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Abstract

It has been widely observed that Krylov space solvers based on two three�term re�
currences can give signi	cantly less accurate residuals than mathematically equivalent
solvers implemented with three two�term recurrences� In this paper we attempt to
justify this di
erence theoretically by analyzing the gap between the recursively and
the explicitly computed residuals� It is shown that� in contrast with the two�term re�
currences analyzed by Greenbaum �SIAM J� Matrix Anal� Appl�� �� �����	� pp� 
�
�


� 
� in the two three�term recurrences the local roundo
 error contributions to the
analyzed gap may dramatically amplify while propagating through the algorithm� For
the conjugate gradient method� such a devastating behavior is� however� not observed
frequently in practical computations� where the di
erence between three two�term and
two three�term implementations is usually moderate or small� This can be explained
by our results� We emphasize that in general there is no inherent weakness in the three
term recurrence for the residual� the di�culty occurs when the iterate is also computed
via a three term recurrence�
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� Introduction

Among the Krylov space solvers for linear systems Ax � b �with A an N �N nonsin�
gular matrix and b an N �vector
 there are quite a number that are based on three�term
recurrences for both the residuals rn and the iterates xn �we give full derivations in the
next section
� With x� given� r� �� b�Ax�� and while �n �� ��

r� �� �Ar� � r���
��� � rn�� �� �Arn � rn�n � rn���n��
��n � n � �� �� � � � � ����


x� �� ��r� � x���
��� � xn�� �� ��rn � xn�n � xn���n��
��n � n � �� �� � � � �����


The above recurrences will only ensure �see for example x ��� of ����� and Section �
here


rn � b�Axn � n � �� �� � � � ����


if the scaling coe�cients �n are chosen to satisfy

�� �� ��� � �n �� ���n � �n��
� n � �� �� � � � � ����


The analysis will hold for any implementation using ����
� ����
 and ����
� whether A is
symmetric or not� Some such methods for unsymmetric problems may use other recur�
rences as well� but for brevity� here we will refer to all such methods as �two three�term
recurrence methods�� In particular� the list of such algorithms includes the Chebyshev
iteration ���� ��� ���� the second�order Richardson iteration ���� �which is the station�
ary form of the Chebyshev iteration
� the three�term version of the conjugate�gradient
�CG
 method ���� �� ���� and the three�term version �BiORes
 of the unsymmetric or
two�sided Lanczos method ���� ��� �which is a variation of the biconjugate gradient or
BiCG method
� see also �����

CG and BiCG have better known versions that are based on three two�term recur�
sions which involve in addition to the iterates and their residuals also direction vectors
pn�

rn�� �� rn �Apn�n � ����


xn�� �� xn � pn�n � ����


pn�� �� rn�� � pn	n � ����


for n � �� with p� �� r�� Other methods like OrthoMin ���� use the 	rst two of these
recursions� but have a more complex update formula for the direction vectors� The
version ����
�����
 can be obtained from the version ����
�����
 by an LU decomposition
of the tridiagonal matrix with coe�cients �n��� �n� and �n in the �n� �
st column� see
for example ��� ��� and Section � here� The folklore � con	rmed by many experiments
� is that implementations based on three two�term recursions are less a
ected by
roundo
 than the same methods based on two three�term recursions� We will analyze
the extent to which this is true�

A recent result by Greenbaum ��� ��� shows that under the sole assumption that
the 	rst two recursions ����
� ����
 hold� there is a limitation on the accuracy of the
iterates computed in 	nite precision arithmetic� and the corresponding values b�Axn
do not decrease below a certain level� �A similar� but somewhat weaker result was given

�



by Sleijpen� van der Vorst� and Fokkema �����
 This maximum expectable accuracy
depends primarily on the largest norm of an approximate solution xn that has been
generated during the iteration� but it does not depend directly on how the coe�cients
�n and 	n are determined� Since� for example� the BiCG method may produce very
large intermediate iterates and residuals� this result is of great importance in practice�
In contrast� related work on GMRES showed that the size of intermediate iterates
does not play a role ��� ���� In this paper we investigate and answer the question
why methods based on recursions of the form ����
�����
 often produce less accurate
residuals than those based on the form ����
�����
� Note this says nothing of methods
which use the equivalent of the 	rst recurrence ����
� but compute the iterates some
other way than ����
� We show there is no inherent weakness in ����
 alone�

It should be noticed that iterative methods based on ����
�����
 or ����
�����

typically produce recursively computed residuals rn whose norms eventually decrease
even beyond the norm of the roundo
 occurring in 	nite precision arithmetic when the
exact solution x is inserted into b � Ax� This means that from a certain n on� these
residuals have nothing to do with the true residuals�

� Background Theory

In this paper we will use both the vector and matrix forms of certain equations� We
use the vector forms to understand iterative computations and to derive their local
rounding error e
ects� while we use the equivalent matrix forms to show for example
how three two�term recurrences can be obtained from two three�term recurrences and
vice versa� and later to derive and understand global e
ects of local rounding errors�

This paragraph needs �xing when we know what we�ve put in� It would
be possible to carry through the error analysis for the residual error using vector forms
only� by subtle use of di
erence equations� see ����� Readers with a background in
polynomials or ordinary di
erential equations may be interested in that reference�
However the approach based on matrix forms can be applied with minimal further
e
ort in other situations� as is done for examining the errors in the iterates here� so we
use it here� It will help to cast everything in matrix terms� so we develop the theory
in these terms to make the paper as self�contained as possible�

��� Deriving three�term recurrences for both r
n
and x

n

Given an initial approximation x�� the initial residual is computed via

r� �� b�Ax�� ����


The general three�term Krylov recurrence for the residuals is ����
� so if we de	ne the
matrices

Xn � �x�� � � � � xn�� Rn � �r�� � � � � rn�� Tn���n �

�
�������

�� ��
�� �� �

�� � �n��
� �n

�n

�
�������
� ����


�



we see ����
 corresponds to the columns of

ARn � Rn��Tn���n� ����


But then ����
 gives� with e the vector of ones of the required dimension�

Rn � beT �AXn � A��Rn��Tn���n � �xeT �Xn��
Tn���n� ����


Since x is unknown� each column of this gives a consistent and computable recurrence
for xn� n � �� �� � � � if and only if the x term in ����
 disappears� That is� if and only if

eTTn���n � �T � ����


which is just ����
� and gives for ����


Rn � Xn��Tn���n � �� ����


whose columns show the derivation of ����
� �see also Section ��� of ����� for example
�
If ����
 does not hold� we could still drop the term in ����
 involving x� giving an

inconsistent iteration� see Section ��� of ����� but we will not consider this here�
We will see the residual relation ����
 is implied by ����
� ����
� ����
 and ����
�

This implication leads to the main weakness of using two three�term recurrences in
	nite precision� so we derive it here� Since �i �� �� Tn���n in ����
 has full column rank�
so ����
 implies the left null space of Tn���n is span�eT 
� Now ����
 and ����
 give

�AXn�� � Rn��
Tn���n � �� ����


so AXn�� � Rn�� � ceT for some vector c� Multiplying this on the right by e� �
��� �� � � � � ��T gives Ax� � r� � c� so c � b from ����
� and

Rn�� � beT �AXn��� ����


which is ����
� Note ����
 gives an implicit de	nition of the residual relation� We
will show because of this the 	nite precision residual can be poor� depending on the
properties of Tn���n�

��� Deriving three two�term recurrences from two three�

term recurrences

Algorithm ����
�����
 was introduced as the three two�term recurrence variant of CG�
but here we show that it gives the three two�term recurrence variant of any two three�
term recurrence ����
�����
� De	ne

Ln���nDnUn ����


�

�
�������

�
�� �

� �
�� �

��

�
�������

�
����
���

�
�
��n

�
����
�
����

� ������
� �

� ��n����n��
�

�
����

�



�

�
�������

�
�� �

� �
�� �

��

�
�������

�
����
��� ��

� �
��n�� �n��

��n

�
����

�

�
�������

��� ��
�� ��� � �� ��

� � �
�n�� ��n�� � �n

�n

�
�������

� Tn���n

in ����
 when we use ����
 �which is ����

� We see eTLn���n � � necessarily� We
now use this LDU factorization of Tn���n to derive ����
�����
� and give their matrix
formulations�

Note that Ln���n di
erences columns� so we 	rst de	ne the matrix of direction
vectors

Pn � �p�� p� � � � � pn� � �Xn��Ln���nDn� �����


and with this we will show the equivalents of ����
�����
 are�

Rn��Ln���n � APnD
��
n or rn�� � rn �Apn�n� �n � ����n � �����


Pn � �Xn��Ln���nDn or xn�� � xn � pn�n� �����


Rn � PnUn or pn � rn � pn��	n��� 	n�� � �n����n��� �����


First the columns of �����
 give pn � �xn � xn��
�n� which with �n � ����n gives
�����
� see ����
� Then ����
 multiplied by Ln���n implies

Rn��Ln���n � �AXn��Ln���n � APnD
��
n �

whose columns give rn � rn�� � �Apn���n which is �����
� see ����
� Finally ����

implies

Rn � �Xn��Ln���nDnUn � PnUn�

whose columns give rn � pn � pn���n����n�� which with 	n � �n��n is �����
� see
����
�

Of course the three�term recurrences can be derived from the two�term� In fact
each of ����
� ����
� ����
 can be obtained from just two of �����
� �����
� �����
� see for
example ���� �� �� ���� In particular �����
 and �����
 give

�AXn�� � Rn��
Ln���n � �� �����


so Rn�� � AXn�� � ceT � where multiplying by e� gives c � b� which is ����
� Here the
residual relation is implicitly de	ned in terms of necessarily well�behaved Ln���n� and
we will show this leads to good 	nite precision recursive residuals for ����
�����
�

�



� Local roundo�

Here we use rn� xn etc� to denote computed quantities� In 	nite precision arithmetic�
recurrences ����
�����
 have to be replaced by

rn�� � �Arn � rn�n � rn���n�� � gn
��n �

xn�� � ��rn � xn�n � xn���n�� � hn
��n �
����


where gn and hn contain all the local errors produced at the step n � ��
The 	rst step of the analysis consists in estimating these local errors�
We make the assumption that the �oating�point arithmetic with roundo
 unit 


satis	es

��a� b
 � a�� � 
�
� b�� � 
�
� j
�j� j
�j � 
� ����


��a op b
 � �a op b
�� � 
�
� j
�j � 
� op � 	� �� ����


so that the roundo
 in the matrix�vector multiplication is bounded according to

j��Ap
�Apj � m 
 jAj jpj�O�
�
 ����


when A has at most m nonzeros in any row� and the matrix�vector product is computed
in the standard way� Assuming that the 	rst and the third terms in ����
�����
 are
summed 	rst� we get via these rules

jgnj � 
��m� �
jAj jrnj� �jrn�nj� �jrn���n��j � �O�
�
� ����


jhnj � 
� �jrnj� �jxn�nj� �jxn���n��j � �O�
�
� ����


We need not take norms or simplify these further� although it is obvious how to do so�
since it will be su�cient to know gn and hn are bounded by 
 times reasonable factors�
Note in reasonable methods we expect these recursively computed residuals rn to be�
come smaller and smaller in norm� and the bound on gn will decrease correspondingly�
but that on hn will not�

In the following estimates we assume that the computed coe�cients �n� �n��� and
�n satisfy in analogy to ����


�� � ���� �n � ���n � �n��
 � �n� so eTTn���n � cTn � ��� ��� � � � � �n
 ����


with error terms �n �note that this is another symbol than 

 that are bounded by

j�nj � �j�nj� j�n��j
 � 
 � n � �� ����


where � is a suitable small constant� Note that � � � when �n is computed using ����
�
We want to estimate the size of the di
erence between true and recursive residuals�

hence� of
fn � b�Axn � rn �

Since we take r� � fl�b�Ax�
� f� � b�Ax� � fl�b�Ax�
 is easily bounded giving

jf�j � ��m � �
jAj jx�j� jbj � 
 �O�
�
� ����


We will show that local errors in three�term recurrences are similar to those in three
two�term recurrences� However� as we will see in the next section� the two three�term
recurrences may su
er from a large ampli	cation of the local errors�

�



� The di�erence between the iterated and true

residuals �vector recursion�

I suggest to consider including a short section of that type� the following
text should be rewritten and signi�cantly shortened� the present state is
copied from the original version of the paper 
I had no time to modify it��
There might be readers for whom the vector recursions would be easier to
follow and including this section will lead them into the matrix formulations
and analysis in a natural way� Moreover� it will demonstrate the advantages
of matrix analysis explicitly� In this way� some people who would not read
the �pure matrix analysis� paper might be motivated to read the matrix
analysis here

CCP� I�m still not convinced this should be in here� Can�t we just refer
to the Tech report� I�ll leave it to you� but I won�t check or alter this
section�

Inserting the recursions ����
 and the equality ����
 we have

en�� � b � �Arn � Axn�n � Axn���n��

�

� n

�Afn

� �Arn � rn�n � rn���n��

�

� n

� gn

� � �b�Axn � rn

�n
�n

� �b�Axn�� � rn��

�n��
�n

� b
�n
�n

�Afn � gn

� �

�
en
�n
�n

� en��
�n��
�n

� b
�n
�n

� Afn � gn

�
� ����


Let us gather the last three terms� the local error �or local contribution
 in the recursion
for the investigated global di
erence en in

ln �� b
�n
�n

� Afn � gn �

Then� by inserting the estimates ����
�����
 we get

jjlnjj �
h
jjbjj �j�nj� j�n��j
 � �
 � �
 jjAjj�n � �j�n��j �jjAjj jjxn��jj� �n��


� �j�nj �jjAjj jjxnjj� �n

i 


j�nj
� jjAjj jjxn��jj
� �n��
 �O�
�
�

This justi	es to de	ne
�n �� jjbjj� jjAjj jjxnjj� �n

so that

jjlnjj � ��
 � �
 jjAjj�n � ��nj�nj� ��n��j�n��j�



j�nj
� �n��
 �O�
�
� ����


In ���� the local error term at the step k is essentially bounded byO�

jjAjj max��j�k jjxjjj�
In our case� the similar term in the bound for jjlkjj that can be derived from ����
 is

�



multiplied by the factor ��j�kj� �j�k��j
�j�kj� which can be substantially larger than
�� We see that local errors in three�term recurrences are potentially larger than those
in the coupled two�term recurrences� In addition to that� as we will see in the next
section� the three�term recurrences may su
er from an additional large ampli	cation
of the local errors�

The recursions ����
 and ����
 are valid for n � �� while for n � � they simplify since
��� �� �� Consequently� some of the estimates simplify also� In particular� �� � ����
and thus �� � �� Thus in view of ����
 we 	nd the second order di
erence equation

e� � e� � l� � en�� � �

�
en
�n
�n

� en��
�n��
�n

� ln

�
�n � �
� ����


with e� � e�� l�� These recurrences describe the propagation of the local rounding
errors lk� k � �� � � � � n� We see that the global gap between the recursively computed
residual and the true residual after n steps� en� is determined by a inhomogeneous
second order di
erence equation� This is in sharp contrast with the error behavior of
the coupled two�term recurrences� where the global error after n steps is just a simple
sum of local errors� see �����

Our analysis of the inhomogeneous second order di
erence equation ����
 satis	ed
by the global rounding errors is based on the observation that we can write n steps
of ����
 as the superposition of n � � homogeneous recurrence relations� In a di
erent
context this idea has been used by Grcar ���� Considering this superposition� we will use
the special relation ����
 between the recurrence coe�cients and signi	cantly simplify
the formula for the global error en�

For the moment� assume that the term �n in ����
 vanishes� i�e�� that

�
�n
�n

�
�n��
�n

� � ����


holds even in 	nite precision arithmetic� Denote by zn�� � D�zn�m��� zn�m�m
 the
result of m steps of the recurrence

zk�� � �zk
�k
�k

� zk��
�k��
�k

� k � n�m� �� � � � � n� ����


started at the step n�m��� Note that due to ����
� zn�m�k�� � D�zn�m��� zn�m� k
 �
zn�m for all k whenever zn�m�� � zn�m� Our discussion will heavily rely on this fact�

First� we derive how the error en�� is a
ected by e�� Clearly� the part of this error
that depends on e� is given by

D�e�� e��n
 � e� �

i�e�� e� is not ampli	ed in the process� Next we have to analyze the dependence of en��
on the elementary errors born in the 	rst step of the algorithm� Clearly� due to ����
�

� l�
��

��
� l� � l�

��
��
�

�



Therefore� the contribution of l� to the error en�� consists of

D��l���l��n� �
 � � l� �

and the part depending on the modi	ed local error of the 	rst step�

lt� �� l�
��
��

� l� �

which has yet to be analyzed� Repeating the same idea for the steps � through n� we
can conclude that en�� can be superposed as

en�� � e� � l�

� l�
��
��

� l�

� l�
����
����

� l�
��
��
� l�

��� ����


� l�
���� � � � �n��
���� � � � �n

� � � �� ln��
�n��
�n

� ln �

Now we describe how the picture changes when the coe�cients �n� �n��� and �n are
computed imprecisely� i�e�� when ����
 is replaced by ����
� We can follow the analysis
described above with the only di
erence that we should add the e
ect of the quantity
e��n propagating through n � � steps of the recurrence ����
 with z� � o� the e
ect
of lt��n propagating through n � � steps of ����
 with z� � o� and so on� As long as
the constant � is small and �n is close to the machine precision 
� these modi	cations
will only cause e
ects proportional to O�
�
� In ����
 we should therefore add terms
O�
�
 to individual terms of the sum� However� once we will consider the size of these
terms� the new O�
�
 contribution can be thought of being incorporated in the O�
�

terms already present in our bounds ����
 and ����
 for e�� l�� � � � � ln� Therefore� in the
further analysis� we can use ����
 with no change and no limitation�

� The di�erence between the iterated and the true
residuals �matrix analysis�

I did not like denoting the submatrices 
with omitted �rst rows� using hats�
I found the text with many di�erent matrices di�cult to follow� There is no
ideal notation 
I do not like my notation much better� but it seems to me
a bit easier to read�� Perhaps we should think about some better notation�

CCP� Unfortunately because we are starting with 
 rather than �� I
suggest we change all your �s to �s� as follows�

It was shown in ���� ��� ��� how e
ective it is to treat the errors of Krylov methods
using matrix forms� so we follow this approach here� In accordance with indexing

�



commencing at �� see ����
� we will use ei to denote the �i � �
�st column of the unit
matrix �in fact the i�th when we count from �
� and e � ��� � � � � �
T �

For ease of reference we repeat ����
� ����
 and ����
� the results with exact arith�
metic�

ARn � Rn��Tn���n� Rn � Xn��Tn���n � �� eTTn���n � �T �

When we include the local errors� see ����
 and ����
� we get for the computed values�
with Gn � �g�� � � � � gn�� Hn � �h�� � � � � hn� and Ln���n� Dn� Un exactly as in ����


ARn � Gn � Rn��Tn���n� Rn � Xn��Tn���n � Hn�

Tn���n � Ln���nDnUn �

	
diag��� ��� � � � � �n


�



����


We wish to bound fn � b�Axn � rn� In general write

�f�� Fn� � �f�� f�� � � � � fn��� � beT �AXn�� �Rn��� ����


But from ����
 ARn � AHn �AXn��Tn���n � Rn��Tn���n �Gn� so

�AXn�� � Rn��
Tn���n � Gn � AHn� ����


giving with the de	nition in ����


�f�� Fn�Tn���n � beTTn���n � �AXn�� � Rn��
Tn���n � bcTn �Gn �AHn�

Writing in accordance with the partitioning in the 	rst matrix in ����


�
eT�

L��n���n

�
� Ln���n�

�
t��

T��n���n

�
� Tn���n� ����


�remembering we are counting from �
� we have

FnT��n���n � Sn � bcTn �Gn �AHn � f�t���

where Sn can be simply bounded� and T��n���n is a known nonsingular upper tridiagonal
matrix� giving

