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Abstract

It has been widely observed that Krylov space solvers based on two three-term re-
currences can give significantly less accurate residuals than mathematically equivalent
solvers implemented with three two-term recurrences. In this paper we attempt to
justify this difference theoretically by analyzing the gap between the recursively and
the explicitly computed residuals. It is shown that, in contrast with the two-term re-
currences analyzed by Greenbaum (SIAM J. Matriz Anal. Appl., 18 (1997), pp. 535
551), in the two three-term recurrences the local roundoff error contributions to the
analyzed gap may dramatically amplity while propagating through the algorithm. For
the conjugate gradient method, such a devastating behavior is, however, not observed
frequently in practical computations, where the difference between three two-term and
two three-term implementations is usually moderate or small. This can be explained
by our results. We emphasize that in general there is no inherent weakness in the three
term recurrence for the residual, the difficulty occurs when the iterate is also computed
via a three term recurrence.
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1 Introduction

Among the Krylov space solvers for linear systems Az = b (with A an N x N nonsin-
gular matrix and b an N-vector) there are quite a number that are based on three-term
recurrences for both the residuals r, and the iterates x, (we give full derivations in the
next section). With xq given, rq := b — Az, and while ~, # 0,

ry = (Arg — roo) /70 ; Fpt1 i= (Ary — roay — Te1 Bo1)[n, n=1,2,..., (1.1)
x1:= —(ro — xoa0) /Y0 ; Tpy1 = —(rn + 2o + 1 Boe1) /v, n=1,2,... .(1.2)

The above recurrences will only ensure (see for example § 4.3 of [13], and Section 2

here)
ro=0b—Ax,, n=0,1,... (1.3)

if the scaling coefficients ~,, are chosen to satisty

Yo i=—ao; Vo= —(an+ Fuo1), n=1,2,.... (1.4)

The analysis will hold for any implementation using (1.1), (1.2) and (1.4), whether A is
symmetric or not. Some such methods for unsymmetric problems may use other recur-
rences as well, but for brevity, here we will refer to all such methods as “two three-term
recurrence methods”. In particular, the list of such algorithms includes the Chebyshev
iteration [26, 24, 18], the second-order Richardson iteration [24] (which is the station-
ary form of the Chebyshev iteration), the three-term version of the conjugate-gradient
(CG) method [26, 2, 15], and the three-term version (BIORES) of the unsymmetric or
two-sided Lanczos method [17, 13] (which is a variation of the biconjugate gradient or
BICG method); see also [15].

CG and BICG have better known versions that are based on three two-term recur-
sions which involve in addition to the iterates and their residuals also direction vectors

Pr:

pn41 = T — Apnwn s (15)
Tpp1 = Tp A+ Pawn, (1.6)
Pnt+1 = Tpt1 T+ Prtn s (1'7)

for n > 0, with pg := r9. Other methods like ORTHOMIN [27] use the first two of these
recursions, but have a more complex update formula for the direction vectors. The
version (1.5)—(1.7) can be obtained from the version (1.1)—(1.2) by an LU decomposition
of the tridiagonal matrix with coefficients 3,_1, a,,, and =, in the (n 4 1)st column, see
for example [4, 13] and Section 2 here. The folklore — confirmed by many experiments
— 1is that implementations based on three two-term recursions are less affected by
roundoff than the same methods based on two three-term recursions. We will analyze
the extent to which this is true.

A recent result by Greenbaum [9, 10] shows that under the sole assumption that
the first two recursions (1.5), (1.6) hold, there is a limitation on the accuracy of the
iterates computed in finite precision arithmetic, and the corresponding values b — Az,
do not decrease below a certain level. (A similar, but somewhat weaker result was given
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by Sleijpen, van der Vorst, and Fokkema [25].) This maximum expectable accuracy
depends primarily on the largest norm of an approximate solution z, that has been
generated during the iteration, but it does not depend directly on how the coefficients
w, and 1, are determined. Since, for example, the BICG method may produce very
large intermediate iterates and residuals, this result is of great importance in practice.
In contrast, related work on GMRES showed that the size of intermediate iterates
does not play a role [3, 11]. In this paper we investigate and answer the question
why methods based on recursions of the form (1.1)-(1.2) often produce less accurate
residuals than those based on the form (1.5)—(1.7). Note this says nothing of methods
which use the equivalent of the first recurrence (1.1), but compute the iterates some
other way than (1.2). We show there is no inherent weakness in (1.1) alone.

It should be noticed that iterative methods based on (1.1)—(1.2) or (1.5)—(1.7)
typically produce recursively computed residuals r, whose norms eventually decrease
even beyond the norm of the roundoff occurring in finite precision arithmetic when the
exact solution x is inserted into b — Ax. This means that from a certain n on, these
residuals have nothing to do with the true residuals.

2 Background Theory

In this paper we will use both the vector and matrix forms of certain equations. We
use the vector forms to understand iterative computations and to derive their local
rounding error effects, while we use the equivalent matrix forms to show for example
how three two-term recurrences can be obtained from two three-term recurrences and
vice versa, and later to derive and understand global effects of local rounding errors.

