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Abstract

A new scheme of neurocontrol based on neurophysiological �ndings in the �eld of visual	
motor coordinations is proposed� It imitates basic control and learning functions in
living creatures� The proposed method uses the principle of di
erential control and
local linearization of the nonlinear working space� All control blocks are realized by
layered neural networks� Convergence of learning is investigated both analytically
and by computer simulations� The developed mathematical model corresponds to
neurophysiological concepts of error learning in biological systems�
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� Introduction

Motor learning in biological systems is performed by modifying the �ows of signals
transmitted between neural structures� mainly the motor areas of the cerebral cortex�
the cerebellum� and the basal ganglia� According to modern control theory� learning
requires not only an adaptable system but also the possibility of changing the infor	
mation processing rules 
����
The cerebral level� which is the �rst to operate� is able to compensate for any

weakness in spinal mechanisms by producing responses which are better adapted to
disturbances caused by the environment� When the task is performed repeatedly� the
cerebellum is able to deal with some of the repetitive aspects so that the motor response
becomes more �nely attuned and automatized� The cerebellum can thus free the
cerebral cortex during sensori	motor or even mental tasks 
���� The basal ganglia nuclei
are more involved in postural stabilization during elementarymovements and in optimal
de	stabilization between successive elementary movements� Both the cerebellum and
basal ganglia are involved in motor control� motor planning and cognitive aspects of
action� helping the cerebral cortex�
Arti�cial neural networks are widely used for control of various complex non	linear

systems 
��� They promise a good solution for most of the control problems� Learning
ability is one of their main advantages� and special learning algorithms provide rather
good convergence� They do not require precise initial mathematical models that can
be developed during the adaptation process� Generalization properties may ensure
solving such situations in the operation phase that have not been trained in the learning
phase� Physical implementations of neural networks o
er the advantage of a massive
parallelism� that provides a high speed of information processing under the possible
low speed function of single processing elements in the operation phase� It may also
provide a signi�cant fault tolerance since the damage of several processing elements
may not signi�cantly impair the performance of the whole neural network�
The problem of neurocontrol has been addressed for several years� but still new

architectures are being investigated 
���� 
���� Neurophysiological �ndings� and the
knowledge of functioning of biological neural structures� can aid in the design of new
control schemes with improved characterictics� In the case of biomechanical systems�
the problem can be solved more e�ciently when using control by velocity instead of
control by position� This principle has been generalized for control of arbitrary systems�
and implemented in the di
erential neurocontroller proposed in 
���� 
���
The paper summerizes recent neurophysiological �ndings� describes the proposed

scheme of di
erential neurocontrol� analyzes the learning characteristics and presents
the results of computer simulations� Its aim is to investigate the correspondence be	
tween mathematical models of control and neurobiological concepts stated by neuro	
scientists in visual	motor control�
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� Neurophysiological Basis

Living creatures have solved the problem of movement control rather successfully� They
are able to learn complicated movements and to coordinate their complex muscle sys	
tems� This ability is supported by the complex structure of the brain that performs
individual control functions in its specialized areas� Utilization of neurophysiological
knowledge in the design of controllers supposes a detailed analysis of functioning of
visual 	 motor systems�
Many neurophysiological studies have been devoted to analysing the relationships

between neuronal activity and armmovement kinematics� These studies have been per	
formed in the associative� premotor and primary motor areas of the cerebral cortex 
���

��� 
���� 
��� and in the cerebellum 
��� The authors� using two	 and three	dimensional
reaching tasks� have shown that when a monkey makes arm movements in various di	
rection towards visual targets in space� the cell activities vary in an orderly fashion
with the direction of the movement� The description of the broad directional tuning of
cortical cells around their preferred direction �the direction of movement in which they
discharge most during the reaction time period� led to directional information being
treated like a population code� as opposed to a single cell code� This has provided
a useful tool for interpreting directional relations� not only in various regions of the
distributed motor system but also in associative areas dealing with visual information
processing�
The importance of directional information in determining neuronal activity raises

related questions concerning the coordinate system used by the frontal cortex to rep	
resent the direction of arm movements� In fact� muscle commands and sensory infor	
mation are not mapped in the same reference frame and need to be correlated with
the information signalling positions of arm segments relative to the body� This infor	
mation comes from several sources� motor� somesthetic and proprioceptive� When the
initial arm position changes� the body	centered information about the target position
is not invariant in an arm	centered coordinate system� and has to be combined with
information about the initial position of the arm in order to compute the appropriate
motor commands�
All the results obtained upon recording motor cortex cells are consistent with the

following statements�

�� Motor cortical cells command muscle synergies� which can be represented by a
vector� the �cell�s preferred direction�� corresponding to the overall e
ect of the
motor command on the arm and hand positions�

�� The orientation of this synergy vector is invariant with respect to an arm centered
reference system� Consequently� it does not remain constant with respect to an
extrapersonal coordinate system� but rotates with the initial position of the arm
in space�

�� Cortical commands sent to the shoulder and elbow joint muscles will change the
arm position in a constant way within this arm	centered coordinate system�
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�� The computation of the appropriate motor command� taking the cell�s preferred
directions into account is performed in the early phase of the reaction time� before
the onset of the movement� This therefore results from a combination performed
by cortical areas before the movement is initiated� without requiring a feedback
loop when the movement is actually performed�

Neurons in the visual system are selectively sensitive to motion in speci�c directions
called the preference directions� It can be supposed that the three	dimensional exter	
nal coordinate system is transformed by some neural network into an n	dimensional
internal system of preference directions� In general� the visual system is more sensitive
to motion velocity than to object location�
By contrast to the cerebral cortex� the cerebellar cortex is a mosaic structure�

the whole surface of which consists of thousands of microzones� working idependently
without any global attentional supervisor� Cerebellar microzones are the basic units
of the cortex of the cerebellum� Together with their output nuclear projecting zones�
they form the so	called �cortio	nuclear microcomplex� �
����� Climbing inputs from
speci�c parts of the inferior olive longitudinally organize the cerebellar cortex �
�����
A second input is provided by the mossy �ber system� which is characterized by its
considerable divergence onto wide regions on the cerebellar cortex� The set of mossy
�ber inputs constitutes a general context about the present sensorimotor actions and
intents for future movements� that is a large set of signals providing information about
the states of activity in various nervous structure� from command structures to more
sensory structures�
Each microzone can be viewed as a three layer neural network 
��� 
���� an input

layer formed by cells which originate from the mossy �bers� an intermediate layer of
granular cells� and an output layer of Purkinje cells that project to cerebellar output
nuclei� Two pathways� one cortical� the other via subcortcal nuclei transmit this infor	
mation to the spinal cord� Since plastic synapses only exist between the second and
third layers� it is similar to the original perceptron described by Rosenblatt 
���� During
the adaptive phase� the output layer utilizes an error signal conveyed by the climbing
�bers� originating from a teacher� the inferior olive nucleus� Each output Purkinje cell
receives one and only one climbing �ber� The long term e
ect of this error signal is a
decrease in the synaptic e�ciency between parallel �bers� axons of granular cells� and
the output Purkinje cells� whenever the parallel �ber activity is correlated with the
error signal 
��� 
��� 
���� 
����
An important feature of the cerebellar design is the great number ������ of granular

cells in the intermediate layer� which is of the same order of magnitude as the total
number of cells in the nervous system� The role of this architecture is to provide
an extended set of new combinations of inputs which are needed for bypassing the
mathematical limitations of the classical two	layer perceptron for learning any arbitrary
input�output function 
���� The functional role of each microzone is then de�ned by
the climbing �ber error signals which originate from a restricted part of the inferior
olive�
A baby typically learns to coordinate its muscles �rst by generating small random

motor signals and by observing the results� Then� the baby learns more complicated
movements in order to reach the selected target while minimizing the visually controlled
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errors 
���� Some individuals learn by fast and chaotic trials with serious errors� it looks
like the feedback� performed by cortical neurons� is weak and the control is rather
unsmooth� Others learn by slow anxious movements� when the feedback is strong and
keeps current errors low 
����
These neurophysiological �ndings enable us to design a simple model of the visual	

motor system� especially for arm movement control� Moveing the working point �usu	
ally the hand� from the initial position to the target point in the external working
space� The whole system performs successive transformations of input visual signals
into output motor signals�
The procedure starts with the speci�cation of the target� The current state of

the system and the initial position of the working point are supposed to be known�
Both initial and target points in the external space are sensed by the visual system
and transformed into the internal visual space of the brain� where the reference trajec	
tory is generated� The reference trajectory is permanently compared with the current
trajectory of the working point and the discrepancy is used for corrections and modi	
�cations of succeeding transformations� Since neurons of the visual	motor system are
selectively sensitive to the movement direction� we suppose that the brain processes
the velocity rather than the position�
The reference trajectory in the internal visual space of the brain is transformed

