
Introduction to Neural Networks
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Abstract

The presented technical report is a preliminary English translation of selected re�
vised sections from the �rst part of the book Theoretical Issues of Neural Networks ���
by the �rst author which represents a brief introduction to neural networks� This work
does not cover a complete survey of the neural network models but the exposition here
is focused more on the original motivations and on the clear technical description of
several basic type models� It can be understood as an invitation to a deeper study of
this �eld� Thus� the respective background is prepared for those who have not met this
phenomenon yet so that they could appreciate the subsequent theoretical parts of the
book� In addition� this can also be pro�table for those engineers who want to apply
the neural networks in the area of their expertise� The introductory part does not
require deeper preliminary knowledge� it contains many pictures and the mathematical
formalism is reduced to the lowest degree in the �rst chapter and it is used only for a
technical description of neural network models in the following chapters� We will come
back to the formalization of some of these introduced models within their theoretical
analysis�

The �rst chapter makes an e�ort to describe and clarify the neural network phe�
nomenon� It contains a brief survey of the history of neurocomputing and it explains
the neurophysiological motivations which led to the mathematical model of a neuron
and neural network� It shows that a particular model of the neural network can be
determined by means of the architectural� computational� and adaptive dynamics that
describe the evolution of the speci�c neural network parameters in time� Furthermore�
it introduces neurocomputers as an alternative to the classical von Neumann computer
architecture and the appropriate areas of their applications are discussed�

The second chapter deals with the classical models of neural networks� First� the
historically oldest model � the network of perceptrons is shortly mentioned� Further�
the most widely applied model in practice � the multi�layered neural network with the
back�propagation learning algorithm� is described in detail� The respective description�
besides various variants of this model� contains implementation comments as well� The
explanation of the linear model MADALINE� adapted according to the Widrow rule�
follows�

The third chapter is concentrated on the neural network models that are exploited
as autoassociative or heteroassociative memories� The principles of the adaptation
according to Hebb law are explained on the example of the linear associator neural
network� The next model is the well�known Hop�eld network� motivated by physical
theories� which is a representative of the cyclic neural networks� The analog version of
this network can be used for heuristic solving of the optimization tasks �e� g� traveling
salesman problem�� By the physical analogy� a temperature parameter is introduced
into the Hop�eld network and thus� a stochastic model� the so�called Boltzmann ma�
chine is obtained�

The information from this part of the book can be found in an arbitrary monograph
or in survey articles concerning neural networks� For its composition we issued namely
from the works ���� ��� ��� ��� ��� ��� ��� ��� This work was supported by GA �R
Grant No� ����	
������
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Chapter �

Neural Network Phenomenon

��� History of Neurocomputing

The history of the neural network �eld is often considered to begin with the paper by
Warren McCulloch and Walter Pitts from �	�� ���� In this paper they introduced
the �rst� very simpli�ed� mathematical model of a neuron which is the basic cell of
the nervous system� Their neuron operated in an all�or�non fashion and thus� the
model was discrete� based on binary logic� They showed that an arbitrary logical or
arithmetical function could� in principle� be computed by using even simple types of
neural networks� However� their model still lacked the capability to learn� This work
in�uenced other researchers� Namely� the founder of cybernetics� Norbert Wiener was
inspired by it when he studied similarities of nervous and computer systems� Or the
author of an American project of electronic computers� John von Neumann� wrote
papers ���� �� in which he suggested the research of computers that were inspired by
brain functioning�

In �	�	 Donald Hebb wrote a book entitled The Organization of Behavior ���
where he described a learning paradigm that now bears his name� Particularly� Hebb
law �see Section ������ states that the permeability of a synapse �inter�neuron inter�
face� increases if there is a presynaptic neuron activity followed closely in time with a
postsynaptic activity� This rule is based on the idea that the conditioned re�ex which
is observed in animals is a property of individual neurons� By using this law� Hebb
made an e�ort to explain some experimental results from psychology� Also his work
had an impact on other researchers who� in �	��s and early �	��s� set the stage for
later developments� A typical representative of this era was Marvin Minsky who is
responsible for some of the �rst results using neural networks� In �	�� Minsky teamed
with Dean Edmonds designed the �rst ����neuron� neurocomputer Snark ��� with
synapses that adjusted their weights �measures of synaptic permeabilities� according
to the success of performing a speci�ed task �Hebbian learning�� The machine was built
of tubes� motors� and clutches� and it successfully modeled the behavior of a rat in a
maze searching for food� The architecture of Snark later inspired other constructors of
neurocomputers�

In �	�� Frank Rosenblatt invented the perceptron ��� �see Section ���� which gener�
alized the McCulloch�Pitts neuron by supplying this model with a learning algorithm�
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i� e� a way to change �generally real� weights iteratively so that a desired task was
performed� Rosenblatt was able to prove the convergence theorem stating that this
algorithm always �nds the weight vector that is consistent with a given training data
�providing that it exists�� independently on its initial setting after a �nite number of
steps� This result caused great excitement and hope that such machines could be a ba�
sis for arti�cial intelligence� Rosenblatt also wrote an early book on neurocomputing�
Principles of Neurodynamics ����

During the years �	�� to �	�
� on the basis of his research Rosenblatt together
with Charles Wightman and others ��� constructed and successfully demonstrated
a neurocomputer called the Mark I Perceptron� Since Rosenblatt�s original research
interests include pattern recognition� the Mark I Perceptron was designed as a character
recognizer� A character was placed on a �oodlight�illuminated board and the image
of this character was focused upon a �� � �� array of CdS photoconductors� The
intensity of ��� image pixels represented an input to the network of perceptrons whose
task was to classify which character is presented �e� g�� �A�� �B� etc��� The Mark I
Perceptron had ��� adjustable weight parameters which were implemented as an 
 �

�
 array of potentiometers� The resistance value associated with each potentiometer
which corresponded to a particular weight� was adjusted automatically by a separate
motor� This motor was controlled by an analog circuit that implemented the perceptron
learning rule� The inputs could arbitrarily be connected to particular perceptrons via
a patch panel� Typically� a �random� connection was used to illustrate the ability of
perceptron to learn the desired pattern without a need for precise wiring� in contrast to
the conventional programmed computers� Also because of the successful presentation
of the Mark I Perceptron� the neurocomputing �eld which was an alternative to the
classical computations realized on the von Neumann computer architecture� became a
new subject of intensive research� Therefore� Frank Rosenblatt is considered by many
people to be the founder of this new �eld as we know it today�

Shortly after the perceptron discovery� Bernard Widrow together with his students
developed another type of neural computational element which he called ADALINE
�ADAptive LINear Element� �
� �see Section ����� This model was equipped with
a new e�ective learning rule which is still being successfully used for adaptive signal
processing� control systems� etc� Widrow and a young graduate student� Marcian Ho��
mathematically proved that this algorithm converges under certain conditions� The
functionality of ADALINE was demonstrated on many simple toy examples� Widrow
also founded the �rst neurocomputer hardware company� Memistor Corporation which
actually produced and sold neurocomputers and their components during the early to
mid �	��s�

During the late �	��s and early �	��s� the successful progress in neurocomputing
was con�rmed by proposing new models of neural networks� their implementations�
and applications� For example� Karl Steinbuch developed a model of binary associative
network called the Learning Matrix which was applied to problems such as recogniz�
ing highly distorted handwritten characters� diagnosing mechanical failures to reduce
downtime of machines� and controlling higher processes in production� Or� in �	���
Roger Barron and Lewey Gilstrap founded the �rst neurocomputing applications com�
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pany� the Adaptronics Corporation� The results of this period are summarized in the
�	�� book Learning Machines ��� by Nils Nilsson�

In spite of the undoubted success achieved in this period� the neural network �eld
also faced apparent problems� Most of researchers approached to neural networks from
an experimental point of view �reminiscent of alchemy� omitting analytical research�
Also the excitement of neural network specialists led to a publicity of unjusti�ed state�
ments such as an arti�cial brain is not far from being developed� etc� This situation
discredited the neural network research and discouraged scientists and engineers from
being interested in neurocomputing� In addition� the neural network �eld exhausted
itself and a further progress in this area would have required radically new ideas and
approaches to be introduced� The best experts left this �eld and started to deal with
related areas of arti�cial intelligence�

The �nal episode of this epoch was a campaign led by Marvin Minsky and Seymour
Papert who wrote an unpublished technical report which� among otherthings� analyzed
the crisis of neural networks� This manuscript� after being extended and revised� was
published later in �	�	 as an extremely in�uential book Perceptrons ���� In this work
they exploited the known fact that a single perceptron cannot compute some of the sim�
ple logical functions such as the exclusive disjunction �XOR�� in order to discredit the
neural network research� Although this problem can be solved by using a two�layered
network� however� at that time no learning algorithm was known for the multilayered
perceptron� The authors doubted that such an algorithm would be found since the
function of the multilayered neural network is much more complicated than that of the
single perceptron� This statement was widely accepted and considered erroneously to
be mathematically proved� Thus� Minsky and Papert successfully convinced enough
people that further neurocomputing study was pointless which� in turn� had the e�ect
of reallocating the majority of neural network funding into arti�cial intelligence pro�
grams� With this� most of the computer science community left the neural network
paradigm for almost �� years�

In this �quiet� period from �	�� to �	
� neurocomputing research was carried out
either outside of the United States where the book Perceptrons had great in�uence
or the majority of neural network results were published under the headings of adap�
tive signal processing� biological modelling� etc� Still� there were a number of people
who continued to develop the neural network theory in the �	��s� A major theme
was associative content�addressable memory �see Chapter ��� in which di�erent input
patterns become associated with one another if su�ciently similar� Also new talented
researchers entered the neural network �eld in this period� Some of them� together
with their main research orientation at that time� are listed below�

For example� Shun�Ichi Amari combined biological neural network activity and rig�
orous mathematical expertise in his studies of the dynamics of randomly connected
networks� competitive learning� associative memories� stability of cyclic networks� etc�
Or James Anderson formed a linear associative memory which he applied to the recog�
nition� reconstruction and association of visual patterns� Kunihiko Fukushima created
the so�called cognitron which is a multilayered network for vision� This model was
later improved by him �neocognitron� and successfully demonstrated for recognizing
handwritten numerals that were distorted� shifted� rotated and scaled in many di�er�
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ent con�gurations� One of the most in�uential neural network researchers� Stephen
Grossberg� started to study extensively the psychological and biological processing and
the phenomena of human information processing� Grossberg�s work has included strict
mathematical analysis and emphasized producing neural network paradigms that are
self�organizing� self�stabilizing� and self�scaling� that allow direct access to information
while operating in real�time� Further� Harry Klopf has been studying the relation�
ship between the psychology of the mind and the biology of the brain since �	�	� Also
Teuvo Kohonen began his neural network research with randomly connected paradigms
in �	�� and quickly focused upon associative memories� His later research led to self�
organizing feature maps� Finally� David Willshaw analyzed the self�organization and
generalization properties of neural networks� These researchers contributed with their
discoveries to the later renaissance of neural networks�

By the early �	
�s neurocomputing researchers started to submit their own grant
projects oriented towards the development and application of neurocomputers� Thanks
to program manager Ira Skurnick� the American grant agency DARPA �DefenseAdvan�
ced Research Projects Agency� began funding neurocomputing research in �	
� and
within a short time this example has been followed by other organizations supporting
basic and applied research� Further credit for the renaissance of neural networks is
counted to well�known physicist John Hop�eld who started to be interested in neu�
rocomputing at that time� His results were published in two highly readable papers
in �	
� and �	
� ���� �� where he showed connections between some models of neu�
ral networks and physical models of magnetic materials� By his invited lectures all
over the world hundreds of quali�ed scientists� mathematicians� and technologists were
attracted to neural networks�

In �	
� researchers forming the PDP �Parallel Distributed Processing� Research
Group published their results in a two�volume set of books edited by David Rumelhart
and James McClelland ��	� Here the paper by Rumelhart� Geo�rey Hinton a Ronald
Williams ��
 appeared in which they described the learning algorithm backpropagation
for multilayered neural networks �see Section ����� Thus� they solved the problem
which seemed to Minsky and Papert in �	��s to be an insuperable obstacle to the
exploitation and further development of neural networks� This algorithm represents
still the most widely applied method in neural networks� By publishing the above�
mentioned proceedings the interest in neurocomputing reached the top� It was later
shown that the backpropagation learning algorithm was actually re�discovered since it
had been known and published by several researchers in �quiet� period �e� g� Arthur
Bryson a Yu�Chi Ho� �	�	 ���� Paul Werbos� �	�� �
�� David Parker� �	
� ��
��
however� that does not alter the case�

The system NETtalk �see Paragraph ������ developed by Terrence Sejnowski and
Charles Rosenberg ��� is the well�known example that� in the beginning� illustrated
the practical importance of the backpropagation algorithm� This system� after being
created in a relatively short time by learning a neural network from examples� suc�
cessfully converted the English written text to spoken English� It competed with its
predecessor� the system DECtalk �Digital Equipment Corporation� which contained
hundreds of rules created by linguists over decades�






In �	
� the �rst bigger conference specialized on neural networks in modern times�
the IEEE International Conference on Neural Networks with ���� participants was held
in San Diego� and the International Neural Network Society �INNS� has been estab�
lished� One year later the INNS began to publish its journal Neural Networks� followed
by Neural Computation ��	
	�� IEEE Transactions on Neural Networks ��		�� and
many others� Beginning in �	
�� many prestigious universities founded new research
institutes and educational programs in neurocomputing� This trend has continued up
to now when there are dozens of specialized conferences� journals and projects based
on neural networks� It turns out that a wide range of research and investment in neu�
rocomputing may not correspond to the quality of achieved results� Only near future
will again justify the vitality of neural network �eld�

��� Neurophysiological motivation

The original aim of neural network research represented the e�ort to understand and
model how people think and how the human brain functions� The neurophysiological
knowledge made the creation of simpli�ed mathematical models possible which can be
exploited in neurocomputing to solve practical tasks from arti�cial intelligence� This
means that the neurophysiology serves here as a source of inspiration and the proposed
neural network models are further expanded and re�ned regardless of whether they
model the human brain or not� In spite of that it is helpful to turn back to this
analogy for new inspiration or the metaphor can be exploited when describing the
properties of a mathematical model�

Therefore it is useful to become familiar with basic neurophysiological knowledge
which will help us to understand the original motivations of mathematical models of
neural networks� We are not experts in this �eld and thus� our exposition will be quite
super�cial� Also the human understanding in this area is far from being complete� One
neurophysiologist describes this state with the following hyperbole �Since our current
understanding of the brain is only limited� everything that is said about the human
brain may be considered to be true�� On the other hand we are not looking for an
identical copy of the brain but we want to imitate its basic functions� in a similar way
which airplanes share with birds and that is mainly the capability to �y�

The human nervous system �or generally the nervous system of living organisms�
intermediates the relationships between the outward environment and the organism it�
self as well as among its parts to ensure the corresponding response to external stimuli
and internal states of the organism� respectively� This process proceeds by transmitting
impulses from particular sensors� so�called receptors which enable to receive mechani�
cal� thermal� chemical� and luminous stimuli� to other nervous cells that process these
signals and send them to corresponding executive organs� so�called e�ectors� These im�
pulses passing through the projection channels where the information is preprocessed�
compressed and �ltered for the �rst time� possibly arrive at the cortex that is the top
controlling center of the nervous system� On the brain surface about six primary� mu�
tually interconnected projection regions corresponding approximately to senses may be

	



distinguished where the parallel information processing is performed� The complex in�
formation processing which is the basis for a conscious controlling of e�ector activities�
proceeds sequentially in so�called associative regions�

A so�called neuron is a nervous cell which is the basic functional building element of
nervous system� Only the human cortex consists of approximately �� to �� billions of
neurons which are arranged into a hierarchical structure of six di�erent layers� More�
over� each neuron can be connected with about ���� of other neurons� The neurons
are autonomous cells that are specialized in transmission� processing� and storage of
information which is essential for the realization of vital functions of the organism� The
structure of a neuron is schematically depicted in Figure ���� The neuron is formed

Figure ��� Biological neuron�

for signal transmission in such a way that� except its proper body� i� e� the so�called
soma� it also has the input and output transfer channels� i� e� the dendrites and the
axon� respectively� The axon is branched out into many� so�called terminals which are
terminated by a membrane to contact the thorns of dendrites of other neurons as it is
depicted in Figure ���� A �chemical� so�called synapse serves here as a unique inter�
neuron interface to transfer the information� The degree of synaptic permeability bears
all important knowledge during the whole life of the organism� From the functional
point of view the synapses are classi�ed in two types the excitatory synapses which
enable impulses in the nervous system to be spread and the inhibitory ones which cause
their attenuation� A memory trace in the nervous system probably arises by encoding
the synaptic bindings on the way between the receptor and e�ector�
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Figure ��� Biological neural network�

The information transfer is feasible since the soma and axon are covered with a
membrane that is capable to generate an electric impulse under certain circumstances�
This impulse is transmitted from the axon to dendrites through the synaptic gates
whose permeabilities adjust the respective signal intesities� Then each postsynaptic
neuron collects the incoming signals whose postsynaptic intensities� after being summed
up� determine its excitation level� If a certain excitation boundary limit� i� e� a so�
called threshold� is reached� this neuron itself produces an impulse �it �res� and thus� the
further propagation of underlying information is ensured� During each signal transit the
synaptic permeabilities as well as the thresholds are slightly adapted correspondingly
to the signal intensity� e� g� either the �ring threshold is being lowered if the transfer is
frequent or it is being increased if the neuron has not been stimulated for a longer time�
This represents the neuron plasticity� i� e� the neuron capability to learn and adapt to
varying environment� Also the inter�neuron connections are subjected to this evolution
process during the organism life� This means that during learning new memory traces
are established or the synaptic links are broken in the course of forgetting�

The human nervous system has a very complex structure which is still being inten�
sively investigated� However� the above�mentioned oversimpli�ed neurophysiological
principles will be su�cient to formulate a mathematical model of neural network�
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��� Mathematical Model of Neural Network

����� Formal Neuron

A formal neuron which is obtained by re�formulating a simpli�ed function of biological
neuron into a mathematical formalism will be the basis of the mathematical model
of neural network� Its schematic structure is shown in Figure ���� The formal neuron
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Figure ��� Formal neuron�

�shortly� neuron� has n� generally real� inputs x�� � � � � xn which model the signals coming
from dendrites� The inputs are labeled with the corresponding� generally real� synaptic
weights w�� � � � � wn which measure their permeabilities� According to the neurophys�
iological motivation some of these synaptic weights may be negative to express their
inhibitory character� Then� the weighted sum of input values represents the excitation
level of the neuron 

� !
nX
i��

wixi � �����

The value of excitation level �� after reaching the so�called threshold h� induces the
output y �state� of the neuron which models the electric impulse generated by axon�
The non�linear grow of output value y ! ���� after the threshold excitation level h
is achieved� is determined by the so�called activation �transfer� squashing� function ��
The simplest type of activation function is the hard limiter which is of the following
form 

���� !