This paragraph needs fixing when we know what we’ve put in. It would
be possible to carry through the error analysis for the residual error using vector forms
only, by subtle use of difference equations, see [14]. Readers with a background in
polynomials or ordinary differential equations may be interested in that reference.
However the approach based on matrix forms can be applied with minimal further
effort in other situations, as is done for examining the errors in the iterates here, so we
use it here. It will help to cast everything in matrix terms, so we develop the theory
in these terms to make the paper as self-contained as possible.

2.1 Deriving three-term recurrences for both r, and =z,
Given an initial approximation zg, the initial residual is computed via
ro :=b— Axy. (2.1)

The general three-term Krylov recurrence for the residuals is (1.1), so if we define the
matrices

Qo 50
Yo a1
X, = [zo,. .., 2], R, =1Tro,...,7a), P— o B |, (2.2)
-y,
Vn



we see (1.1) corresponds to the columns of
AR, = Rys Tost . (2.3)
But then (1.3) gives, with e the vector of ones of the required dimension,
Ry =be" —AX, = A7 Ry Tgrn = (el — Xy ) g1 (2.4)

Since x is unknown, each column of this gives a consistent and computable recurrence
for x,, n = 1,2,...1if and only if the & term in (2.4) disappears. That is, if and only if

e Tpyrn = 07, (2.5)
which is just (1.4), and gives for (2.4)
Rn + Xn—l—lTn—I—l,n = 07 (26)

whose columns show the derivation of (1.2), (see also Section 4.3 of [14], for example).

If (2.5) does not hold, we could still drop the term in (2.4) involving x, giving an
inconsistent iteration, see Section 4.5 of [13], but we will not consider this here.

We will see the residual relation (1.3) is implied by (2.1), (2.3), (2.5) and (2.6).
This implication leads to the main weakness of using two three-term recurrences in
finite precision, so we derive it here. Since v; # 0, T},41,, in (2.2) has full column rank,
so (2.5) implies the left null space of T4, is span(e?). Now (2.3) and (2.6) give

(AXn—I—l + Rn—l—l)Tn—I—l,n = 07 (27)

so AX, 411 + Roy1 = cel for some vector c¢. Multiplying this on the right by ey =
[1,0,...,0]T gives Azg + 7o = ¢, so ¢ = b from (2.1), and

Rn_|_1 == beT — AXn_|_1, (28)

which is (1.3). Note (2.7) gives an implicit definition of the residual relation. We
will show because of this the finite precision residual can be poor, depending on the
properties of T}, 41 .

2.2 Deriving three two-term recurrences from two three-
term recurrences

Algorithm (1.5)—(1.7) was introduced as the three two-term recurrence variant of CG,
but here we show that it gives the three two-term recurrence variant of any two three-
term recurrence (1.1)—(1.2). Define

Loy, DU, (2.9)
1 —0 L —Bo/v0

B ‘ _‘1 1 ' O T
-1 —n 1



~1 1 —70 60

1 In

—70 Bo
Yo —Bo—m B
— ) ) ) =Thi1n
Va1 —Bn-1— n
Vn

in (2.2) when we use (1.4) (which is (2.5)). We see el L, 41, = 0 necessarily. We
now use this LDU factorization of T,,41, to derive (1.5)—(1.7), and give their matrix
formulations.

Note that L,4, differences columns, so we first define the matrix of direction
vectors

Pn = [p07p7 s 7pn] = _Xn+1Ln+1,nDn7 (210)
and with this we will show the equivalents of (1.5)—(1.7) are:

-1

Royilpiin = APD;Y ot 1oy =71, — Appw,, w, = 7", (2.11)
Pn = _Xn—l—an—I—l,nDn or Tpt1l = Tp + Palon, (212)
Rn — PnUn or Pn =Tn + pn—1¢n—17 77Z)n—1 = 671—1/771—1- (213)

First the columns of (2.10) give p, = (2, — Tyt1)Yn, which with w, = —~~! gives
(2.12), see (1.6). Then (2.8) multiplied by L, 41, implies

Rn—l—an—I—l,n — _AXn—I—an—I—l,n — APnD;17

whose columns give r, — 1,41 = —Ap,7y, ' which is (2.11), see (1.5). Finally (2.6)
implies
Rn = — n—I—an—I—l,nDnUn = PnUn7

whose columns give r, = p, — pn_1Pn-1/Yn-1 which with ¢, = £,/v, is (2.13), see
(1.7).

Of course the three-term recurrences can be derived from the two-term. In fact
each of (2.3), (2.6), (2.8) can be obtained from just two of (2.11), (2.12), (2.13), see for
example [22, 4, 1, 13]. In particular (2.11) and (2.12) give

(AXn+1 —|— Rn—l—l)[/n—l—l,n - 0, (214)
so Rnp1 + AX, 11 = cel, where multiplying by ¢y gives ¢ = b, which is (2.8). Here the

residual relation is implicitly defined in terms of necessarily well-behaved L, ,,, and
we will show this leads to good finite precision recursive residuals for (1.5)—(1.7).