into the internal motor space related to the body geometry� Then it is transformed
into muscle forces and into torque moments that a
ect control angles in joints of the
multilink arm� Changes of the control angles result in real kinematics of the working
point and realize the required movement� All these transformations are in principle
nonlinear� The preference direction neurons are activated only in local areas of the
visual space relatively to the body geometry 
��� Only a limited set of active neurons
contributes to forming the transformation function in every local area of the working
space� This causes the fundamental nonlinearity of the visual	motor system�
It is generally accepted that the transformations from the internal visual space into

the internal motor space� and then into the muscle forces space� are performed in the
cerebellum� while corrections of transformations are performed in the motor areas of
the neurocortex 
���� Thus� unfamiliar movements� for which the transformations have
not yet been formed precisely� are �rst of all controlled by the neurocortex� On the
other hand� the skilled movements are mainly controlled by the cerebellum and the
motor area of the neurocortex is made free from current movement corrections 
��� 
���
There are several types of redundancy in the visual	motor system� First� the ref	

erence trajectory of the working point from the initial position to the target can be
generated in many ways with various velocity pro�les� Further� the same trajectory in
the internal visual space of the brain can be related to the variety of trajectories in the
internal motor space of the brain because of many degrees of freedom in the system
�body� arm�� Finally� every actual movement can be performed with the variety of the
muscle forces� as the number of muscles is higher than the number of control angles in
joints� The inherited redundancies in the visual	motor system are overcome in living
creatures by learning�
The afore mentioned neurophysiological knowledge has been used in the design of

the di
erential neurocontroller� Its basic blocks resemble individual parts of the brain

�



and the proposed scheme simulates both learning and operation procedures in living
creatures�
The neurocontrol model described below takes into account the above presented

�ndings on the cooperation between di
erent brain structures during the learning and
execution of goal directed movements�

� Scheme of the Di�erential Neurocontroller

The proposed scheme of the di
erential neurocontroller is shown in Figure ��
It involves� F 	 feedforward control block� B 	 feedback control block� R 	 movement
planner� I 	 integrator� P 	 plant� These blocks process the following vector signals�
xa� xc�t� and xd�t� are the target� current and desired outputs of the plant� x��t� �
xd�t�� xc�t� is the discrepancy between the desired and current plant output� �xd�t� is
the time derivative of the desired output� i�e� the desired output velocity� c�t� is the
control vector and �c�t� is its time derivative� uB�t� and uF �t� are the partial control
vectors generated by the control blocks B and F� ee is the estimated control error� t is
the time parameter� The learning coe�cient � and the feedback coe�cient � are the
global free parameters of the control scheme� they in�uence the learning process� It
should be mentioned that the control signal c de�nes uniquely the state of the plant
and determines its output coordinates�
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Figure �� Scheme of the di�erential neurocontroller

The signals are processed according to the relations�

xc � P �c� �����

�c � uF � � � uB �����
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c �
Z
�c � dt �����

uB � B�c� � x� �����

uF � F �c� � �xd �����

The integration block I might be involved in the plant� When the neurocontroller
works in discrete time� the integration is easily realized by summing the successive
additions�
The movement planner R provides the desired movement parameters through time�

i�e� the plant output and its time derivative� It generates the desired trajectory e�g�
according to the relation

�xd �
�
�
� �xa � xd� �����

where � is the time constant of the desired changes of the plant output� Then the
desired movement is a straight line in the plant output space with the exponential
decrease of the velocity� It can be realized by a neural network containing one linear
neuron and one itegrator for each coordinate 
����
The plant P is essentially nonlinear� so that it cannot be described by a linear model

within the whole working space� The control blocks B and F must also be nonlinear�
but they can be linearized with respect to local changes of their input signals x� and
�xd� The proposed scheme with the di
erential approach performs it by using layered
neural networks with multiplicative neurons�
The simple scheme of the di
erntial neurocontroller in Figure � is su�cient if the

time constants of all transient processes in the plant are much less than the time
constant of the movement planner � � Otherwise� the inercity of the plant must be taken
into account and some inertial neurocontrol blocks must be involved in the scheme 
����
The time derivative of the plant output ����� is given by

�xc � J�c� � �c �����

where J�c� is the Jacobian of the plant� Hence� by using ����� to ������ the system can
be described by the equation