�
� if � � h
� if � � h �

�����

By a formal manipulation it can be achieved that the function � has zero threshold
and the actual threshold with the opposite sign is understood as a further weight� so�
called bias w� ! �h of additional formal input x� ! � with constant unit value as it
is depicted in Figure ���� Then� the mathematical formulation of neuron function is
given by the following expression 

y ! ���� !
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i��
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The geometrical interpretation depicted in Figure ��� may help us to better un�
derstand the function of a single neuron� The n input values of a neuron may be
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Figure ��� Geometrical interpretation of neuron function�

interpreted as coordinates of a point in the n�dimensional Euclidean� so�called input
space En� In this space the equation of a hyperplane �e� g� the straight line in E�� the
plane in E�� has the following form 

w� "
nX
i��

wixi ! � � �����

This hyperplane disjoins the input space into two halfspaces� The coordinates
�x�� � � � � � x

�
n  of points that are situated in one halfspace� meet the following inequality 
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�
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The points �x�� � � � � � x
�
n  from the second� remaining halfspace ful�ll the dual inequality

with the opposite relation symbol 
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�
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Hence� the synaptic weights w�� � � � � wn �including bias� of a neuron may be understood
as coe�cients of this hyperplane� Clearly� such a neuron classi�es the points in the
input space �the coordinates of these points represent the neuron inputs� to which from
two halfspaces determined by the hyperplane they belong� i� e� the neuron realizes the
so�called dichotomy of input space� More exactly� the neuron is active �i� e� the neuron
state is y ! �� if its inputs meet condition ����� or ������ i� e� they represent the
coordinates of a point that lies in the �rst halfspace or on the hyperplane� In the
case that this point is located in the second halfspace� the inputs of neuron ful�ll the
condition ����� and the neuron is passive �i� e� the neuron state is y ! ���
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The meaning of the neuron function is illustrated by a motivational metaphorical
example from the area of pattern recognition� Consider that a �rst�former from el�
ementary school learns now to read and recognize characters� For simplistic reasons
suppose that one neuron in his brain is responsible for the dichotomy of characters
�A� and �B� �compare with the exploitation of Rosenblatt�s neurocomputer Mark I
Perceptron in Section ����� The image of one character is displayed on the array of
n ! k�k pixels� The intensities of these image pixels expressed by n reals represent the
inputs of the underlying neuron� Thus� in our geometrical interpretation any character
corresponds to a point in the n�dimensional input space of this neuron� Obviously� dur�
ing his learning the scholar meets di�erent occurrences of character �A� �e� g� sample
character from reader� hand�writing of teacher� etc�� whose shapes may not always be
identical but anyway they should be very similar �they represent the same character
�A��� The points corresponding to these occurrences of character �A� should not be
too distant from one another in the input space �e� g�� measured by Euclidean metric�
since the image patterns are similar� On the other hand a point that represents char�
acter �B� whose image su�ciently di�ers from the image of character �A� is somewhat
distant from the points corresponding to character �A�� In other words� the points that
represent characters �A� and �B� form two separate clusters in the input space� The
purpose of the underlying neuron is to separate these clusters by a hyperplane as it is
depicted in Figure ����

�B�

w� �
Pn

i�� wixi � �

�A�

Figure ��� The separation of images �A� and �B� by a neuron�

In the above�mentioned metaphorical example the methodical di�erence in the con�
cept representation in neural networks may be observed� The scholar does not need
to remember particular images of all occurrences of a given character� It su�ces the
synaptic weights of the relevant neuron to be set so that the corresponding hyperplane
separates the images of this character from that of remaining ones� At the beginning
of school year the weights of the neuron that is responsible for the dichotomy of char�
acters �A� and �B�� are probably random since the scholar still cannot read� During
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his learning when he faces many sample characters the weights of this neuron are be�
ing step by step adapted so that the corresponding hyperplane begins to separate the
cluster of points corresponding to character �A� from the cluster of points representing
character �B��

For example� suppose that now the scholar distinguishes between the sample char�
acters �A� and �B� fairly well� At this stage of learning he meets rather experienced
writing of his mother in which the image of character �A� is distorted in such a way that
he �rst reads it as character �B�� In our geometrical interpretation this means that
the relevant hyperplane associated with underlying neuron disjoins the input space
in such a way that the point representing the deformed image of character �A� is
wrongly located in the halfspace corresponding to character �B�� After wrong reading
the scholar is corrected by his mother and he adjusts the respective synaptic weights
w�� � � �wn so that the hyperplane is turned slightly to include the new pattern into
the right halfspace� This situation is depicted in Figure ��� where the new position of
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Figure ��� The adaptation of weights when the image of �A� is misclassi�ed�

hyperplane �represented by weights w��� � � � w
�
n� is marked with a dashed line� In this

case� a supervision managed here by mother is needed to correct errors� Sometimes a
negative experience itself stimulates learning when the correct object classi�cation is
a matter of surviving �e� g� a chicken must learn to di�erentiate a farmer who brings
her feed from a predator who wants to destroy her�� The adaptation of weights in the
formal neuron models the change of synaptic permeabilities in the biological neuron as
well as the rise of memory traces in the nervous system of a living organism�

The above�mentioned motivational example illustrates the basic principles of the
mathematical model of a neuron� Obviously� one neuron can solve only very simple
tasks� The exclusive disjunction XOR is a typical example of a logical function that
cannot be implemented by one neuron �compare with the argument by Minsky and
Papert against perceptron in Section ����� For instance� consider only two binary inputs
�whose values are taken from the set f�� �g� and one binary output whose value is � if
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and only if the value of exactly one input is � �i� e� XOR��� �� ! �� XOR��� �� ! ��
XOR��� �� ! �� XOR��� �� ! ��� It follows from Figure ��� where all possible inputs
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x�
��	�� ��	��
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Figure ��� Geometrical representation of XOR function�

are depicted in the input space E� and labeled with the corresponding outputs that
there is no hyperplane �straight line� to separate the points corresponding to output
value � from the points associated with output value �� This implies that the neurons
need to be connected into a network in order to solve more complicated tasks as it is
the case of the human nervous system�

����� Neural Network

A neural network consists of formal neurons which are connected in such a way that
each neuron output further serves as the input of generally more neurons similarly as
the axon terminals of a biological neuron are connected via synaptic bindings with
dendrites of other neurons� The number of neurons and the way how they are inter�
connected determine the so�called architecture �topology� of neural network� Regarding
their purpose� the input� working �hidden� intermediate�� and output neurons may be
distinguished in the network� By the oversimpli�ed neurophysiological analogy� the
input and output neurons represent the receptors and e�ectors� respectively� and the
connected working neurons create the corresponding channels between them to prop�
agate the respective signals� These channels are called paths in the mathematical
model� The signal propagation and information processing along a network path is
realized by changing the states of neurons on this path� The states of all neurons in
the network form the state of the neural network and the synaptic weights associated
with all connections represent the so�called con�guration of the neural network�

The neural network evolves in time� namely� the interconnections as well as the
neuron states are being changed� and the weights are being adapted� In the context
of updating these network attributes in time� it is useful to split the global dynamics
of neural network into three dynamics and consider three modes �phases� of network
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operation architectural �topology change�� computational �state change�� and adaptive
�con�guration change�� This classi�cation does not correspond to neurophysiologi�
cal reality since in the nervous system all respective changes proceed simultaneously�
The above�introduced dynamics of neural network are usually speci�ed by an initial
condition and by a mathematical equation or rule that determines the evolution of
a particular network characteristic �topology� state� con�guration� in time� The up�
dates controlled by these rules are performed in the corresponding operational modes
of neural network�

By a concretization of the introduced dynamics various models of neural networks
are obtained which are suitable to solve speci�c tasks� This means that in order to
specify a particular neural network model it su�ces to de�ne its architectural� com�
putational and adaptive dynamics� In the following exposition general principles and
various types of these three dynamics are described which represent the basis for the
taxonomy of neural network models� Also several typical examples are mentioned which
will later help us to describe the well�known neural network models�

Architectural dynamics

The architectural dynamics speci�es the network topology and its possible change� The
architecture update usually applies within the framework of an adaptive mode in such
a way that the network is supplied with additional neurons and connections when it
is needed� However� in most cases the architectural dynamics assumes a �xed neural
network topology which is not changed anymore�

Figure ��
 Example of cyclic architecture�

Basically� two types of architectures are distinguished cyclic �recurrent� and acyclic
�feedforward� network� In the cyclic topology there exists a group of neurons in the
network which are connected into a ring� so�called cycle� This means that in this group
of neurons the output of the �rst neuron represents the input of the second neuron
whose output is again the input for the third neuron� etc� as far as the output of
the last neuron in this group is the input of the �rst neuron� The simplest cycle is a
feedback of the neuron whose output serves simultaneously as its input� The maximum
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number of cycles is contained in the so�called complete topology in which the output of
each neuron represents the input for all neurons� An example of a general cyclic neural
network is depicted in Figure ��
 where all the cycles are indicated� On the contrary
the feedforward neural networks do not contain any cycle and all paths lead in one
direction� An example of an acyclic neural network is in Figure ��	 where the longest
path is marked�

Figure ��	 Example of acyclic architecture�

The neurons in the feedforward networks can always be disjointly split into so�called
layers which are ordered �e� g� arranged one over another� so that the connections
among neurons lead only from lower layers to upper ones and generally� they may
skip one or more layers� Especially� in a so�called multilayered neural network� the
zero �lower�� so�called input layer consists of input neurons while the last �upper�� so�
called output layer is composed of output neurons� The remaining� so�called hidden
�intermediate� layers contain hidden neurons� As it has been already suggested the
layers are counted starting from zero that corresponds to the input layer which is then
not included in the number of network layers �e� g� a two�layered neural network
consists of input� one hidden� and output layer�� In the topology of a multilayered
network each neuron in one layer is connected to all neurons in the next layer �possibly
missing connections between two consecutive layers might be implicitly interpreted
as connections with zero weights�� Therefore� the multilayered architecture can be
speci�ed only by the numbers of neurons in particular layers� typically hyphened in
the order from input to output layer� Also any path in such a network leads from the
input layer to the output one while containing exactly one neuron from each layer�
An example of a three�layered neural network ������� with an indicated path is in
Figures ���� which� besides the input and output layers� is composed of two hidden
layers�

Computational dynamics

The computational dynamics speci�es the network initial state and a rule for its up�
dates in time providing that the network topology and con�guration are �xed� At the
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Figure ���� Example of architecture of multilayered neural network ��������

beginning of computational mode the states of input neurons are assigned to the so�
called network input and the remaining neurons �nd themselves in the above�mentioned
initial state� All potential network inputs and states form the so�called input and state
space of neural network� respectively� After initializing the network state� a proper
computation is performed� Generally� a continuous�time evolution of neural network
state is considered in the so�called continuous model in which the network state is a
�continuous� function of time that is usually described by a di�erential equation within
computational dynamics� However� in most cases a discrete computational time is as�
sumed� i� e� at the beginning the network �nds itself at time � and the network state is
updated only at time �� �� �� � � �� At each such time step one neuron �during so�called
sequential computation� or more neurons �during so�called parallel computation� are
selected according to a given rule of computational dynamics� Then� each of these
neurons collects its inputs� i� e� the outputs of incident neurons� and updates �changes�
its state with respect to them� According to whether the neurons change their states
independently on each other or their updating is centrally controlled� the asynchronous
and synchronous models of neural networks� respectively� are distinguished� The states
of output neurons which are generally being varied in time� represent the output of
neural network� i� e� the result of computation� Usually� the computational dynamics
is considered so that the network output is constant after a while and thus� the neural
network� under computational mode� implements a function in the input space� i� e�
for each network input exactly one output is computed� This so�called neural network
function is speci�ed by the computational dynamics whose equations are parametrized
by the topology and con�guration that are �xed during the computational mode� Ob�
viously� the neural network is exploited for proper computations in the computational
mode�
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The computational dynamics also determines the function of particular neurons
whose formal form �mathematical formula� is usually the same for all �non�input� neu�
rons in the network �so�called homogeneous neural network�� By now� we have consid�
ered only the function given by equation ����� which has been inspired by a biological
neuron operation� However� in neural network models various neuron functions are
in general use which may not correspond to any neurophysiological pattern but they
are designed only by mathematical invention or even motivated by other theories �e� g�
physics�� For example� instead of weighted sum ����� a polynomial in several indetermi�
nates �inputs� is exploited in so�called higher�order neural networks� Or sometimes the
excitation level corresponds formally to the distance between the input and respective
weight vector� etc� Also the transfer function is often approximated by a continuous
�or di�erentiable� activation function or replaced by a completely di�erent function�
For example� the so�called sigmoid activation functions create a special class of trans�
fer functions� This class includes hard limiter ������ piecewise�linear �saturated�linear�
function ���
�� standard sigmoid �logistic function� ���	�� hyperbolic tangent ������� etc�
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The graphs of these sigmoid functions are drawn in Figure ����� Depending on whether
the neuron function is discrete or continuous� the discrete and analog models of neural
networks� respectively� are distinguished�

The above�mentioned principles will be illustrated through an example of a neural
network whose computational dynamics will be described in more detail and also its
geometrical interpretation will be outlined similarly to the neuron in Paragraph ������
A �xed architecture of a multilayered neural network is considered �see Figure ������
Further� suppose that each connection in this network is labeled with synaptic weights�
i� e� a con�guration of the multilayered network is given� At the beginning� the states
of input layer neurons are assigned to a generally real network input and the remaining
�hidden and output� neurons are passive� The computation further proceeds at discrete
time steps� At time � the states of neurons from the �rst �hidden� layer are updated
according to equation ������ This means that a neuron from this layer collects its inputs
from the input neurons� computes its excitation level as a weighted sum of these inputs
and its state �output� determines from the sign of this sum by applying the transfer
function �hard limiter�� Then at time � the states of neurons from the second �hidden�
layer are updated again according to equation ������ In this case� however� the outputs
of neurons from the �rst layer represent the inputs for neurons in the second layer�
Similarly� at time � the states of neurons in the third layer are updated� etc� Thus� the
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Figure ���� Graphs of sigmoid activation function�

computation proceeds in the direction from the input layer to the output one so that
at each time step all neurons from the respective layer are updated in parallel on the
basis of inputs collected from the preceding layer� Finally� the states of neurons in the
output layer are determined which form the network output� and the computation of
multilayered neural network terminates�

We will try to generalize our geometrical interpretation of neuron function �see
Figure ���� for the function of three�layered neural network� Clearly� the neurons in
the �rst �hidden� layer disjoin the network input space by corresponding hyperplanes
into various halfspaces similarly as in Paragraph ������ Hence� the number of these
halfspaces equals the number of neurons in the �rst layer� Then� the neurons in the
second layer can� for example� classify the intersections of some of these halfspaces� i� e�
they can represent convex regions in the input space� This means that a neuron from the
second layer is active if and only if the network input corresponds to a point in the input
space that is located simultaneously in all halfspaces which are classi�ed by selected
neurons from the �rst layer� Although the remaining neurons from the �rst layer are
formally connected to this neuron in the topology of multilayered network� however�
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the corresponding weights are zero and hence� they do not in�uence the underlying
neuron� In this case� the neurons in the second layer realize logical conjunction �AND�
of relevant inputs� i� e� each of them is active if and only if all its inputs are �� In
Figure ���� the partition of input space into four halfspaces P�� P�� P�� P� by four

P�

K� � P� � P� �P�

K� � P� � P� � P�

K� � P� � P�

P�

P�

P�

Figure ���� Example of convex region separation�

neurons from the �rst layer is depicted �compare with the example of multilayered
architecture ������� in Figure ������ Three convex regions are marked here that are
the intersections of halfspaces K� ! P��P��P�� K� ! P��P��P�� and K� ! P��P��
They correspond to three neurons from the second layer� each of them being active if
and only if the network input is from the respective region�

The partition of the input space into convex regions can be exploited for the pattern
recognition of more characters �compare with the dichotomy of two character images
from the motivational example in Figure ���� where each character is associated with
one convex region� Sometimes the part of the input space corresponding to a particular
image cannot be closed into a convex region� However� a non�convex area can be
obtained by a union of convex regions which is implemented by a neuron from the
third �output� layer� This means that the output neuron is active if and only if the
network input represents a point in the input space that is located in at least one of
the selected convex regions which are classi�ed by neurons from the second layer� In
this case� the neurons in the output layer realize logical disjunction �OR� of relevant
inputs� i� e� each of them is active if and only if at least one of its inputs is �� For
example� in Figure ���� the output neuron is active if and only if the network input
belongs to the region K� or K� �i� e� K� �K��� It is clear that the non�convex regions
can generally be classi�ed by three�layered neural networks�
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In the preceding considerations the fact that the logical conjunction �AND� and
disjunction �OR�� respectively� are computable by one neuron with the computational
dynamics ������ has been exploited� In Figure ���� the neuron implementation of these
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Figure ���� Neuron implementation of AND and OR�

functions is depicted� The unit weights �excluding bias� ensure the weighted sum of
actual binary inputs �taken from the set f�� �g� to equal the number of ��s in the
input� The threshold �the bias with the opposite sign� n for AND and � for OR
function causes the neuron to be active if and only if this number is at least n or
�� respectively� Of course� the neurons in the upper layers of a multilayered network
may generally compute other functions than only a logical conjunction or disjunction�
Therefore� the class of functions computable by multilayered neural networks is richer
than it has been assumed in our example�

In addition� the geometrical interpretation of the multilayered neural network will
be illustrated by the above�mentioned important example of logical function� the
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Figure ���� Geometrical interpretation of XOR computation by two�layered network�

��



exclusive disjunction �XOR�� We know from Paragraph ����� that this function is
not computable by one neuron with the computational dynamics ������ As it can
be seen in Figure ���� �compare with the note to Figure ����� the �two�dimensional�
network inputs for which the output value of XOR function is �� can be closed by the
intersection of two halfspaces �half�planes� P�� P� bounded by hyperplanes �straight
lines�� into a convex region� Therefore� the XOR function can be implemented by
the two�layered neural network ����� �with one hidden layer� which is depicted in
Figure �����
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AND
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Figure ���� Two�layered network for XOR function computation�

Adaptive dynamics

The adaptive dynamics speci�es the network initial con�guration and the way how the
weights in the network are being adapted in time� All potential network con�gurations
form the so�called weight space of neural network� At the beginning of adaptive mode
the weights of all network connections are assigned to the initial con�guration �e� g�
randomly�� After initializing the network con�guration� the proper adaptation is per�
formed� Similarly as for the computational dynamics� a model with a continuous�time
evolution of neural network weights when the con�guration is a �continuous� function
of time usually described by a di�erential equation� may generally be considered� How�
ever� in most cases a discrete adaptation time is assumed �compare with computational
dynamics��

As we know the network function in the computational mode depends on con�g�
uration� The aim of adaptation is to �nd such a network con�guration in the weight
space that realizes a desired function in the computational mode� The computational
mode is exploited for the respective network function computations while the adaptive
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mode serves for learning ��programming�� this function� There exist hundreds of suc�
cessful learning algorithms for various neural network models� For example� the most
well�known and widely�applied learning algorithm is the backpropagation heuristics
for multilayered neural network whose signi�cance has been explained in Section ���
and its description can be found in Section ���� The neural network learning repre�
sents mostly a complex non�linear optimization problem whose solving can be very
time�consuming �tens of hours or days of PC computation� even for small tasks�

The desired network function is usually speci�ed by a training set �sequence� of
pairs composed of the network sample input and the corresponding desired output
which are called training patterns� This is illustrated by the above�mentioned motiva�
tional example �see Paragraph ������ in which the sample images of characters �i� e�
arrays of n ! k � k pixels� may represent the inputs of training patterns to which
the corresponding letters as the desired outputs are assigned� For example� the state
of the output neuron that classi�es character �A� is required to be � if and only if a
sample of this character image is at the input� and the remaining output neurons are
desired to be passive in this case� The way how the network function is described by a
training set� models a teacher �supervisor� who informs the adaptive mechanism about
the correct network output corresponding to a given sample network input� There�
fore� this type of adaptation is called supervised learning� Sometimes� instead of giving
the desired network output value associated with a given sample stimulus �input�� a
teacher evaluates the quality of actual current responses �outputs� by a mark� This is
called graded �reinforcement� learning� The examples of models that employ supervised
learning will be described in Chapter � �e� g� a typical representative of this class is
already mentioned backpropagation algorithm��

A di�erent type of adaptation is a so�called self�organization that models the situa�
tion when a teacher is not available� In this case the training set contains only sample
inputs and the neural network itself organizes the training patterns �e� g� into clusters�
and discovers their global features�

��� Position of neural networks in computer sci�

ence

����� Neural networks and von Neumann computer archi�

tecture

It may not be clear from the preceding exposition what the proper contribution of
neural networks to computer science is� First consider that a neural network can� in
principle� implement any desired function in the computational mode� In a certain
sense neural networks represent a universal computational device �for a more exact
formulation see the second part of this book� and thus� they have the same compu�
tational power as the classical von Neumann computer architecture �e� g� everything
computable on PC can� in principle� be computed by a neural network� and vice versa��
Considering that there exist hundreds of various �including very exotic� universal com�
putational models� this property of neural networks is not exceptional� In addition�
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the network function is speci�ed by a great number of weight parameters and it is not
clear how a desired task would be programmed under this model�

The main advantage and the distinctness of neural networks from the classical
von Neumann computer architecture is their capability to learn� The desired network
function is not programmed in such a way that an exact procedure for its evaluation is
described� but the network itself abstracts and generalizes the functional characteristics
from training examples in the adaptive mode during the learning process� In this sense�
the network evokes the intelligence of a man who acquires a lot of his knowledge and
skills from experience and� in most cases� he is unable to formulate it analytically by us�
ing exact rules or algorithms� In the sequel� several motivational �slightly exaggerated�
examples will be outlined to help us to better understand this phenomenon�

Consider a bricklayer who wants to train his apprentice to plaster a wall� You� who
have experienced plastering your own house� probably know that �rst attempts are
not too successful �a half of mortar usually ends up on the ground�� How grotesque a
theoretical schooling would be if the bricklayer would write di�erential equations de�
scribing an ideal trajectory and speed of hand moves during plastering� on a blackboard
in front of the startled apprentice� Even if he had a background in di�erential calculus
he would not learn how to plaster a wall this way� This skill can be acquired by observ�
ing an experienced bricklayer during plastering and by his own attempts supervised by
a teacher�

Also in the above�mentioned example of a scholar who learns how to read �see
Section ����� the analytical description of ideal letter shapes would not help him too
much� It is important for him to read as many examples as possible of simple sentences
from a spelling�book under suitable supervision and the sentences written by a teacher
with di�erent hand�writing on a blackboard� In addition� the correct letter recognition
does not guarantee the correct word reading as it is illustrated through an example of
two English words THE and TEA in Figure ���� where the deformed shape of letter

Figure ���� Di�erentiating between letters �H� and �A� by context�

�H� is identical with the distorted shape of letter �A�� The context of particular letters
or even the word meaning is essential for correct reading �compare with the system
NETtalk mentioned in Section ��� and Paragraph �������

The next demonstrational example which is described in literature ��� is a broom�
stick balancer� A neural network has been constructed to control the broomstick in a
vertical position� A special cart was used during the experiment to which the broom�
stick was freely attached so that it would fall �for the simplicity in one vertical plane�
without catching it� The neural network was trained to determine the cart moves �left
or right� while keeping the broomstick from falling� At �rst the broomstick deviation
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�angle� from the vertical position was used and later even a �lter image of broomstick
was scanned by a camera for this purpose� The training patterns for the network adap�
tation consisted of the sample input corresponding to a �lter image of broomstick and
the desired output determining the correct cart move for the respective broomstick
position� These patterns were obtained from a demonstrator �during a slow�motion
computer simulation� who had been moving the cart for some time to keep the broom�
stick in the vertical position� After the network had been trained� it successfully took
on his task to control already the real cart� Also here the di�erential equations for cart
moves can theoretically be formed� however� before a classical computer of von Neu�
mann architecture would solve them� the broomstick might probably fall down� On
the other hand� in this simple case �the variant with the input angle� there exists a
successful system based on the classical control theory�

A similar example described in literature is the control of a raw material in�ow in
a complex manufacturing process where an analytical model is practically impossible
to be formed� In practice this is done by an experienced worker who regulates the
in�ow of particular materials by several control sticks using the information read from
various measuring clock�faces� This well�paid expert� besides he would not be willing
to share his long�time acquired experience in his own interests� he would not even be
able to express it by means of exact rules for the control stick moves� Also here a neural
network was attached that has learned to regulate the material in�ow using examples
of measuring clock�face states and the corresponding expert�s responses� Finally� the
expert lost his job�

It follows from the above�mentioned illustrations that a neural network models
the human ability to learn the knowledge and skills from examples which cannot be
managed algorithmically using classical computers of von Neumann architecture since
the respective analytical descriptions are not known or their analysis is too complicated�
This corresponds to the application areas of neural networks �see Paragraph ������
where the conventional computers fail� Obviously� it is insu�cient to memorize all
sample examples �training set�� e� g� as a table stored in the conventional computer
memory� In addition� the relevant rules should be generalized in order to solve similar
cases which have not been met by a neural network during learning� For example� in
the case of character recognition it is impossible to store all potential shapes of letter
images�

The importance of generalization capability of human intelligence can be illustrated
by student�s preparation for an exam in mathematics� It is clear that memorizing all
sample exercises from a textbook by heart without understanding the methods to solve
them� does not guarantee the success� In this case� the student probably would not
pass the exam unless the test includes only the identical exercises from the textbook
because he would be unable to derive a solution even for similar tasks� Obviously� it
is insu�cient to memorize the sample exercises by heart� however� it is necessary to
know how to generalize the rules for their solving�

The ability to learn and generalize is a typical feature of human intelligence� How�
ever� the evaluation of the generalization capability of a neural network represents a
great problem since it is not clear how to de�ne the correct generalization� This issue
can be demonstrated by a simple task from an IQ test in which a subsequent member
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of numerical sequence �� �� �� � � � should be added� Most people would probably add the
next number which is �� However� consider a mathematician who has noticed that the
number � can be viewed as a sum of two preceding numbers � and �� Thus� according
to this more complicated coherency he supplies with � which is again a sum of two
preceding numbers � and �� Besides that some �normal� people would consider him to
be strange� it is not obvious at all which of these two completions is a correct general�
ization of the rule in this sequence� Clearly� there are in�nitely many such completions
that can somehow be justi�ed�

Since we are unable to de�ne �formalize�� and thus to measure the generalization
capability of neural networks� a basic criterion is missing �except practical experiments�
that would decide which neural network models are good or better than others in a
particular case� etc� The generalization capabilities of designed neural network mod�
els are often illustrated by isolated examples which exhibit good properties �perhaps
thanks to their appropriate choice�� However� these properties cannot be formally ver�
i�ed �proved�� In our opinion this situation is one of the reasons for the crisis in the
theory of neural networks�

On the other hand� the neural networks have been successfully applied to solve
important practical problems where the conventional computers failed� Moreover� the
simulations of �very simpli�ed� models of biological neural networks exhibit phenomena
similar to human intelligence� This probably means that these models share certain
features that are important to resemble the intelligent human activities and which
are missing in von Neumann computer architecture� From the computational point
of view� the biological nervous system can basically be characterized as a densely
interconnected network of a great number of simple computational units �neurons�
which compute only simple functions� Within mathematical models of neural networks�
this framework probably creates a computational paradigm su�cient to emulate an
intelligent behavior�

The systematic logic and accuracy of classical computers is replaced by associa�
tion and vagueness in neural networks when an associated �similar� sample pattern
is �recalled� to a new problem to derive its analogous solution from it� Also instead
of explicit data representation employed in conventional computer memory� the infor�
mation in neural networks is encoded implicitly� This means that� besides the inputs
and outputs� the exact purpose for particular numerical parameters in neural networks
cannot be easily identi�ed� While the classical computers are sensitive to errors and a
one�bit change may cause the global system crash� the neural networks are robust� For
example� it is known that after a neurosurgical operation when a part of the patient�s
brain tissue is taken away� the patient temporarily forgets some abilities �e� g� to speak�
or partially loses the dexterity in them �e� g� he stammers�� Later on� these abilities are
revived or improved after additional training because other neurons take on the task
of the original ones� This phenomenon can also be observed in neural network models
when the network may not necessarily lose its functionality after removing several neu�
rons but� perhaps� only the accuracy of resulting responses is a�ected� Furthermore� in
von Neumann computer architecture the sequential run of a program is localized� e� g�
by a program counter� In contrast to this� the computation is distributed throughout
the neural network and it is naturally parallel�
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When comparing the models of neural networks to the classical von Neumann com�
puter architecture the clash of two di�erent intelligences can be observed� namely
biological and silicon ones� The way out of this situation which can �nd a wider ap�
plication in current overtechnologized world is the symbiosis of both approaches� The
idea to create a computer in the image of man is still attractive�

����� Application of Neural Networks

The comparison of neural network models to the von Neumann computer architecture
suggests potential areas of their application where the conventional computers fail� In
particular� this is the question of problems for which no algorithms are known or their
analytical description is too complicated for computer processing� Typically� neural
networks may be employed in cases where example data is available which su�ciently
covers the underlying problem domain� Of course� the advantages of neural networks
over the classical computers do not mean that neural networks can be substituted for
current computers� Particularly� in the case of mechanical computations �e� g� multipli�
cation� which can be algorithmically described� neural networks �similarly as people�
cannot compete with conventional computers for speed and accuracy� Only neural
networks in the form of specialized modules will probably enrich the von Neumann
computer architecture� In the following exposition several potential �elds of neural
network applications will be mentioned�

The neural networks can naturally be exploited for pattern recognition� A special
case of this task is the recognition of �scanned� hand�written or printed characters
�digits� letters� etc�� which has accompanied us as a motivational example throughout
the preceding exposition� In this case a character image is �rst separated �e� g� by
using a conventional computer� from the neighbouring text �e� g� the limit points of
image are determined� and then� it is normalized� i� e� projected on the standardized
array of �e� g� �� � �� ! ���� pixels� These pixels correspond to the inputs of a
neural network so that a particular input neuron is active if and only if a line from
the character image crosses the associated pixel� Each output neuron in the network
represents a potential character and it is active if and only if this character is being
recognized at the input� This means that only one output neuron at each moment
should be active for an unambiguous recognition� For example� a training set can be
created for this purpose by rewriting some text that has already been available in a
computer� in the same way which will be used during the respective recognition process�
e� g� by a particular type of hand�writing� The rewritten character images represent
the training sample inputs while the original computer text is used to label them with
the corresponding desired network outputs� i� e� with the identi�ed characters� Then�
the neural networks can be adapted to this training task so that it is able to recognize
the underlying characters� This way the 	�# character recognition reliability can be
achieved in a relatively short time� A similar approach can be exploited e� g� in robotics
for image information processing� or for satellite picture evaluation etc�

Another potential neural network application �eld is the control of complex devices
in a dynamically varying environment� In Paragraph ����� two motivational examples
from this area have been introduced� namely a broomstick balancer and the regulation
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of the raw material in�ow in a complex manufacturing process� Another demonstra�
tional example of a control system which is described in literature ��� is an automobile
autopilot� A car in a computer simulation was driven by a neural network on a two�lane
freeway roadbed together with other cars moving in the same direction� The neural
network controlled the speed and the lane change of the car on the basis of the distance
and speed of neighbouring cars in both lanes� In addition� the neural network handled
the steering wheel according to a road curvature and its current direction angle� It is
interesting that the neural network� besides successful car control �without collisions�
including overtaking other cars� learned even di�erent driving habits and style �e� g�
risking fast drive and frequent passing or on the contrary� careful slow drive� according
to training drivers from whom the training patterns were collected�

Yet another important application area of neural networks is prediction and as
the case may be� the subsequent decision�making� Typical examples from this �eld
include weather forecast� the share index development at the stock exchange� electrical
energy consummation load� etc� For instance� in a meteorological application the basic
parameter readings in time �e� g� temperature� pressure� etc�� represent the neural
network input and the actual successive weather development serves as a teacher�
There were some experiments done in which the weather forecast by a neural network
for several days was better than that by meteorologists in some cases�

Further possible neural network exploitation is data compression� e� g� in tele�
vision signal transmission� telecommunication� etc� For this purpose� an interesting
technique ��� has been developed in which a two�layered neural network n�n���n de�
picted in Figure ���� is employed� The number of hidden neurons in the intermediate
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Figure ���� Transmitting signal compression by two�layered network n�n���n�
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layer of this network is considerably �e� g� four times� less than the number of inputs
or outputs which represent the same image signal� The two�layered neural network
has learned the image patterns so that the training sample input and the respective
desired output correspond to an identical image and the network responds with the
output approximately equal to a given image input� During the proper transmission
the hidden neuron states t�� � � � � tn

�
are �rst computed from a given input image signal

x�� � � � � xn at the transmitter� Then this four times compressed image is transferred
via an information channel to a receiver which decodes it by computing the output
neuron states x��� � � � � x

�
n� In this way� almost an identical original image is obtained� It

has been shown during the respective experiment that the transmission quality �com�
parable with other data compression methods� depends on whether the transmitting
images are similar to the training patterns to which the network had been adapted�

Signal transformation represents a further application domain of neural networks
which includes the well�known NETtalk system ��� mentioned in Section ��� which
transforms the English written text into spoken English� This system is again based
on two�layered network ����
���� with � � �	 input neurons for encoding the seven�
letter context of written text� For each of these seven characters� �	 input neurons
are reserved that correspond to �� letters from the English alphabet� comma� period�
and space� from which exactly one neuron is active when the respective character
occurs� The intermediate layer consists of 
� hidden neurons and �� output neurons
represent phonemes of the spoken signal� The network operation is demonstrated in
Figure ���
 where the input text is� letter by letter� moved from right to left while only
such an output neuron is active at each moment that is associated with a phoneme
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Figure ���
 NETtalk�
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corresponding to the middle letter of the seven�character input context� In our example�
the middle letter �C� in the English word CONCEPT with pronunciation �konsept is
being read and the respective phoneme is �s� However� the same letter �C� at the
beginning of this word was assigned to phoneme �k within the previous context� The
successful NETtalk implementation lead to an e�ort to construct a neural network
system with the inverse function transforming the spoken language into a written form
�phonetic typewriter��

Another example of the neural network usage is signal analysis� e� g� ECG� EEG�
etc� A continuous�time signal is sampled in equidistant time intervals and several last
discrete values of signal level serve as an input� e� g� for a two�layered neural network�
The neural network� after being trained� is able to identify a speci�c signal pattern
that is important for a diagnostics� For example� a neural network ������� has been
used to classify EEG signals with speci�c ��rhythms ��	�

Expert systems illustrate a further application area of neural networks� The main
problem of the classical expert systems based on rules is creating a knowledge base
which is a very hard� time�consuming human task with an uncertain result� Neural
networks represent an alternative solution to this problem when the knowledge base
representation is produced automatically by learning from example inferences� In this
case� the computational mode of the neural network stands for inference engine oper�
ation� However� the implicit knowledge representation in neural networks complicates
incomplete information processing and it does not provide an explanation of inference
results� which are the necessary properties for any applicable expert system in practice�
This problem is partially solved in a universal neural expert system EXPSYS ���� This
system enriches a multilayered network with interval arithmetic to cope with imprecise
information as well as it is supplied with heuristics that analyzes the network function
to provide a simple inference explanation� The system EXPSYS has been successfully
applied in medicine and energetics� For example� in a medical application� the encoded
symptoms and test results serve as a neural network input while the corresponding
diagnosis and recommended treatment represent its output� In this case� a training set
can be formed from the clinical record about patients�

����� Neural Network Implementation and Neurocomputers

The di�erent neural network architecture requires a special hardware implementation�
In this context� we speak about so�called neurocomputers� However� since the conven�
tional computers are widely spread and there are some problems concerning the hard�
ware realization of neural networks� meanwhile� the simplest and most frequent neural
network implementation is a so�called netware� The netware is a software for classical
computers �e� g� PC� simulating a neural network operation� This includes mostly
demonstrational programs with impressive user�interface that simulate the well�known
neural network models on simple examples� In some more elaborated programs� a user
can select his own computational and adaptive dynamics which enable the accommo�
dation of a neural network to a given practical problem or to justify the applicability
of a new proposed model� There exist even programming languages �and their com�
pilers� that support the program implementation of neural algorithms� An example

��



of such programming language is AXON ��� based on the C language syntax� More
advanced netware usually supports the exploitation of specialized coprocessors which�
e� g� being plugged into a PC� implement the neuron operations e�ectively and speed
up the time�consuming learning�

The proper neurocomputers do not mostly run independently but they are con�
nected to host conventional computers which may realize e� g� a user�interface� The
reason for this is that the neurocomputers are not used as universal computers but
they usually operate as specialized devices to solve speci�c tasks �see Paragraph �������
Small neurocomputers are directly attached to a host�computer memory bus while big�
ger ones can be connected to a local area network� According to the way how neural
network parameters are updated in time� the continuous and discrete neurocomputers
are distinguished� Similarly� the analog� digital� and hybrid �the combination of analog
and digital� neurocomputers are di�erentiated with respect to a numerical parameter
representation� Rarely� one neuron in the implemented network corresponds to one
processor of a neurocomputer� i� e� the so�called fully�implemented neurocomputer�
which may be exploited for very fast real�time computations� Mostly� the so�called vir�
tual neurocomputers� in which one processor performs operations of hundreds or even
thousands of neurons of an implemented neural network part� are constructed�

From a technological point of view� most neurocomputers are based on classical
microelectronics �e� g� VLSI technology� where neurons correspond to gates �e� g�
specialized transistors� and the weights of synaptic connections are represented by
resistor couplings� This approach brings about technical problems such as great density
of inter�neuron connections �increasing quadratically with the number of neurons� and
the weight adaptability of all of these connections� Therefore� the neural network
adaptive mode is sometimes realized separately on the conventional computer by using
available netware beforehand and then� the resulting network con�guration is wired
into a respective neurocomputer circuit� Also optoelectronics is more often employed
here and long�term prospects envisage completely di�erent technologies� e� g� molecular
electronics� hybrid biochips� etc�

��



Chapter �

Classical Models of Neural

Networks

��� The Network of Perceptrons

The �rst successful model of neural network in the history of neurocomputing �see
Section ���� was the network of perceptrons ���� The architectural dynamics of this
network speci�es a �xed architecture of a one�layered network n�m at the beginning�
This means that the network consists of n input neurons� each being an input for all
m output neurons as it is depicted in Figure ���� Denote by x�� � � � � xn the real states

� �

x� xi

y�
yj ym

xn

wjiwj� wjn

�
wj�

Figure ��� The Architecture of the Network of Perceptrons�

of input neurons� i� e� x ! �x�� � � � � xn� � R
n is the network input� and denote by

y�� � � � � ym the binary states of output neurons� i� e� y ! �y�� � � � � ym� � f�� �gm is the
network output� Furthermore� wji represents a real synaptic weight associated with the
connection leading from the ith input neuron �i ! �� � � � � n� to the jth output neuron

��



�j ! �� � � � �m�� and wj� ! �hj is a bias �a threshold hj with the opposite sign� of the
jth output neuron corresponding to a formal unit input x� ! ��

The computational dynamics of the network of perceptrons determines how the
network function is computed� In this case� the real states of neurons in the input
layer are assigned to the network input and the output neurons compute their binary
states determining the network output in the same way as the formal neuron does �see
equation ������� This means that every perceptron computes its excitation level �rst
as the corresponding a�ne combination of inputs 

�j !
nX
i��

wjixi j ! �� � � � �m � �����

The coe�cients w ! �w��� � � � � w�n� � � � � wm�� � � � � wmn� create the network con�gura�
tion� Then the perceptron state is determined from its excitation level by applying an
activation function �  R �� f�� �g such as the hard limiter ������ This means� that
the function y�w�  Rn �� f�� �gm of the network of perceptrons� which depends on
the con�guration w� is given by the following equation 

yj ! � ��j� j ! �� � � � �m where ���� !