3 Local roundoff

Here we use r,, x, etc. to denote computed quantities. In finite precision arithmetic,
recurrences (1.1)—(1.2) have to be replaced by

ntl = (Arn — I'pQp — rn—lﬂn—l + gn)/’}/n ) (3 1)

Tnt1 = _(rn + rpap + xn—lﬂn—l - hn)/’}/n )
where ¢, and h, contain all the local errors produced at the step n 4+ 1.
The first step of the analysis consists in estimating these local errors.
We make the assumption that the floating-point arithmetic with roundoff unit e

satisfies
fllatb) = a(l+¢€) b1l +e), al el <e (3.2)
fiaop b) = (aop B)(1+es), |l S op=+/, (33)
so that the roundoff in the matrix-vector multiplication is bounded according to
fi(Ap) — Ap| < m e |A] [p| + O() (3.4)

when A has at most m nonzeros in any row, and the matrix-vector product is computed
in the standard way. Assuming that the first and the third terms in (1.1)—(1.2) are
summed first, we get via these rules

1921 < el(m 4 3)[Al|ra| + 3lrnan] 4 4lrao1 Baaa| ] + O(€9), (3.5)
lhe| < €[ 3|rn| + 3lenan| + 4|len_1 81| ] + 0(62). (3.6)

We need not take norms or simplify these further, although it is obvious how to do so,
since it will be sufficient to know ¢, and %, are bounded by ¢ times reasonable factors.
Note in reasonable methods we expect these recursively computed residuals r, to be-
come smaller and smaller in norm, and the bound on ¢, will decrease correspondingly,
but that on A, will not.

In the following estimates we assume that the computed coefficients «,,, 3,_1, and
vn satisfy in analogy to (1.4)

Yo = —ao, Yo = —(an+ Bu-1) +En, sO eTTm_Ln = cg =(0,61,...,6,) (3.7)
with error terms €, (note that this is another symbol than €) that are bounded by
el < (lan] + [Bu-tl)ve, n 21, (3.8)

where v is a suitable small constant. Note that v = 1 when =, is computed using (1.4).
We want to estimate the size of the difference between true and recursive residuals,
hence, of
fa=b— Az, —r,.
Since we take rq = fl(b— Axo), fo = b— Axg — fl(b — Axy) is easily bounded giving
[fol < [(m + 1)[A] |xo| + |8 ] e + O(€?). (3.9)

We will show that local errors in three-term recurrences are similar to those in three
two-term recurrences. However, as we will see in the next section, the two three-term
recurrences may suffer from a large amplification of the local errors.



4 The difference between the iterated and true
residuals (vector recursion)

I suggest to consider including a short section of that type; the following
text should be rewritten and significantly shortened, the present state is
copied from the original version of the paper (I had no time to modify it).
There might be readers for whom the vector recursions would be easier to
follow and including this section will lead them into the matrix formulations
and analysis in a natural way. Moreover, it will demonstrate the advantages
of matrix analysis explicitly. In this way, some people who would not read
the “pure matrix analysis” paper might be motivated to read the matrix
analysis here

CCP: I’m still not convinced this should be in here. Can’t we just refer
to the Tech report? I’ll leave it to you, but I won’t check or alter this
section.

Inserting the recursions (3.1) and the equality (3.7) we have

1
Ent1 = b+ (Arn + Az, + Awn—lﬁn—l) - - Afn
1
— (Ary, — rpay, — 11 Bn1) ; e
e (b— Arn— ) 2 (b= Ay — ) L b5 AL g
n n— En
- - (enj—ﬁn_lﬁv 1 +b—+Afn+gn). (4.1)

Let us gather the last three terms, the local error (or local contribution) in the recursion
for the investigated global difference e, in

L= b=+ Af, + g..

n

Then, by inserting the estimates (3.5)—(3.8) we get

1]l < (181 (eval + B ]) + (1 4+ ) Al + 31801 ] (1Al @01l + pa-1)

&
+ 2l (Al [2all + p0)] == + [Al Jzasalle + pryre+ O().

[Vl
This justifies to define

wn = [0l + [[Al] [|zn]] + pn
so that

€

1Eall < [+ D 1IAllpn + 2¢00len] + 3¢n-1|Ba-ill T + Pasre + O(€). (4.2)

7l

In [10] the local error term at the step k is essentially bounded by O(e€)||A|| maxi<;< ||z;||.
In our case, the similar term in the bound for ||l;|| that can be derived from (4.2) is
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multiplied by the factor (2|ag| + 3|Bk-1])/|7k|, which can be substantially larger than
1. We see that local errors in three-term recurrences are potentially larger than those
in the coupled two-term recurrences. In addition to that, as we will see in the next
section, the three-term recurrences may suffer from an additional large amplification
of the local errors.