�xc � � � J�c� �B�c� � xc � � � J�c� �B�c� � xd � J�c� � F �c� � �xd �����

Its solution is stable if the product J�c� � B�c� is a positive de�nite matrix� It can
be reached by the proper design of the block B so that B�c� � JT �c�� It is evident
that the high performance of the neurocontroller �i�e� xc �� xd� may be achieved if the
product J�c� � F �c� tends to the unit matrix�
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� Multiplicative Units

Transfer functions ����� and ����� include an elementwisemultiplication of vectors� This
means that only the corresponding elements having the same index are multiplied� It
can be realized by the neural network with higher order neurons according to Figure ��
It consists of a linear subnetwork L processing the plant output signal x� of a nonlinear
subnetwork N processing the control signal c and of a layer of multiplicative units H�
Every unit involves three neural elements� a linear input neuron hL� a nonlinear input
neuron hN and a multiplicative output neuron hM � The linear and nonlinear neurons
are activated in the standard way

hL �WL � x �����

hN � ���� � ��WN � c� 	N � �����

where WL and WN are the matrices of synaptical weights of subnetworks L and N� 	N
is the threshold vector and � is a nonlinear function� e�g� radial basic function� hard
limit function� or the sigmoidal function according to

���� �
�

�� � e�k��
�����

where k is the scale constant�
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Figure �� Multiplicative units

The set of linear neurons hL is activated only from the input x and the set of
nonlinear neurons hN is activated only from the input c� The set of higher order
multiplicative neurons hM is activated by the elementwise multiplication
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hM � hL � hN �����

Hence� the output vector hM is a linear function of the input vector x and a non	
linear function of the input vector c� Some examples of neural implementations of the
multiplication process can be found in 
���

� Feedback Block

The feedback block B inputs the discrepancy between the desired and current plant
output and realizes the transfer function ������ It corrects the plant output errors and
ensures the stability of the system� which is especially important in the initial stage
of the neurocontroller learning� It also estimates the control errors of the feedforward
block F� which are used in the learning procedure� These errors are not expressed
explicitely in the scheme and they must be estimated� The feedback block B learns by
Hebbian rule� It ensures that the plant output will reach the target position xa� Its
in�uence gradually decreases as the function of the neurocontroller improves� The feed	
back block B can be implemented in a three	layer neural network according to Figure ��
It involves three subnetworks BO� BL� and BN with corresponding matrices of synap	
tical weights BO� BL� and BN � The hidden layer H consists of a set of multiplicative
units that provide the elementwise multiplication de�ned in ����� to ������
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Figure �� Implementation of the feedback block

The linear subnetwork BL implements the linear transformation of the vector x� to
the hidden layer� It transforms the three	dimensional external space into the internal
space of higher dimensionality with linearly dependent coordinates� The transformed
cordinates are related to the preference directions� i�e� to the movement directions
in the plant output space that activate corresponding neurons the most intensively�
Preference directions can be uniformly distributed in the external space� and the matrix
BL can be set random�
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The nonlinear subnetwork BN processes the control vector c� It causes that di
erent
groups of hidden units are activated in di
erent subspaces of the output plant space�
which are uniquely determined by the current control signal c� Such a property of
selective activation of motor control neurons has been revealed in the case of arm
target movements in a monkey 
��� The matrix BN may be set random as well�
The output subnetwork BO performs the linear transformation� The matrixBO can

be gained by learning according to the Hebbian rule� The complete feedback block B
should learn the transposed Jacobian JT �c�� Its learning must be performed in the �rst
stage of the design� when the function of the block F does not need to be taken into
account�
The learning of the block B can be performed as follows� Randomly generated small

di
erences of the control signal  c cause the corresponding small changes of the plant
output  x� These values describe the responses of the plant to the disturbances  c�
The Hebbian learning proceeds according to the equation

B�c� �
X
 c � xT �����

and by using a di
erence form of �����

B�c� �
X�

 c � cT � JT �c�
�

�����

When the disturbances  c are generated randomly with the uniform distribution� the
linearized transfer function B�c� is

B�c� � K � JT �c� �����

where the constant K may be normalized to the required value� For a non	linear case
and �xed random matrices BL and BN � the Hebbian learning of the output matrix BO

gives

BO �
X
 c � hTM �c� �����

where hM is given by ����� to ������ The nonlinear subnetwork BN must ensure that only
a small portion of hidden neurons is activated in every subspace of the control signal
c� An increasing number of hidden units may improve the approximation properties of
the block� and may model the nonlinear Jacobian more accurately� The approximation
can be made precise for linear and quadratical plants 
���

� Feedforward Block

The feedforward block F inputs the time derivative of the desired plant output �xd

and realizes the transfer function ������ It learns according to the estimated control
error ee that is obtained from the feedback block B� The feedforward block F ensures
that the plant output will follow the prescribed trajectory with the prescribed time
derivative� Its in�uence increases with the improving function of the neurocontroller�
The feedforward block F is implemented in a three	layer neural network according
to Figure �� It contains four subnetworks FD� FO� FL� and FN � with corresponding
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matrices of synaptical weights FD� FO� FL� and FN � The hidden layer H consists of a set
of multiplicative units introduced above� The subnetworks FO� FL� and FN � have the
same structure as the subnetworks BO� BL� and BN � of the feedback block B� However�
they process other signals and learn by other algorithms�
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Figure �� Implementation of the feedforward block

The linear subnetwork FD transfers the input vector �xd directly to the output of the
block F� It considerably improves the learning convergence of the whole neurocontroller�
while the nonlinear part of the block ensures small resulting errors�
Learning of the feedforward block F requires the use of the block B� which must be

learned in advance� and which aids in the estimation of the output control errors of the
block F� The supervised learning is based on the error back propagation algorithmwhich
minimizes the output errors by the steepest descent method� However� the output
control error err �c is not expressed explicitly in the scheme� and it must be estimated� It
is known from the back	propagation learning that the plant output error is transferred
backward to the plant input through multiplication by the transposed plant matrix

���� In the case of the di
erential control� the error of the plant output derivative err �x
is back propagated through the plant according to the relation err �c � JT �c� � err �x�
where err �x � �xd � �xc � �x�� Derivative of ����� and ����� give �uB � 
 � JT �c� � �x��
where the constant 
 speci�es the gain of the feedback loop� Therefore� the control
error can be estimated by ee � �uB�
In the learning process� targets are chosen in the working output space of the plant�

and the control problem is solved through time for sequences of random trials� The
error back propagation algorithm leads to the changes of individual synaptical weights
according to the negative gradient� For example� in the case of the sigmoidal nonlinear
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function� it results in the following learning equations determining the time derivatives
of individual matrices of synaptical weights

�FD � �D � �uB � � �x
d�T �����

�FO � �O � �uB � hTM �����

�FL � �L �
��
F T
O � �uB

�
� hN

�
� � �xd�T �����

�FN � �N �
��
F T
O � �uB

�
� hA

�
� cT �����

�	M � �M �
�
F T
O � �uB

�
� hA �����

where hA � hL�hN����hN �� hL� hN � hM are given by ����� to ����� for the linear input
�xd instead of x� The parameters � are the learning coe�cients for the corresponding
subnetworks� The initial states of the matrices FD� FO� FL� FN and the vector 	 can
be arbitrary� but the matrices FL and FN must not be zeroes�

� Convergence of Learning

The plant P is generally a nonlinear system� and the neurocontroller should be a
nonlinear network as well� However� the linear analysis can aid in the estimation of
the local behaviour of the structure� Let the control scheme be linearized in a certain
reference point of the plant output space de�ned by the chosen control signal c� We
can suppose that the nonlinear transfer hN ����� of the control signal c to the hidden
layer H of the block F is constant in a limited area around this reference point� It
causes that only a small portion of the hidden neurons are activated in the dependence
on the selected subspace� Its in�uence upon the complete transfer function F �c� can
be involved in the linear transfer hL ������ Hence� the matrix FN can be set zero and
the transfer functions of all blocks can be described by matrices� The equations ������
������ ������ ������ and ����� are simpli�ed to x � P � c� J � P � B � 
 �P T � uB � B �x�

and uF � F � �xd � FO � FL � �xd� The direct transfer matrix FD is zero� the linear input
matrix FL is set random and it is not adapted during the learning� The output matrix
FO must be taught in the learning process�
Let us introduce the matrix variable ! as a measure of quality of the neurocontroller

performance

! � P � F � E � P � FO � FL �E �����

where E is the unit matrix� The learning equation for the output matrix FO can be
derived from ������ ������ and ������ for the removed feedback �i�e� � � ��� it is

�! � � � 
 � P � P T � ! � �xd � � �xd�T � F T
L � FL � � �����

��



The detailed analysis of the learning convergence was presented in 
��� for FL � E�
If the change of the subnetwork FO is small in every trial of the learning process� then
the learning error decreases in average in k succeeding trials exponentialy according to

j"kj � j"�j � exp��k � �� �����

where j"�j is the starting value of "� " � UT � ! � U � U is the matrix of eigenvectors
of the matrix product P � P T � The average learning rate � can be expressed for small
� as