�
� � � �
� � � � �

�����

In an adaptive mode the desired function of the network of perceptrons is given
by a training set 

T !

�
�xk�dk�

����� xk ! �xk�� � � � � xkn� � R
n

dk ! �dk�� � � � � dkm� � f�� �gm k ! �� � � � � p


�����

where xk is a real input of the kth training pattern� and dk is the corresponding desired
binary output �given by a teacher�� The aim of adaptation is to �nd a con�guration w
such that for every input xk �k ! �� � � � � p� from training set T � the network responds
with the desired output dk in computational mode� i� e� it holds 

y�w�xk� ! dk k ! �� � � � � p � �����

Of course� the condition ����� cannot always be ful�lled because not every function can
be computed by a single perceptron �e� g�� see Figure ��� of the XOR function� or the
training set may not even be a function �i� e�� two di�erent outputs are required for
one input�� In this case� we make an e�ort to adapt the network to as many patterns
as possible� In practice� sometimes it is better when the network does not learn the
training set one hundredpercent� since the example patterns may not be completely
precise �a teacher may not be perfect��

At the beginning of adaptation� at time �� the weights of con�guration w��	 are
initialized randomly close to zero� e� g� w

��	
ji � h��� �i �j ! �� � � � �m� i ! �� � � � � n��

The network of perceptrons has discrete adaptive dynamics� At each adaptation time
step t ! �� �� �� � � � one pattern from the training set is presented to the network which
attempts to learn it� i� e� the network adapts its weights with respect to this pattern�
The order of patterns during the learning process is prescribed by the so�called training
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strategy and it can be� for example� arranged on the analogy of human learning� One
student reads through a textbook several times to prepare for an examination� another
one learns everything properly during the �rst reading� and as the case may be� at
the end both revise the parts which are not correctly answered by them� Usually� the
adaptation of the network of perceptrons is performed in the so�called training epoch
in which all patterns from the training set are systematically presented �some of them
even several times over�� For example� at time t ! �c � ��p " k �where � � k � p�
corresponding to the cth training epoch the network learns the kth training pattern�

The adaptive dynamics of the network of perceptrons determines the update of the
con�guration w�t	 at time t � � after the kth training pattern is presented� and is
de�ned by the following perceptron learning rule 

w
�t	
ji ! w

�t��	
ji � 	xki

�
yj�w

�t��	�xk�� dkj
� j ! �� � � � �m

i ! �� � � � � n �
�����

The so�called learning rate � � 	 � � measures the in�uence of a pattern on adaptation
�the �motivation� for learning�� This parameter is usually initialized with a small value
which is being increased later during the adaptation� By the above�mentioned simpli�
�ed analogy with students� preparation for an examination� this corresponds to a �rst
cursory acquaintance with the learning subject and to a subsequent detailed training�

The expression yj�w�t��	�xk� � dkj in formula ����� is the discrepancy between
the actual jth network output for the kth pattern input and the corresponding desired
output of this pattern� Hence� this determines the error of the j�th network output with
respect to the kth training pattern� Clearly� if this error is zero the underlying weights
are not modi�ed� Otherwise this error may be either � or �� since only the binary
outputs are considered� In the geometrical interpretation �see Paragraph ������� the
adaptation according to ����� means that the hyperplane with coe�cients wj�� � � � � wjn

associated with the jth neuron is moved in the input space in the direction of an
incorrectly classi�ed pattern xk to include it into the correct halfspace� The inventor
of the perceptron� Rosenblatt showed that the adaptive dynamics ����� guarantees that
the network �nds its con�guration �providing that it exists� in the adaptive mode after
a �nite number of steps� for which it classi�es all training patterns correctly �i� e�� the
network error with respect to the training set is zero�� and thus the condition ����� is
met�

Considering the network of perceptrons is capable of computing only a restricted
class of functions� the signi�cance of this model is rather theoretical� In addition�
the above�outlined convergence theorem for the adaptive mode does not guarantee the
learning e�ciency which has been con�rmed by time consuming experiments� The
generalization capability of this model is also not revolutionary because the network
of perceptrons can only be used in cases when the classi�ed objects are separable by
hyperplanes in the input space �e� g�� special tasks in pattern recognition� etc��� How�
ever� this simple model is a basis of more complex paradigms like a general feedforward
network with the backpropagation learning algorithm�
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��� Feedforward Network and Backpropagation

The most prominent and widely applied model of neural networks is the multilayered
neural network �feedforward network� with the backpropagation learning algorithm ��

which is used approximately in 
�# of all neural network applications� The importance
of this algorithm for the progress in neurocomputing has been described in Section ����
This model generalizes the network of perceptrons for the architectures with hidden
layers �the so�called multilayered perceptron�� and therefore we refer to its principles
�see Section ���� in the following exposition� Since the multilayered perceptron is
widely spread and has certain drawbacks there are many variants of this model which
attempt to improve its properties� At �rst� we will describe a basic variant and then
we will outline some possible modi�cations�

����� Architectural and Computational Dynamics

At the beginning� the architectural dynamics of a multilayered perceptron commonly
speci�es a �xed architecture of feedforward network� Usually� a two�layered or three�
layered network �e� g�� see Figure ����� is exploited since the explicit purpose for hidden
neurons and their bindings which is necessary for a speci�c architecture design� is
unknown� In the sequel� the model with a general �acyclic� feedforward architecture
will be described� For this purpose� the following notation is introduced� The set of n
input neurons is denoted by X and Y is the set of m output neurons� The neurons are
indicated by indices i� j� etc�� and thus� �j represents the real excitation level of neuron
j� as well as yj is the real state� i� e� the output of j� Similarly as in the network of
perceptrons� the connection leading from neuron i to the non�input neuron j is labeled
with a real synaptic weight wji� and wj� ! �hj is a bias �a threshold hj with the
opposite sign� of j� corresponding to a formal unit input y� ! �� Furthermore� j�
denotes the set of all neurons� from which a connection to neuron j leads� and hence
they represent the inputs for neuron j �including the formal unit input � � j��� and
j� is the set of neurons� to which a connection from neuron j leads� and hence the
neuron j is their input�

In a computational mode the feedforward network evaluates a function y�w�  
R
n �� ��� ��m for a given input� which is determined by a con�guration w� The

computation proceeds according to the following computational dynamics� At time ��
the corresponding states of input neurons yi �i � X� are assigned to the network input�
and the remaining neurons have their states undetermined� At time t � � the real
values of excitation levels

�j !
X
i�j�

wjiyi �����

for all neurons j� whose inputs �from j�� have already had their states determined�
are computed� This means that the neurons in the tth layer are updated at time t�
Then the excitation level ����� is used to determine the real state yj ! ���j� of neuron
j by applying a di�erentiable activation function �  R �� ��� �� which is the standard
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sigmoid ���	� approximating continuously the hard limiter ����� 

���� !
�

� " e���
� �����

The di�erentiability of the exploited transfer function ����� implying the di�erentiabil�
ity of the network function is essential for the backpropagation learning algorithm� The
real parameter 
 called gain determines a nonlinear grow �or a fall for 
 � �� of the
standard sigmoid in a neighborhood of zero which measures the neuron �determination�
�e� g�� for 
 � 	 the hard limiter is obtained�� A graph of the standard sigmoid for

 � � is drawn in Figure ���� �it is symmetric about the y�axis for 
 � ��� In the basic
model 
 ! � is usually considered �see equation ���	��� however� in general the gain

j �and hence even the activation function �j� may be di�erent for each �non�input�
neuron j� Then the neuron state is computed as follows 

yj ! �j��j� where �j��� !
�

� " e��j�
� ���
�

This way� layer by layer� the outputs of all neurons are being computed in the
computational mode since the underlying architecture is an acyclic �connected� graph�
The computational mode is accomplished when the states of all neurons in the network
are determined� especially the output neuron states represent the network output� i� e�
the network function value for a given input�

����� Adaptive Dynamics

The adaptivemode of the feedforward network is performed similarly as in the network
of perceptrons� The desired function is again speci�ed by the training set ������ The
network error E�w� with respect to this training set is de�ned as the sum of partial
network errors Ek�w� regarding particular training patterns� and it depends on the
network con�guration w 

E�w� !
pX

k��

Ek�w� � ���	�

Further� the partial network error Ek�w� with respect to the kth training pattern is
proportional to the sum of squared discrepancies between the actual values of network
outputs for the kth training pattern input and the relevant desired output values 

Ek�w� !
�
�

X
j�Y

�yj�w�xk�� dkj�
� � ������

The aim of adaptation is to minimize the network error ���	� in the weight space� Since
the network error directly depends on the complicated nonlinear composite function of
feedforward network this goal represents a non�trivial optimization task� In the basic
model the simplest variant of the gradient method is employed for its solving which
requires the error function to be di�erentiable�

At the beginning of adaptation� at time �� the weights of con�guration w��	 are
initialized randomly within a neighborhood of zero� e� g� w

��	
ji � h��� �i �or more

�




ingeniously with values of order ��
q
jj�j where jj�j is the number of inputs i � j� of

neuron j�� The adaptation proceeds at the discrete time steps which correspond to the
training epochs� The new con�guration w�t	 at time t � � is computed as follows 

w
�t	
ji ! w

�t��	
ji " $w

�t	
ji ������

where the increment of weights $w�t	 at time t � � is proportional to the negative
gradient of error function E�w� at the point w�t��	 

$w
�t	
ji ! �	 �E

�wji

�
w�t��	

�
������

The learning rate � � 	 � � has a similar meaning here as in the network of perceptrons�
Once more� the geometrical interpretation is helpful for a better understanding

of the above�introduced gradient method� In Figure ��� the error function E�w� is

E

ww��	w��	w��	

�

Figure ��� Gradient method�

schematically depicted in such a way that the con�guration representing �typically�
a many�dimensional weight vector w is projected to the x�axis� The error function
depending on the con�guration determines the network error with respect to a �xed
training set� In the adaptive mode such con�guration is searched which minimizes
the error function� We start with a randomly chosen con�guration w��	 for which the
corresponding network error is probably large with respect to the desired function� On
the very simpli�ed analogy of human learning this corresponds to the initial setting
of synaptic weights in a baby�s brain who instead of a desired behavior like walking�
speaking� etc� performs non�coordinating moves and gives out indeterminate sounds�

During the adaptation� the tangent vector �gradient� �E
�w

�w��	� to the network func�
tion graph at the point w��	 is constructed and the searching position in the weight
space is shifted by 	 in the direction of this vector downward� For a su�ciently small
	 a new con�guration w��	 ! w��	 " $w��	 is obtained for which the error function

�	



value is less than that for the original con�guration w��	� i� e� E�w��	� � E�w��	�� The
whole procedure of the tangent vector construction is repeated for w��	 and thus� w��	

is produced such that E�w��	� � E�w��	�� etc� Finally� a local minimum of the error
function is reached in the limit� In a multidimensional space this process exceeds our
imagination� Despite that the gradient method always converges from an arbitrary
initial con�guration to some local minimum �providing that it exists� for an appropri�
ate choice of learning rate 	 it is not guaranteed that this will happen in a real time�
Usually� this process is very time consuming �several days of PC computations� even
for small architectures of multilayered networks �hundreds of neurons��

The main problem concerning the gradient method is that even if it �nds a local
minimum� then this minimum may not be a global one �see Figure ����� The above�
introduced adaptation procedure will terminate at this local minimum �zero gradient�
and the network error is further not decreased� The motivation analogy with human
learning can be developed here in a fanciful way� The initial setting of con�guration in
a neighbourhood of some error function minimum can be interpreted as to determine a
learning capacity of an individual or even the intelligence� From this point of view more
intelligent creatures start their adaptation nearby deeper minima� However� the error
function is de�ned even here relatively with respect to a desired �intelligent� behavior
�training set� which may not be universally valid� The human value can probably not
be measured by any error function� Electric shocks applied in mental hospitals evoke
some methods of neural network adaptation� In a case when the learning process
stagnates in a shallow local minimum of the error function� a random noise is carried
into the network con�guration to get the network out of the attraction area associated
with this local minimum and hopefully� to converge to a deeper minimum�

����� The Backpropagation Strategy

To implement the adaptive dynamics ������� the gradient of the error function in for�
mula ������ must be computed and this represents a non�trivial task� due to the com�
plexity of the error function� At �rst� by applying the rule for the derivative of the
sum in ���	� this gradient is reduced to the sum of gradients of partial error functions 
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Since the network is composed of single neurons the rule for a composite function
derivative is naturally used for the gradient calculation 
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The partial derivative ��j
�wji

in equation ������ can be calculated explicitly from

formula ����� 
��j
�wji

! yi ������
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and the partial derivative �yj
��j

is obtained from the formula ���
� for the standard
sigmoid whose derivative can be expressed by its function value as follows 

�yj
��j

!

je

��j�j

�� " e��j�j��
!

!

j

� " e��j�j



�� �

� " e��j�j

�
! 
jyj�� � yj� � ������

Substituting ������ and ������ into ������ we get 

�Ek

�wji
!

�Ek

�yj

jyj��� yj�yi � ������

The computation of the remaining partial derivatives �Ek

�yj
in formula ������ starts in

the output layer and it is propagated back to the input layer as the name backpropaga�
tion suggests� Providing that j � Y is an output neuron� then the mentioned derivative
can be calculated directly from the formula ������ for the partial error function 

�Ek

�yj
! yj � dkj j � Y ����
�

and its value corresponds to the error of output neuron j for the kth training pattern�
For a hidden neuron j 
� X � Y the rule for a composite function derivative is again
employed for �Ek

�yj
� In addition� the derivatives which can be obtained by direct formal

di�erentiating are calculated 
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In formula ����	� the partial derivative �Ek

�yj
for hidden neuron j has been reduced to

partial derivatives �Ek

�yr
for incident neurons r � j� which have neuron j as their input�

Hence� the computation of �Ek

�yj
can start with output neurons for which this partial

derivative is computed according to ����
�� Further� the computation proceeds layer
by layer backwards in such a way that �Ek

�yj
is computed for a hidden neuron j according

to ����	� providing that the corresponding partial derivatives �Ek

�yr
have already been

evaluated for all r � j�� The correctness of this procedure follows from the fact that
the network architecture is an acyclic graph�

����� The Implementation of Backpropagation

Now� the adaptive dynamics can be additionally summarized in the following trans�
parent algorithm 

��



�� Initialize the discrete adaptation time t  ! ��

�� Choose randomly w
��	
ji � h��� �i�

�� Increment t  ! t " ��

�� Assign E�
ji  ! � for every connection from i to j�

�� For every training pattern k ! �� � � � � p do 

�a� Evaluate the network function output y�w�t��	�xk�� i� e� compute the states
and the excitation levels of all neurons �computational mode� for the kth
training pattern input xk by using formulas ����� and ���
��

�b� By means of the backpropagation strategy� for every non�input neuron j 
� X
evaluate the partial derivative �Ek

�yj
�w�t��	� of the kth partial error function

by the state of neuron j at the point w�t��	 by applying formulas ����
� and
����	� �for this purpose exploit the values of neuron states which have been
computed in step �a��

�c� Compute the gradient �Ek

�wji
�w�t��	� of the kth partial error function at point

w�t��	 according to formula ������ by using the partial derivatives �Ek

�yj
�w�t��	�

which have been evaluated in step �b�

�d� Add E�
ji  ! E�

ji " �Ek

�wji
�w�t��	��

�� f It holds E�
ji ! �E

�wji
�w�t��	�� due to ������� g

According to ������ set $w
�t	
ji  ! �	E�

ji�

�� According to ������ update w
�t	
ji  ! w

�t��	
ji " $w

�t	
ji �


� Evaluate the network error E�w�t	� for the con�guration w�t	 according to for�
mulas ���	� and �������

	� If the error E�w�t	� is su�ciently small� then terminate or else continue with
step ��

Although the proper description of the backpropagation learning algorithm is for�
mulated for the classical von Neumann computer architecture it can obviously be imple�
mented distributively� For each training pattern the following procedure is performed�
At �rst� the computational mode is applied for its sample input and hence� the informa�
tion is spread within the network from the input towards the output� After an external
information regarding the desired output �i� e� particular output errors� is provided by
a teacher� the partial derivatives �Ek

�yj
�particularly �Ek

�wji
� are computed by propagating

the signal from the network output backwards to the input� This backward run reminds
a reverse �computational mode� when the �input� corresponds to the desired output�
the partial derivative �Ek

�yj
represents the �state� of neuron j and the �computational

dynamics� is given by formulas ����
� for the �input� neuron and ����	� for the hidden

��



one� During the backward run the network computation proceeds sequentially layer by
layer while within one layer it can be performed in parallel�

Moreover� we add several comments on the implementation for those who might
want to program the backpropagation learning algorithm on a conventional computer�
For each neuron j in a general feedforward network the set j� of incident neurons
�including the relevant synaptic weights� which represent the actual inputs for neuron
j must be explicitly stored in a memory �in the multilayered topology this is given
implicitly�� This is especially important during the computational mode �namely� for
the excitation level computation according to formula ������ which is also embodied in
the backpropagation learning algorithm �step �a�� On the other hand� for the backward
run of this algorithm the set j� of incident neurons which are the actual outputs
of neuron j� does not need to be explicitly stored� Although in step �b the partial
derivative �Ek