Fn � SnT
��
��n���n� ����


Using ����
 we have

Fn �E � Sn�DnUn
��L����n���n� ����


CCP� I was unable to derive this� Can you elaborate�
where �E is the unit matrix with the 	rst updiagonal perturbed to ���� � � � � �n
� A very
similar result also follows from ����
� ����
� ����
 and eTLn���n � ��

�f�� Fn�Ln���nDnUn � ��AXn�� � Rn��




Tn���n �

	
diag��� ��� � � � � �n


�


�

� �Sn � �AXn � Rn
diag��� ��� � � � � �n
�Gn �AHn� ����


�



where �Sn is easily bounded via ����
�����
� It follows that

Fn � ��f�e
T
� � �Sn�DnUn
���L����n���n�

L����n���n � �

�
BBB�

� � � �
� � �

� �
�

�
CCCA � �DnUn
�� � �

�
BBBB�

�

��

��
��

�

��
� ��

��

��
��
� � � �n��

�n��

�

�n
�

��
� ��

��
� � � �n��

�n��
�

�n
� �

�

�n

�
CCCCA �

����

Finally using these gives

fn�� � f� � �Sn�DnUn
��e� ����


which shows how the local rounding errors �f� in ����
� and the gj � hj and �j which

make up �Sn
 can be magni	ed and accumulated to give the global error fn�� in the
recurred residual rn��� see ����
� Since �DnUn
�� is upper triangular� it is the leading
principal submatrix of �DmUm
��� m � n� Thus any large element in �DnUn
�� will
always appear in the expression for fm��� It follows that if a recurred residual loses
signi	cant accuracy� it is almost certain that all later residuals will have similar or
worse absolute errors�

Thus the accuracy of the recurred residual in methods implemented via ����
 and
����
 is heavily dependent on the sizes of the elements in �DnUn
��� These will nec�
essarily be reasonable in only very few methods � the Chebyshev iteration being one
� but when they are not� these implementations should be avoided� This is especially
so since ����
�����
 does not have this de	ciency� as we will show in Section �� To
compare the two behaviors we give a quick bound here on �sn in ����
� see ����
�

�sn � �Axn � rn

n � gn �Ahn�

j�snj � 
 ��j�nj� j�n��j
 �jAjjxnj� jrnj
 � �m � �
jAjjrnj

��jrn�nj� �jrn���n��j� jAj ��jrnj� �jxn�nj� �jxn���n��j
� �O�
�
�

� 
 ��m � �
jAjjrnj� � �jAjjxnj� jrnj
 j�nj

�� �jAjjxn�� � jrn��j
 j�n��j� �O�
�
� �����


	 Comparison with three two
term recurrences

In our notation� Greenbaum s error term ���� for the three two�term recurrences ����
�
����
 is

fGn�� � f� �
nX
j��

sGj � where sGj � AhGj � gGj � ����


with gGn and hGn denoting the local roundo
 errors in the evaluation of the 	rst two
recurrences of ����
�����
� analogously to gn and hn in ����
� Because no confusion is
possible� we drop the superscript G in the rest of this section� As it is straight forward
and brief� we repeat the analysis here using the same approach as above� Using the

��



theory of Section � we see that with 	nite precision arithmetic the recurrences ����
�
����
 have to be replaced by �see ���


rn�� � rn �Apn�n � gn�

xn�� � xn � pn�n � hn�

pn�� � rn�� � pn	n � kn���

jgnj � 
 ��m � �
jAjjpn�nj� jrnj� �O�
�
�

jhnj � 
 �jxnj� �jpn�nj
 �O�
�
�

jkn��j � 
 �jrn��j� �jpn	n
 �O�
�
�

Let

Ln���n �
�

eT�
L��n���n

�
� L��n���n �

�
BBB�
�� �

� �
�� �

��

�
CCCA � Un �

�
BBB�

� �	�

� �
� �	n��

�

�
CCCA

and D��
n � diag���� � � � � �n
� see ����
� and the de	nitions in �����
 and �����
� Re�

member �����
������
 for the case with no errors�

Rn��Ln���n � APnD
��
n � Xn��Ln���n � �PnD

��
n � Pn��Un�� � Rn���

With the above local rounding errors these become

Rn��Ln���n � APnD
��
n �Gn� Xn��Ln���n � �PnD

��
n �Hn� Pn��Un�� � Rn���Kn���

����

But as in ����
 write �f�� Fn� � beT �AXn�� �Rn�� for this algorithm� giving

�f�� Fn�Ln���n � APnD
��
n �AHn �APnD

��
n �Gn � �Gn �AHn�

and with the notation in ����
 and using ����


Fn � ��Gn � AHn � f���� �� � � � � ��
L����n���n � f�e
T � Sn �L����n���n� say� so