The recursions (3.1) and (3.7) are valid for n > 1, while for n = 0 they simplify since
B_1 := 0. Consequently, some of the estimates simplify also. In particular, 79 = —ay,
and thus eg = 0. Thus in view of (4.1) we find the second order difference equation

Oy 671—1
er=e—lo, ey1=—|en—+e
Tn Tn

+ Zn) (n>1), (4.3)

with e; = eg — lp. These recurrences describe the propagation of the local rounding
errors I, k = 0,...,n. We see that the global gap between the recursively computed
residual and the true residual after n steps, e,, is determined by a inhomogeneous
second order difference equation. This is in sharp contrast with the error behavior of
the coupled two-term recurrences, where the global error after n steps is just a simple
sum of local errors; see [10].

Our analysis of the inhomogeneous second order difference equation (4.3) satisfied
by the global rounding errors is based on the observation that we can write n steps
of (4.3) as the superposition of n + 1 homogeneous recurrence relations. In a different
context this idea has been used by Grear [7]. Considering this superposition, we will use
the special relation (3.7) between the recurrence coefficients and significantly simplify
the formula for the global error e,.

For the moment, assume that the term ¢, in (3.7) vanishes, i.e., that

(877 . 671—1

In In

=1 (4.4)

holds even in finite precision arithmetic. Denote by z,41 = D(2n—m41, Znm;m) the
result of m steps of the recurrence

Z;H_l:—zk%—zk_lﬁk_l, k=n—m+1,...,n, (4.5)

Yk Yk

started at the step n—m+1. Note that due to (4.4), zu—mirt1 = P(Zn-mt1, Znm; k) =
Zn—m for all k& whenever z,_,,11 = z,_. Our discussion will heavily rely on this fact.

First, we derive how the error e, is affected by eq. Clearly, the part of this error
that depends on ¢ is given by

D(em €o; n) = €o,

i.e., €9 1s not amplified in the process. Next we have to analyze the dependence of e,41
on the elementary errors born in the first step of the algorithm. Clearly, due to (4.4),

- ZOﬂ — lo —|— ZO@

7 7



Therefore, the contribution of Iy to the error e,1; consists of
D(—lo, —lo, n — 1) = — lo,
and the part depending on the modified local error of the first step,

Ity := ZO@ +4,
g
which has yet to be analyzed. Repeating the same idea for the steps 2 through n, we
can conclude that e, 1 can be superposed as

€nt1 = €0 — lo
— [O@ —1
a!
o 106061 . Zlé . 12

Y172 Y2
: (4.6)

6061 Tt 671—1 671—1
—ly————————— ... =,
7172 .« e f}/n f}/n

—1,.

Now we describe how the picture changes when the coefficients «,, 3,1, and ~,, are
computed imprecisely, i.e., when (4.4) is replaced by (3.7). We can follow the analysis
described above with the only difference that we should add the effect of the quantity
€0y, propagating through n — 1 steps of the recurrence (4.5) with z; = o, the effect
of ltie, propagating through n — 2 steps of (4.5) with z; = o, and so on. As long as
the constant v is small and ¢, is close to the machine precision €, these modifications
will only cause effects proportional to O(e?). In (4.6) we should therefore add terms
O(€?) to individual terms of the sum. However, once we will consider the size of these
terms, the new O(e?) contribution can be thought of being incorporated in the O(e?)
terms already present in our bounds (3.9) and (4.2) for e, lo, ..., [,. Therefore, in the
further analysis, we can use (4.6) with no change and no limitation.

5 The difference between the iterated and the true
residuals (matrix analysis)

I did not like denoting the submatrices (with omitted first rows) using hats.
I found the text with many different matrices difficult to follow. There is no
ideal notation (I do not like my notation much better, but it seems to me
a bit easier to read). Perhaps we should think about some better notation.

CCP: Unfortunately because we are starting with 0 rather than 1, I
suggest we change all your 2s to 1s, as follows.

It was shown in [19, 20, 21] how effective it is to treat the errors of Krylov methods
using matrix forms, so we follow this approach here. In accordance with indexing



commencing at 0, see (2.2), we will use ¢; to denote the (i + 1)-st column of the unit
matrix (in fact the i-th when we count from 0), and ¢ = (1,...,1).

For ease of reference we repeat (2.3), (2.6) and (2.5), the results with exact arith-
metic:

ARn = Rn—l—lTn—I—l,na Rn + Xn—l—lTn—I—l,n = 07 eTTn—I—l,n - OT-

When we include the local errors, see (3.1) and (3.7), we get for the computed values,

with G, = [go, -, 9n)s Hn = [ho, ..., k) and Lygq ., Dy, U, exactly as in (2.9)

ARn + Gn = Rn—l—lTn—I—l,na Rn + Xn—l—lTn—I—l,n - Hn7
diag(0,e1,...,¢,)

Tn—l—l,n = Ln—l—l,nDnUn + 0

(5.1)

We wish to bound f, =b— Ax, — r,. In general write
[fo, F] = [fos frse s frg] = bel — AX, 1y — Ropq. (5.2)
But from (5.1) AR, = AH, — AX, 11 Ti1n = RopiTog1n — G, sO
(AXy41+ Roy1) 10 = G + AH,, (5.3)
giving with the definition in (3.7)
[fo, Bl Tnirm = 6™ Tyy 0 — (AXpys + Rogi) o1, = bel — G, — AH,,.