�yj
is computed for each neuron j according to formula ����	� in which

one sums over the neurons r � j�� this can be avoided in such a way that the sum
for �Ek

�yj
is being evaluated term by term in advance as follows� Suppose that during

the backward run when proceeding from the network output to the input� a neuron
r � j� is being traversed and assume that �Ek

�yr
has been computed� Then the terms

�Ek

�yr

ryr���yr�wri �see formula ����	�� are added to the variables for �Ek

�yi
for all neurons

i � r� which represent the inputs for r �especially� the neuron j is included�� At the
moment when neuron j is traversed all neurons r � j� have already been processed
and hence� the value of �Ek

�yj
has been correctly computed� Moreover� the computation

of �Ek

�wji
in step �c can be realized during this procedure and the steps �b� �c� and �d

proceeds simultaneously�
In the introduced algorithm the network con�guration is always updated after each

training epoch and thus� the complete training set is taken into account� The partial
derivatives of the partial error functions are added term by term �i� e�� are accumu�
lated� in step �d and hence� the order of training patterns does not matter during
the learning phase� This variant is called accumulated learning �o��line backpropa�
gation� true gradient method�� In this case� for each connection in the network the
relevant values E�

ji of accumulated partial derivatives must be stored besides proper
weights� Another less memory consuming alternative is to update the con�guration for
every training pattern� This is called on�line backpropagation� In this case a complete
training set does not need to be given beforehand and pattern after pattern may be
generated �even randomly and without repeating� in the order determined by a chosen
training strategy� After the computation of gradient �Ek

�wji
�w�t��	� for the kth partial

error function is accomplished in step �c� the weights are immediately updated with
respect to the kth pattern instead of accumulating the derivative in step �d 

w
�t	
ji  ! w

�t��	
ji " $w

�t	
ji where $w

�t	
ji  ! �	 �Ek

�wji
�w�t��	� � ������

This replaces the corresponding weight modi�cation in steps � and �� However� the
gradient of the partial error function for the next training pattern is evaluated by using
previously updated weights� Therefore� the global network error is not minimized with

��



respect to the whole training set exactly under the gradient method ������� ������� and
on our experience this process decelerates the convergence�

The current value of the network error provides a user with the information on the
course of learning �e� g�� whether the algorithm converges or whether it �nds itself in a
local minimum� etc�� as well as it represents the basis for a halting criterion in step 	�
The error computation in step 
 is very time consuming �it involves the computational
mode for every training pattern� and therefore� it is not reasonable to compute the
error in each training epoch� but it is su�cient to perform it once in a multiple of
these epochs� The learning rate 	 can be tuned according to the error evolution and
therefore� it is appropriate to display �e� g� on the screen� the current information
about the error� It is also necessary to enable the program to update the learning
rate interactively during the adaptive mode� Since the adaptive mode is typically a
long�term process it is recommended to store �archive� the network con�guration on
the disc for security reasons once in a while �providing that the error has decreased in
the meantime��

E

t

Figure ��� A typical error evolution during the backpropagation learning�

It appears that the objective of the adaptive mode based on the backpropagation
learning algorithm is to minimize the network error function E�w� as much as possible
�e� g� to �nd its global minimum� by choosing an appropriate initial con�guration
and by controlling the learning rate properly� For a small 	 the method converges very
slowly �the error is slightly decreasing� and on the other hand� for a greater 	 it diverges
�the error is increasing�� The way in which the parameter 	 is tuned to control the
adaptive mode is usually learned by experience� The following recommendation can
be formulated only in a very inexact way� For larger architectures it is better to start
with a smaller 	 �e� g� of the order of thousandths or tenthousandths�� During the
successful convergence� 	 may be slightly increased and during the apparent divergence
or oscillation the value of 	 must be decreased �e� g� exponentially�� Even for a sudden
great error increase after a preceding successful convergence with a long�term constant

��



	� it is worth to continue in the adaptation with the same 	� The method might jump
within the weight space into the area of a better convergence which is either con�rmed
or disproved in the next training epochs� Sometimes it is better to restart the learning
process for a new initial con�guration when the method fails� The graph of a typical
error evolution in the course of adaptation is sketched in Figure ���� At the beginning
of learning the error may slightly increase and later on it alternates the phase of its
rapid �approximately exponential� decrease with its long�term stagnation when the
error tends very slowly �the error decrease is approximately exponentially decreasing�
upper to some non�zero value� Usually� under certain conditions the method succeeds
to �nd a global minimum �zero error� after a long�term learning�

����� The Backpropagation Variants

Various variants of the basic backpropagation model make an e�ort to solve the prob�
lems regarding the minimization of the error function E�w� in a real time� For exam�
ple� the selection issue of the gain values 
j within the activation function ���
� can
be solved for particular neurons j as follows� Besides synaptic weights w� the network
error E�w��� is also a function of gains �� This means that the con�guration is deter�
mined by the vector w of all weights as well as by the vector � of all gain parameters�
Thus� during the learning phase this con�guration �i� e�� including gains� is adapted
so that the network error is minimized by the gradient method in the weight and gain
space� This way the degree of freedom for adaptation is extended when the shapes
of activation functions �i� e�� the measures of neuron �determination�� are adjusted to
the training set and hopefully� a global minimum of the network error function may
be found� On the other hand� by increasing the number of updated parameters the
number of arithmetic operations is increased as well and hence� the learning process is
decelerated� From the technical point of view� the gain parameter adaptation is imple�
mented similarly as the weight updates ������� ������� At the beginning of adaptation�
at time �� the gains ���	 are initialized randomly� e� g� close to �� In the next training
epochs� at time t � �� the new values of gain parameters ��t	 are computed as follows 
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and � � 	� � � is the learning rate for gains with the same meaning as for synaptic
weights� The evaluation of the partial derivatives �E

��j
is again analogous �see formulas

������� ������ and ������� 
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The partial derivatives �Ek

�yj
are computed by using the backpropagation strategy ����
��

����	�� During the adaptation the gain parameters of some neurons may even become
negative which causes the corresponding activation functions to be decreasing�

The above�described basic variant of the gradient method ������� ������ is often
exploited due to its simplicity although it is not very e�cient� With a small learning
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rate 	 this method converges very slowly� however� for a greater 	 the method diverges�
A simple and quite frequent modi�cation which makes e�ort to avoid this drawback
takes still into account the preceding weight correction for the new weight update� This
is called a momentum term ��� 

$w
�t	
ji ! �	 �E

�wji

�
w�t��	

�
" �$w

�t��	
ji ������

where � � � � � is the momentum rate which measures the in�uence of the previous
weight increment �e� g�� its common value is � ! ��	�� By using the momentum term
the gradient method follows the shape of the error function E�w� better because it
takes into account the previous gradient�

The gradient method can be accelerated properly by tuning the learning and mo�
mentum rates 	 and �� respectively� Therefore� several heuristics have been proposed to
automate the selection of these parameters during the learning process ���� ��� �
� �
�
For example� a separate learning rate 	ji is introduced for each weight wji in the net�
work� The value of 	ji can be selected e� g� of order ��jj�j where jj�j is the number
of inputs for the neuron j ���� Another possibility is to increase the learning rate
	
�t	
ji ! K	

�t��	
ji linearly for K � � �e� g�� K ! ����� at time t � � if the increment sign

for the relevant weight is not changed� i� e� $w
�t	
ji $w

�t��	
ji � �� Otherwise� 	�t	ji ! 	

�t��	
ji ��

is exponentially decreased�
In practical applications� the well�known� elaborated and more e�cient methods of

nonlinear optimization ��� are often omitted for neural network learning� For exam�
ple� Newton method converges rapidly in a su�ciently near neighborhood of an error
function minimum� Nevertheless� this method requires a second�order derivative com�
putation� it is computationally very time consuming �e� g�� at each iterative step the
matrix inversion is computed� as well as numerically non�stable� A more suitable can�
didate for the minimization of neural network error function is the conjugate gradient
method ���� �
 which exploits �rst�order derivatives only�

We conclude with a note that the introduced backpropagation learning algorithm for
feedforward neural networks can also be generalized for cyclic architectures providing
that the recurrent network converges to a stable state under a computational mode�
This variant of the algorithm is called recurrent backpropagation ��� �� ��� ��� ��� ���

����	 The Choice of Topology and Generalization

One of the main problems with the feedforward neural networks trained by the back�
propagation learning algorithm �besides the error function minimization� is the choice
of an adequate topology for solving a particular practical task� The relations between
inputs and outputs are rarely known in details to be exploited for a special architecture
design� As usual� a multilayered topology with one or two hidden layers is employed�
One expects the backpropagation learning algorithm to generalize the underlying re�
lations from the training set and to project them into the weights associated with
particular connections among neurons� However� even in this case the numbers of neu�
rons in hidden layers must be selected� It appears that this issue of the architectural
dynamics is related to the adaptation and generalization of a neural network�
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The architecture of a multilayered network� i� e� the numbers of hidden neurons�
should correspond to the complexity of a currently solved problem� i� e� to the number
of training patterns� to the numbers of their inputs and outputs� and to a relation
structure which is described by them� Clearly� poor architectures are probably too
weak to solve complex tasks� In the backpropagation learning algorithm� too small
networks usually terminate in shallow local minima and the topology needs to be
enriched with additional hidden neurons to provide the adaptation with a greater
degree of freedom� On the other hand� rich architectures commonly allow to �nd
the global minimum during the learning process although the computational time for
adaptation increases with a greater number of weight parameters� However� in this
case the resulting network con�guration is usually adjusted too much to the training
patterns including their inaccuracy and errors� Hence� the network responds incorrectly
to previously unseen inputs� i� e� its generalization capability is poor� This situation
in which the network memorizes perfectly the training patterns without generalizing
the laws covered by the training set is called over�tting� The graphs of two network
functions including the training patterns �points� to which they both were adapted� are
depicted in Figure ���� The bold line represents the over�tted network whose function

y

x

Figure ��� The function graphs of the over�tted network �bold line� and of the network
with a �correct� generalization�

is adjusted to imprecise training patterns while the thin line corresponds to the network
function which has �correctly� generalized rules from the training set� It appears that�
for a particular task� there exists an �optimal� architecture that is rich enough to solve
the problem at hand and� at the same time is not too large to generalize correctly the
relevant relations between inputs and outputs�

There exist theoretical results concerning the upper bound for the number of hidden
neurons which are su�cient to implement an arbitrary function from a given class �see
the third part of this book�� however� they are too overvalued for practical needs and
hence useless for architectural design� In practice� the topology is usually searched
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using heuristics� e� g� the number of neurons in the �rst hidden layer is approximately
proportional to the number of inputs while the average of the numbers of inputs and
outputs is used for the second hidden layer� After the adaption is accomplished� several
neurons are either added because of the great network error or removed due to the poor
generalization and the entire adaptive mode is repeated for this new architecture� To
examine the generalization capability� the network error is computed with respect to
the so�called test set that is a part of the training set which has not been intentionally
exploited for learning�

More elaborated methods modify the architecture automatically during the adapta�
tion when it is needed� This represents the combined architecturally�adaptive network
mode� The following two di�erent approaches are possible� In the so�called construc�
tive algorithms ���� �
� �	� �� one starts with a small topology and the new neurons
are added when the error function value cannot be further decreased� On the contrary�
in the so�called pruning algorithms ���� �
� ��� ��� �� one issues from a su�ciently rich
topology and the connections which happen to have small absolute values of weights
during the learning phase� are removed �including the relevant hidden neurons�� The
architecture modi�cation is feasible in adaptive mode since the network function is
robust� The elimination of small weights can be even included in the de�nition of error
function by adding a term which penalizes all weights in the network proportionally to
their magnitudes 

E ��w� ! E�w� "
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�
�
X
j�i

w�
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� " w�
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������

where parameter � � � measures the in�uence of this term on the network error and
E�w� is the original error function ���	��

��� MADALINE

Another historically important model of neural network is MADALINE �Multiple
ADALINE� which was invented by Widrow and Ho� �
�� 
� �see Section ����� The ba�
sic element of this model is a neuron called ADALINE �ADAptive LINear Element�
which is very similar to the perceptron� Therefore� MADALINE is formally almost
identical to the network of perceptrons which has been described in Section ��� al�
though it originated from di�erent principles�

The architectural dynamics of MADALINE �i� e�� the topology� and the notation
of network parameters is the same as in the network of perceptrons �see Figure ����
except that the perceptron is substituted for ADALINE� The computational dy�
namics of this model di�ers in the network outputs which are generally real numbers
since particular ADALINE�s compute only linear functions� i� e� the nonlinear acti�
vation function is omitted� Thus� the function y�w�  R

n �� R
m of MADALINE

which depends on con�guration w ! �w�� � � � �wm� where w� ! �w��� � � � � w�n��� � ��
wm ! �wm�� � � � � wmn�� is de�ned as the a�ne combinations of its inputs 

yj !
nX
i��

wjixi j ! �� � � � �m � ������
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Similarly� the geometrical interpretation of the jth ADALINE function di�ers slight�
ly from that of the perceptron� Consider an input x ! �x�� � � � � xn�� i� e� a point
�x�� � � � � xn in the n�dimensional input space� The hyperplane with coe�cients wj

associated with the jth ADALINE is determined by the equation 

wj� "
nX
i��

wjixi ! � � ������

This hyperplane disjoins the input space into two halfspaces in which the corresponding
output values yj ������ have di�erent signs� Especially� the output value is zero for the
points on this hyperplane� The distance j from the point �x�� � � � � xn to the hyperplane
������ is given by the following formula 

j !
jwj� "

Pn
i�� wjixijqPn

i��w
�
ji

!
jyjjqPn
i�� w

�
ji

� ������

Hence� the absolute value jyjj of the jth ADALINE output depends linearly on the
distance from the relevant point to the hyperplane 

jyjj !

vuut nX
i��

w�
ji � j � ����
�

The points in the input space corresponding to the same output create a hyperplane
that is parallel to the hyperplane ������ and which is located at the distance j in the
direction determined by the sign of yj� This situation is depicted in Figure ��� where
the hyperplane corresponding to the same output is represented by a dashed line�

yj � � yj � �

wj� �
Pn

i�� wjixi � �

�j

�x�� � � � � xn�

jyj j �
qPn

i��w
�
ij � �j

Figure ��� Geometric interpretation of ADALINE function�

In adaptive mode� the desired MADALINE function is speci�ed by a training
sequence where the real inputs xk of training patterns are generated randomly with a
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given probability distribution and each xk is labeled with a desired real output dk 

�xk�dk�k�������� where
xk ! �xk�� � � � � xkn� � R

n

dk ! �dk�� � � � � dkm� � R
m �

����	�

The error of the jth ADALINE with respect to the training sequence ����	� depends
on the partial con�guration wj � It is de�ned as follows 

Ej�wj� ! lim
p��

�
�

Pp
k�� �yj�wj �xk�� dkj�

�

p
j ! �� � � � �m ������

which is a mean value �the expectation operator is denoted by bold E� of a half squared
di�erence between the actual state of the jth ADALINE and the corresponding desired
output 

Ej�wj� ! E
��
�

�yj�wj �xk�� dkj�
�
�

j ! �� � � � �m � ������

The aim of adaptation is to minimize each error function Ej�wj� �j ! �� � � � �m�
which determines a paraboloid �see ������� in the weight space� For this purpose�
the gradient of the error function Ej�wj� is computed �rst from ������ by commuting
the limit and derivative� by using the rule for composite function derivative and by
substituting for the derivative of ������ 

�Ej

�wji

! lim
p��

�
p

pX
k��

xki �yj�wj �xk�� dkj� i ! �� � � � � n � ������

The gradient ������ can be again expressed as a mean value 

�Ej

�wji
! E �xki �yj�wj�xk�� dkj� i ! �� � � � � n � ������

After substituting ������ into ������ the rule for expectation operator of linear function
is applied 

�Ej

�wji
! �E�dkjxki "

nX
r��

wjrE�xkrxki i ! �� � � � � n � ������

One of the possible approaches to minimize the error function Ej�wj� is to set the
partial derivative �Ej

�wji
! � equal zero� Providing that the expectation values E�dkjxki�

E�xkrxki in ������ are statistically estimated� the system of linear equations is obtained 

nX
r��

E�xkrxkiwjr ! �E�dkjxki i ! �� � � � � n � ������

Its solution is the con�guration w�
j of the jth ADALINE which minimizes the error

function Ej�wj��
Usually� the gradient method is employed to minimize the error Ej�wj� similarly

as in the backpropagation algorithm �see Section ����� In this case� however� there are
no problems with local minima due to the shape of error function �paraboloid�� At
the beginning of adaptation� at time �� the weights of con�guration w��	 are initialized

��



randomly in a neighborhood of zero� e� g� w
��	
ji � h��� �i �j ! �� � � � �m� i ! �� � � � � n��

At the discrete adaptation time t � �� the con�guration w�t	 is updated according to
the gradient method 

w
�t	
ji ! w

�t��	
ji " $w

�t	
ji where $w

�t	
ji ! �	 �Ej

�wji
�w�t��	� ������

and � � 	 � � is the learning rate�
By the analogy with the backpropagation algorithm the partial derivatives �Ej

�wji

in ������ should be accumulated for the complete training sequence� i� e� the limit
������ of their averages should be computed� For MADALINE� however� Widrow and
Ho� proposed a learning rule known as Widrow or LMS �Least�Mean�Square� rule
under which the weights are updated after each training pattern is presented �com�
pare with the on�line backpropagation implementation in Paragraph ������� Thus�
the MADALINE model has the discrete adaptive dynamics� i� e� at each time step
t ! �� �� � � � the kth pattern �k ! t� from the training sequence ����	� is presented
to the network and the weights are adapted with respect to this pattern� Under the
Widrow law the increment of con�guration w�t	 at time t � � is de�ned by the following
equation �compare with ������ and ������� 

w
�t	
ji ! w

�t��	
ji � 	xki

�
yj�w

�t��	
j �xk�� dkj

� j ! �� � � � �m
i ! �� � � � � n �

������

It is interesting that the MADALINE adaptive dynamics ������ is formally identical
with the perceptron learning rule ������ Widrow and Ho� proved that the adaptive
process under ������ converges from an arbitrary initial con�guration w��	 to the con�
�guration w� which minimizes the error functions Ej�wj� �j ! �� � � � �m��

There exist various variants of the MADALINE adaptive dynamics� For example�
the weight adaptation may be performed according to the gradient method ������ so
that the limiting value of partial derivative �Ej

�wji
in ������ is approximated by the average

over p training patterns 

�Ej

�wji

�!
�
p

pX
k��

xki �yj�wj�xk�� dkj� � ����
�

The Widrow rule may also be extended with a momentum term �see formula ��������
i� e� for t � � we obtain

w
�t	
ji ! w

�t��	
ji � 	xki

�
yj�w

�t��	
j �xk�� dkj

�
" �$w

�t��	
ji ����	�

where $w
�t��	
ji ! w

�t��	
ji �w

�t��	
ji denotes the preceding weight correction and � � � � �

is the momentum rate�
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Chapter �

Associative Neural Networks

��� Linear Associator Neural Network

A linear associator neural network� introduced by Anderson �� and further re�ned by
him and Kohonen �
� 	� ��� ��� ��� is an example of the neural network model that
is exploited as an associative �data�addressed� memory� In contrast with a classical
computer memory where the key to search an item is its address� in a data�addressed
memory the required information is recalled on the basis of its partial knowledge �as�
sociation�� For example� in database applications the information about some of the
items in a record is su�cient to �nd the corresponding complete record� Similarly�
in the human analogy a man is able to recall his friend�s eyes colour or name when
seeing his black�and�white photograph� Basically� we will distinguish two types of
data�addressed memories autoassociative and heteroassociative memories� In the au�
toassociative memory the input information is completed or even reconstructed while
in the heteroassociative memory a certain data� associated with the input� is recalled�
In the above�mentioned motivational example with a black�and�white photograph� this
corresponds to reconstructing the coloured picture �autoassociation� and recalling the
name of a person in the photograph �heteroassociation�� respectively�

The architectural and computational dynamics of linear associator is almost
identical with that of MADALINE which has been described in Section ���� The only
di�erence consists in the computational mode of linear associator network which com�
putes linear combinations of inputs instead of a�ne combinations� i� e� the respective
biases are zero and the formal unit input is omitted� Formally� the network function
y�w�  Rn �� R

m can be expressed as follows �compare with ������� 

yj !
nX
i��

wjixi j ! �� � � � �m � �����

In the geometrical interpretation� this means that the respective hyperplanes �see Fig�
ure ���� corresponding to the output neurons in the network pass through the origin�

For the need of further exposition� the computational dynamics ����� is formally
rewritten into matrix notation� The network input and output are regarded as column
vectors x ! �x�� � � � � xn� of size n�� and y ! �y�� � � � � ym� of length m��� respectively�
Similarly� the network con�guration is given by a m� n weight matrix W whose rows
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wj ! �wj�� � � � � wjn� correspond to the input synaptic weights of �output� neurons j
�j ! �� � � � �m� 

W !

