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Abstract

In the theory of sublog computations on Turing machines a new situation has
arised after de	ning of so called demon
machines ���� whose tape bounds are given
gratis without any construction� This alows Ge�ert �� to prove separation result
of the form SPACE�s�n�� � SPACE�s��n�� �� � under the separation condition
limn�� s�n��s��n� ��� The aim of this paper is to 	nd the 	nest possible separation
condition�

To capture the in�uence of the tape alphabet size and of the capacity of the 	

nite control upon the amount of the tape we use a modi	ed space measure where
the �new� space complexity of a computation is given by the �old� complexity of
its simulation on an arbitrarily chosen but 	xed universal machine �U�� We separate
SPACEU�s�n���SPACEU�s��n�� �� � under the condition limn�� s�n��s��n��� �
K where K is a constant� In some special cases the enlarging of the bound in question
by adding one strengthens the computational power of machines �SPACEU�s�n���� �
SPACEU�s�n����

The results hold for binary and also unary languages� and also for bounds over
log n� and for a certain number of types of machines �deterministic� nondeterministic�
alternating � � ���
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� Introduction

One of the basic tasks of the theory of computational complexity is separating of com

plexity classes� For a given computational device and for a given complexity measure
which controls a computational resource in question 
 it it necessary to 	nd how small
enlarging of the complexity bound stregthens the computational power� In ���s this
question was solved for a classical computational device 
Turing machines 
 and for
classical time and space complexity measures � e�g� S� Cook� Fischer� Meyer�Seiferas�
Sudborough ����������� and others �� Whenever a new computational device �e�g�
RAM� or a new complexity measure �e�g� a number of questions to an oracle� are
de	ned it is quite natural and necessary to solve the question about the separation of
complexity classes�

At the beginning of ���s such a situation arised in the theory of computations on
Turing machines with sublogarithmic tape� This theory was intensively developped
for some years� e�g� ���������������������� In the context of this theory there was a
disagreable technical di�culty� namely the impossibility to construct the space bound
deeply sub log n� This di�culty was solved by Ranjan� Chang and Hartmanis ��� in
a radical manner�They introduced so
called demon machines 
 a new type of Turing
machines with sublogaritmic tape where the space bound is given in advance and gratis�
The demon
machines are treated also in ���� By introducing of this new computational
device the problem of the separation of complexity classes arises in this case in the
combination with the classical space complexity� Ge�ert solves this problem in �� and
among other he proves some separation results of the classical form � If the separation
condition lims��n��s��n� �� holds then SPACE�s��n�� � SPACE�s��n���

This paper presents also some separation results for demon
machines but with a
separation condition which is substantially 	ner than the usual condition used by Gef

fert� In this sense the presented results correspond to the basic task of the complexity
theory mentioned above in a closer way�

The presented results have two basic sources� One of them is a detailed analysis
of the problems connected with the space measure which ends by a slightly changed
de	nition �of the space measure� which seems to be very practical� i�e� it is used in
the world of the practical computation� The second source is a succint� elegant and
e�ective method of diagonalization which is appropriate in a large set of cases�

First let us discuss the usual space measure when the number of cells of the tape used
during the computation of the Turing machine in question is the unique criterium of the
needed space� In this case for each space bound s and for each k � N � SPACE�s�n�� �
SPACE�k�s�n�� holds since we are able to simulate each concrete �o�
line� machine
by a machine which uses a larger alphabet and for each word of length n it uses only
s�n��k cells of its worktape� It is clear that for the space measure de	ned in such a
way it is impossible to achieve a 	ner separation condition than lims�n��s��n� � ��
If we are not content with such a fat separation condition an idea arises to capture the
size of the worktape alphabet�

One possibility is to count logm for each symbol� wherem is the size of the worktape
alphabet �see also van Emde Boas ���� The second possibility is simply to 	x the
worktape alphabet� Here we have also a physical motivation � in the real world the
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ability to distinguish di�erent objects �symbols� within a unit of space �a cell� is limited�
hence we may use at most a certain constant number of symbols� In both cases for
each k � N � SPACE�s�n�� � SPACE�s�n� � k� holds since it is possible to simulate
each segment of the tape of constant length within the 	nite control� Hence the 	nest
possible separation condition is limn��s�n�� s��n� ���

To get a separation condition which is 	ner than the latest one it is necessary to
neutralize also the possibilities given by the size of the 	nite control� In the present
paper we do it in such a manner that �new� space complexity of a computation of a
Turing machine is given by the �old� space complexity of its simulation on an arbitrar

ily choosen universal machine U � This de	nition gives a surprisingly 	ne separation
condition s�n��s��n��� � k� which is su�cient for SPACEU�s��SPACEU�s�� �� ��
The second surprise is the fact that this measure is widely used in the world of practical
computations since by the amount of the memory needed by a computation we under

stand the amount of the memory which is needed when the computation is performed
on a computer� which is � in fact� a universal machine�

The diagonalization method is given by a theorem which is stated only by a simple
way without any notions concerning computability or complexity� It was applied in
the case of the time complexity ���� and in a previous very complicated form it was
used for space complexity �as we shall mention� and in the case of computations with
oracles when the complexity is given by the number of queries or by their amounts etc�
����

Due to the generality of our diagonalization method it is not substantial that we
work with sublogaritmic tape� Our proofs may be read also as proofs for the super

logaritmic case� hence by the way we prove also already known ��� results but by a
simpler manner �in comparison with the original proofs�� We work with deterministic�
nondeterministic and alternating demon machines with constant or unlimited number
of alternations possibly equipped by an auxiliary pushdown store or by an oracle� Our
proofs hold simultaneously for sixteen types of computational devices�

Brie�y� Before introducing of the demon machines the separation theorem were
proven only for log�n� and larger space bounds from the reason of nonconstructability
of bounds sub log�n�� In this context �overlog� a very sharp separation re	ning clasical
results was proven by using the space measure with a 	xed universal machine ���� After
introducing demon
machines �where the problem of constructibility is neutralized� we
prove similar very 	ne results also deeply sub log n� Since our proofs are very general�
it is possible to read them �by the way� also as the proofs for the case over log n � but
in comparison with ��� they are substantially shorter and more elegant�

� The basic computational model

As a standard model �acceptor� of computation we shall consider Turing machines
having a two
way read
only input tape and a separate semi
in	nite two
way read
write
worktape�

De�nition ��� ����� For any function s� a demon s�tape bounded machine begins its
computation with a special tape limit marker placed exactly s�n� positions away from
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the initial position of the worktape� for every input of length n� The tape marker can
be detected �and cannot be moved�� The machines rejects if it ever tries to use more
than s�n� tape�

We shall use deterministic� nondeterministic and alternating demon machines with a
constant number of alternations or with an unlimited number of alternations�

Alternating demon s
tape bounded machines may have their computation trees
in	nite since for small functions s�n� below log n the demon machines have di�culties
to avoid cycles in its computations� For the evaluation of an in	nite computation
tree we e�ectively construct its reduced 	nite version� We cut each its branch at the
moment when for the 	rst time a con	guration appears repeatedly� The leaves of this
kind are considered as rejecting con	gurations� Then we evaluate the tree in the usual
way�

We shall use all four types �above� of demon machines also equipped by an oracle�
In this case the demon machine in question has an additional tape on which only a
special symbol S may be written� The 	nite control includes three states q� Y ES� NO�
If it enters the state q in the next step it must enter Y ES or NO in dependance on the
fact whether the number of occurences of S on the special tape belongs to the oracle
or not� After this action the special tape becomes empty�

Moreover we shall use demon machines with an auxiliary pushdown store which is
organized as usually� Hence we shall work with sixteen types of computational devices�

For each type of our computational devices we 	x a universal machine U � On the
input tape U reads only the symbols �� � and the endmarkers� On the worktape U
works with at least �� �� b and the endmarkers� The programs of demon machines are
well
structured strings of ��s and ��s� U starts its computation in the situation when
the program of the simulated machine is placed in the leftmost part of the worktape
of U � U has the property that for each demon s�n�
tape bounded machineM using on
the worktape at most the same number of the symbols as U does� U simulates M on
the tape of the length s�n� � jpM j where pM is the program of M � Moreover for each
m greater than the number of worktape symbols of U there is a constant km such that
the U 
simulation of the machines which use m worktape symbols increases the tape
complexity only by the multiplicative constant km�

For our sixteen types of computational devices we de	ne complexity classes as
follows�

Let p be a program of a machine and s be a function� By Ls�p� we mean the language
accepted by the machine Mp within the tape bound s� Also we de	ne SPACE�s� �df

fLs�p�jp is a program of a machineg and SPACE�s�m� �df fLs�p�jp is a program
of a machine with m worktape symbolsg�

By LU
s �p� we mean the language of words x which are accepted by U when U starts

with the program p in the leftmost part of its worktape and with its worktape end

marker on the position s�jxj�� Further we de	ne SPACEU�s� �df fLU

s �p�jp is a program
of a machineg and similarly SPACEU�s�m� for machines with m worktape symbols�

Let s� s� be functions� s��n� � s�n�� We say that s� is s � constructible� resp�
�s�m� � constructible� i� there is a deterministic s�n�
tape bounded demon
machine
M � resp� with m worktape symbols� such that on the inputs of length n with blank
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worktape cells and with endmarker in the s�n�
th cell M ends with � in the s��n�
th
position �all other positions with except of the s�n�
th one are blank��

� The diagonalization theorem

The principle of our diagonalization can be formulated without any notions concerning
computability or complexity�

For languages over a 	xed alphabet we say that L� is equivalent to L� �L� � L��
i� L�� L� di�er only on a 	nite number of words� For a class C of languages� by E �C�
we mean the class fL�j��L � C��L� � L�g�

Theorem ��� �the d�theorem� �	
�� Let L be a language and let C be a class of lan�
guages indexed by a set S� C � fLp � p � Sg � Let R be a language and let F be a
mapping� F � R 	 S� such that �
p � S����r � R��F �r� � p�� Let z be a mapping�
z � R 	 N � such that for each r � R� z�r� satis�es the following two conditions �
�a� r�z�r� � L � r �� LF �r�� �b� �
j� � � j � z�r���r�j � L � r�j�� � LF �r��� Then
L �� E�C��

Comment� In our application� C will be the complexity class to be diagonalized
over� and S will be the set of programs� Our task will be to construct a diagonalizer
M which will accept a language L� L �� E �C�� The features of M are well described
by the conditions �a�� �b�� On the input r�j � M will derive the program F �r� and
then M will try to 	nd whether the input is fully padded �j � z�r��� if so� then M
will compute according to the condition �a�� For inputs which are not fully padded�
M will compute according to the condition �b�� More details are found in the proof of
the theorems below�
Proof� By contradiction� Suppose L � E�C�� Hence L � Lp for some p � S� Moreover�
there is an r � R such that F �r� � p and L�LF �r� ��Lp� di�er only on words shorter
than r� in particular for each j � N� r�j � LF �r� i� r�j � L� Hence by condition �b�
r � L� r�z�r� � L� and then by �a� r�z�r� � L� r �� L� A contradiction� �

� Separation of classes of binary languages

We prove some theorems for �� types of computational devices simultaneously� We
work with demon machines which are deterministic or nondeterministic or alternating
with a 	xed number of alternations or alternating with unlimited number of alterna

tions� and which may have an auxiliary pushdown store or an oracle� The following
theorems and proofs are correct if we replace the word �machine� by the name of one of
�� devices with which we work� for example �nondeterministic demon machines with an
auxiliary pushdown store� or �alternating demon machines with unlimited number of
alternations and with an oracle�� The next two theorems are formulated in a classical
manner� it means with a classical separation condition�
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Theorem ��� Let s� s� be functions� limn��s�n��s��n � �� � �� Let s��n � �� be
s�n��constructible and recursive� Then there is a language L  ������ such that
L � SPACE�s�� E SPACE�s���

Now we try to get a 	ner separation condition by taking into account also the
number of worktape symbols�

Theorem ��� Let m � N � m � �� Let s� s� be functions� limn��s�n� � s��n� �� �
�� Let s��n � �� be �s�n��m��constructible and recursive� Then there is a language
L  ������ such that L � SPACE�s�m�� E SPACE�s��m��

The proofs of both theorems are very similar� so we give them in the following
common text�
Proof�

We shall apply our d
theorem� Let S be a recursive set of programs of machines in
question� For each p � S we de	ne Lp � Ls��p� and further C � SPACE�s��� resp�
C � SPACE�s��m�� We see that C � fLpjp � Sg�

Our diagonalizer M starts its computation with the endmarker in the s�n�
th cell�
Hence we have L�M� � SPACE�s� � resp� L�M� � SPACE�s�m� �

At 	rst M checks whether its input is of the form �k�l�j � Then M puts � into
s��n� ��
th cell of its worktape� The other cells are blank�

In the second part of its computationM will operate within the right s�n��s��n���
cells of its worktape� M tries to construct bin�k� �the binary code of k�� If p � bin�k� �
S then M tries to decide whether �k�l � Lp� If s�k � l � j� � s��k � l � j � �� cells
su�ce for the decision then M accepts i� �k�l �� Lp� �We know that such a j exists
since in both cases limn��s�n�� s��n� �� ����

Otherwise in the last part of its computation M tries to simulate Mp on the input
�k�l�j�� within s��k� l� j��� cells of the worktape of Mp� M uses at most kp�s��k�
l � j � �� cells only �where kp is an appropriate constant depending on the number of
worktape symbols of Mp��

To prove that L�M� �� E �C� we de	ne R�F� z needed in the d
theorem as follows�
R is the set of words of the form �k�l where bin�k� � S and for each j � N the
following holds� jbin�k�j � s�k � l � j�� s��k � l � j � �� � s�k � l�� s��k � l� �� �
s�k � l � j� � s��k � l � j � �� and s�k � l � j� cells are su�cient for simulation of
s��k � l � j � �� cells of Mbin�k� on the input �k�l�j��� We see that for each k with
bin�k� � S there is in	nitely many l such that �k�l � R�

For r � �k�l � R we de	ne F �r� � bin�k� � We see that for each p � S there are
in	nitely many r � R such that F �r� � p�

Further for r � �k�l � R we de	ne z�r� as the minimum j such that the computation
of M on �k�l�j ends by the decision whether �k�l � Lbin�k� or not�

For each r � R we have r�z�r� � L�M� i� r �� LF �r� �the condition �a� of the
d
theorem is satis	ed��

According to the description of the last part of the computation of M � for each
r � R and for each j � z�r� we have r�j � L�M� i� r�j�� � LF �r� �the condition �b�
of the d
theorem is satis	ed��

Hence L�M� �� E �C��
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Now we continue our program of searching for the 	nest separation condition� We
will use our modi	cation of the classical space measure which takes into account also
the amount of the 	nite control�

Theorem ��� Let m � N � m � �� let U �the universal machine� has m worktape
symbols�

Let s be a function� limn��s�n� ��� Let s� be a recursive function� limn��s��n� �
� such that s��n � �� is �s�n��m��constructible�

Then there is a language L  ������ such that
a� L � SPACE�s�m�� E SPACEU�s��m��
b� there is a constant K such that
L � SPACEU�s�K�m�� E SPACEU�s��m��

Immediately we have�

Corollary ��� Let m � N � m � �� Let s be a recursive function� limn�� s�n� �
�� Then there is a constant K � N and a language L  ������ such that L �
SPACEU�s�n� �K�m�� E SPACEU�s�n� ���m��

The following theorem shows that our modi	ed measure captures also the number
of worktape symbols �m� and that therefore for getting such a tight separation as above
it is not necessary to 	x m�

Theorem ��� Let s be a function� limn��s�n� � �� Let s� be a recursive function�
limn��s��n� �� such that s��n� �� is �s�n��m��constructible for an m � N � Let U
has m symbols�

Then there is a language L  ������ such that
a� L � SPACE�s�m�� E SPACEU�s���
b� there is a constant K such that
L � SPACEU�s�K�m�� E SPACEU�s���

Corollary ��� Let s be a recursive function� limn�� s�n� � �� Then there is a
constant K � N and a language L  ������ such that L � SPACEU�s�n� �K�� E
SPACEU�s�n� ����

The common proof of both theorems is done according to a similar scheme as in
the previous case�
Proof�

We shall apply our d
theorem� Let S be a recursive set of programs of machines�
resp� of programs of machines with m worktape symbols� in question� For each p � S
we de	ne Lp � LU

s�
�p� and further C � SPACEU�s��� resp� C � SPACEU�s��m��

We see that C � fLpjp � Sg�
Our diagonalizer M starts its computation with the endmarker in the s�n�
th cell�

Hence we have L�M� � SPACE�s�m� �
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At 	rst M checks whether its input is of the form �k�l�j � Then M puts � into
s��n� ��
th cell of its worktape� The other cells are blank�

In the second part of its computationM will operate within the 	rst s��n��� cells
of its worktape� M tries to construct bin�k�� If p � bin�k� � S then M tries to decide
whether �k�l � Lp� If s��k � l � j � �� cells su�ce for the decision then M accepts i�
�k�l �� Lp� �We know that such a j exists since in both cases limn��s��n� ����

Otherwise in the last part of its computation M tries to compute as U does and to
simulateMp on the input �k�l�j�� within s��k � l� j � �� cells of the worktape of M �

To prove that L�M� �� E �C� we de	ne R�F� z needed in the d
theorem as follows�
R is the set of words of the form �k�l where bin�k� � S and for each j � N the following
holds� jbin�k�j � s��k � l� � s��k � l � j�� We see that for each k with bin�k� � S
there is in	nitely many l such that �k�l � R�

For r � �k�l � R we de	ne F �r� � bin�k� � We see that for each p � S there are
in	nitely many r � R such that F �r� � p�

Further for r � �k�l � R we de	ne z�r� as the minimum j such that the computation
of M on �k�l�j ends by the decision whether �k�l � Lbin�k��

For each r � R we have r�z�r� � L�M� i� r �� LF �r� �the condition �a� of the
d
theorem is satis	ed��

According to the description of the last part of the computation of M � for each
r � R and for each j � z�r� we have r�j � L�M� i� r�j�� � LF �r� �the condition �b�
of the d
theorem is satis	ed��

Hence L�M� �� E �C��
The parts b� of the Theorems are trivial consequences of parts a��
�

In the next section we shall prove similar results for languages over one
letter al

phabet�

� Separation of classes of unary languages

As in the previous section we work with �� types of computational devices�

Theorem ��� Let s� s� be functions� limn��s�n��s��n � �� � �� Let s� be non�
decreasing� unbounded and recursive� Let s��n � �� be �s�n��m��constructible for an
m � N � m � ��let U have m symbols�

Then there is a language L  �� such that
a� L � SPACE�s�m�� E SPACE�s���
b� there is a K such that L � SPACEU�s�K�m�� E SPACE�s���

Also in the case of unary languages for machines with any 	xed worktape alphabet
we get a 	ner separation condition�

Theorem ��� Let m � N � m � �� let U have m symbols� Let s� s� be functions�
limn��s�n� � s��n � �� � �� Let s� be nondecreasing� unbounded and recursive� let
s��n� �� be �s�n��m��constructible�
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Then there is a language L such that
a� L � SPACE�s�m�� E SPACE�s��m�
b� there is a K � N such that L � SPACEU�s�K�m�� E SPACE�s��m��

Proof� We shall apply our d
theorem�

Let S be a recursive set of programs of the machines in question� For p � S we
de	ne Lp �df Ls��p�� We put C �df SPACE�s��� resp� C �df SPACE�s��m�� We
see that C � fLpjp � Sg�

Our diagonalizerM will compute as follows� M checks whether the input is an unary
string and thenM computes within s�n� worktape cells� hence L�M� � SPACE�s�m��
On its worktape M constructs s��n��� 
 on the position s��n��� M gives the symbol
��

Within the 	rst s��n����� cells of its worktape� M will perform an initial part of
a recursive process P which we shall describe� �P will give us the possibility to de	ne
R�F and z which we need for the application of the d
theorem��

P contains a generator of the programs from S such that if fpig is the generated
sequence then �
p � S����i��pi � p��

P starts with the generation of p�� At this moment some amount a� of the worktape
has been used� Then P constructs n� �df minfnjs��n� ��� � � a�g� Then P decides
whether �n� � Lp� or not�

If P has generated pi� constructed �ni and decided whether �ni � Lpi then �on
the cells which P has not used till now� P generates pi��� P constructs ni�� �df

minfnjs��n � �� � � cells suce for P till the generation of pi��g and P decides
whether �ni�� � Lpi�� or not�

When P is stopped because of the lack of the space on the worktape
 P has used
all s��n� ��� � cells 
 then by the result of P we mean the last generated pi and also
the decision whether �ni � Lpi if this decision is achieved�

If this decision is achieved then M accepts i� �ni �� Lpi�
If the decision in question is not achieved then in the last part of its computation

M tries to reorganize its worktape in such a manner that in the leftmost cells pi is
written followed by s��n� �� blank cells� Then M tries to simulate �as U� Mpi on the
input �n�� and on s��n� �� cells of the worktape of Mpi�

Let fpikg be a subsequence of fpig such that for all k whenever the result of P is
pik �without the decision� then in the last part of its computation M has enough of
tape for the simulation� Due to the condition s�n��s��n � �� resp� s�n� � s��n � ��
tends to in�nity each p occurs in	nitely many times not only in fpig but also in fpikg�

Now � we de	ne rk �df �nik � R �df frkjk � Ng� F �rk� �df pik � Further z�rk� is the
	rst m such that s��jrkj �m� � � cells su�ces for P to generate pik � to construct rk
and to decide whether rk � Lpik

�

We have rk�z�rk� � L�M�� rk �� Lpi
k
� LF �rk� 
 the condition �a� of the d
theorem

is satis	ed�
We have proven rk�j � L�M� � rk�j�� � Lpi

k
� LF �rk� �the condition �b� of the

d
theorem is satis	ed��
We have L�M� �� E �C��

�



Since the universal machine U uses only m symbols we are able to construct our
diagonalizerM in such a way thatM uses onlym symbols� too� Hence the U 
simulation
of the segment of length s�n� of the worktape of M requires s�n� � jpM j cells only�
Therefore L�M� � SPACEU�s�K�m� for some K � N � �

The next two theorems demonstrate that our modi	ed space measure which takes
into account also the capacity of the 	nite control gives the possibility of a very 	ne
separation condition also in the case of unary languages� The 	rst of them is formu

lated for machines with any 	xed worktape alphabet� the second one shows that this
restriction on the size of the worktape alphabet is not necessary�

Theorem ��� Let m � N � m � �� let U have m worktape symbols� Let s be a
function� let s� be a recursive� nondecreasing and unbounded function and let s��n���
be �s�n��m��constructible� Then for each m � � there is a language L  �� such that
a� L � SPACE�s�m�� E SPACEU�s��m��
b� there is a constant K such that
L � SPACEU�s�K�m�� E SPACEU�s��m� �

Theorem ��� Let m � N � m � �� let U have m worktape symbols� Let s be a
function� let s� be a recursive� nondecreasing and unbounded function and let s��n���
be �s�n��m��constructible� Then there is a language L  �� such that
a� L � SPACE�s�m�� E SPACEU�s���
b� there is a constant K such that
L � SPACEU�s�K�m�� E SPACEU�s�� �

The following corollary gives a very tight separation�

Corollary ��� Let s be a recursive� nondecreasing and unbounded function� Then
there is a constant K � N and a language L  �� such that L � SPACEU�s�n� �
K�� E SPACEU�s�n� ���� for U with an appropriate number of worktape symbols�

First we prove our corollary�
Proof� We see that if we put s��n� � s�n � �� the assumptions of the theorem
concerning s� are satis	ed� �

Now we prove our theorems�
Proof� We shall apply the d
theorem�

Let S be a recursive set of programs of the machines in question� For p � S we
de	ne Lp �df Ls��p�� We put C �df SPACE�s��m�� resp� C �df SPACE�s��� We
see that C � fLpjp � Sg�

Now the proof continues by seven paragraphs of the description of our diagonalizer
M from the previous case�

If the decision in question is not achieved then in the last part of its computation
M computes as the universal machine U on the input �n�� with the program pi on the
leftmost part of the worktape of length s��n� �� and M uses only s��n� �� worktape
cells�

�



Now � we de	ne ri �df �ni � R �df friji � Ng� F �ri� �df pi� Further z�ri� is the 	rst
m such that s��jrij �m�� � cells su�ces for P to generate pi� to construct ri and to
decide whether ri � Lpi�

We have ri�z�ri� � L�M� � ri �� Lpi � LF �ri� 
 the condition �a� of the d
theorem
is satis	ed�

We have proven ri�j � L�M� � ri�j�� � Lpi � LF �ri� �the condition �b� of the
d
theorem is satis	ed��

We have L�M� �� E �C��
Since the universal machine U uses only m symbols we are able to construct our

diagonalizerM in such a way thatM uses onlym symbols� too� Hence the U 
simulation
of the segment of length s�n� of the worktape of M requires s�n� � jpM j cells only�
Therefore L�M� � SPACEU�s � K�m� resp� L�M� � SPACEU�s � K� for some
K � N � �

� Conclusions and remarks

First let us demonstrate that our modi	ed space complexity measure induces a struc

ture within the classical complexity classes SPACE�s�m��

Lemma ��� Let s be a function � K be an integer and m be a natural number� m � ��
Then
SPACEU�s�K � ��m� � SPACEU�s�K�m��

Proof� Let L � SPACEU�s�K�m�� Then for a program p L � LU
s�K�p�� There is a

program p� of the samemachine such that jp�j � jpj��� Hence L � SPACEU�s�K����
�

Proposition ��� Let s be a function� let m be a natural number� m � � and let U
have m symbols� Then
SPACE�s�m� �

S
K�Z SPACE

U�s�K�m�
where Z is the set of integers�

Proof� Let L � SPACE�s�m�� Then L � Ls�p� for a program p and we have L �
LU
s�jpj�p� � SPACEU�s� jpj�m�� On the other hand if L �

S
K�N SPACEU�s�K�m�

then L � LU
s�K�p� for an integer K and for a program p� Therefore L � Ls�K�jpj�p�

and there is a program p� such that L � Ls�p�� � SPACE�s�m�� �

We see that the class SPACE�s�m� is the union of the chain of the classes ��� 
SPACEU�s� ��m�  SPACEU�s�m�  SPACE�s� ��m�  ��� which is in	nite in
both directions�

Let us try to 	nd the 	nest di�erence between two complexity bounds which causes
the separation of the respective complexity classes�

We are able to achieve such a result only for the case of linear complexity bounds�
We shall apply our separation theorems�

��



Proposition ��� Let s� be a linear function� Then there is a K such that
SPACEU�s� �K�m�� E SPACEU�s��m� �� ��

This follows from Corollary ���� We have the following theorem�

Theorem ��� Let m � N � m � �� For each linear s there is a constant ls such that
SPACEU�s� ls � ��m� � SPACEU�s� ls�m��

We see that the increasing of the bound by � strengthens the complexity power�
A similar result can be proven also for the classes SPACEU�s��
Remark� For bounds deeply sub log n it does not seem to be possible to convert

our separation results into the hierarchy results of the form SPACEU�s�n� � k� �
SPACEU�s�n� ��� since there are such recursive functions s that the sets fnjs�n� ��
s�n� ��g are of very high complexities� This is a negative consequence of the elegance
of the de	nition of the demon machines� and of their non
constructiveness� There is
an open question whether there is a reasonable class of small recursive functions such
that the result conversion mentioned above is possible�

Remark� For the case over log n it is possible to prove similar results for usual
�non demon
� machines with bounds which are constructible�
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