Writing in accordance with the partitioning in the first matrix in (5.2)
T
€ _ lo. —
(len—l—l,n) o (len—l—l,n) o (5 )
(remembering we are counting from 0), we have

Fnlen—I—l,n = Sn = bcg - Gn - AHn — foto.,

where 5, can be simply bounded, and 71,41 ,, 1s a known nonsingular upper tridiagonal
matrix, giving

F, = SnT1_:7}L+1,n- (5-5)
Using (5.1) we have

FoB = S,(D,U) Lyt (5.6)

CCP: I was unable to derive this. Can you elaborate?
where £ is the unit matrix with the first updiagonal perturbed to (e1,...,2,). A very
similar result also follows from (5.1), (5.2), (5.3) and ¢’ L4, = 0:

diag(0,¢1,... .2,
[f07 Fn]Ln—I—l,nDnUn = _(AXn—l—l —I' Rn—l—l) {Tn—l—l,n - l lag( 5(1) © ) ]}

= 5, =(AX, + R,)diag(0,ey,...,6,) — G, — AH,, (5.7)

9



where S, is easily bounded via (3.5)—(3.8). It follows that

Fy = [—foed + Su(DoUn) T LTE 10

1Ll R
a.=— b )t =- o Bk
1 | .
- (5.8)
Finally using these gives )
frot1 = fo— Sa(D,U,) e, (5.9)

which shows how the local rounding errors (fy in (3.9), and the g¢;, h; and &; which
make up Sn) can be magnified and accumulated to give the global error f,1; in the
recurred residual 7,4y, see (5.2). Since (D,U,)™" is upper triangular, it is the leading
principal submatrix of (D,,U,)~', m > n. Thus any large element in (D,U,)™" will
always appear in the expression for f, 1. It follows that if a recurred residual loses
significant accuracy, it is almost certain that all later residuals will have similar or
worse absolute errors.

Thus the accuracy of the recurred residual in methods implemented via (1.1) and
(1.2) is heavily dependent on the sizes of the elements in (D,U,)~!. These will nec-
essarily be reasonable in only very few methods — the Chebyshev iteration being one
— but when they are not, these implementations should be avoided. This is especially
so since (1.5)—(1.7) does not have this deficiency, as we will show in Section 6. To
compare the two behaviors we give a quick bound here on §, in (5.9), see (5.7):

S = (Axy, +10)en — g — Ahop,
sol < el(lanl + [Ba-tl) All2n| + ra]) + (m + 3)| Al
F3lrmrn] 4 Al Boal 4 1AL Bl + 3hacen] + 41 Bos )] + O(),
< e[(m+6)[Al|rn] + 4 (|Allza] + [ral]) o]

H([A|2n-1 + [raa]) [Bo-a ] + O(€7). (5.10)

6 Comparison with three two-term recurrences

In our notation, Greenbaum’s error term [10] for the three two-term recurrences (1.5)-

(1.7) is
f7?+1 :fO—ZS?, where S?EAh?—I—gJG, (6.1)
7=0
with ¢ and hS denoting the local roundoff errors in the evaluation of the first two
recurrences of (1.5)—(1.7), analogously to ¢, and h, in (3.1). Because no confusion is

possible, we drop the superscript (G in the rest of this section. As it is straight forward
and brief, we repeat the analysis here using the same approach as above. Using the
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theory of Section 3 we see that with finite precision arithmetic the recurrences (1.5)—

(1.7) have to be replaced by (see [9])

Tot1l = Tn— Appw, — g,
Tptl = Ty + Py — hnv
Prot1 = Tapr + Pathn + Ky,
g0l < el(m+ 2)|Al[pawn| + [ral] + O(€?),
ol < e(feal + 2ponl) + O),
kgt < €(|rngl + 2[pathn) + O(€9).
Let
-1 1 L =y
Lot E( eOT ) Liarn = . . = . .
e Lipyin /)’ e -1 1 ’ " L =
—1 1

and D' = diag(wo,...,w,), see (2.9), and the definitions in (2.13) and (2.11). Re-

member (2.11)—(2.13) for the case with no errors:
Rn—l—an—I—l,n — APnD;17 Xn—l—an—I—l,n — _PnD;17 Pn—l—lUn—I—l — Rn—l—l-
With the above local rounding errors these become

Rn—l—an—I—l,n = APanl—l'Gna Xn—l—an—I—l,n - _PnD;1+Hn7 Pn—l—lUn—I—l - Rn—l—l—l'[(n—l—l-

But as in (5.2) write [fo, F},] = be? — AX, 11 — R,41 for this algorithm, giving 02
Uos FulLng1n = APDT' — AH, — AP,DZ — Gy = —G — AH,.,
and with the notation in (5.4) and using (5.8)
Fo = —(Gu+ AH, + fo[1,0,...,0) L7k, = foe + Sul7ki0,, say, so
Jatr = Jo— She,
just as in (6.1), where now we can bound s,, = —g, — Ah,, by using p,w = &p41— 2+ hy

e[(m+2)|A[(|zwn | + [zal) + [ral + [Allza] + 2JA (20| + [2a])] + O(€?)
el(m +5)[A| (|zna] + [al) + [ral] + O(?). (6.3)