�
BB�

w�� � � � w�n
���

� � �
���

wm� � � � wmn

�
CCA � �����

In this notation the computational dynamics ����� of linear associator can formally be
described as a matrix product 

y ! Wx � �����

In the adaptive mode the desired function of the linear associator network is again
given by a training set 

T !

�
�xk�dk�

����� xk ! �xk�� � � � � xkn� � R
n

dk ! �dk�� � � � � dkm� � R
m k ! �� � � � � p


� �����

Especially� in the case of autoassociative memory the desired output equals the input
pattern� i� e� m ! n and xk ! dk for k ! �� � � � � p� In following Paragraphs �����
and ������ two possible adaptive dynamics of the linear associator will be introduced�

����� Adaptation under Hebb Law

In this paragraph the adaptive dynamics of the linear associator will generally be
described for the case of heteroassociative memory which includes the autoassociative
network as a special case� One of the possible ways of linear associator adaptation is
motivated by the neurophysiological Hebb law saying that the change of synaptic weight
associated with a connection between two neurons is proportional to their consonant
activities expressed by the product of their states� In this way� Donald Hebb tried
to explain the rise of the conditioned re�ex ��� �see Section ���� when the almost
simultaneous activity �or passivity� of the �rst neuron corresponding to a condition
�premise� and of the second neuron compelling the re�ex� strengthens the synaptic
link in the direction from the �rst neuron to the second one� On the contrary� the
antithetical activity of these two neurons weakens the respective connection�

Hebb law can formally be summarized in the following adaptive dynamics of the
linear associator network� At the beginning of adaptation� at time �� all weights in
the con�guration are zero� i� e� w

��	
ji ! � �j ! �� � � � �m� i ! �� � � � � n�� At the discrete

adaptation time t ! �� � � � � p� the kth training pattern �k ! t� is presented to the
network and the weights are updated according to Hebb law 

w
�t	
ji ! w

�t��	
ji " dkjxki

j ! �� � � � �m
i ! �� � � � � n �

�����

Since the adaptive phase terminates in this case after p steps when all training patterns
are learnt� the resulting con�guration can be expressed as a �nite sum 

wji !
pX

k��

dkjxki
j ! �� � � � �m
i ! �� � � � � n �

�����

��



The adaptive dynamics ����� of the linear associator can also lucidly be written in
the matrix notation 

W��	 ! 
� W�k	 ! W�k��	 " dkx
T

k� k ! �� � � � � p �����

where T denotes matrix transposition� 
 is the null matrix �i� e� all its items are zero�
and the weight matrix W�k	 determines the network con�guration at adaptation time
t ! k� The resulting con�guration can again be described as a matrix product �compare
with ������ 

W ! W�p	 !
pX

k��

dkx
T

k ! DXT ���
�

where the columns of a n� p matrix X and of a m� p matrix D are sample inputs xk
and desired outputs dk �k ! �� � � � � p�� respectively� from training patterns ������ i� e�

X !

�
BB�

x�� � � � xp�
���

� � �
���

x�n � � � xpn

�
CCA � D !

�
BB�

d�� � � � dp�
���

� � �
���

d�m � � � dpm

�
CCA � ���	�

Especially� the adaptive dynamics for the case of autoassociative memory where D ! X
can be rewritten 

W ! XXT � ������

We will further assume that the input vectors fx�� � � � �xpg of training patterns
����� are orthonormal �necessarily p � n�� This means that these vectors are mutually
orthogonal� i� e� xTrxs ! � for r 
! s �� � r� s � p�� and� at the same time� they
are of the unit length �normalized�� i� e� xTrxr ! � �r ! �� � � � � p�� This assumption
can be interpreted in such a way that the particular input patterns di�er substantially
from each other due to their orthogonality and they are comparable thanks to their
unit length� Under this condition the linear associator has the property of a so�called
reproduction� i� e� the network responds with the respective desired output dr when
the corresponding stimulus xr �� � r � p� from the training set appears at the input�
This can be shown by substituting ���
� for W into the computational dynamics �����
and� in addition� the associativeness and distributivity of matrix multiplication �inner
product� is exploited together with the orthonormality assumption 

y�xr� ! Wxr !

� pX
k��

dkx
T

k

�
xr !

pX
k��

dk �xTkxr� ! dr � ������

The reproduction property ������ can be considered as a necessary condition for
associative memories� Moreover� the linear associator network should also respond
with the desired output dr even for a stimulus xr " � that is nearby the respective
training pattern input xr �i� e� the norm k�k !

qPn
i�� �

�
i ! � is su�ciently small��

The corresponding error with respect to this requirement can be expressed as the norm
of the di�erence between the actual output for input xr " � and the desired output dr 

Er��� ! ky�xr " ��� drk ! kWxr "W� � drk ! kW�k � ������

��



In addition� suppose that the desired outputs dr of training patterns are normalized as
well� i� e� dTrdr ! � �r ! �� � � � � p�� which has already been true for the autoassociative
memory since xr ! dr are assumed to be orthonormal� Then the error Er��� from
������ can be upper bounded by using the triangular �kx " yk � kxk " kyk� and
Cauchy�Schwarz �jxTyj � kxk � kyk� inequalities 

Er��� ! kW�k �
pX

k��

kdkxTk�k �
pX

k��

kdkk � kxkk � k�k ! p� � n� � ������

Hence� Er��� � � for � � � and the linear associator neural network responds approx�
imately with the desired output for the stimuli close to the sample input� i� e� it can
be used as an associative memory�

����� Pseudohebbian Adaptation

The reproduction property of the linear associator that has been adapted under Hebb
law in Paragraph ����� requires an additional assumption regarding the orthonormal�
ity of training pattern inputs� Therefore� a modi�cation of Hebb rule� so�called pseu�
dohebbian adaptation ��	� �� was proposed to weaken this assumption by means of
mathematical manipulations� However� this modi�ed approach does not correspond to
neurophysiological reality anymore� For the simplicity reasons� this alternative adap�
tive dynamics of the linear associator neural network will �rst be described for the
autoassociative memory and then� it will be generalized for the heteroassociative case�

Suppose that the set of input vectors fx�� � � � �xpg from the training set ����� �co�
inciding with the desired outputs in the autoassociative case� is linearly independent
�necessarily p � n� and hence� it forms a basis of vector space Vp which is a subspace
of Rn� Because of the reproduction property an orthogonal basis fz�� � � � � zpg of vec�
tor space Vp is being created by Gram�Schmidt orthogonalization process during the
pseudohebbian adaptation� Thus� the adaptive pseudohebbian dynamics of the linear
associator neural network proceeds in the following way� At the beginning of adapta�
tion� at time �� the weight matrix is zero� i� e� W��	 ! 
� At the discrete adaptation
time t ! �� � � � � p when the kth training pattern �k ! t� is presented to the network�
�rst� an n� � column vector zk is determined 

zk ! xk �W�k��	xk ������

which then serves for the weight matrix update 

W�k	 ! W�k��	 "
zkz

T

k

zTkzk
� ������

Again� the resulting weight matrix can formally be expressed as a �nite sum of matrices
from ������ which can be reduced to a matrix product �compare with ������� 

W ! W�p	 !
pX

k��

zkz
T

k

zTkzk
! XX� ������

��



where X is the matrix from ���	� and

X� ! �XTX���XT ������

is its pseudoinverse�
The geometrical interpretation of pseudohebbian adaptation ������� ������ at the

kth step is depicted in Figure ���� We will prove by mathematical induction on k

Vk��

xk zk

W�k��	xk

Figure ��� Geometrical interpretation of pseudohebbian strategy�

that the vector W�k��	xk is the orthogonal projection of xk into the vector space Vk��
that is determined by its basis fx�� � � � �xk��g or equivalently� by its orthogonal basis
fz�� � � � � zk��g� Notice that the vector xk is not included in the space Vk�� since the
vectors fx�� � � � �xpg are linearly independent� Thus� we want to verify that the vector
zk ! xk �W�k��	xk is perpendicular to the basis vectors zr �r ! �� � � � � k � ��� This

means� we want to prove zTkzr ! � for r ! �� � � � � k � �� After transposing�
Pk��

s��
zsz

T
s

zTszs

from ������ is substituted for �W�k��	�T in zTk ! xTk � xTk�W
�k��	�T� Furthermore� we

know that fz�� � � � � zk��g is orthogonal according to the inductive hypothesis and hence�
we obtain 

zTkzr ! xTkzr �
k��X
s��

xTk �zszTs � zr
zTszs

! xTkzr �
xTkzr �zTrzr�

zTrzr
! � � ����
�

It follows from above that the vector x coincides with its orthogonal projection
Wx ! x when it lies in the space Vp� Especially� y�xr� ! Wxr ! xr for input
basis vectors fx�� � � � �xpg� This means that the linear autoassociator neural network
arisen from the pseudohebbian adaptation ������� ������ has the reproduction property�
Moreover� the network output y�xr " �� ! W�xr " �� for the input xr " � nearby the
rth training pattern xr� is its orthogonal projection into the space Vp� i� e� its best
approximation in the space Vp� After substituting ������ for W� the error Er��� !
ky�xr " ��� xrk ! kWxr "W�� xrk ! kW�k can be upper bounded similarly as in
������ 

Er��� ! kW�k �
pX

k��

kzkzTk�k
kzkk� � p� � n� ����	�

where � ! k�k� and hence� Er��� � � for � � ��

��



In conclusion� the pseudohebbian adaptive dynamics ������ of the linear associator
is generalized for heteroassociative memory 

W ! DX� ! D�XTX���XT ������

where D� X are matrices from ���	�� The above�mentioned matrix notation of adaptive
dynamics ������ is not suitable for a distributed adaptive mode of the heteroassociative
network� The analogy of recursive notation ������� ������ in the heteroassociative case
issues from Greville�s theorem ���� �� 

W�k	 ! W�k��	 "

�
dk �W�k��	xk

�
zTk

zTkzk
������

where zk is the same n � � column vector as in the autoassociative case� i� e� in its
de�nition ������ the matrix W�k��	 is computed according to ������ �not by ��������
By using the pseudoinverse ������� zk can alternatively be expressed as follows 

zk ! xk �X�k��	
�
X�k��	

��
xk ������

where X�k��	 is an n��k��� matrix� whose columns are the input vectors x�� � � � �xk��
of the �rst k � � training patterns ����� 

X�k��	 !

�
BB�

x�� � � � xk����
���

� � �
���

x�n � � � xk���n

�
CCA � ������

Besides the proper heteroassociative network adapted by ������� the computation of zk
according to ������ requires an extra autoassociative network model with the weight
matrix from ������� Therefore� the pseudohebbian adaptive dynamics ������ for het�
eroassociative memory �i� e� the computation of W ! DX�� is sometimes approxi�
mated by Widrow rule �������

Also the pseudohebbian adaptive dynamics ������ ensures the capability of linear
heteroassociator to reproduce the training patterns ������ For the reproduction prop�
erty veri�cation� �Xr denotes the rth column of matrix X 

y�xr� ! Wxr ! DX��Xr ! D��XTX����XTX�r ! dr � ������

��� Hop�eld Network

Another important model of the autoassociative neural network which is subjected to
researchers� great interest is a Hop�eld network� This model had already been intro�
duced by McCulloch and Pitts ��� and� later on� analyzed by Amari ��� W� A� Little�
and G� L� Shaw ���� However� only thanks to Hop�eld ��� who exploited a lucid
analogy with physical theories of magnetic materials to analyze the stability of this
network� this model became widely known �see Section ���� and that is why it also
bears his name now� The Hop�eld network can be exploited as an autoassociative

��



memory �see Section ����� At present times there exist many theoretical results and
variants of this model that make an e�ort to improve its properties� In this section we
con�ne ourselves to a description and discussion concerning a basic model of Hop�eld
network�

����� Basic Model

At the beginning� the architectural dynamics of Hop�eld network speci�es a �xed
complete topology of the cyclic network with n neurons� In this architecture� each
neuron is connected with all neurons in the network which represent its inputs� In
addition� all neurons in the network serve simultaneously as input and output neurons�
The topology of Hop�eld network is depicted in Figure ���� Furthermore� denote by

y� yj yn

Figure ��� The topology of Hop�eld network�

��� � � � � �n � Z the integer excitation levels and y�� � � � � yn � f��� �g are the bipolar
states of all neurons� Each network connection from neuron i �i ! �� � � � � n� to neuron
j �j ! �� � � � � n� is labeled with an integer synaptic weight wji � Z� In the basic model�
the biases are omitted� i� e� all thresholds are zero� Similarly� no neuron is linked to
itself� i� e� the respective weights wjj ! � �j ! �� � � � � n� are zero as well�

For the Hop�eld network� the adaptive dynamics which is based on Hebb law
�see Paragraph ������ will be described at �rst� The desired network function is again
speci�ed by a training set of p patterns ������� each being given by a vector of n bipolar
states of the input and output neurons that coincide in autoassociative memories�

T ! fxk j xk ! �xk�� � � � � xkn� � f��� �gn� k ! �� � � � � pg ������

The adaptive phase under Hebb law proceeds in p discrete steps in which the training
patterns are� one by one� presented to the network whose synaptic weights are adapted
with respect to them� The resulting con�guration can be described as follows �compare
with ������ 

wji !
pX

k��

xkjxki � � j 
! i � n � ������

First notice that wji ! wij �� � i� j � n� since the positions of neurons i� j in for�
mula ������ are symmetric� Therefore� the Hop�eld network is also sometimes called
a symmetric neural network in which two oppositely oriented connections between two
neurons may be considered as one undirected link� The Hop�eld network adaptation
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according to Hebb law ������ can be interpreted as a voting of patterns on mutual
neuron bindings� Namely� the weight wji ! wij represents the di�erence between the
number of agreeing states xkj ! xki �i� e� xkjxki ! �� of neurons i and j in the training
patterns which strengthen the respective connection� and the number of disagreeing
states xkj 
! xki �i� e� xkjxki ! ��� which weaken this link� The result of voting is
expressed by the sign of weight wij which is positive if the number of consonant states
of neurons i� j in the training set ������ outweighs the number of di�ering states� and
it is negative in the opposite case� The absolute value of this weight determines by
how many votes the winning side exceeded the loosing one� Obviously� the training
patterns are not stored directly and explicitly in the Hop�eld network but they are
represented rather by means of relations among neuron states�

The computational dynamics of Hop�eld network will be described for the case
of sequential synchronous computations� At the beginning of computational mode�
at time �� the neuron states are assigned to the network input x ! �x�� � � � � xn�� i� e�
y
��	
i ! xi �i ! �� � � � � n�� At the discrete computational time t � �� only the state of

one neuron j is updated while the remaining neurons do not change their states� For
example� this neuron is selected systematically so that t ! �n"j where � is a so�called
macroscopic time counting the number of epochs in which all neurons are updated� At
�rst� the integer excitation level of neuron j is computed 

�
�t��	
j !

nX
i��

wjiy
�t��	
i ������

whose sign determines its new bipolar state 

y
�t	
j !