� �
�� � �� 
 jVkj

� � ��

� � nx � �� � �� � � � � �
�����

where �� � � � 
� �� � � � 
� � is the minimal eigenvalue of the matrix product P �P T �
nx is the dimensionality of the plant output space� 
 jVkj

� � is the average squared
value of the initial velocity in k trials�
The presented analysis is also valid for F T

L � FL � E� This can be reached with a
good accuracy if the number of the hidden neurons �and therefore the dimensionality
of the random matrix FL� is high enough� The dimensionality can be lowered if the
matrix FL is set orthonormal� This can be made easily for one selected subspace of the
control signal c� but it cannot be done simultaneously for all possible subspaces�
It can be seen from ����� that under some conditions the learning rate � increases

with increasing learning coe�cient � and decreases with increasing feedback coe�cient
�� These relations were veri�ed by computer simulations�

	 Computer Simulations

The dependence of the learning rate on the learning and feedback coe�cients was stud	
ied in numerical experiments� The computer model simulated the plant with � inputs
and � outputs� The computation was performed for various values of coe�cients �� and
��� The block F was tought in series of trials� every series consisting of �� movements
to random targets� The integral error of each series was normalized to the size of the
working space and to the output dimensionality�
The in�uence of the learning coe�cient �� upon learning is presented in Figure � for

the case �� � �� The �gure shows the logarithm of the total output error in dependence
on the number of trial series� while �� is the parameter of the graphs� The learning rate
increases with increasing �� up to a certain saturation limit� The numerical stability
requires that the integration time step must decrease with increasing ��� Hence� the
real time of learning increases for larger �� and it is useless to increase �� up to the
saturation value�
The in�uence of the feedback coe�cient �� upon learning is demonstrated in Figure �

for the case �� � ���� The �gure shows again the logarithm of the total output error
in dependence on the number of trial series� while � � is the parameter of the graphs�
For all values of �� and �� the learning rate is quite

��
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well described by Eqn� ����� until � 
 ���� The saturation of � occurs in this case at
about �����
Computer simulations show that the initial value of the total output error decreases

with increasing ��� but the learning rate decreases as well� The strong feedback in initial
trials causes the smooth movement of the plant and small output errors� On the other
hand� the weak feedback in latter trials makes it possible to reach the high rate of
convergence� The combination of both of these features can ensure small output errors
together with a high rate of convergence of learning�
The accuracy and the rate of learning in the linear case do not depend on the

dimensionality of the hidden layer of the block F� Practically� �� hidden neurons are
su�cient for the scheme with � control signals and � plant outputs� However� the
nonlinear structure requires rather high number of hidden units� A good performance

��



of the block F may be achieved only when the activities of the hidden neurons are
rather sparse� Every hidden neuron can be set active only in a small area of the
control signal space� where the structure can be linearized� On the other hand the
number of active hidden neurons must be large enough to ensure that the product
F T
L �FL is almost a diagonal matrix� Otherwise the learning process according to �����
could be spoiled� Hence� rather high dimensionality of the hidden layer is required
for a good performance of a highly nonlinear structure� For � control signals� � plant
outputs and ���# quadratic nonlinearity� at least ��� hidden neurons were necessary
while the number of active neurons was in average ��� These numbers may seem to
be rather high for such a small number of the control signals� However� they need not
grow so rapidly with growing dimensionality of the control signal space�


 Conclusions

The described structure of the di
erential neurocontroller has several advantages� The
control by di
erences causes the architecture to be relatively simple� The control
system is nonlinear with local linearization� It results in a good convergency and
accuracy of the learning process� The developed procedure of the design does not
require any calculation of a matrix inversion� The transfer function of the plant need
not be explicitly known� Learning can be performed by using the real plant�
The behaviour of the complex nonlinear system di
ers from the linear case for a

larger nonlinearity of the plant working space� Then the control blocks must also be
nonlinear and their learning can only be estimated by the linear case� Nonlinear control
requires high dimensionalities of the hidden layers of the neural control blocks� The
number of hidden neurons might be reduced if the random linear input matrix is made
orthonormal� However� this condition can be ful�lled only in several points of the
control signal space� Moreover� the orthonormalization is not a biologically plausible
operation� The improvement of the organization of activation of hidden neurons might
bring better results�
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