In any sensible algorithm the bounds (5.10) and (6.3) will be comparable, and the
difference in the errors in the recursive residuals will be determined largely by the
growth factors. Clearly the local error can get blown up more in two three-term
recurrences (the factor (D,U,) ‘e in (5.9)) than in the three two-term recurrences
(1.5)—(1.7) (the factor e above), indicating the general superiority of the latter over the
former for computing residuals, see Section 10.
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7 Reliability of the three-term residual recurrence

Because in finite precision the (1.1), (1.2) combination can give a significant difference
between the actual and recursive residuals, in contrast to (1.5)—(1.7), one might super-
ficialy concluded that (1.1) by itself is unreliable. This is wrong, and to support this
argument we will prove the recurrence (1.1) gives a recursive residual obeying a similar
relation to that from (1.5)—(1.7).

At first this seems contradictory, but it is easily accepted once it is understood that
it is the actual, not the recursive, residual that can cause the main trouble in (1.1)-
(1.2). This will be seen in the examples, where this combination leads to an actual
residual which does not converge nearly as well as that from three two-term recurrences.
Thus two three-term recurrences can lead to z,, iterates which cause the actual residual
r, = b— Az, to be significantly worse than necessary. This can happen even though
in CG these z,, iterates have typically not much greater error than those from three
two-term recurrences. From (5.1), see also (3.1), we saw the three-term recurrence (1.1)
for the residual gives with finite precision computation

ARn + Gn — Rn—l—lTn—I—l,na (71)

with the columns of (¢, bounded as in (3.5). For the three two-term recurrences with
rounding errors, (1.5) and (1.7) may be written, see (6.2), but using superscript ¢ for
distinction,

Rn—l—an—I—l,nDn — APn + GSDTL7 PnUn — Rn + [(7?

Combining these we see
AR, = —AKS + AP, U, = Ryy1 Lpi1,, DU, — AKS — GSD,U,. (7.2)

Comparing this with (7.1), and noting (5.1) and (2.9), shows the recursive residuals in
the two implementations satisfy very similar global equations, suggesting the recursive
residual computed by (1.1) is not intrinsically worse than that computed by (1.5)—(1.7).
Thus implementations based on (1.1) need not have significantly different numerical
behavior to mathematically identical implementations based on three two-term recur-
rences.

This does not say the recursive residuals will necessarily be good using an algorithm
based on (1.1), as the properties will also depend on how the coefficients «,,, 3, and v,
are computed. Thus to show the recursive residuals for an algorithm based on (1.1) are
as good as those of a mathematically equivalent algorithm based on (1.5)—(1.7) would
require a more complete analysis.

& Rutishauser’s variant of the recurrences

It is useful to note that the above numerical difficulties encountered using (1.1) and
(1.2) can also be avoided by using an elegant technique suggested by H. Rutishauser
[24]. His ideas apply not only to CG, which was considered in [24], but to any method
based on (1.1) and (1.2), so we derive his variant directly from these.
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The idea is to replace the recurrence for the residual by a recurrence for the resid-
ual increment, and to replace the recurrence for the iterate by a recurrence for the
increment in the iterate. Thus subtracting r,, from both sides of (1.1), and using (1.4),
gives forn =1,2,...

Arn = (Arn + Arn—lﬂn—l)/7n7

Tnil = To+ Ar,. (8.1)
A similar approach to (1.2) gives for n =1,2,...

Al’n = (—Tn + Axn—lﬂn—l)/7n7

Tpp1 = Tp+ A, (8.2)
Note for n = 0 the resulting equations are r1 — ro = Arg/y0, ¥1 — 2o = —ro/70, SO
setting

Ar_y:=Ax_1:=0, ro:= b— Axyg, (8.3)

allows the above recurrences to hold for n = 0,1,2,.... Thus Rutishauser’s variant

uses four two-term recurrences, but does not introduce p,. The relationship with p,

follows from (1.6), (2.11) and (8.2):
Al’n = PaWn = (_rn —I_ Axn—lﬂn—l)/’yny
Pn = Th— Az, 18,4, B =0. (8.4)

As before, it will simplify the analysis if we express the four recurrences (8.1)-(8.2)
in matrix form. With L,41, and D, U, as in (2.9), and

AR, = [Arg, ..., Ar,], AX, = [Axg, ..., Az,],
we see (with (8.3) that (8.1) corresponds to

AR, = —R,41L,11 0, AR, = —-AR,D,U,, (8.5)
while (8.2) corresponds to
AX, = —=X1Lntim, R, =AX,D,U,. (8.6)
We can draw similar conclusions to those in Section 2. In particular
AR, = —AR,(D,U,) " = —AAX,, (8.7)
(Rot1 + AXoy1) Ly, = —AR, — AAX, =0,

s0 Rop1 + AX, 11 = cel) and if rg = b— Azg then (2.8) holds.