�
� �

�t��	
j � �

�� �
�t��	
j � � �

����
�

Alternatively� the rule ����
� can be modi�ed so that the state y
�t	
j ! y

�t��	
j of neuron

j remains unchanged for �
�t��	
j ! � instead of preferring the unit state y

�t	
j ! � in

this boundary case as the dynamics ����
� suggests� The neuron output determined
from the excitation level ������ according to ����
� may� in fact� be interpreted as the
application of an activation function that is a bipolar version of hard limiter ������ The
computation of Hop�eld network terminates at time t� when the network �nds itself
in a so�called stable state� which means that the neuron states do not change anymore 
y
�t��n	
j ! y

�t�	
j �j ! �� � � � � n�� At that time the �output� neuron states represent the

network output y ! �y�� � � � � yn� where yj ! y
�t�	
j �j ! �� � � � � n�� It can be proved that

under the weight symmetry assumption� the sequential computation of the Hop�eld
network controlled by the computational dynamics ������� ����
� terminates for any
input� Thus� in the computational mode the Hop�eld network computes a function
y�w�  f��� �gn �� f��� �gn in the input space� Besides the con�guration w� this
function depends on the order of neuron updates�

Also a parallel computation of the Hop�eld network may be considered when� at one
computational step� the states of more neurons are simultaneously updated according
to ������� ����
�� However� in this case the computation may generally not terminate

�	



and the network may alter two di�erent states after some time� Or in the asynchronous
model of the Hop�eld network� the individual neurons are independently updated in a
random order instead of the systematic �sequential or parallel� neuron updates�

����� Energy Function

As it has been already mentioned in the beginning of this section� the Hop�eld network
has a natural physical analogy� Some simple models of magnetic materials in statistical
mechanics �e� g� spin glasses� can be viewed as the Hop�eld network� A magnetic
material in these models can be described as a set of atomic magnets� so�called spins
which correspond to neurons in the Hop�eld network� These spins are arranged on a
regular lattice representing the crystal structure of the materials as it is depicted in
Figure ���� The simplest case of atoms is considered in which each spin may have two

Figure ��� A simpli�ed model of magnetic material�

distinct magnetic orientations which are modelled by the bipolar neuron states � and
�� in the Hop�eld network� The physical model is further described by interactions
and dynamics of spins� Each spin is in�uenced by a surrounding magnetic �eld which
can be divided into an external �eld that corresponds to the input of the Hop�eld
network� and to the internal one produced by the other spins� The contributions of
each atom to the surrounding internal �eld are proportional to its spin� Thus� the
in�uence of the magnetic �eld on a given spin is determined by the sum of respective
contributions which corresponds to the computational dynamics ������� ����
� of the
Hop�eld network� The synaptic weights in formula ������ measure the strengths of
mutual interactions between spins� These coe�cients are necessarily symmetric in the
physical model and they may even be distinct� positive or negative depending on the
macroscopic properties of the material� Obviously� the physical model corresponds to
the asynchronous Hop�eld network�

For a better understanding of computational dynamics ������� ����
�� Hop�eld de�
�ned a so�called energy function E�y� by the analogy with physical processes� This

��



function associates each network state y � f��� �gn with its potential energy according
to the following quadratic form 

E�y� ! ��
�

nX
j��

nX
i��

wjiyjyi � ����	�

It follows from the de�nition of energy function E�y� that the network states with a
low energy �i� e� the respective addition terms wjiyjyi in the sum ����	� are su�ciently
large� e� g� positive� have a greater stability since the sign of the weight wji associated
with the connection between neurons j and i is consistent with the mutual relation
between their states yj a yi� Namely� we know that the positive weight compels the
agreeing neuron states while the negative one forces these neuron states to disagree� On
the contrary� the states with a high energy are unstable from the same reason� Thanks
to this property� the energy function with the opposite sign is sometimes called the
stability or harmony�

For illustrational reasons� we will assume in the following exposition that the en�
ergy function is continuous although only discrete values are considered in the above�
introduced basic model of the Hop�eld network� At the beginning of the computa�
tional mode� the Hop�eld network is supplied with energy E�y��	� by means of the
initial network state y��	 ! x which is the network input� In the course of computation
this energy is consumed� i� e� the energy function E�y�t	� � E�y�t��	� is decreasing
in time until the network reaches a stable state y�t

�	 at time t�� corresponding to a
local minimum of energy function E�y�t

�	�� It is interesting that the decrease of energy
function ����	� according to the computational dynamics ������� ����
� is similar to a
minimization of �error� E�y� by a gradient method� In particular� at computational
time t � �� the new state y�t	j of a selected neuron j corresponds to the sign of negative

gradient ������ at the point y�t��	j �

� �E

�yj
�y�t��	j � !

nX
i��

wjiy
�t��	
i ������

In comparison with the multilayered neural network adapted by the backpropagation
learning algorithm �see section ����� the Hop�eld network has an opposite character
of the computational and adaptive dynamics and therefore� we have described them
in the opposite order� While the Hop�eld network adaptation under Hebb law ������
represents an unrepeated procedure whose lasting depends only on the number of train�
ing patterns� the backpropagation learning algorithm �see Paragraph ������ realizes an
iterative process to minimize the network error by the gradient method without a con�
vergence guarantee� On the other hand� the time consumed for the computational phase
of a multilayered network is given only by the number of layers �see Paragraph ������
while the computational mode of Hop�eld network according to ������� ����
� is an
iterative process minimizing the network energy by a discrete variant of the gradient
method which may generally �e� g� parallel computations� not converge�

The objective of the Hop�eld network adaptation under Hebb law ������ is to
�nd a network con�guration such that the respective network function implements an
autoassociative memory during the computational mode� Thus� the Hop�eld network

��



should output a training pattern for all inputs that are close to this pattern� From
the energy point of view� each training pattern in ������ should be a local minimum
of energy function� i� e� a stable state of the network� All inputs that are closed to
the respective pattern are situated in a near neighborhood of this stable state and
they form a so�called attraction area� The attraction area of a stable state is a set of
the initial network states �inputs� such that starting with them� the Hop�eld network
reaches this stable state �output� in the computational phase� which corresponds to
a local minimum representing the underlying training pattern� In the geometrical
interpretation� the energy surface is decomposed into the attraction areas of particular
local minima and the Hop�eld network function maps each input from an attraction
area of some local minimum exactly on this minimum� The energy surface is graphically
depicted in Figure ��� where the local minima of particular attraction areas are marked�

y�x	

x

E

Figure ��� Energy surface�

However� as a result of the Hebbian learning ������� additional local minima� so�
called stable spurious states spontaneously arise on the energy surface of the Hop�eld
network that do not correspond to any training patterns� The output that is produced
for the input su�ciently close to such a spurious state� does not represent any pattern
and thus� it does not make any sense� There exist variants of the Hop�eld network
adaptive dynamics in which the spurious states are being additionally unlearned� For
example� in the Hop�eld network with a con�guration wji �� � j� i � n�� a spurious
state x� ! �x��� � � � � x

�
n� � f��� �gn can be unlearned by a modi�cation of Hebb law ���

that produces new weights w�ji as follows 

w�ji ! wji � x�jx
�
i � � j 
! i � n � ������

In the neurophysiological analogy� delivering the neural network of spurious states
might evoke a neurosis treatment� There are even hypotheses assuming that a man
improves his memory by unlearning the spurious patterns in a dream�

����� Capacity of Hop
eld Memory

We will �rst deal with the reproduction property of the Hop�eld network which repre�
sents a necessary condition for autoassociative memories �see Paragraph ������� In this
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case� the training patterns should be local minima of the energy function� i� e� the net�
work stable states� The reproduction property depends on the ratio p�n of the number
p of training patterns to the number n of neurons� This fraction also determines a
so�called capacity of the Hop�eld autoassociative memory provided that all patterns
are stored without unacceptable errors� Supposing that the neuron states prescribed
by random training patterns are independently chosen with equal probability for both
bipolar values� then for a su�ciently large numbers n� p of neurons and training pat�
terns� respectively� a probability P that a state of a given neuron in the pattern is
stable� can be estimated ��� 

P !
�
�
� �p

�

p
n��pZ
�

e�x
�

dx � ������

For example� it is expected for p ! ���
�n that the number of unstable neuron states in
training patterns do not exceed �#� However� this result does not say anything about
a subsequent network computation when the respective unstable state is updated� e� g�
it does not guarantee that the network reaches a stable state which is close to the
underlying training pattern� A similar analysis ���� 
� concerning the reproduction
of most or all� complete patterns �unlike the reproduction of only particular neuron
states in training patterns� shows that the maximum number of patterns that can
be stored into the Hop�eld autoassociative memory with n neurons� is asymptotically
proportional to n� log n�

However� the autoassociative memory should possess more than the reproduction
property which ensures the perfect storage of all training patterns� but it should also
recall patterns only by using their partial �imprecise� knowledge� A more detailed
analysis ��� �� ��� �� shows for the number p � ����
n of training patterns �i� e� for
the memory capacity of at most ����
� that these patterns correspond to local minima
of the energy function in the Hop�eld network that has been adapted according to Hebb
law ������ and hence� this network can� in principle� be exploited as an autoassociative
memory in this case� On the contrary� for p � ����
n� the local minima corresponding
to training patterns disappear� Furthermore� for p � ����n �i� e� for the memory
capacity less than ������ the training patterns correspond to global minima of the energy
function that are deeper than the local minima related to spurious states� This means
in a �rst�quality Hop�eld autoassociative memory� ��� neurons are needed to store
�� training patterns which includes ����� connections labeled with �integer� synaptic
weights in the complete topology of cyclic network� Although it appears in practice
that the above�mentioned theoretical estimates are rather overvalued� yet the basic
model of the Hop�eld autoassociative memory is only of theoretical signi�cance thanks
to its low capacity� There are many modi�cations of the Hop�eld model described in
the literature that make an e�ort to avoid this drawback�

����� An Application Example of Hop
eld Network

The above�introduced general principles will be illustrated through an example of
the Hop�eld network exploitation for the noise reduction in recognition of characters�

��



namely digits� The image of a digit is projected on the array of �� � �� black�and�
white pixels that correspond to neurons of a Hop�eld network so that their states �� ��
represent black and white colors� respectively �compare with the motivational example
of scholar�s character recognition in Paragraph ������� Furthermore� sample images of
eight digits were created and used for the adaptation of Hop�eld network by Hebbian
learning ������� Then an input that arose from the sample image of the digit three
by introducing a ��# noise was presented to the learned network� In Figure ��� the

Figure ��� An application example of Hop�eld network�

course of the computational mode for this input can be traced which is monitored at
the macroscopic time steps� The Hop�eld network� step by step� removes a noise from
the digit image� i� e� it functions as an autoassociative memory when it reconstructs
the original image of the digit three corresponding to a network stable state�

��� Continuous Hop�eld Network

In this section� a continuous variant of an analog Hop�eld network ���� �� and its
application to heuristic solving the traveling salesman problem will be described� In
contrast with the analog models of neural networks that have been considered so far
�e� g� the multilayered neural network with the backpropagation learning algorithm
in Section ���� where the real neuron state is a continuous function of the excitation
level� this network is an example of the model in which� in addition� the real state
evolution in the computational mode is a continuous function of time� In such cases�
the computational �or even adaptive� dynamics is usually given by di�erential equations
whose solution cannot be expressed in an explicit form� Therefore� these models are
not suitable for simulations on conventional computers unless their discrete version is
used �in our case� this is the discrete�time Hop�eld network from Section ����� On
the other hand� they are advantageous to analog hardware implementations by electric
circuits�
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����� Continuous Computational Dynamics

Suppose that a Hop�eld network model has the same architectural dynamics and�
as the case may be� the same adaptive dynamics as it has been described in Para�
graph ������ In addition� assume that the symmetric network weights may be reals and
wj� �� � j � n� represents a generally non�zero� real bias �a threshold with the opposite
sign� of the jth neuron corresponding to a formal unit input y� ! �� Remember that
wjj ! � �j ! �� � � � � n�� Then� the following computational dynamics is considered
for the continuous Hop�eld network� At the beginning of the computational mode�
at time �� the neuron states are assigned to the network input x ! �x�� � � � � xn�� i� e�
y
��	
i ! xi �i ! �� � � � � n�� During the computational phase� the evolution of real network

state y�t� is a continuous function of time t � � that is given by the following system
of di�erential equations �for the lucidity reasons the time parameter t is omitted in the
following formulas� 

�j
dyj
dt

! �yj " ���j� ! �yj " �

�
nX
i��

wjiyi

�
j ! �� � � � � n ������

where �j � � �j ! �� � � � � n� are suitable time constants� �j�t� is the real excitation level
of neuron j which also depends on time t� and � is a continuous activation function�
e� g� the standard sigmoid ���	� with the range ��� �� 

���� !
�

� " e���
������

or its bipolar form � the hyperbolic tangent ������ with the range ���� �� 

���� ! tgh

�

�

�
�

!
� � e���

� " e���
������

where 
 � � is the gain parameter �compare with ������� For 
 � 	� the discrete
neuron outputs �� or � are obtained similarly as in the discrete Hop�eld network
����
��

The computation of the continuous Hop�eld network terminates at time t� when the
network �nds itself in a stable state y�t�� whose change in time is zero� i� e� dyj

dt
�t�� ! �

for j ! �� � � � � n� After substituting for dyj
dt

�t�� ! � into the system ������ we get 

yj ! ���j� ! �

�
nX
i��

wjiyi

�
j ! �� � � � � n � ������

The equations ������ remind the stable state of the discrete version of the Hop�eld
network in the computational mode under ������� ����
��

Moreover� the computational dynamics ������ of the continuous Hop�eld network
can also be described by a similar system of di�erential equations for the excitation
level evolutions �j�t� �j ! �� � � � � n� in time 

�j
d�j
dt

! ��j "
nX
i��

wjiyi ! ��j "
nX
i��

wji���i� j ! �� � � � � n � ������

��



Under certain conditions ���� the system ������ has the same equilibrium solutions
������ as the system �������

Analogically to the discrete version ����	�� the energy of the continuous Hop�eld
network is de�ned which depends on the network state and therefore� its value evolves
continuously in time 

E�t� ! ��
�

nX
j��

nX
i��

wjiyjyi �
nX

j��

wj�yj "
nX

j��

Z yj

�
����y�dy � ����
�

For the activation function ������ �similarly for �������� the integrals in formula ����
�
can explicitly be written as follows 

Z yj

�
����y�dy !

�



lnyyjj �� � yj�
��yj j ! �� � � � � n � ����	�

In what follows it will be shown that the energy function E�t� is non�increasing in
the computational mode ������ �or �������� i� e� dE

dt
� � 

dE

dt
! ��

�

nX
j��

nX
i��

wji
dyj
dt

yi � �
�

nX
j��

nX
i��

wjiyj
dyi
dt

�

�
nX

j��

wj�
dyj
dt

"
nX

j��

����yj�
dyj
dt

� ������

From the fact that the weights are symmetric� i� e� wji ! wij �� � i� j � n� and by
������� ������ we obtain 

dE

dt
! �

nX
j��

dyj
dt

�
nX
i��

wjiyi � �j

�
! �

nX
j��

�j
dyj
dt

d�j
dt

� ������

The derivative dE
dt

can be expressed by ������ in such a form that we see it is non�
positive 

dE

dt
! �

nX
j��

�j�
���j�

�
d�j
dt

��

� � ������

since �j � � �j ! �� � � � � n� and the activation function ���� is increasing for 
 � �� i� e�
����j� � �� Thus� the energy E�t� decreases during the computational phase �������
i� e� dE

dt
� �� until the network reaches its local minimum where dE

dt
! �� because the

energy function ����
� is bounded �the real states are within ��� ��� or ���� ��� and the
respective integrals ����	� are bounded�� According to ������� this corresponds to a
stable network state d�j

dt
! dyj

dt
! �� Thus� the continuous Hop�eld network is proved

to always terminate its computation in a stable state�
On the analogy of discrete version� the continuous Hop�eld network that has been

adapted under Hebb law� can be used as an autoassociative memory� In the following
exposition� we will deal with yet another� non�standard exploitation of this model�
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����� Traveling Salesman Problem

We have shown that the continuous Hop�eld network minimizes the energy function E
in the state space during the computational phase� This can be exploited for heuristic
solving of such an optimization problem whose objective function together with the
underlying constraints can be expressed as a �quadratic form� ����
�� By comparing
the respective objective function with the energy function� the synaptic weights of
a continuous Hop�eld network are extracted ��adaptive� mode�� Then� the optimal
and feasible solution of a given problem is searched in the computational mode� This
approach will be illustrated through the well�known traveling salesman problem ����

Let N � � be a number of cities and for each pair � � r� s � N � let a function
d  f�� � � � � Ng� �� R determine the distance d�r� s� from the city r to s� In addition�
assume that d�r� r� ! � and d�r� s� ! d�s� r� for every � � r� s � N � Then� the
traveling salesman problem consists in �nding such a city ordering that forms the
shortest circular tour in which each city is visited exactly once except the salesman
ceases his tour at the same city from which he has started� This problem is represented
by a continuous Hop�eld network with n ! N�N neurons whose states yru are indexed
by the pairs a city number r �� � r � N� and its potential position u �� � u � N� in
the city ordering on the traveling salesman tour� The matrix neuron arrangement in
the network topology is outlined in Figure ��� where particular rows correspond to the

� �z �
stops

������������������������
�����������������������

cities

Figure ��� The neural representation of traveling salesman problem�

cities while columns determine the ordering of traveling salesman stops at these cities�
For example� the standard sigmoid ������ is taken here as the activation function� i� e�
the neuron states yru � ��� �� �� � r� u � N�� When minimizing the energy function E
in the computational mode� the integral term in formula ����
� compels the neurons to
saturate in binary states� i� e� either yru

�! � or yru
�! �� since the respective integrals

����	� are zero for these values� Therefore� we can further con�ne ourselves only to the

��



remaining terms in the energy de�nition ����
� while assuming the binary states� The
state yru

�! � �the respective neuron is said to be active� is interpreted in such a way
that the rth city �nds in the uth position on the circular tour� and similarly� yru

�! �
�the neuron is passive� if this is not the case�

Obviously� in the above�introduced neural representation of the traveling salesman
problem� not all network states correspond to the actual circular tours� Therefore� it
is necessary to take the feasibility of the solution into account within the objective
function being minimized� First� the traveling salesman is required to visit each city
at most once� i� e� in each row at most one neuron should be active as it is depicted in
Figure ���� This corresponds to the minimization of the following expression 

EA !
A

�

NX
r��

NX
u��

NX
v � �
v �� u

yruyrv !

! ��
�

nX
j � �

j � �r� u	

nX
i � �

i � �s� v	

�A�rs�� � �uv�yjyi ������

where a parameterA � � measures the in�uence of EA during the minimization process�
and �rs is the Kronecker delta� i� e� �rs ! � if r ! s and �rs ! � if r 
! s� The purpose
of the formal manipulation in ������ is to transform EA to a form that is comparable
with the �rst term of the energy function ����
�� Similarly� the traveling salesman is
able to visit at most one city at each stop on the circular tour� i� e� in each column at
most one neuron should be active as it is depicted in Figure ���� This corresponds to
minimizing the following expression 

EB !
B

�

NX
u��

NX
r��

NX
s � �
s �� r

yruysu !

! ��
�

nX
j � �

j � �r� u	

nX
i � �

i � �s� v	

�B�uv�� � �rs�yjyi ������

where a parameter B � � measures the in�uence of EB during the minimization pro�
cess� Again� the aim of the formal manipulation in ������ is to transform EB to a
form that is comparable with the �rst term in ����
�� Finally� the traveling salesman is
required to visit exactly N cities on his tour� i� e� exactly N neurons should be active
in the network �see Figure ����� This corresponds to the minimization of the following
expression 

EC !
C

�

�
N �

NX
r��

NX
u��

yru

��

!
CN�

�
� ������

��
�

nX
j � �

j � �r� u	

nX
i � �

i � �s� v	

�C ��� �ji� yjyi �
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where a parameterC � � measures the in�uence of EC during the minimization process�
The second line in ������ is of the form that is comparable to the �rst two terms in ����
�
while the term CN�

�
is constant and does not in�uence the minimization process and

therefore� it will further be omitted in EC � Thus� the simultaneous minimization of
������� ������� ������ in the state space compels the network states to represent feasible
solutions of the traveling salesman problem�

Furthermore� the condition that the traveling salesman tour is as short as possible�
i� e� that the respective feasible solution is optimal as well� is taken into account in the
objective function� This corresponds to minimizing the following expression 

ED !
D

�

NX
r��

NX
s��

NX
u��

d�r� s�yru �ys�u�� " ys�u��� ! ������

! ��
�

nX
j � �

j � �r� u	

nX
i � �

i � �s� v	

�Dd�r� s� ��u�v�� " �u�v��� yjyi

where a parameter D � � measures the in�uence of ED during the minimization
process� Again� the purpose of the formal manipulation in ������ is to transform ED to
a form that is comparable with the �rst term in ����
�� For the notational simplicity
the indices u� � for u ! � and u" � for u ! N in ������ are interpreted as u ! N and
u ! �� respectively�

Thus� the resulting objective function ETS is the sum of ������� ������� ������� and
������ whose minimum gives an optimal feasible solution of the respective traveling
salesman problem� i� e� the city ordering of the shortest circular tour 

ETS ! EA " EB " EC " ED !

