightness of the bounds in 
�����

Fortunately	 experiments suggest that �k is frequently quite small during the com�
putation� As k increases �k can decrease	 then increase	 but it must eventually become
small	 for from 
���� we see the upper bound on �k must decrease as krkk becomes
su�ciently small� The surprising observation was that we often found �k 	 � from the
start	 so that

krkk 
 �k��
�v�� AVk
� fkr�k� � kykk�g ��
throughout such computations� Thus we often have this unexpectedly very close rela�
tionship between krkk and the smallest singular value of �v�� AVk
� Another interesting
experience was that even if �k 
 � and there was a large gap between the upper and
lower bounds in 
����	 the smoothed upper bound 
���� was always tight� We will
illustrate that by presenting results of three numerical experiments showing di�erent
types of behaviour of �k�

In all experiments matrices from the Harwell�Boeing collection are used� Results
for the matrix STEAM�
����	 n � ���	 �
A� 
 ��		 b � 
�� � � � � ��T represent the
case �k 	 � from the start to the end� For the matrix IMPCOLE
����	 n � ���	
�
A� 
 ��		 b � 
�� � � � � ��T the residual norm decreases very slowly for many steps
and then suddenly drops very sharply to its �nal accuracy level� The value of �k is
close to � for most iteration steps and then follows the sharp drop of the residual norm�
Results for the matrix WEST
����	 n � ���	 �
A� 
 ����	 b � Ax	 x � 
�� � � � � ��T

illustrate oscillations of �k�
We have chosen x� � �	 r� � b in all experiments� It is worth to mention that	 with

this choice	 for a given matrix from the Harwell�Boeing collection the results computed
for b � 
�� � � � � ��T typically di�er in both the rate of convergence and the �nal accuracy
from those computed for x � 
�� � � � � ��T and that this di�erence is signi�cant� This
fact does not play a role here 
we looked for some nontrivial examples illustrating our
theoretical results�	 but the choice of the right hand side and the initial approximation
should always be examined while testing numerical software�

Experiments were performed on an SGI Indigo Workstation using MATLAB ���	
� � ����
 ����
� Figures ��� ��� give results for STEAM�
����	 �gures ��� ��� results
for IMPCOLE
����	 while Figures ��� ��� results for WEST
�����

In Fig� ��� solid line shows the relative norm of the directly computed residual kb�
Axkk�kr�k	 dashed line gives the iteratively computed residual norm 
���� divided by
kr�k	 dashed�dotted line the normalized norm of the error kx�xkk�kx�x�k and dotted
line the loss of orthogonality among the Arnoldi vectors measured in the Frobenius
norm kI � V T

k VkkF � Note the correspondence between the loss of orthogonality and
the decrease of the residual norm 
similarly in Figures ��� and �����

Fig� ��� is devoted to the tightness parameters! solid line shows the values of �k
�	

dashed line the values of �k and dotted line the values of �k� For the graphical reasons
the values of �k and �k less than ����� were set to this level� Please note that for
k � �� and k � ��� the computed values of �k exhibit large oscillations caused by
numerical errors in GMRES calcullations� The di�erence between the computed upper
and lower bounds is during these iteration smaller than accuracy of the computed
approximate solution and residual 
which is	 due to ill�conditioning of the linear least

��



squares problem 
���� from the start not better than � decimal digits�� Additionally	
loss of orthogonality of the computed Arnoldi vectors will signi�cantly come into e�ect
for k � ����

Because of the small values of �k and �k throughout the computation	 the lower

dashed�dotted line� and upper 
dashed line� bounds from 
���� 
divided by kr�k� are
on Fig� ��� completely covered by the smoothed upper bound 
���� 
solid line��

On Figures ���	 ��� and ���! ���	 ��� and ��� the notation is analogous� For IMP�
COLE
���� the bounds are tight for the �rst �� steps	 but �k 
 � after that and the
lower and upper bounds are not close to each other until the sharp drop for k 
 ����
Please note that the lower bound is for �� 	 k 	 ��� much less accurate than the
upper bound and that the smoothed upper bound almost coincide with the computed
residual norm for all iteration steps k� For k � ��� the results are heavily a�ected
by the loss of orthogonality 
and linear independence� among the computed Arnoldi
vectors�

In the last experiment using the matrix WEST
���� the lower and upper bounds
signi�cantly di�er for � � k � �� and ��� � k � ���� Moreover	 for k 
 �� and
k 
 ��� the upper bound gives a large overestimate 
for k 
 �� the upper bound

���� is signi�cantly worse that that of 
����� The last bound is	 however	 trivial	
because it gives � 	
 krkk�kr�k whenever �k 
 ��� Note the corresponding behavior of
the tightness parameters on Fig� ���� The smoothed upper bounds are again visually
indistinguishable from the computed residual norms�

Note that our experiments suggest that the equivalent of Theorem ��� for the nu�
merically computed quantities holds� However	 the statement must be slightly modi�ed
to account for the e�ect of rounding errors	 especially for the in�uence of the loss of
orthogonality on the size of the directly computed residuals kb � Axkk � A rigorous
proof will require further work and will be given elsewhere�

� Appendix

Theorem ��� would have been logically cleaner if we had assumed �k �� � in a in 
����	
rather than �max 	 �	 since 
see Corollary ��� here� �k �� � � �max 	 �	 but not vice
versa 
note that when �i � �� i � �� � � � � k � � in the example from Section �	 then
�max 	 � and �k � �k�� � � � � � �� � � �� However since that would have required
Propositions ��� and ��� here to prove �max 	 �	 we chose the simpler presentation�
The much longer	 but full and cleaner version is given now�

Denote	 as above	 the singular values of B by �i in nonincreasing order� In 
����
we unitarily transformed �c�B
 to obtain N with the same singular values	 see 
����
below� First we give propositions that will simplify the general analysis�

Proposition ��� Let N be nonsingular� with all �i � �� in

N �

�
a �
� �

�
� � � diag
��� � � � � �k�� a � 
��� � � � � �k�

T � 
����

If �i is a singleton singular value of �� that is �i �� �j for j �� i� then �i is a singular
value of N if and only if �i � ��

��
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Figure ���� Norm of the directly computed relative residual 
solid line�	 iteratively
computed relative residual 
dashed line�	 relative error 
dashed�dotted line�	 and loss
of orthogonality among the Arnoldi vectors measured in the Frobenius norm 
dotted
line� for MGS�GMRES applied to STEAM�
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Figure ���� Values of the tightness parameters �k
� 
solid line�	 �k 
dotted line� and �k


dashed line� for MGS�GMRES applied to STEAM�
�����

Proof If �i � � then �i is clearly a singular value of N �

Now suppose �i is a singular value of N � From 
���� there exists
	
w





�� � so that


�� � ��i I�w � a
aHw � �
� � �

�
aHw � �
� � ��i 
�

Thus �i
aHw � �
� � �� If 
aHw � �
� �� � then �i � � as desired� If 
aHw � �
� � �
then 
 � �	 aHw � �� But with w � 
��� � � � � �k�T 	 we also see �j � � for all j �� i	 so

"�i�i � �� But
	
w





�� � so �i �� � and �i � � as desired�

We must also consider the case where the smallest singular value �k is repeated in ��

Proposition ��� Let N be nonsingular with �� � � � � � �k � � in �
��
� Let � �
�k��
N� be the smallest singular value of N � and let � have exactly s � � singular
values equal to �� so � � �k� Then N has the form��� ak�s �k�s

� �Is
� � �

��� � 
����

Proof Take ak�s � 
��� � � � � �k�s�T 	 ak � 
�k�s��� � � � � �k�T 	
�k�s � diag
��� � � � � �k�s� and assume that some of the elements in ak	 denoted as �

��
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Figure ���� Lower bound 
dashed�dotted line�	 upper bound 
dashed line� and
smoothed upper bound 
solid line� for the normalized residual norm computed by
MGS�GMRES applied to STEAM�
����� Note that the bounds can not be visually
distinguished�
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Figure ���� Norm of the directly computed relative residual 
solid line�	 iteratively
computed relative residual 
dashed line� relative error 
dashed�dotted line�	 and loss
of orthogonality among the Arnoldi vectors measured in the Frobenius norm 
dotted
line� for MGS�GMRES applied to IMPCOLE
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Figure ���� Values of the tightness parameters �k
� 
solid line�	 �k 
dotted line� and �k


dashed line� for MGS�GMRES applied to IMPCOLE
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Figure ���� Lower bound 
dashed�dotted line�	 upper bound 
dashed line� and
smoothed upper bound 
solid line� for the normalized residual norm computed by
MGS�GMRES applied to IMPCOLE
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Figure ���� Norm of the directly computed relative residual 
solid line�	 iteratively com�
puted relative residual 
dashed line�	 relative error 
dashed�dotted line�	 and the loss
of orthogonality among the Arnoldi vectors measured in the Frobenius norm 
dotted
line� for MGS�GMRES applied to WEST
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dashed line� for MGS�GMRES applied to WEST
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is nonzero	 � �� �� Then by Proposition ��� � is not a singular value of

#N �

��� ak�s �k�s

� �
� � �

��� � 
����

Clearly	 �min
 #N� 	 �� But by interlacing	 �min
 #N � � �	 which gives a contradiction�

This shows that if the smallest singular value of N is equal to exactly s singular values
of �	 then these s singular values must be decoupled from the rest of N 	 in that for
each of these �i	 �i � � in N 	 see 
����� We rephrase this for our use�

Corollary ��� Let N be nonsingular in �
��
 with �� � � � � � �k� and �k � �min
N���k�
Then

�k � �min
N�� �k � �� 
����

�k � �� �k � �� 
����

�k �� �� �k 	 �� 
����

Proof 
���� follows directly from Proposition ���! 
���� is equivalent to 
����! and 
����
follows from 
���� by contraposition and knowing �k � ��

This leads to the complete version of Theorem ����

Theorem ��� Given a scalar � � �� and an n by k�� matrix �c�B
 with B of rank k�
use �i
�� to denote singular values in nonincreasing order and k � k to denote ��norms�
Let B have singular value decomposition �SVD


B � Uk�V
H � Uk � �u�� � � � � uk
� � � diag
��� � � � � �k�� �� � � � � � �k�

and de�ne
r � c� �By such that � � krk�� � min

z
kc� �Bzk��� 
����

If UH
k c � � � BHc then y � � and � � krk�� � kck is a singular value of �c�B
� not

necessarily the smallest� and there is no further relation between krk and the singular
values of �c�B
� Otherwise let j be the largest index such that uHj c �� �� and de�ne
Uj � �u�� � � � � uj
� Then there is an integer s � � such that

�j�s
�c�B
� � �min

	
UH
j c UH

j B
� �



	 �j � �j
B�� 
����

giving with the de�nitions

�min � �j�s
�c�B
����
B� � �max � �j�s
�c�B
���j
B� 	 �� 
����

The fully general bounds are then

�j�s
�c�B
� f�� � kyk�g �� � �j�s
�c�B
�

�
�� �

kyk�
�� ��min

� �

�

� krk � �j�s
�c�B
�

�
�� �

kyk�
�� ��max

� �

�

� 
�����

��



Proof Choose unitary U � �Uk� �Uk
 so that �� � � in

UH �c�B


�
� �
� V

�
�

��� a �
�� �
� �

��� �

�
N
�

�
� say� 
�����

Applying UH to r gives at the minimum in 
����

UHr � UH
c� �By� �

��� a� � �V Hy
���
�

��� �

��� �
���
�

��� � y � V ���a��

$from which it is clear that �� � �� If a � UH
k c � � then BHc � � and � is clearly

a singular value of �c�B
� Otherwise with j the largest index such that uHj c �� �	 let
aj � 
��� � � � � �j�T be the vector of the �rst j elements of a	 and �j the leading j by j
submatrix of �	 so in 
�����

N �

��������
aj �j

� �j��
� �
� �k
� � � � �

�������� � Nj �
�
aj �j

� �

�
� 
�����

Now �j �� � in Nj	 so from Corollary ��� �min
Nj� 	 �j� It is clear that Nj has the same
singular values as the middle matrix in 
����	 and from 
����� and 
����� that these are
also singular values of �c�B
� It follows from the ordering of the singular values in �
that �min
Nj� � �j�s
�c�B
� for some integer s � �	 and 
���� and so 
���� hold�

Finally	 from the form of a we see that

kyk� � ��
jX

i��

j�ij�
��i

� krk� � ����� 
�����

But since �j�s
�c�B
� � �min
Nj� 	 �j	 we can apply Theorem ��� to � and Nj 
rather
than � and �c�B
�	 to obtain 
with �min and �max as given in 
����	 see 
�����

�j�s
�c�B
� f�� � k�yk�g �� � �j�s
�c�B
�

�
�� �

k�yk�
�� ��min

� �

�

� k�rk � �j�s
�c�B
�

�
�� �

k�yk�
�� ��max

� �

�

� 
�����

where

�r �
	
aj� ��j �y

��



�
	

�
��



at the minimum	 so k�rk � krk and k�yk � kyk in 
�����	 and 
����� becomes 
�����	
proving our general theorem�

The simple idea is that the singular values �j��� � � � � �k of B are decoupled from c	
see 
�����	 so make no contribution to the residual	 and we need only consider Nj � For
completeness	 we show when the bounds in 
����� are tight�

��



Corollary ��� Let the conditions of Theorem 
�	 hold� The bounds in �
���
 are tight
if �min
�c�B
� � �� Otherwise� let us assume BHc �� �� so that �
���
 holds� The upper
bound in �
���
 is tight if and only if c is orthogonal to all left singular vectors of B
having singular values greater than �j
B�� while the stronger lower bound is tight if
and only if c is orthogonal to all left singular vectors of B having singular values less
than ��
B��

Proof See 
����� with 
�����	 and note that 
����� is proven from 
����� with k replaced
by j� The upper bound is tight if and only if �i � � for all �i � �j	 while the stronger
lower bound is tight if and only if �i � � for all �i 	 ���

��
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