9 A particular case: Conjugate Gradients

So far the results have held for any «,, 8, — 1, 7, satisfying v, # 0 and (1.4). The
choice of these determines the particular method. For our numerical computations in
Section 10 and our discussion here we restrict ourselves to symmetric positive definite
matrices A and to the method of conjugate gradients (CG). We will briefly indicate
the relevant theory, then develop our rounding error analysis of Sections 3-6 to handle
this case.
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9.1 Conjugate Gradients: Theory

Conjugate gradients [16] has many interesting properties, but it is probably easiest to
develop it here from the fact that it produces orthogonal rg,7q,... in (2.3), see the
Lanczos process [17]. Then from (2.3)

RTAR, = [diag(r?ri), 0] T 41,1

is symmetric, so with (2.2), rZr, v,y =7l v, 18,1 and a,, = rI Ar, /rlr,. By using
(1.4) we see that the coefficients can be computed via: f_; =0, and for n =0, 1,...

rgArn
i (9.1)
Yn = _Ofn_ﬂn—lv (92)
Tg i+l
B = (9.3)

which is what Rutishauser [24] used.
Let L, denote the matrix obtained by omitting the last row of L,41,. Then for
the three two-term recurrence methods we have from (2.11) and (2.13)

PTAP, = U diag(r!r) L, D,,

which is both symmetric and lower triangular, and so is diagonal. From Ul PT AP, =
diag(rlr;)L, D, we then see pl Ap, = —rlr,v,, so with the definitions in (2.11) and
(2.13), and with (9.3)

T T
ror r r
_ n'n _ "p41'ntl
W = g Pp = — o, (9.4)
pn Pn Tn 'n

which is what Hestenes and Stiefel [16] used.

9.2 Conjugate Gradients: Practice

We saw in (5.9) how the local rounding errors could be blown up in the two three-term
recurrence leading to a seriously inaccurate residual. We will show here that even so, in
CG the errorhas no worse a bound than the three two-term recurrence implementation.
This might be one reason this weakness of the two three-term variant of CG was not
so obvious, so it is useful to show it. However since we are now unlikely to use this
variant, we will only develop the ideas briefly.

early CG work.

Next we want to discuss the size of the multiplicative factors

k
Hﬁ

i1
. 2
Vi



where from now on we assume, without repeating it, that 1 < < k. For this discussion
we restrict ourselves to symmetric positive definite matrices A and to the method of
conjugate gradients (CG), where, in exact arithmetic,

{7y 70) _ (Tn41s Tng1) 9.5
<pnaApn>7 v <rn7rn> ‘ ( ‘ )

Both w,, and v, are positive. Without a specific knowledge about A and rg we cannot
say anything more about their values. More precisely, given any two sequences of pos-

Wy =

itive numbers, wo, ...,wny_1 and g, ...,¥n_1, there are a symmetric positive definite
matrix A and a vector rg such that the CG algorithm applied to A with the initial
residual o generates the given coefficients; see Theorem 18:3 in [16]. The 3, and ~,
then satisfy, see (2.11), (2.13) and (1.4)

1 [a7% n—1&Wn n— n—1Wn
’Yn:__<07 _:_1_¢ ! S_lv 6 1:¢ ! ZO? (96)
Wn, 771 Wn—1 771 Wn—1
where ©»_y := 0, w_;1 := 1, and where the equality is attained in the last two cases only

if x, = x, t.e., it we have reached the solution. We conclude that the multiplicative
factors have the form

: Bi—1 Wk i
]2 = T ¢i-1, (9.7)

= Vs Wi-1 =5

and therefore, they may exhibit, in general, an arbitrary behavior.

For a given matrix A and an initial residual ry it is possible to relate the size of
the multipliers to the condition number of A and the convergence of the CG process
measured by the norm of the residuals. Still assuming exact arithmetic we receive,
when rewriting the multipliers in the form

ﬁﬂj—l owr ]

= wier ||l

and using Theorem 5:5 from [16], the following bound:

2 k . 2
N[ O 1

< , 9.8
W) TP = sl (6:8)

where £(A) is the spectral condition number of the matrix A. Note that

el NAY2AYV2 (@ — )12 NIAIL e — allh
[lricall? = A2 AVZ (2 = 2 )P 7 omin(A) |lo = 2icall3

r(A)
due to the monotonicity in the reduction of the A-norm of the error. Consequently,

k

5]’—1 2
| | — < kg (A).
j=i Vi = ( )
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Moreover, the results of [8] and [12] imply then that in finite precision arithmetic
the following slightly relaxed bounds hold:

(o)L P By gy ey Al (9.9)
f(A) lriall® =55 %~ [Irizal[?
I1 fy—‘l < (149) k*(A), (9.10)

where 0 < ¢ < 1 (here, we make the usual assumption about the numerical nonsingu-
larity of the matrix A; for details see the references mentioned above).

In the nonsymmetric case no bound similar to (9.9) can be expected to hold.