! ��
�

nX
j � �

j � �r� u	

nX
i � �

i � �s� v	

�
�A�rs��� �uv��B�uv�� � �rs��
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CN � C

�

�
yj � ������

By comparing the traveling salesman objective function ������ with the �rst two terms
of energy function ����
�� the weights of a continuous Hop�eld network are extracted
that ensure the ETS minimization during the computational phase 

wji ! �A�rs��� �uv��B�uv��� �rs�� C��� �ji�

�Dd�r� s���u�v�� " �u�v��� ����
�

wj� ! CN � C

�
j ! �r� u�� i ! �s� v�� � � r� s� u� v � N �

It follows from the weight de�nition ����
� that wji ! wij and wjj ! � for � � i� j � n�
For heuristic solving of the traveling salesman problem� the weights of the continu�

ous Hop�eld network are �rst assigned according to formula ����
�� Here� the suitable
real parameters A� B� C� D are chosen to determine the degree of minimization with
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respect to the particular terms in ETS ! EA "EB "EC "ED �e� g� A ! B ! D ! ����
C ! ��� ����� The computational phase starts at a random initial network state
nearby the zero vector� e� g� y��	j � ��� ������ �j ! �� � � � � n�� The proper computation
of the continuous Hop�eld network is being performed according to ������ until the
network reaches a stable state corresponding to a local minimum of energy function
����
� which coincides with the objective function ETS of the traveling salesman prob�
lem� Finally� the respective result is read from the network� i� e� yru

�! � is interpreted
as the traveling salesman visits the rth city at the uth stop on his circular tour�

However� since the achieved minimum of the energy function may not be a global
one� the resulting solution of the traveling salesman problem obtained in the compu�
tational mode of the continuous Hop�eld network� may generally not be optimal and
it may not even be feasible� By a suitable choice of parameters A� B� C� D and by
repeating the computation with di�erent initial network states� a better approxima�
tion of the optimum can be accomplished� Also an appropriate selection strategy of
the gain parameter 
 � � within the activation function ������ may help here� At the
beginning� 
 is chosen su�ciently small in order to provide the particular neuron states
with a greater degree of freedom� Then� during the computational phase when the net�
work �nds itself in the state space close to a deeper minimum of the energy function�
this parameter may be increased to accelerate the convergence� However� there are
no general directions for an e�ective selection of the above�mentioned parameters that
would ensure the convergence to a global minimum of the energy function in order to
achieve the actual optimum of the traveling salesman problem since this problem is
NP �complete� The above�introduced procedure is only the heuristics which� in addi�
tion� cannot compete with the well�known� classical approximation algorithms for the
traveling salesman problem� Rather than that� it illustrates a possible non�standard
application of neural networks�

��� Boltzmann Machine

A Boltzmann machine is the neural network model introduced by Hinton and Se�
jnowski ��� �	� ��� which is a stochastic variant of the Hop�eld network with hidden
neurons� The name of this model originated in statistical mechanics because the prob�
ability of its states in a so�called thermal equilibrium is controlled by the Boltzmann
distribution� For example� the Boltzmann machine can be used as a heteroassociative
memory �see Section �����

����� Stochastic Computational Dynamics

At the beginning� the architectural dynamics of the Boltzmann machine speci�es
a �xed topology of the cyclic neural network with symmetric connections� i� e� the
architecture is described by an undirected graph� The set V ! A �B of s neurons in
this network is disjointly split into a set B of b hidden neurons and a set A ! X � Y
of a ! n" m� so�called visible neurons which are further categorized into a set X of n
input neurons and a set Y of m output neurons� An example of the Boltzmann machine

��



outputs

hidden neurons

inputs

Figure ��� An example of Boltzmann machine topology�

architecture is depicted in Figure ���� The neurons are denoted by indices i� j etc�� �j
represents a real excitation level and yj � f��� �g is a bipolar state �output� of neuron
j� The state of visible neurons is denoted by a vector � � f��� �ga and similarly�
� � f��� �gb is the state of hidden neurons� Then y ! ����� � f��� �gs denotes the
state of the Boltzmann machine� The connection between i and j is labeled with a real
symmetric weight wji ! wij� For simplistic reasons� we again assume the thresholds of
all neurons to be zero and wjj ! � for every j � V � We also use a notation %j for a set
of all neurons that are connected with neuron j�

The computational dynamics of Boltzmann machine will be described for the case
of sequential computations� At the beginning of the computational mode� at time ��
the states of input neurons i � X are assigned to a bipolar network input x ! �x�� � � � �
xn� � f��� �gn and these are further clamped ��xed� during the whole computation�
i� e� y

�t	
i ! xi for i � X� t � �� The states y��	j � f��� �g of the remaining non�input

neurons j � V nX are initialized randomly� Then� at the discrete computational time
t � �� one non�input neuron j � V n X is randomly selected whose state is updated
while the remaining neurons do not change their states� Similarly as in the Hop�eld
network �see Paragraph ������� the macroscopic time � can again be considered here�
i� e� �s� � t � �� "��s� where s� ! s�n is the number of updated �non�input� neurons
during one time period� At �rst� a real excitation level of neuron j is computed 

�
�t��	
j !

X
i�
j

wjiy
�t��	
i � ����	�

Then� the output of neuron j at time t is stochastically determined so that the neuron
j is active with probability

P
n
y
�t	
j ! �

o
! ����t��	j � ������

��



and thus� it is passive with probability

P
n
y
�t	
j ! ��

o
! � �P

n
y
�t	
j ! �

o
! �����t��	j � ������

where � is a stochastic activation function 

���� !
�

� " e����T ��� ������

whose shape corresponds to the standard sigmoid ���	��

����� Simulated Annealing

The parameter T �		 � � in formula ������ which may evolve in macroscopic time � �
is called temperature due to the physical analogy� It is inversely proportional to the
gain parameter of the stochastic activation function �compare with �������� Clearly�
for the temperature T � 	� the probabilities ������� ������ of both bipolar states
are coincidently ��� and the Boltzmann machine behaves completely randomly during
the computational mode� On the contrary� for T � � the computation of Boltzmann
machine under ����	�� ������ is deterministic and coincides with the computational
phase of the Hop�eld network described by ������� ����
�� Usually� a su�ciently high
temperature T ��	 is chosen at the beginning so that the probability ������ is a little bit
greater than ��� and the computation has a great degree of freedom� Then� because
of the convergence� the whole system is gradually �cooled�� i� e� the temperature is
slowly being decreased� This procedure is called simulated annealing ��	 thanks to the
physical analogy� For example� the temperature T �		 ! �cT ��	 for cq � � � �c " ��q
�c ! �� �� �� � � �� is decreased after each q � � macroscopic steps where � � � � � is
selected to be close to � and inversely proportional to a choice of q �e� g� � ! ��	
 for
a less q and � ! ��	 for a greater q�� Or the temperature evolution is controlled by the
following heuristics ��	 

T �		 !
T ��	

log�� " � �
� � � � ������

The graph of the stochastic activation function for di�erent temperature examples is
drawn in Figure ��
�

The above�introduced computational dynamics of Boltzmann machine further de�
velops the physical analogy of the Hop�eld network from Paragraph ����� so that� in
addition� the temperature is taken into account� Namely� the spins in magnetic ma�
terials are a�ected by random� so�called thermal 	uctuations that tend to frequently
and randomly �ip the magnetic orientation of spins� Thus� these �uctuations restrict
the in�uence of the surrounding magnetic �eld while the ratio of both e�ects depends
on the temperature� The thermal �uctuations are being slipped o� with decreasing
temperature until the absolute zero �K �i� e� �����C� is reached when they disappear�
On the contrary� the thermal �uctuations dominate under high temperatures and the
magnetic orientation of a spin is independent on the magnetic �eld� i� e� it is nearly
as often opposite to its �eld as aligned with it� This phenomenon can formally be de�
scribed by the so�called Glauber dynamics ��� which corresponds to the computational
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Figure ��
 The graph of the stochastic activation function for di�erent temperatures T �

dynamics of Boltzmann machine ����	�� ������ except the actual absolute temperature
TK in Kelvin is still adjusted T ! kBTK where kB ! ���
 � �����J�K is Boltzmann
s
constant� The temperature decrease in the computational mode evokes the actual ma�
terial annealing� e� g� in the production of a hard metal when a gradual cooling is
applied in order to avoid anomalies in the material crystalline structure�

The computational dynamics of Boltzmann machine may be interpreted neurophys�
iologically as well� Besides proper electric signals from dendrites �see Section ����� the
biological neuron is in�uenced by other circumstances� For example� the impulse gen�
erated in an axon has a di�erent intensity at each time� they are delays in synapses�
random �uctuations� etc� These interfering e�ects can be thought of as noise that
can be represented by thermal �uctuations� In this case� the parameter T does not
correspond to the actual temperature but it determines the noise level�

����� Equilibrium State

Similarly as in the Hop�eld network �see Paragraph ������ the energy function E�y� of
Boltzmann machine is de�ned which depends on its state y 

E�y� ! ��
�

X
j�V

X
i�
j

wjiyjyi � ������

It can be proved that on average� the energy ������ is decreasing together with the
temperature parameter T �simulated annealing� during the computational phase until�
at time t�� the Boltzmann machine reaches a so�called thermal equilibrium with the
temperature T �� In this equilibrium� the state of Boltzmann machine is not constant
due to the stochastic computation� but it �uctuates locally around the constant average
�stable� state y� � ���� �s corresponding to a local minimum of E� A fundamental re�
sult from statistical mechanics says that in thermal equilibrium� at the temperature T ��
each of the possible state y� � f��� �gs of Boltzmann machine occurs with probability
�Boltzmann distribution� 

pB�y�� !
e�E�y

�	�T �P
y�f����gs

e�E�y	�T � � ������

��



By formula ������� the stable equilibrium state y� � ���� �s which is an average over
all states in thermal equilibrium� weighted by the respective probabilities� can be com�
puted as follows 

y�j !
X

y�f����gs

pB�y�yj j � V � ������

Then� the average output neuron states y�j � ���� � �j � Y � within the equilibrium
state can determine the average output for a given input�

Besides the heteroassociative memory� the Boltzmann machine can be exploited
for heuristic solving the optimization tasks providing that an optimization problem
with the respective objective function �optimality� and constraints �feasibility� can be
reduced to the minimization of a quadratic form ������ �compare with the continuous
Hop�eld network application to the traveling salesman problem in Paragraph ������� In
this case� the weights of Boltzmann machine are obtained by comparing the respective
quadratic form with the network energy function E� A feasible and optimal solution of
the given problem is searched during the computational phase by minimizing the energy
function using a �stochastic gradient method� ����	�� ������ �compare with ��������
The main problem in non�linear optimization that has already been discussed in the
context of the backpropagation learning algorithm �see Paragraph ������ is how to
avoid the local minima in order to reach a global minimum� The advantage of the
Boltzmann machine over the �continuous� Hop�eld network consists in the possibility�
under a higher temperature� to move from a local minimum of E to a state with a
higher energy �thanks to the stochastic computation� from which� hopefully� a path in
the state space to a deeper minimum leads� By using an appropriate strategy in the
simulated annealing� a better optimum than that by the deterministicHop�eld network�
can be found� Also in the case of associative memory when the global minima of the
energy function represent the training patterns while the local minima correspond to
spurious patterns �see Paragraph ������ these admissible states can be avoided under
the stochastic computational mode�

����� Boltzmann Learning

Now� we will describe the adaptive dynamics of the Boltzmann machine for the case
of heteroassociative memory� In the adaptive mode� the desired network function
is prescribed by a discrete probability distribution of visible neuron states so that
a desired non�zero probability pd�x�d� � � is assigned to each possible state � !
�x�d� � f��� �gn�m of input and output �visible� neurons� However� in practice such
a distribution is usually explicitly unknown and also its description would require
exponentially many ��a� where a!n"m� non�zero probability values� Therefore instead�
a training set is considered 

T !

�
�xk�dk�

����� xk ! �xk�� � � � � xkn� � f��� �gn
dk ! �dk�� � � � � dkm� � f��� �gm k ! �� � � � � p


������

that contains only the relevant inputs xk �k ! �� � � � � p� paired with the desired outputs
dk so that the number � � p � �a of patterns is typically much less than the number

��



of all possible states of visible neurons� Furthermore� a uniform distribution of training
patterns is usually assumed� i� e� pd�xk�dk� ! �

p
� � �k ! �� � � � � p�� In addition� a

random noise with a small probability is carried into the training set T which ensures
that the remaining visible neuron states which are not included in the training set�
occur with non�zero probabilities�

The aim of the Boltzmann machine adaptation is to �nd such a network con�gura�
tion w that the probability distribution pA��� of states � � f��� �ga of visible neurons
from A ! X � Y in thermal equilibrium coincides with the desired distribution pd���
of states � ! �x�d� in the training patterns ������� By means of ������ the probability
pA��� of a visible neuron state � � f��� �ga can be expressed independently on the
hidden neuron states � � f��� �gb as follows 

pA��� !
X

��f����gb

pB����� � ����
�

A relative entropy weighted by the probabilities of training pattern occurrences mea�
sures adequately the discrepancy between the probability distributions pA and pd� i� e�
it represents an error E 

E�w� !
X

��f����ga

pd��� log
pd���
pA���

� ����	�

It can be shown that the error E�w� is always nonnegative and it equals zero if and only
if pA ! pd� In addition� E�w� is a function of the Boltzmann machine con�guration w
since pA depends on synaptic weights according to ����
�� ������� and ������� Thus� the
error function E�w� can be minimized in the weight space by using a gradient method�

At the beginning of the Boltzmann machine adaptive mode� at time �� the weights in
the con�guration w��	 are uniformly distributed around zero� e� g� w��	

ji ! w
��	
ij � h��� �i

�j � V� i � %j�� The underlying adaptation proceeds at the discrete time steps that
correspond to training epochs in which each training pattern from T is presented to
the network more times� The new con�guration w�t	 is computed at time t � � 

w
�t	
ji ! w

�t��	
ji " $w

�t	
ji j � V� i � %j ������

where the weight increment $w�t	 at time t � � is proportional to the negative gradient
of the error function ����	� at the point w�t��	 

$w
�t	
ji ! �	 �E

�wji

�
w�t��	

�
j � V� i � %j ������

where � � 	 � � is the learning rate�
To implement the adaptive dynamics ������� the gradient of the error function

in formula ������ must be computed� By formal di�erentiating the error function
����	� while employing formulas ����
�� ������� ������ and by interpreting the respective
probabilities we get the following expression �a detailed derivation can be found e� g�
in ���� 

�E
�wji

! � �
T �

�
y�jy

�
i �A�� y�jy

�
i

�
j � V� i � %j � ������
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The term y�jy
�
i �A� in formula ������ is an average value of y�j y

�
i in thermal equilibrium

supposing that the states � ! �x�d� of input and output �visible� neurons from A !
X � Y are clamped 

y�jy
�
i �A� !

X
��f����ga

pd���
X

��f����gb

pB�����
pA���

y�j ���y�i ��� ������

where y�j ��� is an output of neuron j � V in the thermal equilibrium of the Boltzmann
machine provided that the states of visible neurons are clamped with a vector ��
Similarly� the term y�jy

�
i in ������ is an average value of y�jy

�
i in the thermal equilibrium

of the Boltzmann machine without clamping the visible neurons 

y�jy
�
i !

X
y�f����gs

pB�y�y�jy
�
i � ������

After substituting the partial derivative for ������ into ������ the Boltzmann learn�
ing rule is obtained 

$wji !
	

T �

�
y�j y

�
i �A�� y�j y

�
i

�
j � V� i � %j � ������

The �rst term y�jy
�
i �A� �see ������� in formula ������ can be interpreted as Hebbian

learning �compare with ������ with clamping the input and output �visible� neurons
while the second term �y�jy�i �see ������� corresponds to Hebbian unlearning �compare
with ������� with free visible neurons� The adaptive mode converges if these terms
match for all j � V� i � %j�

����� The Learning Algorithm

The above�introduced adaptive dynamics of the Boltzmann machine will be summa�
rized into a transparent algorithm that can be realized distributively by means of a
specialized hardware ��� or it can be simulated on a conventional computer by using
the Monte Carlo method 

�� Initialize the discrete adaptation time t  ! ��

�� Choose randomly w��	
ji ! w

��	
ij � h��� �i with the uniform probability distribution�

�� Increment t  ! t " ��

�� Assign �ji
�t��	

 ! � for each j� i�

�� For every training pattern k ! �� � � � � p perform the following actions q times 

�a� Fix the states � ! �x�k�d
�
k� � f��� �gn�m of the visible neurons so that

the probability that one visible neuron state agrees with the corresponding
desired state prescribed by the kth training pattern equals e� g� Pfx�ki !
xkig ! ��	 �i ! �� � � � � n� and Pfd�kj ! dkjg ! ��	 �j ! �� � � � �m�� Further
follow the computational dynamics ����	�� ������ �only the hidden neurons

��



are being updated while the visible neurons are clamped� by using sim�
ulated annealing until the thermal equilibrium is reached at the state y�

with a �nal temperature T �� The state y� will serve as an initial state of
the subsequent Boltzmann machine computation starting at macroscopic
computational time � ! ��

�b� At macroscopic computational time � ! �� � � � � r do the following actions 

i� Perform one macroscopic computational step of the Boltzmann machine
under temperature T �� i� e� in a random order update the states of all
hidden neurons according to ����	�� �������

ii� Update the statistics for y�j y
�
i �A� with respect to the current network

state� i� e� �ji
�t��	

 ! �ji
�t��	

" y
�		
j y

�		
i �

�� Ascertain the average of �ji
�t��	

 !

�
ji

�t���

pqr
�

f �ji�t��	 is an estimate of the current y�jy
�
i �A�� g

�� Assign �ji
�t��	

 ! � for each j� i�


� Perform the following actions pq times 

�a� Without clamping the visible neurons� i� e� for a random initial state of
the Boltzmann machine follow the computational dynamics ����	�� ������
�all visible and hidden neurons are being updated� by using simulated an�
nealing until the thermal equilibrium is reached at the state y� with a �nal
temperature T �� The state y� will serve as an initial state of the subse�
quent Boltzmann machine computation starting at macroscopic computa�
tional time � ! ��

�b� At macroscopic computational time � ! �� � � � � r do the following actions 

i� Perform one macroscopic computational step of the Boltzmann machine
under temperature T �� i� e� in a random order update the states of all
hidden neurons according to ����	�� �������

ii� Update the statistics for y�jy
�
i with respect to the current network state�

i� e� �ji
�t��	  ! �ji

�t��	 " y
�		
j y

�		
i �

	� Ascertain the average of �ji
�t��	  !


�ji
�t���

pqr
�

f �ji�t��	 is an estimate of current y�jy
�
i � g

��� According to ������ compute $w
�t	
ji  ! �

T �

�
�ji

�t��	 � �ji
�t��	

�
�

��� According to ������ update the con�guration w
�t	
ji  ! w

�t��	
ji " $w

�t	
ji �

��� If $w
�t	
ji is su�ciently small� then terminate otherwise continue with step ��

��



It is clear from the above�introduced algorithm that the adaptive phase of the
Boltzmann machine is very time�consuming� In spite of that� the results achieved by
the Boltzmann machine are very good ��� in practical applications�
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