fn�� � f� � Sne�

just as in ����
� where now we can bound sn � �gn�Ahn by using pn� � xn���xn�hn

jsnj � 
 ��m� �
 jAj �jxn��j� jxnj
 � jrnj� jAjjxnj� �jAj �jxn��j� jxnj
� �O�
�


� 
 ��m� �
jAj �jxn��j� jxnj
 � jrnj� �O�
�
� ����


In any sensible algorithm the bounds �����
 and ����
 will be comparable� and the
di
erence in the errors in the recursive residuals will be determined largely by the
growth factors� Clearly the local error can get blown up more in two three�term
recurrences �the factor �DnUn
��e in ����

 than in the three two�term recurrences
����
�����
 �the factor e above
� indicating the general superiority of the latter over the
former for computing residuals� see Section ���

��



� Reliability of the three
term residual recurrence

Because in 	nite precision the ����
� ����
 combination can give a signi	cant di
erence
between the actual and recursive residuals� in contrast to ����
�����
� one might super�
	cialy concluded that ����
 by itself is unreliable� This is wrong� and to support this
argument we will prove the recurrence ����
 gives a recursive residual obeying a similar
relation to that from ����
�����
�

At 	rst this seems contradictory� but it is easily accepted once it is understood that
it is the actual� not the recursive� residual that can cause the main trouble in ����
�
����
� This will be seen in the examples� where this combination leads to an actual
residual which does not converge nearly as well as that from three two�term recurrences�
Thus two three�term recurrences can lead to xn iterates which cause the actual residual
rn � b �Axn to be signi	cantly worse than necessary� This can happen even though
in CG these xn iterates have typically not much greater error than those from three
two�term recurrences� From ����
� see also ����
� we saw the three�term recurrence ����

for the residual gives with 	nite precision computation

ARn � Gn � Rn��Tn���n� ����


with the columns of Gn bounded as in ����
� For the three two�term recurrences with
rounding errors� ����
 and ����
 may be written� see ����
� but using superscript G for
distinction�

Rn��Ln���nDn � APn � GG
nDn� PnUn � Rn � KG

n �

Combining these we see

ARn � �AKG
n � APnUn � Rn��Ln���nDnUn �AKG

n �GG
nDnUn� ����


Comparing this with ����
� and noting ����
 and ����
� shows the recursive residuals in
the two implementations satisfy very similar global equations� suggesting the recursive
residual computed by ����
 is not intrinsically worse than that computed by ����
�����
�
Thus implementations based on ����
 need not have signi	cantly di
erent numerical
behavior to mathematically identical implementations based on three two�term recur�
rences�

This does not say the recursive residuals will necessarily be good using an algorithm
based on ����
� as the properties will also depend on how the coe�cients �n� �n and �n
are computed� Thus to show the recursive residuals for an algorithm based on ����
 are
as good as those of a mathematically equivalent algorithm based on ����
�����
 would
require a more complete analysis�

� Rutishauser
s variant of the recurrences

It is useful to note that the above numerical di�culties encountered using ����
 and
����
 can also be avoided by using an elegant technique suggested by H� Rutishauser
����� His ideas apply not only to CG� which was considered in ����� but to any method
based on ����
 and ����
� so we derive his variant directly from these�

��



The idea is to replace the recurrence for the residual by a recurrence for the resid�
ual increment� and to replace the recurrence for the iterate by a recurrence for the
increment in the iterate� Thus subtracting rn from both sides of ����
� and using ����
�
gives for n � �� �� � � �

!rn �� �Arn � !rn���n��
��n�

rn�� �� rn � !rn� ����


A similar approach to ����
 gives for n � �� �� � � �

!xn �� ��rn � !xn���n��
��n�

xn�� �� xn � !xn� ����


Note for n � � the resulting equations are r� � r� � Ar����� x� � x� � �r����� so
setting

!r�� �� !x�� �� �� r� �� b�Ax�� ����


allows the above recurrences to hold for n � �� �� �� � � �� Thus Rutishauser s variant
uses four two�term recurrences� but does not introduce pn� The relationship with pn
follows from ����
� �����
 and ����
�

!xn � pn�n � ��rn � !xn���n��
��n�

pn � rn �!xn���n��� ��� � �� ����


As before� it will simplify the analysis if we express the four recurrences ����
�����

in matrix form� With Ln���n and DnUn as in ����
� and

!Rn � �!r�� � � � �!rn�� !Xn � �!x�� � � � �!xn��

we see �with ����
 that ����
 corresponds to

!Rn � �Rn��Ln���n� ARn � �!RnDnUn� ����


while ����
 corresponds to

!Xn � �Xn��Ln���n� Rn � !XnDnUn� ����


We can draw similar conclusions to those in Section �� In particular

!Rn � �ARn�DnUn
�� � �A!Xn� ����


�Rn�� � AXn��
Ln���n � �!Rn �A!Xn � ��

so Rn�� � AXn�� � ceT � and if r� � b�Ax� then ����
 holds�

� A particular case� Conjugate Gradients

So far the results have held for any �n� �n � �� �n satisfying �n �� � and ����
� The
choice of these determines the particular method� For our numerical computations in
Section �� and our discussion here we restrict ourselves to symmetric positive de	nite
matrices A and to the method of conjugate gradients �CG
� We will brie�y indicate
the relevant theory� then develop our rounding error analysis of Sections ��� to handle
this case�

��



��� Conjugate Gradients� Theory

Conjugate gradients ���� has many interesting properties� but it is probably easiest to
develop it here from the fact that it produces orthogonal r�� r�� � � � in ����
� see the
Lanczos process ����� Then from ����


RT
nARn � �diag�rTi ri
� ��Tn���n

is symmetric� so with ����
� rTn rn�n�� � rTn��rn���n�� and �n � rTnArn�r
T
n rn� By using

����
 we see that the coe�cients can be computed via� ��� � �� and for n � �� �� � � �

�n ��
rTnArn
rTn rn

� ����


�n �� ��n � �n��� ����


�n �� �n
rTn��rn��

rTn rn
� ����


which is what Rutishauser ���� used�
Let Ln denote the matrix obtained by omitting the last row of Ln���n� Then for

the three two�term recurrence methods we have from �����
 and �����


P T
n APn � U�T

n diag�rTi ri
LnDn�

which is both symmetric and lower triangular� and so is diagonal� From UT
n P

T
n APn �

diag�rTi ri
LnDn we then see pTnApn � �rTn rn�n� so with the de	nitions in �����
 and
�����
� and with ����


�n �
rTn rn
pTnApn

� 	n �
rTn��rn��
rTn rn

� ����


which is what Hestenes and Stiefel ���� used�

��� Conjugate Gradients� Practice

We saw in ����
 how the local rounding errors could be blown up in the two three�term
recurrence leading to a seriously inaccurate residual� We will show here that even so� in
CG the error has no worse a bound than the three two�term recurrence implementation�
This might be one reason this weakness of the two three�term variant of CG was not
so obvious� so it is useful to show it� However since we are now unlikely to use this
variant� we will only develop the ideas brie�y�

early CG work�
Next we want to discuss the size of the multiplicative factors

kY
j�i

�j��
�j

�

��



where from now on we assume� without repeating it� that � � i � k� For this discussion
we restrict ourselves to symmetric positive de	nite matrices A and to the method of
conjugate gradients �CG
� where� in exact arithmetic�

�n �
hrn� rni

hpn� Apni
� 	n �

hrn��� rn��i

hrn� rni
� ����


Both �n and 	n are positive� Without a speci	c knowledge about A and r� we cannot
say anything more about their values� More precisely� given any two sequences of pos�
itive numbers� ��� � � � � �N�� and 	�� � � � � 	N��� there are a symmetric positive de	nite
matrix A and a vector r� such that the CG algorithm applied to A with the initial
residual r� generates the given coe�cients� see Theorem ���� in ����� The �n and �n
then satisfy� see �����
� �����
 and ����


�n � �
�

�n
� ��

�n
�n

� ���
	n���n
�n��

� ���
�n��
�n

�
	n���n
�n��

� �� ����


where 	�� �� �� ��� �� �� and where the equality is attained in the last two cases only
if xn � x� i�e�� if we have reached the solution� We conclude that the multiplicative
factors have the form

kY
j�i

�j��
�j

�
�k
�i��

kY
j�i

	j�� � ����


and therefore� they may exhibit� in general� an arbitrary behavior�
For a given matrix A and an initial residual r� it is possible to relate the size of

the multipliers to the condition number of A and the convergence of the CG process
measured by the norm of the residuals� Still assuming exact arithmetic we receive�
when rewriting the multipliers in the form

kY
j�i

�j��
�j

�
�k
�i��

jjrkjj�

jjri��jj�

and using Theorem ��� from ����� the following bound�

�

��A


jjrkjj�

jjri��jj�
�

kY
j�i

�j��
�j

� ��A

jjrkjj�

jjri��jj�
� ����


where ��A
 is the spectral condition number of the matrix A� Note that

jjrkjj�

jjri��jj�
�

jjA���A��� �x� xk
jj�

jjA���A��� �x� xi��
jj�
�

jjAjj

�min�A


jjx� xkjj�A
jjx� xi��jj�A

� ��A


due to the monotonicity in the reduction of the A�norm of the error� Consequently�

kY
j�i

�j��
�j

� ���A
�

��



Moreover� the results of ��� and ���� imply then that in 	nite precision arithmetic
the following slightly relaxed bounds hold�

��� �

�

��A


jjrkjj�

jjri��jj�
�

kY
j�i

�j��
�j

� �� � �
 ��A

jjrkjj�

jjri��jj�
� ����


kY
j�i

�j��
�j

� �� � �
 ���A
 � �����


where � � �
 � �here� we make the usual assumption about the numerical nonsingu�
larity of the matrix A� for details see the references mentioned above
�

In the nonsymmetric case no bound similar to ����
 can be expected to hold�
One can make a natural comment� if the multipliers become very large� then the

two three�term recurrence solvers are likely to exhibit a dramatically worse residual
behavior than the three two�term ones� For the CG method� Hestenes and Stiefel
���� show in their Theorem ���� how to construct examples having any given set of
multipliers� However� if the matrix A is reasonably well conditioned and if the CG
method converges almost monotonically� then the bounds ����
 for the multipliers show
that no dramatic ampli	cation of the local errors can be expected� On the other hand�
if� for some k and i� the factor jjrkjj

��jjri��jj
� is large� then we may indeed expect a large

di
erence in the residuals of the two three�term versus the three two�term recurrences�
It is important to note that any signi	cant local oscillations of the residual norms
are potentially dangerous for the CG implementation based on three�term recurrences
����
�����
� even those for which jjrkjj is much smaller than jjr�jj� As illustrated by the
numerical experiments in Section ��� local oscillations may cause an incurable damage
to the 	nal residual and the process may never recover despite the smooth convergence
in the subsequent steps�

Here the analysis by Chris must be incorporated� possibly leading to the
necessary changes of the text above

�� Numerical experiments

The construction of our numerical experiments follows ideas from ����� We consider
N � �� and aim at the following values of the coe�cients ����
 for the three two�term
recurrences of the CG method�

�� � �� � � � � � ��	 � ��

	� � ��� 	� � 	� � � � � � 	�� � ����� 	� � � � � � 	�� � ����

	�
 � ����� 	�� � ����� 	�	 � �����

Using the formulas for the elements of N �N matrix T � see ����


T ��� �
 �
�

���

�

��



T �i� i
 �
�

��i� �

�
	�i� �


��i� �

�

T �i� i� �
 � T �i� �� i
 �
�	�i� �

���

��i� �

� i � �� � � � � N�

we construct a symmetric positive de	nite N by N tridiagonal matrix T � For any
unitary N by N matrix V � the CG method ����
�����
� ����
 applied to the system
Ax � b with A � V TV � and r� � b � Ax� � V e� then generates in steps � to N the
prescribed coe�cients �j � 	j� j � �� � � � � N � �� Then for the generated residual norms

krjk� � ����� for j � �� �� � � � � ���

krjk� � ������ for j � �� �� � � � � ���

and the residual norm is sharply decreasing in the steps �� through ��� For an initial
residual di
erent from V e� the behavior of the residual norms will be di
erent� but we
still may expect some oscillations�

We have used the construction described above� choosing V as the unitary matrix
resulting from the QR decomposition of a randomly generated N by N matrix� in Mat�

lab notation �V�R� � qr�randn�N�N

� Furthermore� we have chosen x � ��� � � � � �
��
b � Ax� x� � o� r� � b� Experiments were performed on an SGI Indigo Workstation
using Matlab ���� 
 � ���� � ������ Three implementations of the CG method have
been compared� solid lines represent results of the Hestenes�Stiefel variant �HS
 given
by ����
�����
 and ����
� dashed lines those of the Rutishauser variant �R
 described
in ����� see also ����� and dotted lines those of the three term CG implementation pre�
sented in ����� p� ���� and denoted here as �HY
� Note this last is described in ���� as
coming from the same book as ����� but we were unable to 	nd it there�

Norms of recursively computed residuals are compared in Figure �� We can see the
oscillations followed by the fast convergence for n around ���

True residual norms� computed as kb � Axnk�� are compared in Figure �� We
see that the 	nal accuracy of the �R
 and �HS
 variants are comparable� However�
residual norms of the �HY
 variant stagnate at a signi	cantly worse level than those of
the �HS
 variant� as predicted by our theoretical analysis� But we should also mention
that surprisingly� despite the di
erences in the true residuals� all three variants give
comparable error norms�

In our experiments� the described behavior was typical� A detailed analysis of the
Rutishauser implementation� which is not of the form ����
�����
 or ����
�����
� and of
the behavior of the error in all variants requires further work�

�� Conclusions

We have proven that implementations of Krylov space methods based on two three�term
recurrences ����
�����
 potentially produce less accurate residuals than the correspond�
ing implementations based on three two�term recurrences of the form ����
�����
 and
that this di
erence may be signi	cant�

��



For the conjugate�gradient method for example� the di
erence between the recursive
and the true residuals in implementations using two three�term recurrences is a
ected
not only by the maximum size of the intermediate iterates xn� but also by oscillations
of the squared norms of the residuals� that is the quantities jjrkjj��jjri��jj�� � � i � k�

Note that many useful algorithms are e
ectively based on the 	rst recurrence in
����
�����
� but not the second� see for example SYMMLQ in ����� We have shown
that this 	rst recurrence by itself does not necessarily cause the kind of di�culty
with the residual described here� and indeed SYMMLQ does not exhibit this di�culty�
The approach that has been used here for analyzing the rounding error behavior of
recurrence methods can presumably also be applied to methods such as these� Other
important algorithms like the three�term and the coupled two�term QMR methods
��� �� are not implemented in the form ����
�����
 and ����
�����
� The propagation
of elementary roundo
 in these algorithms can presumably also be analyzed in a way
analogous to the approach described in this paper�
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