One can make a natural comment: if the multipliers become very large, then the
two three-term recurrence solvers are likely to exhibit a dramatically worse residual
behavior than the three two-term ones. For the CG method, Hestenes and Stiefel
[16] show in their Theorem 18:3 how to construct examples having any given set of
multipliers. However, if the matrix A is reasonably well conditioned and if the CG
method converges almost monotonically, then the bounds (9.9) for the multipliers show
that no dramatic amplification of the local errors can be expected. On the other hand,
if, for some k and 7, the factor ||r4||*/||ri—1||? is large, then we may indeed expect a large
difference in the residuals of the two three-term versus the three two-term recurrences.
It is important to note that any significant local oscillations of the residual norms
are potentially dangerous for the CG implementation based on three-term recurrences
(1.1)—(1.2), even those for which ||rg|| is much smaller than ||ro||. As illustrated by the
numerical experiments in Section 10, local oscillations may cause an incurable damage
to the final residual and the process may never recover despite the smooth convergence
in the subsequent steps.

Here the analysis by Chris must be incorporated, possibly leading to the
necessary changes of the text above

10 Numerical experiments

The construction of our numerical experiments follows ideas from [16]. We consider
N =48 and aim at the following values of the coefficients (9.5) for the three two-term
recurrences of the CG method:

wozwlz...:w47:1,
77Z)0:10, ¢1:¢3:...:¢43:0.01, ¢2:...:¢44:100,
s = 1077,y = 1077, ahyr = 1077

Using the formulas for the elements of N x N matrix T, see (9.6)

1

T(1,1) = =(0)
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L i)

si—n) tai—y

(0 — 2
wlii—2) 7’

T(i,i) =
T(i,i—1) = T(i—1,i) =

we construct a symmetric positive definite N by N tridiagonal matrix 7. For any
unitary N by N matrix V, the CG method (1.5)—(1.7), (9.5) applied to the system
Az = b with A = VT'V* and ro = b — Azg = Ve then generates in steps 1 to N the
prescribed coeflicients w;, ¥;, y = 0,..., N — 1. Then for the generated residual norms

Irilla = 10Y2 for j=1,3,....43,
I7ills = 1072 for j =2.4,...,44,

and the residual norm is sharply decreasing in the steps 45 through 48. For an initial
residual different from Vey the behavior of the residual norms will be different, but we
still may expect some oscillations.

We have used the construction described above, choosing V' as the unitary matrix
resulting from the QR decomposition of a randomly generated N by N matrix; in MAT-
LAB notation [V, R] = ¢gr(randn(N, N)). Furthermore, we have chosen x = (1,...,1)7,
b= Az, zg = 0, rp = b. Experiments were performed on an SGI Indigo Workstation
using MATLAB 5.0, ¢ = 1.11 x 107'%, Three implementations of the CG method have
been compared: solid lines represent results of the Hestenes-Stiefel variant (HS) given
by (1.5)=(1.7) and (9.5), dashed lines those of the Rutishauser variant (R) described
in [24], see also [23], and dotted lines those of the three term CG implementation pre-
sented in [15], p. 143, and denoted here as (HY). Note this last is described in [15] as
coming from the same book as [24], but we were unable to find it there.

Norms of recursively computed residuals are compared in Figure 1. We can see the
oscillations followed by the fast convergence for n around 70.

True residual norms, computed as ||b — Ax,||2, are compared in Figure 2. We
see that the final accuracy of the (R) and (HS) variants are comparable. However,
residual norms of the (HY) variant stagnate at a significantly worse level than those of
the (HS) variant, as predicted by our theoretical analysis. But we should also mention
that surprisingly, despite the differences in the true residuals, all three variants give
comparable error norms.

In our experiments, the described behavior was typical. A detailed analysis of the
Rutishauser implementation, which is not of the form (1.1)—(1.2) or (1.5)—(1.7), and of
the behavior of the error in all variants requires further work.

11 Conclusions

We have proven that implementations of Krylov space methods based on two three-term
recurrences (1.1)—(1.2) potentially produce less accurate residuals than the correspond-
ing implementations based on three two-term recurrences of the form (1.5)—(1.7) and
that this difference may be significant.
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For the conjugate-gradient method for example, the difference between the recursive
and the true residuals in implementations using two three-term recurrences is affected
not only by the maximum size of the intermediate iterates x,, but also by oscillations
of the squared norms of the residuals, that is the quantities ||rg||*/||riz1]?, 1 <@ < k.

Note that many useful algorithms are effectively based on the first recurrence in
(1.1)—(1.2), but not the second, see for example SYMMLQ in [22]. We have shown
that this first recurrence by itself does not necessarily cause the kind of difficulty
with the residual described here, and indeed SYMMLQ does not exhibit this difficulty.
The approach that has been used here for analyzing the rounding error behavior of
recurrence methods can presumably also be applied to methods such as these. Other
important algorithms like the three-term and the coupled two-term QMR methods
[5, 6] are not implemented in the form (1.1)—(1.2) and (1.5)—(1.7). The propagation
of elementary roundoff in these algorithms can presumably also be analyzed in a way
analogous to the approach described in this paper.
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